
For Use with MATLAB®

User’s Guide
Version 5

Statistics
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Statistics Toolbox User’s Guide
© COPYRIGHT 1993 – 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Revision History:

September 1993 First printing Version 1.0
March 1996 Second printing Version 2.0
January 1997 Third printing Version 2.11
November 2000 Fourth printing Revised for Version 3.0 (Release 12)
May 2001 Fifth printing Minor revisions
July 2002 Sixth printing Revised for Version 4.0 (Release 13)
February 2003 Online only Revised for Version 4.1 (Release 13.0.1)
June 2004 Seventh printing Revised for Version 5.0 (Release 14)
October 2004 Online only Revised for Version 5.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 5.0.2 (Release 14SP2)

i

Contents

1
Introduction

What Is the Statistics Toolbox? . 1-2

Primary Topic Areas . 1-3

Random Number Generators in the Statistics Toolbox . . . 1-5

Mathematical Notation . 1-6

2
Probability Distributions

Introduction . 2-2

Displaying Probability Distributions and
 Random Samples . 2-3

Probability Distributions Demo . 2-3
Random Sample Generation Demo . 2-4

Overview of the Functions . 2-6
Probability Density Function (pdf) . 2-6
Cumulative Distribution Function (cdf) 2-7
Inverse Cumulative Distribution Function 2-7
Random Number Generator . 2-9
Mean and Variance as a Function of Parameters 2-11

ii Contents

Distribution Fitting Tool . 2-13
Main Window of the Distribution Fitting Tool 2-13
Example: Fitting a Distribution . 2-16
Creating and Managing Data Sets . 2-20
Creating a New Fit . 2-24
Displaying Results . 2-28
Managing Fits . 2-30
Evaluating Fits . 2-31
Excluding Data . 2-34
Saving and Loading Sessions . 2-39
Generating an M-File to Fit and Plot Distributions 2-39
Using Custom Distributions . 2-41
Additional Distributions Available in
 the Distribution Fitting Tool . 2-41

Overview of the Distributions . 2-45
Reproducing the Output of Random Number Functions 2-46
Beta Distribution . 2-48
Binomial Distribution . 2-50
Chi-Square Distribution . 2-52
Noncentral Chi-Square Distribution . 2-53
Discrete Uniform Distribution . 2-55
Exponential Distribution . 2-56
Extreme Value Distribution . 2-58
F Distribution . 2-61
Noncentral F Distribution . 2-63
Gamma Distribution . 2-64
Geometric Distribution . 2-66
Hypergeometric Distribution . 2-67
Lognormal Distribution . 2-69
Negative Binomial Distribution . 2-70
Normal Distribution . 2-73
Poisson Distribution . 2-76
Rayleigh Distribution . 2-78
Student’s t Distribution . 2-79
Noncentral t Distribution . 2-80
Uniform (Continuous) Distribution . 2-82
Weibull Distribution . 2-83

iii

3
Descriptive Statistics

Measures of Central Tendency (Location) 3-2

Measures of Dispersion . 3-4

Functions for Data with Missing Values (NaNs) 3-6

Function for Grouped Data . 3-8

Percentiles and Graphical Descriptions 3-10
Percentiles . 3-10
Probability Density Estimation . 3-12
Empirical Cumulative Distribution Function 3-15

The Bootstrap . 3-17

4
Linear Models

Introduction . 4-2

One-Way Analysis of Variance (ANOVA) 4-3
Example: One-Way ANOVA . 4-3
Multiple Comparisons . 4-5
Example: Multiple Comparisons . 4-6

Two-Way Analysis of Variance (ANOVA) 4-8
Example: Two-Way ANOVA . 4-9

N-Way Analysis of Variance . 4-11
Example: N-Way ANOVA with Small Data Set 4-11
Example: N-Way ANOVA with Large Data Set 4-13

iv Contents

ANOVA with Random Effects . 4-18
Setting Up the Model . 4-18
Fitting a Random Effects Model . 4-19
F Statistics for Models with Random Effects 4-20
Variance Components . 4-22

Analysis of Covariance . 4-25
The aoctool Demo . 4-25

Multiple Linear Regression . 4-33
Mathematical Foundations of Multiple Linear Regression . . . 4-33
Example: Multiple Linear Regression 4-35
Polynomial Curve Fitting Demo . 4-36

Quadratic Response Surface Models 4-42
Exploring Graphs of Multidimensional Polynomials 4-42

Stepwise Regression . 4-45
Stepwise Regression Demo . 4-45

Generalized Linear Models . 4-50
Example: Generalized Linear Models . 4-50
Generalized Linear Model Demo . 4-54

Robust and Nonparametric Methods 4-55
Robust Regression . 4-55
Kruskal-Wallis Test . 4-59
Friedman’s Test . 4-60

5
Nonlinear Regression Models

Nonlinear Least Squares . 5-2
Example: Nonlinear Modeling . 5-2
An Interactive GUI for Nonlinear Fitting and Prediction 5-6

Regression and Classification Trees . 5-8

v

6
Multivariate Statistics

Principal Components Analysis . 7-2
Example: Principal Components Analysis 7-3
The Principal Component Coefficients (First Output) 7-6
The Component Scores (Second Output) 7-6
The Component Variances (Third Output) 7-10
Hotelling’s T2 (Fourth Output) . 7-11
Visualizing the Results of a Principal Components Analysis —
 The Biplot . 7-12

Factor Analysis . 7-15
Example: Finding Common Factors Affecting Stock Prices . . 7-16
Factor Rotation . 7-18
Predicting Factor Scores . 7-19
Visualizing the Results of a Factor Analysis — The Biplot . . . 7-21
Comparison of Factor Analysis and
 Principal Components Analysis . 7-23

Multivariate Analysis of Variance (MANOVA) 7-24
Example: Multivariate Analysis of Variance 7-24

Cluster Analysis . 7-30
Hierarchical Clustering . 7-30
K-Means Clustering . 7-46

Multidimensional Scaling . 7-53
Overview . 7-53
Classical Multidimensional Scaling . 7-53
Nonclassical Metric Multidimensional Scaling 7-56
Nonmetric Multidimensional Scaling . 7-58
Example — Reconstructing a Map from Intercity Distances . 7-60

vi Contents

7
Hypothesis Tests

Introduction . 6-2

Hypothesis Test Terminology . 6-3

Hypothesis Test Assumptions . 6-4

Example: Hypothesis Testing . 6-5

Available Hypothesis Tests . 6-9

8
Statistical Plots

Introduction . 8-2

Box Plots . 8-3

Distribution Plots . 8-4
Normal Probability Plots . 8-4
Quantile-Quantile Plots . 8-6
Weibull Probability Plots . 8-7
Empirical Cumulative Distribution Function (CDF) 8-8

Scatter Plots . 8-10

vii

9
Statistical Process Control

Control Charts . 9-2
Xbar Charts . 9-2
S Charts . 9-3
EWMA Charts . 9-4

Capability Studies . 9-5

10
Design of Experiments

Introduction . 10-2

Full Factorial Designs . 10-4

Fractional Factorial Designs . 10-6

Response Surface Designs . 10-8
Central Composite Designs . 10-8
Box-Behnken Designs . 10-9
Design of Experiments Demo . 10-10

D-Optimal Designs . 10-18
Generating D-Optimal Designs . 10-18
Augmenting D-Optimal Designs . 10-21
Designing Experiments with Uncontrolled Inputs 10-23
Controlling Candidate Points . 10-24
Including Categorical Factors . 10-24

viii Contents

11
Hidden Markov Models

Introduction . 11-2

Example of a Hidden Markov Model 11-4

Markov Chains . 11-6
How the Toolbox Generates Random Sequences 11-7

Analyzing a Hidden Markov Model . 11-8
Setting Up the Model and Generating Data 11-8
Computing the Most Likely Sequence of States 11-9
Estimating the Transition and Emission Matrices 11-9
Calculating Posterior State Probabilities 11-12
Changing the Probabilities of the Initial States 11-13
Example: Changing the Initial Probabilities 11-14
References . 11-16

12
Reference

Functions — By Category . 12-2
Probability Distributions . 12-2
Descriptive Statistics . 12-10
Statistical Plotting . 12-12
Statistical Process Control . 12-12
Linear Models . 12-14
Nonlinear Regression . 12-15
Design of Experiments . 12-15
Multivariate Statistics . 12-17
Decision Tree Techniques . 12-19
Hypothesis Tests . 12-19
Distribution Testing . 12-19
Nonparametric Testing . 12-19
Hidden Markov Models . 12-20
File I/O . 12-20

ix

Demonstrations . 12-20
Data . 12-21
Utility . 12-21

Functions — Alphabetical List . 12-22

A
Selected Bibliography

Recommended Reading . A-2
Other References Cited . A-4

Index

x Contents

1

Introduction

What Is the Statistics Toolbox? (p. 1-2) Lists statistical tasks supported by the toolbox, and
explains the role of functions and graphical tools.

Primary Topic Areas (p. 1-3) Lists the statistical topics addressed in the toolbox and
covered in this book.

Random Number Generators in the
Statistics Toolbox (p. 1-5)

Tells you how to duplicate the results shown in examples
that generate data using random numbers.

Mathematical Notation (p. 1-6) Describes mathematical notation used in this guide.

1 Introduction

1-2

What Is the Statistics Toolbox?
The Statistics Toolbox, for use with MATLAB®, is a collection of statistical tools
built on the MATLAB numeric computing environment. The toolbox supports
a wide range of common statistical tasks, from random number generation, to
curve fitting, to design of experiments and statistical process control. The
toolbox provides two categories of tools:

• Building-block probability and statistics functions

• Graphical, interactive tools

The first category of tools is made up of functions that you can call from the
command line or from your own applications. Many of these functions are
MATLAB M-files, series of MATLAB statements that implement specialized
statistics algorithms. You can view the MATLAB code for these functions using
the statement

type function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by adding
your own M-files.

Secondly, the toolbox provides a number of interactive tools that let you access
many of the functions through a graphical user interface (GUI). Together, the
GUI-based tools provide an environment for polynomial fitting and prediction,
as well as probability function exploration.

Primary Topic Areas

1-3

Primary Topic Areas
The Statistics Toolbox has more than 200 M-files, supporting work in these
topical areas:

Probability Distributions
The Statistics Toolbox supports 20 probability distributions. For each
distribution there are five associated functions. They are

• Probability density function (pdf)

• Cumulative distribution function (cdf)

• Inverse of the cumulative distribution function

• Random number generator

• Mean and variance as a function of the parameters

For most distributions, the Statistics Toolbox also provides functions for
computing parameter estimates and confidence intervals.

Descriptive Statistics
The Statistics Toolbox provides functions for describing the features of a data
sample. These descriptive statistics include measures of location and spread,
percentile estimates and functions for dealing with data having missing
values.

Linear Models
In the area of linear models, the Statistics Toolbox supports one-way, two-way,
and higher-way analysis of variance (ANOVA), analysis of covariance
(ANOCOVA), multiple linear regression, stepwise regression, response surface
prediction, ridge regression, and one-way multivariate analysis of variance
(MANOVA). It supports nonparametric versions of one- and two-way ANOVA.
It also supports multiple comparisons of the estimates produced by ANOVA
and ANOCOVA functions.

Nonlinear Models
For nonlinear models, the Statistics Toolbox provides functions for parameter
estimation, interactive prediction and visualization of multidimensional
nonlinear fits, and confidence intervals for parameters and predicted values. It

1 Introduction

1-4

provides functions for using classification and regression trees to approximate
regression relationships.

Hypothesis Tests
The Statistics Toolbox also provides functions that do the most common tests
of hypothesis — t-tests, Z-tests, nonparametric tests, and distribution tests.

Multivariate Statistics
The Statistics Toolbox supports methods in multivariate statistics, including
principal components analysis, factor analysis, one-way multivariate analysis
of variance, cluster analysis, and classical multidimensional scaling.

Statistical Plots
The Statistics Toolbox adds box plots, normal probability plots, Weibull
probability plots, control charts, and quantile-quantile plots to the arsenal of
graphs in MATLAB. There is also extended support for polynomial curve fitting
and prediction. There are functions to create scatter plots or matrices of scatter
plots for grouped data, and to identify points interactively on such plots. There
is a function to interactively explore a fitted regression model.

Statistical Process Control (SPC)
For SPC, the Statistics Toolbox provides functions for plotting common control
charts and performing process capability studies.

Design of Experiments (DOE)
The Statistics Toolbox supports full and fractional factorial designs, response
surface designs, and D-optimal designs. There are functions for generating
designs, augmenting designs, and optimally assigning units with fixed
covariates.

Hidden Markov Models
The Statistics Toolbox provides functions for analyzing hidden Markov models
— models in which you do not know all the state information. These include
functions for generating random data, calculating the most probable state
sequence for an observed sequence, estimating model parameters, calculating
posterior state probabilities, and calculating maximum likelihood estimates for
parameters.

Random Number Generators in the Statistics Toolbox

1-5

Random Number Generators in the Statistics Toolbox
The Statistics Toolbox contains a number of functions, such as random number
generators, that return random output. These functions use the MATLAB
functions rand and randn to generate their output. If you want to make the
output for any of these functions reproducible, you must set the states for rand
and randn each time you call the function. See “Reproducing the Output of
Random Number Functions” on page 2-46 for more information.

Note Prior to Version 5, MATLAB employed a different random number
generator, which used the syntax 'seed' instead of 'state'. Although use of
the 'seed' syntax is backward compatible in MATLAB Version 7, you should
use the 'state' syntax instead.

1 Introduction

1-6

Mathematical Notation
This manual and the Statistics Toolbox functions use the following
mathematical notation conventions.

β Parameters in a linear model.

E(x) Expected value of x.

f(x|a,b) Probability density function. x is the independent variable;
a and b are fixed parameters.

F(x|a,b) Cumulative distribution function.

I([a, b]) or
I[a, b]

Indicator function. In this example the function takes the
value 1 on the closed interval from a to b and is 0
elsewhere.

p and q p is the probability of some event.
q is the probability of ~p, so q = 1-p.

E x() tf t() td∫=

2

Probability Distributions

Introduction (p. 2-2) Introduces the concept of a probability distribution and
discusses the difference between continuous and discrete
distributions.

Displaying Probability Distributions
and Random Samples (p. 2-3)

Describes tools for displaying probability distributions
and creating histograms of random samples.

Overview of the Functions (p. 2-6) Discusses the five functions that the Statistics Toolbox
provides for each distribution: probability density
function (pdf), cumulative distribution function (cdf),
inverse cumulative distribution function, random number
generator, and mean and variance as a function of the
distribution parameters.

Distribution Fitting Tool (p. 2-13) Describes the Distribution Fitting Tool, a GUI for fitting
distributions to data.

Overview of the Distributions (p. 2-45) Lists and discusses the probability distributions that the
Statistics Toolbox supports.

2 Probability Distributions

2-2

Introduction
Probability distributions arise from experiments where the outcome is subject
to chance. The nature of the experiment dictates which probability
distributions may be appropriate for modeling the resulting random outcomes.
There are two types of probability distributions – continuous and discrete.

Suppose you are studying a machine that produces videotape. One measure of
the quality of the tape is the number of visual defects per hundred feet of tape.
The result of this experiment is an integer, since you cannot observe 1.5
defects. To model this experiment you should use a discrete probability
distribution.

A measure affecting the cost and quality of videotape is its thickness. Thick
tape is more expensive to produce, while variation in the thickness of the tape
on the reel increases the likelihood of breakage. Suppose you measure the
thickness of the tape every 1000 feet. The resulting numbers can take a
continuum of possible values, which suggests using a continuous probability
distribution to model the results.

Using a probability model does not allow you to predict the result of any
individual experiment but you can determine the probability that a given
outcome will fall inside a specific range of values.

Continuous (data) Continuous (statistics) Discrete

Beta Chi-square Binomial

Exponential Noncentral Chi-square Discrete Uniform

Extreme Value

Gamma F Geometric

Lognormal Noncentral F Hypergeometric

Normal t Negative Binomial

Rayleigh Noncentral t Poisson

Uniform

Weibull

Displaying Probability Distributions and Random Samples

2-3

Displaying Probability Distributions and Random Samples
The Statistics Toolbox provides two demos for visualizing probability
distributions and graphing random data:

• The probability distribution demo enables you to create interactive plots of
probability distributions.

• The random sample generation demo enables you to generate random
samples from specified distributions and create histograms of the data.

Probability Distributions Demo
The probability distributions demo creates interactive plots of probability
distributions. It provides a graphic environment for developing an intuitive
understanding of probability distributions.

You can run this tool by typing disttool at the command line. You can also run
it from the Demos tab in the Help browser.

Function type
list

cdf or pdf
function

Draggable
vertical
reference line

Parameter value

Distribution

Function value

x value

Parameter control

Draggable
horizontal
reference line

Upper and
lower
parameter
bounds

2 Probability Distributions

2-4

Start by selecting a distribution. Then choose the function type: probability
density function (pdf) or cumulative distribution function (cdf).

Once the plot displays, you can

• Calculate a new function value by typing a new x value in the text box on the
x-axis, dragging the vertical reference line, or clicking in the figure where
you want the line to be. The new function value displays in the text box to
the left of the plot.

• For cdf plots, find critical values corresponding to a specific probability by
typing the desired probability in the text box on the y-axis or by dragging the
horizontal reference line.

• Use the controls at the bottom of the window to set parameter values for the
distribution and to change their upper and lower bounds.

Random Sample Generation Demo
The random sample generation demo is a graphical environment that
generates random samples from specified probability distributions and
displays the samples as histograms. You can use randtool to explore the
effects of changing parameters and sample size on the samples.

You can run this tool by typing randtool at the command line. You can also run
it from the Demos tab in the Help browser.

Displaying Probability Distributions and Random Samples

2-5

Start by selecting a distribution. Then enter the desired sample size.

You can also

• Use the controls at the bottom of the window to set parameter values for the
distribution and to change their upper and lower bounds.

• Draw another sample from the same distribution, with the same size and
parameters.

• Export the current sample to your workspace. A dialog box enables you to
provide a name for the sample.

Parameter value Draw again
from the
same
distribution

Parameter control

Histogram

Upper and
lower
parameter
bounds

Sample
size

Distributions
pop-up

Export to
workspace

2 Probability Distributions

2-6

Overview of the Functions
The Statistics Toolbox provides five functions for each distribution. They are
discussed in the following sections:

• “Probability Density Function (pdf)” on page 2-6

• “Cumulative Distribution Function (cdf)” on page 2-7

• “Inverse Cumulative Distribution Function” on page 2-7

• “Random Number Generator” on page 2-9

• “Mean and Variance as a Function of Parameters” on page 2-11

Probability Density Function (pdf)
The probability density function (pdf) has a different meaning depending on
whether the distribution is discrete or continuous.

For discrete distributions, the pdf is the probability of observing a particular
outcome. In the videotape example, the probability that there is exactly one
defect in a given hundred feet of tape is the value of the pdf at 1.

Unlike discrete distributions, the pdf of a continuous distribution at a value is
not the probability of observing that value. For continuous distributions the
probability of observing any particular value is zero. To get probabilities you
must integrate the pdf over an interval of interest. For example the probability
of the thickness of a videotape being between one and two millimeters is the
integral of the appropriate pdf from one to two.

A pdf has two theoretical properties:

• The pdf is zero or positive for every possible outcome.

• The integral of a pdf over its entire range of values is one.

A pdf is not a single function. Rather a pdf is a family of functions characterized
by one or more parameters. Once you choose (or estimate) the parameters of a
pdf, you have uniquely specified the function.

The pdf function call has the same general format for every distribution in the
Statistics Toolbox. The following commands illustrate how to call the pdf for
the normal distribution.

x = [-3:0.1:3];
f = normpdf(x,0,1);

Overview of the Functions

2-7

The variable f contains the density of the normal pdf with parameters µ=0 and
σ=1 at the values in x. The first input argument of every pdf is the set of values
for which you want to evaluate the density. Other arguments contain as many
parameters as are necessary to define the distribution uniquely. The normal
distribution requires two parameters; a location parameter (the mean, µ) and
a scale parameter (the standard deviation, σ).

Cumulative Distribution Function (cdf)
If f is a probability density function for random variable X, the associated
cumulative distribution function (cdf) F is

The cdf of a value x, F(x), is the probability of observing any outcome less than
or equal to x.

A cdf has two theoretical properties:

• The cdf ranges from 0 to 1.

• If y > x, then the cdf of y is greater than or equal to the cdf of x.

The cdf function call has the same general format for every distribution in the
Statistics Toolbox. The following commands illustrate how to call the cdf for the
normal distribution.

x = [-3:0.1:3];
p = normcdf(x,0,1);

The variable p contains the probabilities associated with the normal cdf with
parameters µ=0 and σ=1 at the values in x. The first input argument of every
cdf is the set of values for which you want to evaluate the probability. Other
arguments contain as many parameters as are necessary to define the
distribution uniquely.

Inverse Cumulative Distribution Function
The inverse cumulative distribution function returns critical values for
hypothesis testing given significance probabilities. To understand the

F x() P X x≤() f t() td
∞–

x

∫= =

2 Probability Distributions

2-8

relationship between a continuous cdf and its inverse function, try the
following.

x = [-3:0.1:3];
xnew = norminv(normcdf(x,0,1),0,1);

How does xnew compare with x? Conversely, try this.

p = [0.1:0.1:0.9];
pnew = normcdf(norminv(p,0,1),0,1);

How does pnew compare with p?

Calculating the cdf of values in the domain of a continuous distribution returns
probabilities between zero and one. Applying the inverse cdf to these
probabilities yields the original values.

For discrete distributions, the relationship between a cdf and its inverse
function is more complicated. It is likely that there is no x value such that the
cdf of x yields p. In these cases the inverse function returns the first value x
such that the cdf of x equals or exceeds p. Try this.

x = [0:10];
y = binoinv(binocdf(x,10,0.5),10,0.5);

How does x compare with y?

The commands below illustrate the problem with reconstructing the
probability p from the value x for discrete distributions.

p = [0.1:0.2:0.9];
pnew = binocdf(binoinv(p,10,0.5),10,0.5)

pnew =

 0.1719 0.3770 0.6230 0.8281 0.9453

The inverse function is useful in hypothesis testing and production of
confidence intervals. Here is the way to get a 99% confidence interval for a
normally distributed sample.

p = [0.005 0.995];
x = norminv(p,0,1)

Overview of the Functions

2-9

This returns

x =

 -2.5758 2.5758

The variable x contains the values associated with the normal inverse function
with parameters µ=0 and σ=1 at the probabilities in p. The difference
p(2)-p(1) is 0.99. Thus, the values in x define an interval that contains 99%
of the standard normal probability.

The inverse function call has the same general format for every distribution in
the Statistics Toolbox. The first input argument of every inverse function is the
set of probabilities for which you want to evaluate the critical values. Other
arguments contain as many parameters as are necessary to define the
distribution uniquely.

Random Number Generator
The methods for generating random numbers from any distribution all start
with uniform random numbers. Once you have a uniform random number
generator, you can produce random numbers from other distributions either
directly or by using inversion or rejection methods, described below. See
“Syntax for Random Number Functions” on page 2-10 for details on using
generator functions.

Direct
Direct methods flow from the definition of the distribution.

As an example, consider generating binomial random numbers. You can think
of binomial random numbers as the number of heads in n tosses of a coin with
probability p of a heads on any toss. If you generate n uniform random numbers
and count the number that are less than p, the result is binomial with
parameters n and p.

Inversion
The inversion method works due to a fundamental theorem that relates the
uniform distribution to other continuous distributions.

If F is a continuous distribution with inverse F -1, and U is a uniform random
number, then F -1(U) has distribution F.

2 Probability Distributions

2-10

So, you can generate a random number from a distribution by applying the
inverse function for that distribution to a uniform random number.
Unfortunately, this approach is usually not the most efficient.

Rejection
The functional form of some distributions makes it difficult or time consuming
to generate random numbers using direct or inversion methods. Rejection
methods can sometimes provide an elegant solution in these cases.

Suppose you want to generate random numbers from a distribution with pdf f.
To use rejection methods you must first find another density, g, and a
constant, c, so that the inequality below holds

for all .

You then generate the random numbers you want using the following steps:

1 Generate a random number x from distribution G with density g.

2 Form the ratio .

3 Generate a uniform random number u.

4 If the product of u and r is less than one, return x.

5 Otherwise repeat steps one to three.

For efficiency you need a cheap method for generating random numbers
from G, and the scalar c should be small. The expected number of iterations
is c.

Syntax for Random Number Functions
You can generate random numbers from each distribution. This function
provides a single random number or a matrix of random numbers, depending
on the arguments you specify in the function call.

For example, here is the way to generate random numbers from the beta
distribution. Four statements obtain random numbers: the first returns a

f x() cg x()≤

x

r cg x()
f x()

--------------=

Overview of the Functions

2-11

single number, the second returns a 2-by-2 matrix of random numbers, and the
third and fourth return 2-by-3 matrices of random numbers.

a = 1;
b = 2;
c = [.1 .5; 1 2];
d = [.25 .75; 5 10];
m = [2 3];
nrow = 2;
ncol = 3;

r1 = betarnd(a,b)
r1 =

 0.4469

r2 = betarnd(c,d)
r2 =

 0.8931 0.4832
 0.1316 0.2403

r3 = betarnd(a,b,m)
r3 =

 0.4196 0.6078 0.1392
 0.0410 0.0723 0.0782

r4 = betarnd(a,b,nrow,ncol)
r4 =

 0.0520 0.3975 0.1284
 0.3891 0.1848 0.5186

Mean and Variance as a Function of Parameters
The mean and variance of a probability distribution are generally simple
functions of the parameters of the distribution. The Statistics Toolbox
functions ending in 'stat' all produce the mean and variance of the desired
distribution for the given parameters.

2 Probability Distributions

2-12

The example below shows a contour plot of the mean of the Weibull distribution
as a function of the parameters.

x = (0.5:0.1:5);
y = (1:0.04:2);
[X,Y] = meshgrid(x,y);
Z = wblstat(X,Y);
[c,h] = contour(x,y,Z,[0.4 0.6 1.0 1.8]);
clabel(c);

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

 0.4

 0.6

 1

 1.8

Distribution Fitting Tool

2-13

Distribution Fitting Tool
The Distribution Fitting Tool is a graphical user interface (GUI) for fitting
univariate distributions to data. This section describes how to use the
Distribution Fitting Tool and covers the following topics:

• “Main Window of the Distribution Fitting Tool” on page 2-13

• “Example: Fitting a Distribution” on page 2-16

• “Creating and Managing Data Sets” on page 2-20

• “Creating a New Fit” on page 2-24

• “Displaying Results” on page 2-28

• “Managing Fits” on page 2-30

• “Evaluating Fits” on page 2-31

• “Excluding Data” on page 2-34

• “Saving and Loading Sessions” on page 2-39

• “Generating an M-File to Fit and Plot Distributions” on page 2-39

• “Using Custom Distributions” on page 2-41

• “Additional Distributions Available in the Distribution Fitting Tool” on
page 2-41

Main Window of the Distribution Fitting Tool
To open the Distribution Fitting Tool, enter the command

dfittool

The following figure shows the main window of the Distribution Fitting Tool.

2 Probability Distributions

2-14

Display Type
The Display Type field specifies the type of plot displayed in the main window.
Each type corresponds to a probability function, for example, a probability
density function. The following display types are available:

• Density (PDF) — Displays a probability density function (PDF) plot for the
fitted distribution.

• Cumulative probability (CDF) — Displays a cumulative probability plot of
the data.

• Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot.

• Survivor function — Displays a survivor function plot of the data.

• Cumulative hazard — Displays a cumulative hazard plot of the data.

Import data from the
workspace

Create a new fit

Exclude items from a fit

Manage multiple fits

Evaluate a distribution at
selected points

Select type of distribution for
probability plot

Select type of display

Display pane

Task buttons

Distribution Fitting Tool

2-15

“Display Type” on page 2-28 provides more information about the available
display types.

Task Buttons
The task buttons enable you to perform the tasks necessary to fit distributions
to data. Each button opens a new window in which you perform the task. The
buttons include

• Data — Import and manage data sets. See “Creating and Managing Data
Sets” on page 2-20.

• New Fit — Create new fits. See “Creating a New Fit” on page 2-24.

• Manage Fits — Manage existing fits. See “Managing Fits” on page 2-30.

• Evaluate — Evaluate fits at any points you choose. See “Evaluating Fits” on
page 2-31.

• Exclude — Create rules specifying which values to exclude when fitting a
distribution. See “Excluding Data” on page 2-34.

Display Pane
The display pane displays plots of the data sets and fits you create. Whenever
you make changes in one of the task windows, the results are updated in the
display pane.

Menu Options
The Distribution Fitting Tool menus contain items that enable you to do the
following:

• Save and load sessions — see “Saving and Loading Sessions” on page 2-39.

• Generate an M-file with which you can fit distributions to data and plot the
results independently of the Distribution Fitting Tool. See “Generating an
M-File to Fit and Plot Distributions” on page 2-39.

• Define and import custom distributions — see “Using Custom Distributions”
on page 2-41.

2 Probability Distributions

2-16

Example: Fitting a Distribution
This section presents an example that illustrates how to use the Distribution
Fitting Tool. The example involves the following steps:

• “Create Random Data for the Example” on page 2-16

• “Import Data into the Distribution Fitting Tool” on page 2-16

• “Create a New Fit” on page 2-18

Create Random Data for the Example
To try the example, first generate some random data to which you will fit a
distribution. The following command generates a vector data, of length 100,
whose entries are random numbers from a normal distribution with mean.36
and standard deviation 1.4.

data = normrnd(.36, 1.4, 100, 1);

Import Data into the Distribution Fitting Tool
To import the vector data into the Distribution Fitting Tool, click the Data
button in main window. This opens the window shown in the following figure.

Select data

Type name for data set

Distribution Fitting Tool

2-17

The Data field displays all numeric arrays in the MATLAB workspace. Select
data from the drop-down list, as shown in the following figure.

This displays a histogram of the data in the Data preview pane.

In the Data set name field, type a name for the data set, such as My data, and
click Create Data Set to create the data set. The main window of the
Distribution Fitting Tool now displays a larger version of the histogram in the
Data preview pane, as shown in the following figure.

Histogram of the Data

2 Probability Distributions

2-18

Note Because the example uses random data, you might see a slightly
different histogram if you try this example for yourself.

Create a New Fit
To fit a distribution to the data, click New Fit in the main window of the
Distribution Fitting Tool. This opens the window shown in the following figure.

To fit a normal distribution, the default entry of the Distribution field, to My
data,

• Enter a name for the fit, such as My fit, in the Fit name field.

Specify distribution type

Select data

Distribution Fitting Tool

2-19

• Select My data from the drop-down list in the Data field.

• Click Apply.

The Results pane displays the mean and standard deviation of the normal
distribution that best fits My data, as shown in the following figure.

The main window of the Distribution Fitting Tool displays a plot of the normal
distribution with this mean and standard deviation, as shown in the following
figure.

Plot of the Distribution and Data

2 Probability Distributions

2-20

Creating and Managing Data Sets
This section describes how create and manage data sets. To begin, click the
Data button in the main window of the Distribution Fitting Tool to open the
Data window shown in the following figure.

Importing Data
The Import workspace vectors pane enables you to create a data set by
importing a vector from the MATLAB workspace. The following sections
describe the fields of the Import workspace vectors pane.

Data. The drop-down list in the Data field contains the names of all matrices
and vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace.
Select the array containing the data you want to fit. The actual data you import
must be a vector. If you select a matrix in the Data field, the first column of the
matrix is imported by default. To select a different column or row of the matrix,
click Select Column or Row. This displays the matrix in the Array Editor,
where you can select a row or column by highlighting it with the mouse.

Alternatively, you can enter any valid MATLAB expression in the Data field.

Distribution Fitting Tool

2-21

When you select a vector in the Data field, a histogram of the data is displayed
in the Data preview pane.

Censoring. If some of the points in the data set are censored, enter a Boolean
vector, of the same size as the data vector, specifying the censored entries of the
data. A 1 in the censoring vector specifies that the corresponding entry of the
data vector is censored, while a 0 specifies that the entry is not censored. If you
enter a matrix, you can select a column or row by clicking Select Column or
Row. If you do not want to censor any data, leave the Censoring field blank.

Frequency. Enter a vector of positive integers of the same size as the data vector
to specify the frequency of the corresponding entries of the data vector. For
example, a value of 7 in the 15th entry of frequency vector specifies that there
are 7 data points corresponding to the value in the 15th entry of the data
vector. If all entries of the data vector have frequency 1, leave the Frequency
field blank.

Data name. Enter a name for the data set you import from the workspace, such
as My_data.

As an example, if you create the vector data described in “Example: Fitting a
Distribution” on page 2-16, and select it in the Data field, the upper half of the
Data window appears as in the following figure.

After you have entered the information in the preceding fields, click Create
Data Set to create the data set My data.

Managing Data Sets
The Manage data sets pane enables you to view and manage the data sets you
create. When you create a data set, its name appears in the Data sets list. The

2 Probability Distributions

2-22

following figure shows the Manage data sets pane after creating the data set
My data.

For each data set in the Data sets list, you can

• Select the Plot check box to display a plot of the data in the main
Distribution Fitting Tool window. See “Histogram of the Data” on page 2-17
for an example. When you create a new data set, Plot is selected by default.
Clearing the Plot check box removes the data from the plot in the main
window. You can specify the type of plot displayed in the Display Type field
in the main window. See “Display Type” on page 2-28.

• If Plot is selected, you can also select Bounds to display confidence interval
bounds for the plot in the main window. These bounds are pointwise
confidence bounds around the empirical estimates of these functions. The
bounds are only displayed when you set Display Type in the main window
to one of the following:

- Cumulative probability (CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density
(PDF), quantile (inverse CDF), or probability plots. Clearing the Bounds check
box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, the following buttons are enabled:

• View — Displays the data in a table in a new window.

• Set Bin Rules — Defines the histogram bins used in a density (PDF) plot.
See “Setting Bin Rules” on page 2-23.

• Rename — Renames the data set.

Distribution Fitting Tool

2-23

• Delete — Deletes the data set.

Setting Bin Rules
To set bin rules for the histogram of a data set, click Set Bin Rules. This opens
the dialog box shown in the following figure.

You can select from the following rules:

• Freedom-Diaconis rule — Algorithm that chooses bin widths and locations
automatically, based on the sample size and the spread of the data. This rule,
which is the default, is suitable for many kinds of data

• Scott rule — Algorithm intended for data that are approximately normal.
The algorithm chooses bin widths and locations and locations automatically

• Number of bins — Enter the number of bins. All bins have equal widths.

• Bins centered on integers — Specifies bins centered on integers.

• Bin width — Enter the width of each bin. If you select this option, you can
make the following choices:

- Automatic bin placement — Places the edges of the bins at integer
multiples of the Bid width.

- Bin boundary at — Enter a scalar to specify the boundaries of the bins.
The boundary of each bin is equal to this scalar plus an integer multiple of
the Bin width.

2 Probability Distributions

2-24

The Set Bin Width Rules dialog box also provides the following options:

• Apply to all existing data sets — When selected, the rule is applied to all
data sets. Otherwise, the rule is only applied to the data set currently
selected in the Data window.

• Save as default — When selected, the current rule is applied to any new
data sets that you create. You can also set default bin width rules by
selecting Set Default Bin Rules from the Tools menu in the main window.

Creating a New Fit
This section describes how to create a new fit. To begin, click the New Fit
button at the top of the main window to open a New Fit window. If you created
the data set My data, as described in “Example: Fitting a Distribution” on
page 2-16, My data appears in the Data field, as shown in the following figure.

Distribution Fitting Tool

2-25

Fit Name
Enter a name for the fit in the Fit name field.

Data
The Data field contains a drop-down list of the data sets you have created.
Select the data set to which you want to fit a distribution.

Distribution
Select the type of distribution you want to fit in the Distribution drop-down
list. “Available Distributions” on page 2-26 lists the available distributions.

Note Only the distributions that apply to the values of the selected data set
are displayed in the Distribution field. For example, positive distributions
are not displayed when the data include values that are zero or negative.

You can specify either a parametric or a nonparametric distribution. When you
select a parametric distribution from the drop-down list, a description of its
parameters is displayed in the pane below Exclusion Rule. The Distribution
Fitting Tool estimates these parameters to fit the distribution to the data set.
When you select Nonparametric fit, options for the fit appear in the pane, as
described in “Options for Nonparametric Fits” on page 2-27.

Exclusion Rule
You can specify a rule to exclude some the data in the Exclusion rule field. You
can create an exclusion rule by clicking Exclude in the main window of the
Distribution Fitting Tool. “Excluding Data” on page 2-34.

Apply the New Fit
Click Apply to fit the distribution. For a parametric fit, the Results pane
displays the values of the estimated parameters. For a nonparametric fit, the
the Results pane displays information about the fit.

When you click Apply, the main window of Distribution Fitting Tool displays
a plot of the distribution, along with the corresponding data. “Plot of the
Distribution and Data” on page 2-19 shows the main window when you fit a
normal distribution to My data.

2 Probability Distributions

2-26

Note When you click Apply, the title of the window changes to Edit Fit. You
can now make changes to the fit you just created and click Apply again to
save them. After closing the Edit Fit window, you can reopen it from the Fit
Manager window at any time to edit the fit.

Available Distributions
This section lists the distributions available in the Distribution Fitting Tool.
Most of these distributions are supported by Statistics Toolbox functions. You
can use these to fit distributions at the command line. For these distributions,
the corresponding command-line functions are also listed. Distributions that
do not have corresponding command-line functions are described in
“Additional Distributions Available in the Distribution Fitting Tool” on
page 2-41. You can fit these distributions from the command line using the
functions mle, cdf, icdf, and pdf.

Nonparametric. Fits a nonparametric model using kernel smoothing with the
function ksdensity. “Options for Nonparametric Fits” on page 2-27 describes
the available options.

Beta. Fits a beta distribution using the function betafit. See “Beta
Distribution” on page 2-48.

Birnbaum-Saunders. Fits a Birnbaum-Saunders distribution. See
“Birnbaum-Saunders Distribution” on page 2-42.

Exponential. Fits an exponential distribution using the function expfit. See
“Exponential Distribution” on page 2-56.

Extreme Value. Fits an extreme value distribution using the function evfit. See
“Extreme Value Distribution” on page 2-58.

Gamma. Fits a gamma distribution using the function gamfit. See “Gamma
Distribution” on page 2-64.

Inverse Gaussian. Fits an inverse Gaussian distribution. See “Inverse Gaussian
Distribution” on page 2-42.

Distribution Fitting Tool

2-27

Log-Logistic. Fits a log-logistic distribution. See “Log-Logistic Distribution” on
page 2-42.

Logistic. Fits a logistic distribution. See “Logistic Distribution” on page 2-42.

Lognormal. Fits a lognormal distribution using the function lognfit. See
“Lognormal Distribution” on page 2-69.

Nakagami. Fits a Nakagami distribution. See “Nakagami Distribution” on
page 2-42.

Normal. Fits a normal distribution using the function normfit. See “Normal
Distribution” on page 2-73.

Rayleigh. Fits a Rayleigh distribution using the function raylfit. See
“Rayleigh Distribution” on page 2-78.

Rician. Fits a Rician distribution. See “Rician Distribution” on page 2-43.

t Location-scale. Fits a t location-scale distribution. See “t Location-Scale
Distribution” on page 2-43.

Weibull. Fits a Weibull distribution using the function wblfit. See “Weibull
Distribution” on page 2-83.

Options for Nonparametric Fits
When you select Non-parametric in the Distribution field, a set of options
appears in the pane below Exclusion rule, as shown in the following picture.

The options for nonparametric distributions are

• Kernel — Type of kernel function to use. The options are

2 Probability Distributions

2-28

- Normal
- Box
- Triangle
- Epanechnikov

• Bandwidth — The bandwidth of the kernel smoothing window. Select auto
for a default value that is optimal for estimating normal densities. This value
is displayed in the Fit results pane after you click Apply. Select specify and
enter a smaller value to reveal features such as multiple modes or a larger
value to make the fit smoother.

• Domain — The allowed x-values for the density. The options are

- unbounded — The density extends over the whole real line.

- positive — The density is restricted to positive values.

- specify — Enter lower and upper bounds for the domain of the density.

When you select positive or specify, the nonparametric fit has zero
probability outside the specified domain.

Displaying Results
This section explains the different ways to display results in the main window
of the Distribution Fitting Tool. The main window displays plots of

• The data sets for which you select Plot in the Data window.

• The fits for which you select Plot in the Fit Manager window.

• Confidence bounds for

- Data sets for which you select Bounds in the Data window.

- Fits for which you select Bounds in the Fit Manager

Display Type
The Display Type field in the main window specifies the type of plot displayed.
Each type corresponds to a probability function, for example, a probability
density function. The following display types are available:

• Density (PDF) — Displays a probability density function (PDF) plot for the
fitted distribution. The main window displays data sets using a probability
histogram, in which the height of each rectangle is the fraction of data points

Distribution Fitting Tool

2-29

that lie in the bin divided by the width of the bin. This makes the sum of the
areas of the rectangles equal to 1.

• Cumulative probability (CDF) — Displays a cumulative probability plot of
the data. The main window displays data sets using a cumulative probability
step function. The height of each step is the cumulative sum of the heights of
the rectangles in the probability histogram.

• Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot of the data. You can specify
the type of distribution used to construct the probability plot in the
Distribution field, which is only available when you select Probability
plot. The choices for the distribution are

- Exponential

- Extreme value

- Logistic

- Log-Logistic

- Lognormal

- Normal

- Rayleigh

- Weibull

In addition to these choices, you can create a probability plot against a
parametric fit that you create in the New Fit panel. These fits are added
at the bottom of the Distribution drop-down list when you create them.

• Survivor function — Displays a survivor function plot of the data.

• Cumulative hazard — Displays a cumulative hazard plot of the data.

Note Some of these distributions are not available if the plotted data
includes 0 or negative values.

Confidence Bounds
You can display confidence bounds for data sets and fits, provided that you set
Display Type to Cumulative probability (CDF), Survivor function,
Cumulative hazard, or Quantile for fits only.

2 Probability Distributions

2-30

• To display bounds for a data set, select Bounds next to the data set in the
Data sets pane of the Data window.

• To display bounds for a fit, select Bounds next to the fit in the Fit Manager
window. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the
View menu in the main window and choose from the options.

Managing Fits
This section describes how to manage fits that you have created. To begin, click
the Manage Fits button in the main window of the Distribution Fitting Tool.
This opens the Fit Manager window as shown in the following figure.

The Table of fits displays a list of the fits you create.

Plot
Select Plot to display a plot of the fit in the main window of the Distribution
Fitting Tool. When you create a new fit, Plot is selected by default. Clearing
the Plot check box removes the fit from the plot in the main window.

Distribution Fitting Tool

2-31

Bounds
If Plot is selected, you can also select Bounds to display confidence bounds in
the plot. The bounds are displayed when you set Display Type in the main
window to one of the following:

• Cumulative probability (CDF)
• Quantile (inverse CDF)
• Survivor function
• Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density
(PDF) or probability plots. In addition, bounds are not supported for
nonparametric fits and some parametric fits.

Clearing the Bounds check box removes the confidence intervals from the plot
in the main window.

When you select a fit in the Table of fits, the following buttons are enabled
below the table:

• New Fit — Opens a New Fit window.

• Copy — Creates a copy of the selected fit.

• Edit — Opens an Edit Fit window, where you can edit the fit.

Note You can only edit the currently selected fit in the Edit Fit window. To
edit a different fit, select it in the Table of fits and click Edit to open another
Edit Fit window.

• Delete — Deletes the selected fit.

Evaluating Fits
The Evaluate window enables you to evaluate any fit at whatever points you
choose. To open the window, click the Evaluate button in the main window of
the Distribution Fitting Tool. The following figure shows the Evaluate
window.

2 Probability Distributions

2-32

The Evaluate window contains the following items:

• Fit pane — Displays the names of existing fits. Select one or more fits that
you want to evaluate. You can select multiple fits by pressing the Ctrl button
and clicking the names of the fits with the mouse.

• Function — Select the type of probability function you want to evaluate for
the fit. The available functions are

- Density (PDF) — Computes a probability density function.

- Cumulative probability (CDF) — Computes a cumulative probability
function.

- Quartile (inverse CDF) — Computes a quantile (inverse CDF) function.

- Survivor function — Computes a survivor function.

- Cumulative hazard — Computes a cumulative hazard function.

- Hazard rate — Computes the hazard rate.

• At x = — Enter a vector of points at which you want to evaluate the
distribution function. If you Function to Quantile (inverse CDF), the field
name changes to At p = and you enter a vector of probability values.

Distribution Fitting Tool

2-33

• Compute confidence bounds — Select this box to compute confidence
bounds for the selected fits. The check box is only enabled if you set Function
to one of the following:
- Cumulative probability (CDF)
- Quantile (inverse CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot compute confidence bounds for
nonparametric fits and for some parametric fits. In these cases, the tool
returns NaN for the bounds.

• Level — Set the level for the confidence bounds.

• Plot function — Select this box to display a plot of the distribution function,
evaluated at the points you enter in the At x = field, in a new window.

Note The settings for Compute confidence bounds, Level, and Plot
function do not affect the plots that are displayed in the main window of the
Distribution Fitting Tool. The settings only apply to plots you create by
clicking Plot function in the Evaluate window.

Click Apply to apply these settings to the selected fit. The following figure
shows the results of evaluating the cumulative density function for the fit My
fit, created in “Example: Fitting a Distribution” on page 2-16, at the points in
the vector -3: 0.5: 3.

2 Probability Distributions

2-34

The window displays the following values in the columns of the table to the
right of the Fit pane:

• X — The entries of the vector you enter in At x = field

• Y — The corresponding values of the CDF at the entries of X

• LB — The lower bounds for the confidence interval, if you select Compute
confidence bounds

• UB — The upper bounds for the confidence interval, if you select Compute
confidence bounds

To save the data displayed in the Evaluate window, click Export to
Workspace. This saves the values in the table to a matrix in the MATLAB
workspace.

Excluding Data
To exclude values from fit, click the Exclude button in the main window of the
Distribution Fitting Tool. This opens the Exclude window, in which you can
create rules for excluding specified values. You can use these rules to exclude

Distribution Fitting Tool

2-35

data when you create a new fit in the New Fit window. The following figure
shows the Exclude window.

The following sections describe how to create an exclusion rule.

Exclusion Rule Name
Enter a name for the exclusion rule in the Exclusion rule name field.

Exclude Sections
In the Exclude sections pane, you can specify bounds for the excluded data:

• In the Lower limit: exclude Y drop-down list, select <= or < from the
drop-down list and enter a scalar in the field to the right. This excludes
values that are either less than or equal to or less than that scalar,
respectively.

• In the Upper limit: exclude Y drop-down list, select >= or > from the
drop-down list and enter a scalar in the field to the right to exclude values
that are either greater than or equal to or greater than the scalar,
respectively.

2 Probability Distributions

2-36

The following diagram illustrates the values that are excluded by lower and
upper limits.

Exclude Graphically
The Exclude Graphically button enables you to define the exclusion rule by
displaying a plot of the values in a data set and selecting the bounds for the
excluded data with the mouse. For example, if you created the data set My data,
described in “Creating and Managing Data Sets” on page 2-20, select it from
the drop-down list next to Exclude graphically and then click the Exclude
graphically button. This displays the values in My data in a new window as
shown in the following figure.

Lower limit: exclude Y

Excluded section

Upper limit: exclude Y

Excluded sectionIncluded data

Distribution Fitting Tool

2-37

To set a lower limit for the boundary of the excluded region, click Add Lower
Limit. This displays a vertical line on the left side of the plot window. Move the
line with the mouse to the point you where you want the lower limit, as shown
in the following figure.

Moving the vertical line changes the value displayed in the Lower limit:
exclude data field in the Exclude window, as shown in the following figure.

The value displayed corresponds to the x-coordinate of the vertical line.

Similarly, you can set the upper limit for the boundary of the excluded region
by clicking Add Upper Limit and moving the vertical line that appears at the
right side of the plot window. After setting the lower and upper limits, click
Close and return to the Exclude window.

2 Probability Distributions

2-38

Create Exclusion Rule
Once you have set the lower and upper limits for the boundary of the excluded
data, click Create Exclusion Rule to create the new rule. The name of the new
rule now appears in the Existing exclusion rules pane.

When you select an exclusion rule in the Existing exclusion rules pane, the
following buttons are enabled:

• Copy — Creates a copy of the rule, which you can then modify. To save the
modified rule under a different name, click Create Exclusion Rule.

• View — Opens a new window in which you can see which data points are
excluded by the rule. The following figure shows a typical example.

The shaded areas in the plot graphically display which data points are
excluded. The table to the right lists all data points. The shaded rows
indicate excluded points:

• Rename — Renames the rule

• Delete — Deletes the rule

Once you define an exclusion rule, you can use it when you fit a distribution to
your data. The rule does not exclude points from the display of the data set.

Distribution Fitting Tool

2-39

Saving and Loading Sessions
This section explains how to save your work in the current Distribution Fitting
Tool session and then load it in a subsequent session, so that you can continue
working where you left off.

Saving a Session
To save the current session, select Save Session from the File menu in the
main window. This opens a dialog box that prompts you to enter a filename,
such as my_session.dfit, for the session. Clicking Save saves the following
items created in the current session:

• Data sets

• Fits

• Exclusion rules

• Plot settings

• Bin width rules

Loading a Session
To load a previously saved session, select Load Session from the File menu in
the main window and enter the name of a previously saved session. Clicking
Open restores the information from the saved session to the current session of
the Distribution Fitting Tool.

Generating an M-File to Fit and Plot Distributions
The Generate M-file option in the File menu enables you to create an M-file
that

• Fits the distributions used in the current session to any data vector in the
MATLAB workspace.

• Plots the data and the fits.

After you end the current session, you can use the M-file to create plots in a
standard MATLAB figure window, without having to reopen the Distribution
Fitting Tool.

As an example, assuming you created the fit described in “Creating a New Fit”
on page 2-24, do the following steps:

2 Probability Distributions

2-40

1 Select Generate M-file from the File menu

2 Save the M-file as normal_fit.m in a directory on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the
MATLAB workspace. For example, the following commands

new_data = normrnd(4.1, 12.5, 100, 1);
normal_fit(new_data)
legend('New Data', 'My fit')

fit a normal distribution to a data set and generate a plot of the data and the fit.

Note By default, the M-file labels the data in the legend using the same
name as the data set in the Distribution Fitting Tool. You can change the label
using the legend command, as illustrated by the preceding example.

Distribution Fitting Tool

2-41

Using Custom Distributions
This section explains how to use custom distributions with the Distribution
Fitting Tool.

Defining Custom Distributions
To define a custom distribution, select Define Custom Distribution from the
File menu. This opens an M-file template in the MATLAB editor. You then edit
this M-file so that it computes the distribution you want.

The template includes example code that computes the Laplace distribution,
beginning at the lines

% ---
% ---- Remove the following return statement to define the
% ---- Laplace distributon
% ---
return

To use this example, simply delete the command return and save the M-file. If
you save the template in a directory on the MATLAB path, under its default
name dfittooldists.m, the Distribution Fitting Tool reads it in automatically
when you start the tool. You can also save the template under a different name,
such as laplace.m, and then import the custom distribution as described in the
following section.

Importing Custom Distributions
To import a custom distribution, select Import Custom Distributions from
the File menu. This opens a dialog box in which you can select the M-file that
defines the distribution. For example, if you created the file laplace.m, as
described in the preceding section, you can enter laplace.m and select Open in
the dialog box. The Distribution field of the New Fit window now contains the
option Laplace.

Additional Distributions Available in the
Distribution Fitting Tool
This section describes the distributions that are available in the Distribution
Fitting Tool, but which have no corresponding command-line functions. For a
complete list of the distributions you can use with the Distribution Fitting Tool,
see “Available Distributions” on page 2-26.

2 Probability Distributions

2-42

Birnbaum-Saunders Distribution
The Birnbaum-Saunders distribution has the density function

with scale parameter β > 0 and shape parameter γ > 0, for x > 0.

If x has a Birnbaum-Saunders distribution with parameters β and γ, then

has a standard normal distribution.

Inverse Gaussian Distribution
The inverse Gaussian distribution has the density function

Log-Logistic Distribution
The variable x has a log logistic distribution with location parameter µ and
scale parameter σ > 0 if ln x has a logistic distribution with parameters µ and σ.

Logistic Distribution
The logistic distribution has the density function

with location parameter µ and scale parameter σ > 0, for all real x.

Nakagami Distribution
The Nakagami distribution has the density function

1
2π

-----------exp x β⁄ β x⁄–()
2

2γ2
--–

⎩ ⎭
⎨ ⎬
⎧ ⎫ x β⁄ β x⁄+()

2γx
--⎝ ⎠
⎛ ⎞

1
γ
--- x β⁄ β x⁄+()

λ

2πx3
------------- exp

λ

2µ2x
-------------– x µ–()2

⎩ ⎭
⎨ ⎬
⎧ ⎫

e

x µ–
σ

σ 1 e

x µ–
σ

+⎝ ⎠

⎜ ⎟
⎛ ⎞

2

Distribution Fitting Tool

2-43

with shape parameter µ and scale parameter ω > 0, for x > 0. If x has a
Nakagami distribution with parameters µ and ω, then x2 has a gamma
distribution with shape parameter µ and scale parameter ω/µ.

Rician Distribution
The Rician distribution has the density function

with noncentrality parameter and scale parameter σ > 0, for x > 0. is
the zero-order modified Bessel function of the first kind. If x has a Rician
distribution with parameters s and σ, then has a noncentral chi-square
distribution with two degrees of freedom and noncentrality parameter .

t Location-Scale Distribution
The t location-scale distribution has the density function

with location parameter µ, scale parameter σ > 0, and shape parameter ν > 0.
If x has a t location-scale distribution, with parameters µ, σ, and ν, then

has a Student’s t distribution with ν degrees of freedom.

Using the Distributions with Command-Line Functions
You can specify the distributions described in this section when using the
functions mle, cdf, icdf, and pdf. To do so, set the first argument of the
function to one of the following distribution names:

• 'birnbaumsaunders'
• 'inversegaussian'

2
µ
ω
----⎝ ⎠
⎛ ⎞ µ 1

Γ µ()
------------ x 2µ 1–() e

 µ
ω
----x2–

I0
xs

σ2
------⎝ ⎠
⎛ ⎞ x

σ2
------ e

 x2 s2+

2σ2
----------------⎝ ⎠
⎛ ⎞–

s 0≥ I0

x σ⁄()2

s σ⁄()2

Γ υ 1+
2

-------------()

σ υπ Γ υ
2
---()

υ x µ–

σ
------------⎝ ⎠
⎛ ⎞ 2

+

υ

 υ 1+
2

-------------⎝ ⎠
⎛ ⎞–

x µ–
σ

2 Probability Distributions

2-44

• 'loglogistic'
• 'nakagami'
• 'rician'
• 'tlocationscale'

Overview of the Distributions

2-45

Overview of the Distributions
The following sections describe the probability distributions that are available
using functions at the command line. For additional distributions that are only
available through the Distribution Fitting Tool, see “Additional Distributions
Available in the Distribution Fitting Tool” on page 2-41:

• “Reproducing the Output of Random Number Functions” on page 2-46

• “Beta Distribution” on page 2-48

• “Binomial Distribution” on page 2-50

• “Chi-Square Distribution” on page 2-52

• “Noncentral Chi-Square Distribution” on page 2-53

• “Discrete Uniform Distribution” on page 2-55

• “Exponential Distribution” on page 2-56

• “Extreme Value Distribution” on page 2-58

• “F Distribution” on page 2-61

• “Noncentral F Distribution” on page 2-63

• “Gamma Distribution” on page 2-64

• “Geometric Distribution” on page 2-66

• “Hypergeometric Distribution” on page 2-67

• “Lognormal Distribution” on page 2-69

• “Negative Binomial Distribution” on page 2-70

• “Normal Distribution” on page 2-73

• “Poisson Distribution” on page 2-76

• “Rayleigh Distribution” on page 2-78

• “Student’s t Distribution” on page 2-79

• “Noncentral t Distribution” on page 2-80

• “Uniform (Continuous) Distribution” on page 2-82

• “Weibull Distribution” on page 2-83

2 Probability Distributions

2-46

Reproducing the Output of Random Number
Functions
The Statistics Toolbox contains functions that generate random samples from
the distributions described in this section. These functions use the MATLAB
functions rand and/or randn to generate their output. If you want to reproduce
the exact output for any of these functions, you must set the state for rand
and/or randn each time you call the function. For example, the following code
sets the states for rand and randn:

state = 137;
rand('state', state);
randn('state', state);

If you execute this code with any fixed value for state, before calling one of the
random number functions, the function always returns the same output. You
might want to save these commands in an M-file script called initstate.m.
Then, instead of three separate commands, you need only enter initstate.

The following table lists the random number functions and indicates their
dependencies on rand and randn. To reproduce the output of a function in the
left-hand column, set the states of the functions listed in the right-hand column
.

Random Number Functions Dependencies on rand,
randn

betarnd rand, randn

binornd rand

chi2rnd rand, randn

exprnd rand

evrnd rand

frnd rand, randn

gamrnd rand

geornd rand

hygernd rand

Overview of the Distributions

2-47

iwishrnd rand, randn

lognrnd randn

mvnrnd randn

mvtrnd rand, randn

nbinrnd rand, randn

ncfrnd rand, randn

nctrnd rand, randn

ncx2rnd randn

normrnd randn

poissrnd rand, randn

raylrnd randn

trnd rand, randn

unidrnd rand

unifrnd rand

wblrnd rand

wblrnd rand

wishrnd rand, randn

Random Number Functions Dependencies on rand,
randn

2 Probability Distributions

2-48

Beta Distribution
The following sections provide an overview of the beta distribution.

Background on the Beta Distribution
The beta distribution describes a family of curves that are unique in that they
are nonzero only on the interval (0 1). A more general version of the function
assigns parameters to the end-points of the interval.

The beta cdf is the same as the incomplete beta function.

The beta distribution has a functional relationship with the t distribution. If Y
is an observation from Student’s t distribution with ν degrees of freedom, then
the following transformation generates X, which is beta distributed.

If , then .

The Statistics Toolbox uses this relationship to compute values of the t cdf and
inverse function as well as generating t distributed random numbers.

Definition of the Beta Distribution
The beta pdf is

where B(·) is the Beta function. The indicator function I(0,1)(x) ensures that
only values of x in the range (0 1) have nonzero probability.

Parameter Estimation for the Beta Distribution
Suppose you are collecting data that has hard lower and upper bounds of zero
and one respectively. Parameter estimation is the process of determining the
parameters of the beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the beta pdf. But for the pdf, the parameters
are known constants and the variable is x. The likelihood function reverses the
roles of the variables. Here, the sample values (the x’s) are already observed.
So they are the fixed constants. The variables are the unknown parameters.

X 1
2
--- 1

2
--- Y

ν Y2
+

--------------------+=

Y t ν() ∼ X β ν
2
--- ν

2
---,⎝ ⎠

⎛ ⎞∼

y f x a b,() 1
B a b,()
-------------------xa 1– 1 x–()b 1– I 0 1,() x()= =

Overview of the Distributions

2-49

Maximum likelihood estimation (MLE) involves calculating the values of the
parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the
parameters of the beta distribution. Here is an example using random numbers
from the beta distribution with a = 5 and b = 0.2.

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat =
 4.5330 0.2301

pci =
 2.8051 0.1771
 6.2610 0.2832

The MLE for parameter a is 4.5330, compared to the true value of 5. The 95%
confidence interval for a goes from 2.8051 to 6.2610, which includes the true
value.

Similarly the MLE for parameter b is 0.2301, compared to the true value of 0.2.
The 95% confidence interval for b goes from 0.1771 to 0.2832, which also
includes the true value. In this made-up example you know the “true value.” In
experimentation you do not.

Example and Plot of the Beta Distribution
The shape of the beta distribution is quite variable depending on the values of
the parameters, as illustrated by the plot below.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

 a = b = 1

 a = b = 4 a = b = 0.75

2 Probability Distributions

2-50

The constant pdf (the flat line) shows that the standard uniform distribution is
a special case of the beta distribution.

Binomial Distribution
The following sections provide an overview of the binomial distribution.

Background of the Binomial Distribution
The binomial distribution models the total number of successes in repeated
trials from an infinite population under the following conditions:

• Only two outcomes are possible on each of n trials.

• The probability of success for each trial is constant.

• All trials are independent of each other.

James Bernoulli [40] derived the binomial distribution in 1713. Earlier, Blaise
Pascal had considered the special case where p = 1/2.

Definition of the Binomial Distribution
The binomial pdf is

where and .

The binomial distribution is discrete. For zero and for positive integers less
than n, the pdf is nonzero.

Parameter Estimation for the Binomial Distribution
Suppose you are collecting data from a widget manufacturing process, and you
record the number of widgets within specification in each batch of 100. You
might be interested in the probability that an individual widget is within
specification. Parameter estimation is the process of determining the
parameter, p, of the binomial distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the binomial pdf above. But for the pdf, the
parameters (n and p) are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)

y f x n p,()
n
x⎝ ⎠
⎛ ⎞pxq 1 x–()I 0 1 … n, , ,() x()= =

n
x⎝ ⎠
⎛ ⎞ n!

x! n x–()!
------------------------ = q 1 p–=

Overview of the Distributions

2-51

are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the value of p that give the
highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the
parameters of the binomial distribution. Here is an example using random
numbers from the binomial distribution with n = 100 and p = 0.9.

r = binornd(100,0.9)

r =
 88

[phat, pci] = binofit(r,100)

phat =
 0.8800

pci =
 0.7998
 0.9364

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The 95%
confidence interval for p goes from 0.7998 to 0.9364, which includes the true
value. In this made-up example you know the “true value” of p. In
experimentation you do not.

Example and Plot of the Binomial Distribution
The following commands generate a plot of the binomial pdf for n = 10 and
p = 1/2.

x = 0:10;
y = binopdf(x,10,0.5);
plot(x,y,'+')

2 Probability Distributions

2-52

Chi-Square Distribution
The following sections provide an overview of the χ2 distribution.

Background of the Chi-Square Distribution
The χ2 distribution is a special case of the gamma distribution where b = 2 in
the equation for gamma distribution below.

The χ2 distribution gets special attention because of its importance in normal
sampling theory. If a set of n observations is normally distributed with
variance σ2, and s2 is the sample standard deviation, then

The Statistics Toolbox uses the above relationship to calculate confidence
intervals for the estimate of the normal parameter σ2 in the function normfit.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

y f x a b,() 1

baΓ a()
------------------xa 1– e

x
b
---–

= =

n 1–()s2

σ2
----------------------- χ2 n 1–()∼

Overview of the Distributions

2-53

Definition of the Chi-Square Distribution
The χ2 pdf is

where Γ(·) is the Gamma function, and ν is the degrees of freedom.

Example and Plot of the Chi-Square Distribution
The χ2 distribution is skewed to the right especially for few degrees of freedom
(ν). The plot shows the χ2 distribution with four degrees of freedom.

x = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)

Noncentral Chi-Square Distribution
The following sections provide an overview of the noncentral χ2 distribution.

Background of the Noncentral Chi-Square Distribution
The χ2 distribution is actually a simple special case of the noncentral
chi-square distribution. One way to generate random numbers with a χ2
distribution (with ν degrees of freedom) is to sum the squares of ν standard
normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The
sum of squares of these numbers yields the noncentral chi-square distribution.

y f x ν() x ν 2–() 2⁄ e x– 2⁄

2

v
2

Γ ν 2⁄()

-------------------------------------= =

0 5 10 15
0

0.05

0.1

0.15

0.2

2 Probability Distributions

2-54

The noncentral chi-square distribution requires two parameters; the degrees of
freedom and the noncentrality parameter. The noncentrality parameter is the
sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and
signal processing. The literature in these areas may refer to it as the Ricean or
generalized Rayleigh distribution.

Definition of the Noncentral Chi-Square Distribution
There are many equivalent formulas for the noncentral chi-square distribution
function. One formulation uses a modified Bessel function of the first kind.
Another uses the generalized Laguerre polynomials. The Statistics Toolbox
computes the cumulative distribution function values using a weighted sum of
χ2 probabilities with the weights equal to the probabilities of a Poisson
distribution. The Poisson parameter is one-half of the noncentrality parameter
of the noncentral chi-square.

where δ is the noncentrality parameter.

Example of the Noncentral Chi-Square Distribution
The following commands generate a plot of the noncentral chi-square pdf.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'--',x,p1,'-')

F x ν δ,()

1
2
---δ⎝ ⎠
⎛ ⎞ j

j!
--------------e

δ
2
---–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Pr χ
ν 2j+

2 x≤[]

j 0=

∞

∑=

Overview of the Distributions

2-55

Discrete Uniform Distribution
The following sections provide an overview of the discrete uniform distribution.

Background of the Discrete Uniform Distribution
The discrete uniform distribution is a simple distribution that puts equal
weight on the integers from one to N.

Definition of the Discrete Uniform Distribution
The discrete uniform pdf is

Example and Plot of the Discrete Uniform Distribution
As for all discrete distributions, the cdf is a step function. The plot shows the
discrete uniform cdf for N = 10.

x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

y f x N() 1
N
---- I 1 … N, ,() x()= =

2 Probability Distributions

2-56

To pick a random sample of 10 from a list of 553 items:

numbers = unidrnd(553,1,10)

numbers =

293 372 5 213 37 231 380 326 515 468

Exponential Distribution
The following sections provide an overview of the exponential distribution.

Background of the Exponential Distribution
Like the chi-square distribution, the exponential distribution is a special case
of the gamma distribution (obtained by setting a = 1)

where Γ(·) is the Gamma function.

The exponential distribution is special because of its utility in modeling events
that occur randomly over time. The main application area is in studies of
lifetimes.

Definition of the Exponential Distribution
The exponential pdf is

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

y f x a b,() 1

baΓ a()
------------------xa 1– e

x
b
---–

= =

y f x µ() 1
µ
---e

x
µ
---–

= =

Overview of the Distributions

2-57

Parameter Estimation for the Exponential Distribution
Suppose you are stress testing light bulbs and collecting data on their lifetimes.
You assume that these lifetimes follow an exponential distribution. You want
to know how long you can expect the average light bulb to last. Parameter
estimation is the process of determining the parameters of the exponential
distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the exponential pdf above. But for the pdf, the
parameters are known constants and the variable is x. The likelihood function
reverses the roles of the variables. Here, the sample values (the x’s) are already
observed. So they are the fixed constants. The variables are the unknown
parameters. MLE involves calculating the values of the parameters that give
the highest likelihood given the particular set of data.

The function expfit returns the MLEs and confidence intervals for the
parameters of the exponential distribution. Here is an example using random
numbers from the exponential distribution with µ = 700.

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)

muhat =

 672.8207

muci =

 547.4338
 810.9437

The MLE for parameter µ is 672, compared to the true value of 700. The 95%
confidence interval for µ goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of µ so it is nice to have a
confidence interval on the parameter to give a range of likely values.

Example and Plot of the Exponential Distribution
For exponentially distributed lifetimes, the probability that an item will
survive an extra unit of time is independent of the current age of the item. The
example shows a specific case of this special property.

2 Probability Distributions

2-58

l = 10:10:60;
lpd = l+0.1;
deltap = (expcdf(lpd,50)-expcdf(l,50))./(1-expcdf(l,50))

deltap =
 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

The following commands generate a plot of the exponential pdf with its
parameter (and mean), µ, set to 2.

x = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)

Extreme Value Distribution
The following sections provide an overview of the extreme value distribution.

Background of the Extreme Value Distribution
Extreme value distributions are often used to model the smallest or largest
value among a large set of independent, identically distributed random values
representing measurements or observations. The extreme value distribution
used in the Statistics Toolbox is appropriate for modeling the smallest value
from a distribution whose tails decay exponentially fast, for example, the
normal distribution. It can also model the largest value from a distribution,
such as the normal or exponential distributions, by using the negative of the
original values.

For example, the values generated by the following code have approximately
an extreme value distribution.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Overview of the Distributions

2-59

xmin = min(randn(1000,5), [], 1);
negxmax = -max(randn(1000,5), [], 1);

Although the extreme value distribution is most often used as a model for
extreme values, you can also use it as a model for other types of continuous
data. For example, extreme value distributions are closely related to the
Weibull distribution. If T has a Weibull distribution, then log(T) has a type 1
extreme value distribution.

Definition of the Extreme Value Distribution
The probability density function for the extreme value distribution with
location parameter µ and scale parameter σ is

If T has a Weibull distribution with parameters a and b, as described in
“Weibull Distribution” on page 2-83, then log T has an extreme value
distribution with parameters µ = log a and σ = 1/b.

Parameter Estimation for the Extreme Value Distribution
The function evfit returns the maximum likelihood estimates (MLEs) and
confidence intervals for the parameters of the extreme value distribution. The
following example shows how to fit some sample data using evfit, including
estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch of
1000 from a manufacturing process. If you believe that the sizes are
independent within and between each batch, you can fit an extreme value
distribution to measurements of the minimum diameter from a series of eight
experimental batches. The following code returns the MLEs of the distribution
parameters as parmhat and the confidence intervals as the columns of parmci.

x = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83];
[parmhat, parmci] = evfit(x)

parmhat =
20.2506 0.8223

y f x µ σ,() σ 1– x µ–
σ

------------⎝ ⎠
⎛ ⎞ x µ–

σ
------------⎝ ⎠
⎛ ⎞exp–⎝ ⎠

⎛ ⎞expexp==

2 Probability Distributions

2-60

parmci =
19.644 0.49861
20.857 1.3562

You can find mean and variance of the extreme value distribution with these
parameters using the function evstat.

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))

meanfit =
19.776

varfit =
1.1123

Plot of the Extreme Value Distribution
The following code generates a plot of the pdf for the extreme value
distribution.

t = [-5:.01:2];
y = evpdf(t);
plot(t, y)

−5 −4 −3 −2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Overview of the Distributions

2-61

The extreme value distribution is skewed to the left, and its general shape
remains the same for all parameter values. The location parameter, mu, shifts
the distribution along the real line, and the scale parameter, sigma, expands or
contracts the distribution. This example plots the probability function for
different combinations of mu and sigma.

x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', x,evpdf(x,0,2),':',
x,evpdf(x,-2,4),'-.');
legend({'mu = 2, sigma = 1' 'mu = 0, sigma = 2' 'mu = -2,'...
'sigma = 4'},2)
xlabel('x')
ylabel('f(x|mu,sigma')

F Distribution
The following sections provide an overview of the F distribution.

−15 −10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x|

m
u,

si
gm

a

mu = 2, sigma = 1
mu = 0, sigma = 2
mu = −2,
sigma = 4

2 Probability Distributions

2-62

Background of the F distribution
The F distribution has a natural relationship with the chi-square distribution.
If χ1 and χ2 are both chi-square with ν1 and ν2 degrees of freedom respectively,
then the statistic F below is F distributed.

The two parameters, ν1 and ν2, are the numerator and denominator degrees of
freedom. That is, ν1 and ν2 are the number of independent pieces of information
used to calculate χ1 and χ2, respectively.

Definition of the F distribution
The pdf for the F distribution is

where Γ(·) is the Gamma function.

Example and Plot of the F distribution
The most common application of the F distribution is in standard tests of
hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers and
is skewed to the right.

x = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)

F ν1 ν2,()

χ1
ν1

χ2
ν2

------=

y f x ν1 ν2,()
Γ

ν1 ν2+()
2

Γ
ν1
2
------⎝ ⎠
⎛ ⎞Γ

ν2
2
------⎝ ⎠
⎛ ⎞

ν1
ν2
------⎝ ⎠
⎛ ⎞

ν1

2
----- x

ν1 2–
2

1
ν1
ν2
------⎝ ⎠
⎛ ⎞ x+

ν1 ν2+
2

--= =

Overview of the Distributions

2-63

Noncentral F Distribution
The following sections provide an overview of the noncentral F distribution.

Background of the Noncentral F Distribution
As with the χ2 distribution, the F distribution is a special case of the noncentral
F distribution. The F distribution is the result of taking the ratio of two χ2
random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable
divided by its degrees of freedom, the resulting distribution is the noncentral
F distribution.

The main application of the noncentral F distribution is to calculate the power
of a hypothesis test relative to a particular alternative.

Definition of the Noncentral F Distribution
Similar to the noncentral χ2 distribution, the toolbox calculates noncentral
F distribution probabilities as a weighted sum of incomplete beta functions
using Poisson probabilities as the weights.

I(x|a,b) is the incomplete beta function with parameters a and b, and δ is the
noncentrality parameter.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

F x ν1 ν2 δ, ,()

1
2
---δ⎝ ⎠
⎛ ⎞ j

j!
--------------e

δ
2
---–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

I
ν1 x⋅

ν2 ν+ 1 x⋅

ν1
2
------ j+

ν2
2
------,

⎝ ⎠
⎜ ⎟
⎛ ⎞

j 0=

∞

∑=

2 Probability Distributions

2-64

Example and Plot of the Noncentral F Distribution
The following commands generate a plot of the noncentral F pdf.

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'--',x,p1,'-')

Gamma Distribution
The following sections provide an overview of the gamma distribution.

Background of the Gamma Distribution
The gamma distribution is a family of curves based on two parameters. The
chi-square and exponential distributions, which are children of the gamma
distribution, are one-parameter distributions that fix one of the two gamma
parameters.

The gamma distribution has the following relationship with the incomplete
Gamma function.

For b = 1 the functions are identical.

When a is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has density only
for positive real numbers.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

Γ x a b,() gammainc x
b
--- a,⎝ ⎠
⎛ ⎞=

Overview of the Distributions

2-65

Definition of the Gamma Distribution
The gamma pdf is

where Γ(·) is the Gamma function.

Parameter Estimation for the Gamma Distribution
Suppose you are stress testing computer memory chips and collecting data on
their lifetimes. You assume that these lifetimes follow a gamma distribution.
You want to know how long you can expect the average computer memory chip
to last. Parameter estimation is the process of determining the parameters of
the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the gamma pdf above. But for the pdf, the
parameters are known constants and the variable is x. The likelihood function
reverses the roles of the variables. Here, the sample values (the x’s) are already
observed. So they are the fixed constants. The variables are the unknown
parameters. MLE involves calculating the values of the parameters that give
the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the
parameters of the gamma distribution. Here is an example using random
numbers from the gamma distribution with a = 10 and b = 5.

lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)

phat =

 10.9821 4.7258

pci =

 7.4001 3.1543
 14.5640 6.2974

Note phat(1) = and phat(2) = . The MLE for parameter a is 10.98,
compared to the true value of 10. The 95% confidence interval for a goes from
7.4 to 14.6, which includes the true value.

y f x a b,() 1

baΓ a()
------------------xa 1– e

x
b
---–

= =

â b̂

2 Probability Distributions

2-66

Similarly the MLE for parameter b is 4.7, compared to the true value of 5. The
95% confidence interval for b goes from 3.2 to 6.3, which also includes the true
value.

In the life tests you do not know the true value of a and b so it is nice to have a
confidence interval on the parameters to give a range of likely values.

Example and Plot of the Gamma Distribution
In the example the gamma pdf is plotted with the solid line. The normal pdf has
a dashed line type.

x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'-',x,y1,'-.')

Geometric Distribution
The following sections provide an overview of the geometric distribution.

Background of the Geometric Distribution
The geometric distribution is discrete, existing only on the nonnegative
integers. It is useful for modeling the runs of consecutive successes (or failures)
in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure
in an independent succession of tests where each test results in success or
failure.

700 800 900 1000 1100 1200 1300
0

1

2

3

4

5
x 10-3

Overview of the Distributions

2-67

Definition of the Geometric Distribution
The geometric pdf is

where q = 1 – p.

Example and Plot of the Geometric Distribution
Suppose the probability of a five-year-old battery failing in cold weather is 0.03.
What is the probability of starting 25 consecutive days during a long cold snap?

1 - geocdf(25,0.03)

ans =

 0.4530

The plot shows the cdf for this scenario.

x = 0:25;
y = geocdf(x,0.03);
stairs(x,y)

Hypergeometric Distribution
The following sections provide an overview of the hypergeometric distribution.

Background of the Hypergeometric Distribution
The hypergeometric distribution models the total number of successes in a
fixed size sample drawn without replacement from a finite population.

y f x p() pqxI 0 1 …, ,() x()= =

0 5 10 15 20 25
0

0.2

0.4

0.6

2 Probability Distributions

2-68

The distribution is discrete, existing only for nonnegative integers less than the
number of samples or the number of possible successes, whichever is greater.
The hypergeometric distribution differs from the binomial only in that the
population is finite and the sampling from the population is without
replacement.

The hypergeometric distribution has three parameters that have direct
physical interpretations. M is the size of the population. K is the number of
items with the desired characteristic in the population. n is the number of
samples drawn. Sampling “without replacement” means that once a particular
sample is chosen, it is removed from the relevant population for all subsequent
selections.

Definition of the Hypergeometric Distribution
The hypergeometric pdf is

Example and Plot of the Hypergeometric Distribution
The plot shows the cdf of an experiment taking 20 samples from a group of 1000
where there are 50 items of the desired type.

x = 0:10;
y = hygecdf(x,1000,50,20);
stairs(x,y)

y f x M K n, ,()

K
x⎝ ⎠

⎛ ⎞ M K–
n x–⎝ ⎠

⎛ ⎞

M
n⎝ ⎠

⎛ ⎞
-------------------------------= =

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

Overview of the Distributions

2-69

Lognormal Distribution
The following sections provide an overview of the lognormal distribution.

Background of the Lognormal Distribution
The normal and lognormal distributions are closely related. If X is distributed
lognormal with parameters µ and σ2, then lnX is distributed normal with
parameters µ and σ2.

The lognormal distribution is applicable when the quantity of interest must be
positive, since lnX exists only when the random variable X is positive.
Economists often model the distribution of income using a lognormal
distribution.

Definition of the Lognormal Distribution
The lognormal pdf is

Example and Plot of the Lognormal Distribution
Suppose the income of a family of four in the United States follows a lognormal
distribution with µ = log(20,000) and σ2 = 1.0. Plot the income density.

x = (10:1000:125010)';
y = lognpdf(x,log(20000),1.0);
plot(x,y)
set(gca,'xtick',[0 30000 60000 90000 120000])
set(gca,'xticklabel',str2mat('0','$30,000','$60,000',...

'$90,000','$120,000'))

y f x µ σ,() 1
xσ 2π
------------------e

lnx µ–()– 2

2σ2

= =

2 Probability Distributions

2-70

Negative Binomial Distribution
The following sections provide an overview of the negative binomial
distribution.

• “Background of the Negative Binomial Distribution” on page 2-70

• “Definition of the Negative Binomial Distribution” on page 2-71

• “Parameter Estimation for the Negative Binomial Distribution” on page 2-71

• “Example and Plot of the Negative Binomial Distribution” on page 2-73

Background of the Negative Binomial Distribution
In its simplest form, the negative binomial distribution models the number of
successes before a specified number of failures is reached in an independent
series of repeated identical trials. It can also be thought of as modeling the total
number of trials required before a specified number of successes, thus
motivating its name as the inverse of the binomial distribution. Its parameters
are the probability of success in a single trial, , and the number of failures, .
A special case of the negative binomial distribution, when , is the
geometric distribution (also known as the Pascal distribution), which models
the number of successes before the first failure.

More generally, the parameter can take on noninteger values. This form of
the negative binomial has no interpretation in terms of repeated trials, but,
like the Poisson distribution, it is useful in modeling count data. It is, however,
more general than the Poisson, because the negative binomial has a variance
that is greater than its mean, often making it suitable for count data that do
not meet the assumptions of the Poisson distribution. In the limit, as the

0 $30,000 $60,000 $90,000 $120,000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

p r
r 1=

r

Overview of the Distributions

2-71

parameter increases to infinity, the negative binomial distribution
approaches the Poisson distribution.

Definition of the Negative Binomial Distribution
When the parameter is an integer, the negative binomial pdf is

where . When is not an integer, the binomial coefficient in the
definition of the pdf is replaced by the equivalent expression

Parameter Estimation for the Negative Binomial Distribution
Suppose you are collecting data on the number of auto accidents on a busy
highway, and would like to be able to model the number of accidents per day.
Because these are count data, and because there are a very large number of
cars and a small probability of an accident for any specific car, you might think
to use the Poisson distribution. However, the probability of having an accident
is likely to vary from day to day as the weather and amount of traffic change,
and so the assumptions needed for the Poisson distribution are not met. In
particular, the variance of this type of count data sometimes exceeds the mean
by a large amount. The data below exhibit this effect: most days have few or no
accidents, and a few days have a large number.

accident = [2 3 4 2 3 1 12 8 14 31 23 1 10 7 0];
mean(accident)
ans =
 8.0667

var(accident)
ans =
 79.352

The negative binomial distribution is more general than the Poisson, and is
often suitable for count data when the Poisson is not. The function nbinfit
returns the maximum likelihood estimates (MLEs) and confidence intervals for
the parameters of the negative binomial distribution. Here are the results from
fitting the accident data:

r

r

y f x r p,() r x 1–+
x⎝ ⎠

⎛ ⎞prqxI 0 1 …, ,() x()= =

q 1 p–= r

Γ r x+()
Γ r()Γ x 1+()

2 Probability Distributions

2-72

[phat,pci] = nbinfit(accident)
phat =
 1.006 0.11088
pci =
 0.015286 0.00037634
 1.9967 0.22138

It is difficult to give a physical interpretation in this case to the individual
parameters. However, the estimated parameters can be used in a model for the
number of daily accidents. For example, a plot of the estimated cumulative
probability function shows that while there is an estimated 10% chance of no
accidents on a given day, there is also about a 10% chance that there will be 20
or more accidents.

plot(0:50,nbincdf(0:50,phat(1),phat(2)),'.-');
xlabel('Accidents per Day')
ylabel('Cumulative Probability')

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accidents per Day

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Overview of the Distributions

2-73

Example and Plot of the Negative Binomial Distribution
The negative binomial distribution can take on a variety of shapes ranging
from very skewed to nearly symmetric. This example plots the probability
function for different values of r, the desired number of successes: .1, 1, 3, 6.

x = 0:10;
plot(x,nbinpdf(x,.1,.5),'s-', ...
 x,nbinpdf(x,1,.5),'o-', ...
 x,nbinpdf(x,3,.5),'d-', ...
 x,nbinpdf(x,6,.5),'^-');
legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})
xlabel('x')
ylabel('f(x|r,p')

Normal Distribution
The following sections provide an overview of the normal distribution.

Background of the Normal Distribution
The normal distribution is a two parameter family of curves. The first
parameter, µ, is the mean. The second, σ, is the standard deviation. The
standard normal distribution (written Φ(x)) sets µ to 0 and σ to 1.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x|

r,
p)

r = .1
r = 1
r = 3
r = 6

2 Probability Distributions

2-74

Φ(x) is functionally related to the error function, erf.

The first use of the normal distribution was as a continuous approximation to
the binomial.

The usual justification for using the normal distribution for modeling is the
Central Limit Theorem, which states (roughly) that the sum of independent
samples from any distribution with finite mean and variance converges to the
normal distribution as the sample size goes to infinity.

Definition of the Normal Distribution
The normal pdf is

Parameter Estimation for the Normal Distribution
To use statistical parameters such as mean and standard deviation reliably,
you need to have a good estimator for them. The maximum likelihood estimates
(MLEs) provide one such estimator. However, an MLE might be biased, which
means that its expected value of the parameter might not equal the parameter
being estimated. For example, an MLE is biased for estimating the variance of
a normal distribution. An unbiased estimator that is commonly used to
estimate the parameters of the normal distribution is the minimum variance
unbiased estimator (MVUE). The MVUE has the minimum variance of all
unbiased estimators of a parameter.

The MVUEs of parameters µ and σ2 for the normal distribution are the sample
average and variance. The sample average is also the MLE for µ. The following
are two common formulas for the variance.

erf x() 2Φ x 2() 1–=

y f x µ σ,() 1
σ 2π
---------------e

x µ–()– 2

2σ2

= =

1) s2 1
n
---= xi x–()2

i 1=

n

∑

Overview of the Distributions

2-75

where

Equation 1 is the maximum likelihood estimator for σ2, and equation 2 is the
MVUE.

As an example, suppose you want to estimate the mean, µ, and the variance,
σ2, of the heights of all 4th grade children in the United States.The function
normfit returns the MVUE for µ, the square root of the MVUE for σ2, and
confidence intervals for µ and σ2. Here is a playful example modeling the
heights in inches of a randomly chosen 4th grade class.

height = normrnd(50,2,30,1); % Simulate heights.
[mu,s,muci,sci] = normfit(height)

mu =
 50.2025

s =
 1.7946

muci =
 49.5210
 50.8841

sci =
 1.4292
 2.4125

Note that s^2 is the MVUE of the variance.

s^2

ans =
 3.2206

2) s2 1
n 1–
------------- xi x–()2

i 1=

n

∑=

x
xi
n

i 1=

n

∑=

2 Probability Distributions

2-76

Example and Plot of the Normal Distribution
The plot shows the bell curve of the standard normal pdf, with µ = 0 and σ = 1.

Poisson Distribution
The following sections provide an overview of the Poisson distribution.

Background of the Poisson Distribution
The Poisson distribution is appropriate for applications that involve counting
the number of times a random event occurs in a given amount of time, distance,
area, etc. Sample applications that involve Poisson distributions include the
number of Geiger counter clicks per second, the number of people walking into
a store in an hour, and the number of flaws per 1000 feet of video tape.

The Poisson distribution is a one parameter discrete distribution that takes
nonnegative integer values. The parameter, λ, is both the mean and the
variance of the distribution. Thus, as the size of the numbers in a particular
sample of Poisson random numbers gets larger, so does the variability of the
numbers.

As Poisson [43] showed, the Poisson distribution is the limiting case of a
binomial distribution where N approaches infinity and p goes to zero while
Np = λ.

The Poisson and exponential distributions are related. If the number of counts
follows the Poisson distribution, then the interval between individual counts
follows the exponential distribution.

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

Overview of the Distributions

2-77

Definition of the Poisson Distribution
The Poisson pdf is

Parameter Estimation for the Poisson Distribution
The MLE and the MVUE of the Poisson parameter, λ, is the sample mean. The
sum of independent Poisson random variables is also Poisson distributed with
the parameter equal to the sum of the individual parameters. The Statistics
Toolbox makes use of this fact to calculate confidence intervals on λ. As λ gets
large the Poisson distribution can be approximated by a normal distribution
with µ = λ and σ2 = λ. The Statistics Toolbox uses this approximation for
calculating confidence intervals for values of λ greater than 100.

Example and Plot of the Poisson Distribution
The plot shows the probability for each nonnegative integer when λ = 5.

x = 0:15;
y = poisspdf(x,5);
plot(x,y,'+')

y f x λ() λx

x!
-----e λ– I 0 1 …, ,() x()= =

0 5 10 15
0

0.05

0.1

0.15

0.2

2 Probability Distributions

2-78

Rayleigh Distribution
The following sections provide an overview of the Rayleigh distribution.

Background of the Rayleigh Distribution
The Rayleigh distribution is a special case of the Weibull distribution. If A and
B are the parameters of the Weibull distribution, then the Rayleigh
distribution with parameter is equivalent to the Weibull distribution with
parameters and .

If the component velocities of a particle in the x and y directions are two
independent normal random variables with zero means and equal variances,
then the distance the particle travels per unit time is distributed Rayleigh.

Definition of the Rayleigh Distribution
The Rayleigh pdf is

Parameter Estimation for the Rayleigh Distribution
The raylfit function returns the MLE of the Rayleigh parameter. This
estimate is

Example and Plot of the Rayleigh Distribution
The following commands generate a plot of the Rayleigh pdf.

x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)

b
A 1 2b2()⁄= B 2=

y f x b() x

b2
------e

x2–

2b2
---------⎝ ⎠
⎛ ⎞

= =

b 1
2n
------- xi

2

i 1=

n

∑=

Overview of the Distributions

2-79

Student’s t Distribution
The following sections provide an overview of Student’s t distribution.

Background of Student’s t Distribution
The t distribution is a family of curves depending on a single parameter ν (the
degrees of freedom). As ν goes to infinity, the t distribution converges to the
standard normal distribution.

W. S. Gossett [44] discovered the distribution through his work at the Guinness
brewery. At that time, Guinness did not allow its staff to publish, so Gossett
used the pseudonym Student.

If x and s are the mean and standard deviation of an independent random
sample of size n from a normal distribution with mean µ and σ2 = n, then

Definition of Student’s t Distribution
Student’s t pdf is

0 0.5 1 1.5 2
0

0.5

1

1.5

t ν() x µ–
s

------------=

ν n 1–=

y f x ν()
Γ ν 1+

2
------------⎝ ⎠
⎛ ⎞

Γ ν
2
---⎝ ⎠
⎛ ⎞

---------------------- 1
νπ

---------- 1

1 x2

ν
-----+⎝ ⎠

⎛ ⎞

ν 1+
2

--------------------------------= =

2 Probability Distributions

2-80

where Γ(·) is the Gamma function.

Example and Plot of Student’s t Distribution
The plot compares the t distribution with ν = 5 (solid line) to the shorter tailed,
standard normal distribution (dashed line).

x = -5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
plot(x,y,'-',x,z,'-.')

Noncentral t Distribution
The following sections provide an overview of the noncentral t distribution.

Background of the Noncentral t Distribution
The noncentral t distribution is a generalization of the familiar Student’s t
distribution. Recall that the ordinary Student’s t distribution is defined as
follows. If and s are the sample mean and standard deviation of an
independent random sample of size n from a normal distribution with mean µ0
and standard deviation σ, then

where ν = n - 1, has the ordinary Student's t distribution with ν degrees of
freedom.

-5 0 5
0

0.1

0.2

0.3

0.4

x

t ν()
x µ0–

s n()⁄
-------------------=

Overview of the Distributions

2-81

Now, suppose that the true mean of the distribution of x is µ, rather than the
hypothesized value µ0. Then the ratio on the right-hand side of the preceding
equation has a noncentral t distribution with a noncentrality parameter δ
equal to

δ is the normalized difference between the true mean and the hypothesized
mean.

The noncentral t distribution enables you to determine the probability of
detecting a difference between µ and µ0 in a t test. This probability is the power
of the test. The power increases as the difference µ- µ0 increases, and also as
the sample size increases.

Definition of the Noncentral t Distribution
The most general representation of the noncentral t distribution is quite
complicated. Johnson and Kotz [22] give a formula for the probability that a
noncentral t variate falls in the range [-t, t].

I(x|a,b) is the incomplete beta function with parameters a and b, δ is the
noncentrality parameter, and ν is the degrees of freedom.

Example and Plot of the Noncentral t Distribution
The following commands generate a plot of the noncentral t pdf.

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'--',x,p1,'-')

δ
µ µ0–

σ n()⁄
--------------------=

Pr t–() x t< < ν δ,()()

1
2
---δ2
⎝ ⎠
⎛ ⎞ j

j!
-----------------e

δ2

2
-----–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

I
x2

ν x2
+

--------------- 1
2
--- j+

ν
2
---,

⎝ ⎠
⎜ ⎟
⎛ ⎞

j 0=

∞

∑=

2 Probability Distributions

2-82

Uniform (Continuous) Distribution
The following sections provide an overview of the uniform distribution.

Background of the Uniform Distribution
The uniform distribution (also called rectangular) has a constant pdf between
its two parameters a (the minimum) and b (the maximum). The standard
uniform distribution (a = 0 and b = 1) is a special case of the beta distribution,
obtained by setting both of its parameters to 1.

The uniform distribution is appropriate for representing the distribution of
round-off errors in values tabulated to a particular number of decimal places.

Definition of the Uniform Distribution
The uniform cdf is

Parameter Estimation for the Uniform Distribution
The sample minimum and maximum are the MLEs of a and b respectively.

Example and Plot of the Uniform Distribution
The example illustrates the inversion method for generating normal random
numbers using rand and norminv. Note that the MATLAB function, randn,
does not use inversion since it is not efficient for this case.

-5 0 5
0

0.2

0.4

0.6

0.8

1

p F x a b,() x a–
b a–
------------I a b,[] x()= =

Overview of the Distributions

2-83

u = rand(1000,1);
x = norminv(u,0,1);
hist(x)

Weibull Distribution
The following sections provide an overview of the Weibull distribution.

Background of the Weibull Distribution
Waloddi Weibull [45] offered the distribution that bears his name as an
appropriate analytical tool for modeling the breaking strength of materials.
Current usage also includes reliability and lifetime modeling. The Weibull
distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If
f(t) and F(t) are the pdf and cdf of a distribution, then the hazard rate is

Substituting the pdf and cdf of the exponential distribution for f(t) and F(t)
above yields a constant. The example below shows that the hazard rate for the
Weibull distribution can vary.

Definition of the Weibull Distribution
The Weibull pdf is

-4 -2 0 2 4
0

100

200

300

h t() f t()
1 F t()–
--------------------=

y f x a b,() ba b– xb 1– e

x
a
---⎝ ⎠
⎛ ⎞

b

–

I 0 ∞,() x()= =

2 Probability Distributions

2-84

Parameter Estimation for the Weibull Distribution
Suppose you want to model the tensile strength of a thin filament using the
Weibull distribution. The function wblfit gives maximum likelihood estimates
and confidence intervals for the Weibull parameters.

strength = wblrnd(0.5,2,100,1); % Simulated strengths.
[p,ci] = wblfit(strength)

p =
0.4715 1.9811

ci =

 0.4248 1.7067
 0.5233 2.2996

The default 95% confidence interval for each parameter contains the true
value.

Example and Plot of the Weibull Distribution
The exponential distribution has a constant hazard function, which is not
generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull
(solid line) distributions having the same mean life. The Weibull hazard rate
here increases with age (a reasonable assumption).

t = 0:0.1:4.5;
h1 = exppdf(t,0.6267) ./ (1-expcdf(t,0.6267));
h2 = wblpdf(t,2,2) ./ (1-wblcdf(t,2,2));
plot(t,h1,'--',t,h2,'-')

Overview of the Distributions

2-85

0 0.5 1 1.5 2 2.5 3
0

5

10

15

2 Probability Distributions

2-86

3

Descriptive Statistics

Measures of Central Tendency
(Location) (p. 3-2)

Describes how to calculate measures of central tendency,
such as mean and median.

Measures of Dispersion (p. 3-4) Describes how to calculate measures of dispersion, such
as variance and standard deviation.

Functions for Data with Missing
Values (NaNs) (p. 3-6)

Describes tools for analyzing data that has missing
values

Function for Grouped Data (p. 3-8) Explains how to use the grpstats function to group
subsets of data in order to analyze them.

Percentiles and Graphical Descriptions
(p. 3-10)

Describes how to analyze and estimate data distributions
empirically.

The Bootstrap (p. 3-17) Describes how to implement the bootstrap procedure.

3 Descriptive Statistics

3-2

Measures of Central Tendency (Location)
The purpose of measures of central tendency is to locate the data values on the
number line. Another term for these statistics is measures of location.

The table gives the function names and descriptions.

The average is a simple and popular estimate of location. If the data sample
comes from a normal distribution, then the sample average is also optimal
(MVUE of µ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real
data. The sample average is sensitive to these problems. One bad data value
can move the average away from the center of the rest of the data by an
arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to
outliers. The median is the 50th percentile of the sample, which will only
change slightly if you add a large perturbation to any value. The idea behind
the trimmed mean is to ignore a small percentage of the highest and lowest
values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to
outliers. They are useful when the sample is distributed lognormal or heavily
skewed.

Measures of Location

geomean Geometric mean

harmmean Harmonic mean

mean Arithmetic average (in MATLAB)

median 50th percentile (in MATLAB)

trimmean Trimmed mean

Measures of Central Tendency (Location)

3-3

The following example shows the behavior of the measures of location for a
sample with one outlier.

x = [ones(1,6) 100]

x =
 1 1 1 1 1 1 100

locate = [geomean(x) harmmean(x) mean(x) median(x)...
trimmean(x,25)]

locate =
 1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the influence
of the outlier. The median and trimmed mean ignore the outlying value and
describe the location of the rest of the data values.

3 Descriptive Statistics

3-4

Measures of Dispersion
The purpose of measures of dispersion is to find out how spread out the data
values are on the number line. Another term for these statistics is measures of
spread.

The table gives the function names and descriptions.

The range (the difference between the maximum and minimum values) is the
simplest measure of spread. But if there is an outlier in the data, it will be the
minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that
are optimal for normally distributed samples. The sample variance is the
MVUE of the normal parameter σ2. The standard deviation is the square root
of the variance and has the desirable property of being in the same units as the
data. That is, if the data is in meters, the standard deviation is in meters as
well. The variance is in meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data
value that is separate from the body of the data can increase the value of the
statistics by an arbitrarily large amount.

The Mean Absolute Deviation (MAD) is also sensitive to outliers. But the MAD
does not move quite as much as the standard deviation or variance in response
to bad data.

The Interquartile Range (IQR) is the difference between the 75th and 25th
percentile of the data. Since only the middle 50% of the data affects this
measure, it is robust to outliers.

Measures of Dispersion

iqr Interquartile Range

mad Mean Absolute Deviation

range Range

std Standard deviation (in MATLAB)

var Variance (in MATLAB)

Measures of Dispersion

3-5

The following example shows the behavior of the measures of dispersion for a
sample with one outlier.

x = [ones(1,6) 100]

x =
 1 1 1 1 1 1 100

stats = [iqr(x) mad(x) range(x) std(x)]

stats =
 0 24.2449 99.0000 37.4185

3 Descriptive Statistics

3-6

Functions for Data with Missing Values (NaNs)
Most real-world data sets have one or more missing elements. It is convenient
to code missing entries in a matrix as NaN (Not a Number).

Here is a simple example.

m = magic(3);
m([1 5]) = [NaN NaN]

m =
NaN 1 6
3 NaN 7
4 9 2

Any arithmetic operation that involves the missing values in this matrix yields
NaN, as below.

sum(m)

ans =
NaN NaN 15

Removing cells with NaN would destroy the matrix structure. Removing whole
rows that contain NaN would discard real data. Instead, the Statistics Toolbox
has a variety of functions that are similar to other MATLAB functions, but that
treat NaN values as missing and therefore ignore them in the calculations.

nansum(m)

ans =
 7 10 13

NaN Functions

nanmax Maximum ignoring NaNs

nanmean Mean ignoring NaNs

nanmedian Median ignoring NaNs

nanmin Minimum ignoring NaNs

Functions for Data with Missing Values (NaNs)

3-7

In addition, other Statistics Toolbox functions operate only on the numeric
values, ignoring NaNs. These include iqr, kurtosis, mad, prctile, range,
skewness, and trimmean.

nanstd Standard deviation ignoring NaNs

nansum Sum ignoring NaNs

NaN Functions

3 Descriptive Statistics

3-8

Function for Grouped Data
As you saw in the previous section, the descriptive statistics functions can
compute statistics on each column in a matrix. Sometimes, however, you may
have your data arranged differently so that measurements appear in one
column or variable, and a grouping code appears in a second column or
variable. Although the MATLAB syntax makes it simple to apply functions to
a subset of an array, in this case it is simpler to use the grpstats function.

The grpstats function can compute the mean, standard error of the mean, and
count (number of observations) for each group defined by one or more grouping
variables. If you supply a significance level, it also creates a graph of the group
means with confidence intervals.

As an example, load the larger car data set. You can look at the average value
of MPG (miles per gallon) for cars grouped by org (location of the origin of the
car).

load carbig
grpstats(MPG,org,0.05)
ans =
 20.084
 27.891
 30.451

USA Europe Japan
18

20

22

24

26

28

30

32

Group

M
ea

n

Means and Confidence Intervals for Each Group

Function for Grouped Data

3-9

You can also get the complete set of statistics for MPG grouped by three
variables: org, cyl4 (the engine has four cylinders or not), and when (when the
car was made).

[m,s,c,n] = grpstats(MPG,{org cyl4 when});
[n num2cell([m s c])]

ans =

 'USA' 'Other' 'Early' [14.896] [0.33306] [77]
 'USA' 'Other' 'Mid' [17.479] [0.30225] [75]
 'USA' 'Other' 'Late' [21.536] [0.97961] [25]
 'USA' 'Four' 'Early' [23.333] [0.87328] [12]
 'USA' 'Four' 'Mid' [27.027] [0.75456] [22]
 'USA' 'Four' 'Late' [29.734] [0.71126] [38]
 'Europe' 'Other' 'Mid' [17.5] [0.9478] [4]
 'Europe' 'Other' 'Late' [30.833] [3.1761] [3]
 'Europe' 'Four' 'Early' [24.714] [0.73076] [21]
 'Europe' 'Four' 'Mid' [26.912] [1.0116] [26]
 'Europe' 'Four' 'Late' [35.7] [1.4265] [16]
 'Japan' 'Other' 'Early' [19] [0.57735] [3]
 'Japan' 'Other' 'Mid' [20.833] [0.92796] [3]
 'Japan' 'Other' 'Late' [26.5] [2.0972] [4]
 'Japan' 'Four' 'Early' [26.083] [1.1772] [12]
 'Japan' 'Four' 'Mid' [29.5] [0.86547] [25]
 'Japan' 'Four' 'Late' [35.3] [0.68346] [32]

3 Descriptive Statistics

3-10

Percentiles and Graphical Descriptions
Trying to describe a data sample with two numbers, a measure of location and
a measure of spread, is frugal but may be misleading. Here are some other
approaches:

• “Percentiles” on page 3-10

• “Probability Density Estimation” on page 3-12

• “Empirical Cumulative Distribution Function” on page 3-15

Percentiles
Another option is to compute a reasonable number of the sample percentiles.
This provides information about the shape of the data as well as its location
and spread.

The example shows the result of looking at every quartile of a sample
containing a mixture of two distributions.

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p;y]

z =
 0 25.0000 50.0000 75.0000 100.0000
 1.5172 4.6842 5.6706 6.1804 7.6035

Compare the first two quantiles to the rest.

The box plot is a graph for descriptive statistics. The following graph is a box
plot of the preceding data.

boxplot(x)

Percentiles and Graphical Descriptions

3-11

The long lower tail and plus signs show the lack of symmetry in the sample
values. For more information on box plots, see “Statistical Plots” on page 8-1.

The histogram is a complementary graph.

hist(x)

1

2

3

4

5

6

7

V
al

ue
s

Column Number

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

3 Descriptive Statistics

3-12

Probability Density Estimation
You can also describe a data sample by estimating its density in a
nonparametric way. The ksdensity function does this by using a kernel
smoothing function and an associated bandwidth to estimate the density.

This example uses the carsmall data set to estimate the probability density of
the MPG (miles per gallon) measurements for 94 cars. It uses the default
kernel function, a normal distribution, and its default bandwidth.

cars = load('carsmall','MPG','Origin');
MPG = cars.MPG;
Origin = cars.Origin;
[f,x] = ksdensity(MPG);
plot(x,f);
title('Density estimate for MPG')

Kernel Bandwidth
The choice of kernel bandwidth controls the smoothness of the probability
density curve. The following graph shows the density estimate for the same
mileage data using different bandwidths. The default bandwidth is in blue and
looks like the preceding graph. Estimates for smaller and larger bandwidths
are in red and green.

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Density estimate for MPG

Percentiles and Graphical Descriptions

3-13

The first call to ksdensity returns the default bandwidth, u, of the kernel
smoothing function. Subsequent calls modify this bandwidth.

[f,x,u] = ksdensity(MPG);
plot(x,f)
title('Density estimate for MPG')
hold on
[f,x] = ksdensity(MPG,'width',u/3);
plot(x,f,'r');
[f,x] = ksdensity(MPG,'width',u*3);
plot(x,f,'g');
legend('default width','1/3 default','3*default')
hold off

The default bandwidth seems to be doing a good job — reasonably smooth, but
not so smooth as to obscure features of the data. This bandwidth is the one that
is theoretically optimal for estimating densities for the normal distribution.

The green curve shows a density with the kernel bandwidth set too high. This
curve smooths out the data so much that the end result looks just like the
kernel function. The red curve has a smaller bandwidth and is rougher-looking
than the blue curve. It may be too rough, but it does provide an indication that
there might be two major peaks rather than the single peak of the blue curve.

−20 −10 0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06
Density estimate for MPG

default width
1/3 default
3*default

3 Descriptive Statistics

3-14

A reasonable choice of width might lead to a curve that is intermediate between
the red and blue curves.

Kernel Smoothing Function
You can also specify a kernel function by supplying either the function name or
a function handle. The four preselected functions, 'normal', 'epanechnikov',
'box', and 'triangle', are all scaled to have standard deviation equal to 1, so
they perform a comparable degree of smoothing.

Using default bandwidths, you can now plot the same mileage data, using each
of the available kernel functions.

hname = {'normal' 'epanechnikov' 'box' 'triangle'};
hold on;
colors = {'r' 'b' 'g' 'm'};
for j=1:4
 [f,x] = ksdensity(MPG,'kernel',hname{j});
 plot(x,f,colors{j});
end
legend(hname{:});
hold off

The density estimates are roughly comparable, but the box kernel produces a
density that is rougher than the others.

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
normal
epanechinikov
box
triangle

Percentiles and Graphical Descriptions

3-15

Usefulness of Smooth Density Estimates
In addition to the aesthetic appeal of the smooth density estimate, there are
other appeals as well. While it is difficult to overlay two histograms to compare
them, you can easily overlay smooth density estimates. For example, the
following graph shows the MPG distributions for cars from different countries
of origin.

Empirical Cumulative Distribution Function
The ksdensity function described in the last section produces an empirical
version of a probability density function (pdf). That is, instead of selecting a
density with a particular parametric form and estimating the parameters, it
produces a nonparametric density estimate that tries to adapt itself to the
data.

Similarly, it is possible to produce an empirical version of the cumulative
distribution function (cdf). The ecdf function computes this empirical cdf. It
returns the values of a function such that represents the proportion of
observations in a sample less than or equal to .

The idea behind the empirical cdf is simple. It is a function that assigns
probability to each of observations in a sample. Its graph has a
stair-step appearance. If a sample comes from a distribution in a parametric
family (such as a normal distribution), its empirical cdf is likely to resemble the

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12
Density estimates for MPG by Origin

USA
Japan
Europe

F F x()
x

1 n⁄ n

3 Descriptive Statistics

3-16

parametric distribution. If not, its empirical distribution still gives an estimate
of the cdf for the distribution that generated the data.

The following example generates 20 observations from a normal distribution
with mean 10 and standard deviation 2. You can use ecdf to calculate the
empirical cdf and stairs to plot it. Then you overlay the normal distribution
curve on the empirical function.

x = normrnd(10,2,20,1);[f,xf] = ecdf(x);
stairs(xf,f)
xx=linspace(5,15,100);
yy = normcdf(xx,10,2);
hold on; plot(xx,yy,'r:'); hold off
legend('Empirical cdf','Normal cdf',2)

The empirical cdf is especially useful in survival analysis applications. In such
applications the data may be censored, that is, not observed exactly. Some
individuals may fail during a study, and you can observe their failure time
exactly. Other individuals may drop out of the study, or may not fail until after
the study is complete. The ecdf function has arguments for dealing with
censored data.

5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical cdf
Normal cdf

The Bootstrap

3-17

The Bootstrap
In recent years the statistical literature has examined the properties of
resampling as a means to acquire information about the uncertainty of
statistical estimators.

The bootstrap is a procedure that involves choosing random samples with
replacement from a data set and analyzing each sample the same way.
Sampling with replacement means that every sample is returned to the data set
after sampling. So a particular data point from the original data set could
appear multiple times in a given bootstrap sample. The number of elements in
each bootstrap sample equals the number of elements in the original data set.
The range of sample estimates you obtain enables you to establish the
uncertainty of the quantity you are estimating.

Here is an example taken from Efron and Tibshirani [13] comparing Law
School Admission Test (LSAT) scores and subsequent law school grade point
average (GPA) for a sample of 15 law schools.

load lawdata
plot(lsat,gpa,'+')
lsline

540 560 580 600 620 640 660 680
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3 Descriptive Statistics

3-18

The least squares fit line indicates that higher LSAT scores go with higher law
school GPAs. But how certain is this conclusion? The plot provides some
intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the corrcoef
function.

rhohat = corrcoef(lsat,gpa)

rhohat =

 1.0000 0.7764
 0.7764 1.0000

Now you have a number, 0.7764, describing the positive connection between
LSAT and GPA, but though 0.7764 may seem large, you still do not know if it
is statistically significant.

Using the bootstrp function you can resample the lsat and gpa vectors as
many times as you like and consider the variation in the resulting correlation
coefficients.

Here is an example.

rhos1000 = bootstrp(1000,'corrcoef',lsat,gpa);

This command resamples the lsat and gpa vectors 1000 times and computes
the corrcoef function on each sample. Here is a histogram of the result.

hist(rhos1000(:,2),30)

The Bootstrap

3-19

Nearly all the estimates lie on the interval [0.4 1.0].

This is strong quantitative evidence that LSAT and subsequent GPA are
positively correlated. Moreover, this evidence does not require any strong
assumptions about the probability distribution of the correlation coefficient.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

3 Descriptive Statistics

3-20

4

Linear Models

Introduction (p. 4-2) Introduces the concept of a linear model.

One-Way Analysis of Variance
(ANOVA) (p. 4-3)

Describes how to perform one-way analysis of variance.

Two-Way Analysis of Variance
(ANOVA) (p. 4-8)

Describes how to perform two-way analysis of variance.

N-Way Analysis of Variance (p. 4-11) Describes how to perform analysis of variance with more
than two factors.

ANOVA with Random Effects (p. 4-18) Describes how to perform analysis of variance with
random effects.

Analysis of Covariance (p. 4-25) Describes how to perform analysis of covariance.

Multiple Linear Regression (p. 4-33) Describes how to perform multiple linear regression.

Quadratic Response Surface Models
(p. 4-42)

Describes how to analyze quadratic response surface
models.

Stepwise Regression (p. 4-45) Describes an interactive tool for performing stepwise
regression.

Generalized Linear Models (p. 4-50) Describes how to analyze generalized linear models.

Robust and Nonparametric Methods
(p. 4-55)

Describes robust and nonparametric methods.

4 Linear Models

4-2

Introduction
Linear models represent the relationship between a continuous response
variable and one or more predictor variables (either continuous or categorical)
in the form

where:

• y is an n-by-1 vector of observations of the response variable.

• X is the n-by-p design matrix determined by the predictors.

• β is a p-by-1 vector of parameters.

• ε is an n-by-1 vector of random disturbances, independent of each other and
usually having a normal distribution.

MATLAB uses this general form of the linear model to solve a variety of specific
regression and analysis of variance (ANOVA) problems. For example, for
polynomial and multiple regression problems, the columns of X are predictor
variable values or powers of such values. For one-way, two-way, and
higher-way ANOVA models, the columns of X are dummy (or indicator)
variables that encode the predictor categories. For analysis of covariance
(ANOCOVA) models, X contains values of a continuous predictor and codes for
a categorical predictor.

Note See Chapter 5, “Nonlinear Regression Models” for information on
fitting nonlinear models.

y Xβ ε+=

One-Way Analysis of Variance (ANOVA)

4-3

One-Way Analysis of Variance (ANOVA)
The purpose of one-way ANOVA is to find out whether data from several
groups have a common mean. That is, to determine whether the groups are
actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way
ANOVA form of the model is

where:

• yij is a matrix of observations in which each column represents a different
group.

• α.j is a matrix whose columns are the group means. (The “dot j” notation
means that α applies to all rows of the jth column. That is, the value αij is
the same for all i.)

• εij is a matrix of random disturbances.

The model assumes that the columns of y are a constant plus a random
disturbance. You want to know if the constants are all the same.

The following sections explore one-way ANOVA in greater detail:

• “Example: One-Way ANOVA” on page 4-3

• “Multiple Comparisons” on page 4-5

Example: One-Way ANOVA
The data below comes from a study by Hogg and Ledolter [19] of bacteria
counts in shipments of milk. The columns of the matrix hogg represent
different shipments. The rows are bacteria counts from cartons of milk chosen
randomly from each shipment. Do some shipments have higher counts than
others?

load hogg
hogg

hogg =

 24 14 11 7 19

yij α.j εij+=

4 Linear Models

4-4

 15 7 9 7 24
 21 12 7 4 19
 27 17 13 7 15
 33 14 12 12 10
 23 16 18 18 20

[p,tbl,stats] = anova1(hogg);
p

p =
 1.1971e-04

The standard ANOVA table has columns for the sums of squares, degrees of
freedom, mean squares (SS/df), F statistic, and p-value.

You can use the F statistic to do a hypothesis test to find out if the bacteria
counts are the same. anova1 returns the p-value from this hypothesis test.

In this case the p-value is about 0.0001, a very small value. This is a strong
indication that the bacteria counts from the different tankers are not the same.
An F statistic as extreme as the observed F would occur by chance only once in
10,000 times if the counts were truly equal.

The p-value returned by anova1 depends on assumptions about the random
disturbances εij in the model equation. For the p-value to be correct, these
disturbances need to be independent, normally distributed, and have constant
variance. See “Robust and Nonparametric Methods” on page 4-55 for a
nonparametric function that does not require a normal assumption.

You can get some graphical assurance that the means are different by looking
at the box plots in the second figure window displayed by anova1. Note however

One-Way Analysis of Variance (ANOVA)

4-5

that the notches are used for a comparison of medians, not a comparison of
means. For more information on this display, see “Box Plots” in Chapter 8.

Multiple Comparisons
Sometimes you need to determine not just whether there are any differences
among the means, but specifically which pairs of means are significantly
different. It is tempting to perform a series of t tests, one for each pair of means,
but this procedure has a pitfall.

In a t test, you compute a t statistic and compare it to a critical value. The
critical value is chosen so that when the means are really the same (any
apparent difference is due to random chance), the probability that the t
statistic will exceed the critical value is small, say 5%. When the means are
different, the probability that the statistic will exceed the critical value is
larger.

In this example there are five means, so there are 10 pairs of means to compare.
It stands to reason that if all the means are the same, and if there is a 5%
chance of incorrectly concluding that there is a difference in one pair, then the
probability of making at least one incorrect conclusion among all 10 pairs is
much larger than 5%.

Fortunately, there are procedures known as multiple comparison procedures
that are designed to compensate for multiple tests.

1 2 3 4 5

5

10

15

20

25

30
V

al
ue

s

Column Number

4 Linear Models

4-6

Example: Multiple Comparisons
You can perform a multiple comparison test using the multcompare function
and supplying it with the stats output from anova1.

[c,m] = multcompare(stats)

c =
 1.0000 2.0000 2.4953 10.5000 18.5047
 1.0000 3.0000 4.1619 12.1667 20.1714
 1.0000 4.0000 6.6619 14.6667 22.6714
 1.0000 5.0000 -2.0047 6.0000 14.0047
 2.0000 3.0000 -6.3381 1.6667 9.6714
 2.0000 4.0000 -3.8381 4.1667 12.1714
 2.0000 5.0000 -12.5047 -4.5000 3.5047
 3.0000 4.0000 -5.5047 2.5000 10.5047
 3.0000 5.0000 -14.1714 -6.1667 1.8381
 4.0000 5.0000 -16.6714 -8.6667 -0.6619

m =
 23.8333 1.9273
 13.3333 1.9273
 11.6667 1.9273
 9.1667 1.9273
 17.8333 1.9273

The first output from multcompare has one row for each pair of groups, with an
estimate of the difference in group means and a confidence interval for that
group. For example, the second row has the values

1.0000 3.0000 4.1619 12.1667 20.1714

indicating that the mean of group 1 minus the mean of group 3 is estimated to
be 12.1667, and a 95% confidence interval for this difference is
[4.1619, 20.1714]. This interval does not contain 0, so you can conclude that the
means of groups 1 and 3 are different.

The second output contains the mean and its standard error for each group.

It is easier to visualize the difference between group means by looking at the
graph that multcompare produces.

One-Way Analysis of Variance (ANOVA)

4-7

The graph shows that group 1 is significantly different from groups 2, 3, and 4.
By using the mouse to select group 4, you can determine that it is also
significantly different from group 5. Other pairs are not significantly different.

4 Linear Models

4-8

Two-Way Analysis of Variance (ANOVA)
The purpose of two-way ANOVA is to find out whether data from several
groups have a common mean. One-way ANOVA and two-way ANOVA differ in
that the groups in two-way ANOVA have two categories of defining
characteristics instead of one.

Suppose an automobile company has two factories, and each factory makes the
same three models of car. It is reasonable to ask if the gas mileage in the cars
varies from factory to factory as well as from model to model. There are two
predictors, factory and model, to explain differences in mileage.

There could be an overall difference in mileage due to a difference in the
production methods between factories. There is probably a difference in the
mileage of the different models (irrespective of the factory) due to differences
in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps because
of a superior production line), but not be different from the other factory for
other models. This effect is called an interaction. It is impossible to detect an
interaction unless there are duplicate observations for some combination of
factory and car model.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA
form of the model is

where, with respect to the automobile example above:

• is a matrix of gas mileage observations (with row index i, column
index j, and repetition index k).

• is a constant matrix of the overall mean gas mileage.

• is a matrix whose columns are the deviations of each car’s gas mileage
(from the mean gas mileage) that are attributable to the car’s model. All
values in a given column of are identical, and the values in each row
of sum to 0.

• is a matrix whose rows are the deviations of each car’s gas mileage (from
the mean gas mileage) that are attributable to the car’s factory. All values
in a given row of are identical, and the values in each column of sum
to 0.

yijk µ α.j βi. γij εijk+ + + +=

yijk

µ
α.j

µ
α.j

α.j
βi.

µ
βi. βi.

Two-Way Analysis of Variance (ANOVA)

4-9

• is a matrix of interactions. The values in each row of sum to 0, and the
values in each column of sum to 0.

• is a matrix of random disturbances.

The next section provides an example of a two-way analysis.

Example: Two-Way ANOVA
The purpose of the example is to determine the effect of car model and factory
on the mileage rating of cars.

load mileage
mileage

mileage =

 33.3000 34.5000 37.4000
 33.4000 34.8000 36.8000
 32.9000 33.8000 37.6000
 32.6000 33.4000 36.6000
 32.5000 33.7000 37.0000
 33.0000 33.9000 36.7000

cars = 3;
[p,tbl,stats] = anova2(mileage,cars);
p

p =
 0.0000 0.0039 0.8411

There are three models of cars (columns) and two factories (rows). The reason
there are six rows in mileage instead of two is that each factory provides three
cars of each model for the study. The data from the first factory is in the first
three rows, and the data from the second factory is in the last three rows.

The standard ANOVA table has columns for the sums of squares,
degrees-of-freedom, mean squares (SS/df), F statistics, and p-values.

γij γij
γij

εijk

4 Linear Models

4-10

You can use the F statistics to do hypotheses tests to find out if the mileage is
the same across models, factories, and model-factory pairs (after adjusting for
the additive effects). anova2 returns the p-value from these tests.

The p-value for the model effect is zero to four decimal places. This is a strong
indication that the mileage varies from one model to another. An F statistic as
extreme as the observed F would occur by chance less than once in 10,000 times
if the gas mileage were truly equal from model to model. If you used the
multcompare function to perform a multiple comparison test, you would find
that each pair of the three models is significantly different.

The p-value for the factory effect is 0.0039, which is also highly significant.
This indicates that one factory is out-performing the other in the gas mileage
of the cars it produces. The observed p-value indicates that an F statistic as
extreme as the observed F would occur by chance about four out of 1000 times
if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models. The
p-value, 0.8411, means that the observed result is quite likely (84 out 100
times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random
disturbances εijk in the model equation. For the p-values to be correct these
disturbances need to be independent, normally distributed, and have constant
variance. See “Robust and Nonparametric Methods” on page 4-55 for
nonparametric methods that do not require a normal distribution.

In addition, anova2 requires that data be balanced, which in this case means
there must be the same number of cars for each combination of model and
factory. The next section discusses a function that supports unbalanced data
with any number of predictors.

N-Way Analysis of Variance

4-11

N-Way Analysis of Variance
You can use N-way ANOVA to determine if the means in a set of data differ
when grouped by multiple factors. If they do differ, you can determine which
factors or combinations of factors are associated with the difference.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, the
model can be written

In this notation parameters with two subscripts, such as (αβ)ij., represent the
interaction effect of two factors. The parameter (αβγ)ijk represents the
three-way interaction. An ANOVA model can have the full set of parameters or
any subset, but conventionally it does not include complex interaction terms
unless it also includes all simpler terms for those factors. For example, one
would generally not include the three-way interaction without also including
all two-way interactions.

The anovan function performs N-way ANOVA. Unlike the anova1 and anova2
functions, anovan does not expect data in a tabular form. Instead, it expects a
vector of response measurements and a separate vector (or text array)
containing the values corresponding to each factor. This input data format is
more convenient than matrices when there are more than two factors or when
the number of measurements per factor combination is not constant.

The following examples explore anovan in greater detail:

• “Example: N-Way ANOVA with Small Data Set” on page 4-11

• “Example: N-Way ANOVA with Large Data Set” on page 4-13

Example: N-Way ANOVA with Small Data Set
Consider the following two-way example using anova2.

m = [23 15 20;27 17 63;43 3 55;41 9 90]
m =
 23 15 20
 27 17 63
 43 3 55
 41 9 90

yijkl µ α.j . βi.. γ..k αβ()ij. αγ()i.k βγ().jk αβγ()ijk ε+ + + + ijkl+ + + +=

4 Linear Models

4-12

anova2(m,2)

ans =
 0.0197 0.2234 0.2663

The factor information is implied by the shape of the matrix m and the number
of measurements at each factor combination (2). Although anova2 does not
actually require arrays of factor values, for illustrative purposes you could
create them as follows.

cfactor = repmat(1:3,4,1)

cfactor =

 1 2 3
 1 2 3
 1 2 3
 1 2 3

rfactor = [ones(2,3); 2*ones(2,3)]

rfactor =

 1 1 1
 1 1 1
 2 2 2
 2 2 2

The cfactor matrix shows that each column of m represents a different level of
the column factor. The rfactor matrix shows that the top two rows of m
represent one level of the row factor, and bottom two rows of m represent a
second level of the row factor. In other words, each value m(i,j) represents an
observation at column factor level cfactor(i,j) and row factor level
rfactor(i,j).

To solve the above problem with anovan, you need to reshape the matrices m,
cfactor, and rfactor to be vectors.

m = m(:);
cfactor = cfactor(:);
rfactor = rfactor(:);

[m cfactor rfactor]

N-Way Analysis of Variance

4-13

ans =

 23 1 1
 27 1 1
 43 1 2
 41 1 2
 15 2 1
 17 2 1
 3 2 2
 9 2 2
 20 3 1
 63 3 1
 55 3 2
 90 3 2

anovan(m,{cfactor rfactor},2)

ans =

 0.0197
 0.2234
 0.2663

Example: N-Way ANOVA with Large Data Set
The previous example used anova2 to study a small data set measuring car
mileage. This example illustrates how to analyze a larger set of car data with
mileage and other information on 406 cars made between 1970 and 1982. First,
load the data set and look at the variable names.

load carbig
whos

 Name Size Bytes Class

 Acceleration 406x1 3248 double array
 Cylinders 406x1 3248 double array
 Displacement 406x1 3248 double array
 Horsepower 406x1 3248 double array
 MPG 406x1 3248 double array
 Model 406x36 29232 char array
 Model_Year 406x1 3248 double array
 Origin 406x7 5684 char array

4 Linear Models

4-14

 Weight 406x1 3248 double array
 cyl4 406x5 4060 char array
 org 406x7 5684 char array
 when 406x5 4060 char array

The example focusses on four variables. MPG is the number of miles per gallon
for each of 406 cars (though some have missing values coded as NaN). The other
three variables are factors: cyl4 (four-cylinder car or not), org (car originated
in Europe, Japan, or the USA), and when (car was built early in the period, in
the middle of the period, or late in the period).

First, fit the full model, requesting up to three-way interactions and Type 3
sums-of-squares.

varnames = {'Origin';'4Cyl';'MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames)

ans =
 0.0000
 NaN
 0
 0.7032
 0.0001
 0.2072
 0.6990

Note that many terms are marked by a “#” symbol as not having full rank, and
one of them has zero degrees of freedom and is missing a p-value. This can
happen when there are missing factor combinations and the model has
higher-order terms. In this case, the cross-tabulation below shows that there

N-Way Analysis of Variance

4-15

are no cars made in Europe during the early part of the period with other than
four cylinders, as indicated by the 0 in table(2,1,1).

[table, chi2, p, factorvals] = crosstab(org,when,cyl4)

table(:,:,1) =

 82 75 25
 0 4 3
 3 3 4

table(:,:,2) =

 12 22 38
 23 26 17
 12 25 32

chi2 =

 207.7689

p =

 0

factorvals =

 'USA' 'Early' 'Other'
 'Europe' 'Mid' 'Four'
 'Japan' 'Late' []

Consequently it is impossible to estimate the three-way interaction effects, and
including the three-way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, you can see
that the three-way interaction has a p-value of 0.699, so it is not significant. So
this time you examine only two-way interactions.

[p,tbl,stats,termvec] = anovan(MPG,{org cyl4 when},2,3,varnames);
termvec

termvec =
 1 0 0
 0 1 0
 0 0 1

4 Linear Models

4-16

 1 1 0
 1 0 1
 0 1 1

Now all terms are estimable. The p-values for interaction term 4
(Origin*4Cyl) and interaction term 6 (4Cyl*MfgDate) are much larger than a
typical cutoff value of 0.05, indicating these terms are not significant. You
could choose to omit these terms and pool their effects into the error term. The
output termvec variable returns a vector of codes, each of which is a bit pattern
representing a term. You can omit terms from the model by deleting their
entries from termvec and running anovan again, this time supplying the
resulting vector as the model argument.

termvec([4 6],:) = []

termvec =

 1 0 0
 0 1 0
 0 0 1
 1 0 1

anovan(MPG,{org cyl4 when},termvec,3,varnames)

ans =

 1.0e-003 *

N-Way Analysis of Variance

4-17

 0.0000
 0
 0
 0.1140

Now you have a more parsimonious model indicating that the mileage of these
cars seems to be related to all three factors, and that the effect of the
manufacturing date depends on where the car was made.

4 Linear Models

4-18

ANOVA with Random Effects
In an ordinary ANOVA model, each grouping variable represents a fixed factor.
The levels of that factor are a fixed set of values. Your goal is to determine
whether different factor levels lead to different response values. This section
presents an example that shows how to use anovan to fit models where a
factor's levels represent a random selection from a larger (infinite) set of
possible levels.

This section covers the following topics:

• “Setting Up the Model” on page 4-18

• “Fitting a Random Effects Model” on page 4-19

• “F Statistics for Models with Random Effects” on page 4-20

• “Variance Components” on page 4-22

Setting Up the Model
To set up the example, first load the data, which is stored in a 6-by-3 matrix,
mileage.

load mileage

The anova2 function works only with balanced data, and it infers the values of
the grouping variables from the row and column numbers of the input matrix.
The anovan function, on the other hand, requires you to explicitly create
vectors of grouping variable values. To create these vectors, do the following
steps:

1 Create an array indicating the factory for each value in mileage. This array
is 1 for the first column, 2 for the second, and 3 for the third.

factory = repmat(1:3,6,1);

2 Create an array indicating the car model for each mileage value. This array
is 1 for the first three rows of mileage, and 2 for the remaining three rows.

carmod = [ones(3,3); 2*ones(3,3)];

3 Turn these matrices into vectors and display them.

ANOVA with Random Effects

4-19

mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);
[mileage factory carmod]

ans =

 33.3000 1.0000 1.0000
 33.4000 1.0000 1.0000
 32.9000 1.0000 1.0000
 32.6000 1.0000 2.0000
 32.5000 1.0000 2.0000
 33.0000 1.0000 2.0000
 34.5000 2.0000 1.0000
 34.8000 2.0000 1.0000
 33.8000 2.0000 1.0000
 33.4000 2.0000 2.0000
 33.7000 2.0000 2.0000
 33.9000 2.0000 2.0000
 37.4000 3.0000 1.0000
 36.8000 3.0000 1.0000
 37.6000 3.0000 1.0000
 36.6000 3.0000 2.0000
 37.0000 3.0000 2.0000
 36.7000 3.0000 2.0000

Fitting a Random Effects Model
Continuing the example from the preceding section, suppose you are studying
a few factories but you want information about what would happen if you build
these same car models in a different factory — either one that you already have
or another that you might construct. To get this information, fit the analysis of
variance model, specifying a model that includes an interaction term and that
the factory factor is random.

[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...
'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});

4 Linear Models

4-20

In the fixed effects version of this fit, which you get by omitting the inputs
'random',1 in the preceding code, the effect of car model is significant, with a
p-value of 0.0039. But in this example, which takes into account the random
variation of the effect of the variable 'Car Model' from one factory to another,
the effect is still significant, but with a higher p-value of 0.0136.

F Statistics for Models with Random Effects
The F statistic in a model having random effects is defined differently than in
a model having all fixed effects. In the fixed effects model, you compute the F
statistic for any term by taking the ratio of the mean square for that term with
the mean square for error. In a random effects model, however, some F
statistics use a different mean square in the denominator.

In the example described in “Setting Up the Model” on page 4-18, the effect of
the variable 'Factory' could vary across car models. In this case, the
interaction mean square takes the place of the error mean square in the F
statistic. The F statistic for factory is

F = 1.445 / 0.02

F =

 72.2500

ANOVA with Random Effects

4-21

The degrees of freedom for the statistic are the degrees of freedom for the
numerator (1) and denominator (2) mean squares. Therefore the p-value for the
statistic is

pval = 1 - fcdf(F,1,2)

pval =

 0.0136

With random effects, the expected value of each mean square depends not only
on the variance of the error term, but also on the variances contributed by the
random effects. You can see these dependencies by writing the expected values
as linear combinations of contributions from the various model terms. To find
the coefficients of these linear combinations, enter stats.ems, which returns
the ems field of the stats structure.

stats.ems

ans =

 6.0000 0.0000 3.0000 1.0000
 0.0000 9.0000 3.0000 1.0000
 0.0000 0.0000 3.0000 1.0000
 0 0 0 1.0000

To see text representations of the linear combinations, enter

stats.txtems

ans =

 '6*V(Factory)+3*V(Factory*Car Model)+V(Error)'
 '9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'
 '3*V(Factory*Car Model)+V(Error)'
 'V(Error)'

The expected value for the mean square due to car model (second term)
includes contributions from a quadratic function of the car model effects, plus
three times the variance of the interaction term's effect, plus the variance of the
error term. Notice that if the car model effects were all zero, the expression
would reduce to the expected mean square for the third term (the interaction
term). That is why the F statistic for the car model effect uses the interaction
mean square in the denominator.

4 Linear Models

4-22

In some cases there is no single term whose expected value matches the one
required for the denominator of the F statistic. In that case, the denominator
is a linear combination of mean squares. The stats structure contains fields
giving the definitions of the denominators for each F statistic. The txtdenom
field, stats.txtdenom, gives a text representation, and the denom field gives a
matrix that defines a linear combination of the variances of terms in the model.
For balanced models like this one, the denom matrix, stats.denom, contains
zeros and ones, because the denominator is just a single term's mean square.

stats.txtdenom

ans =

 'MS(Factory*Car Model)'
 'MS(Factory*Car Model)'
 'MS(Error)'

stats.denom

ans =

 -0.0000 1.0000 0.0000
 0.0000 1.0000 -0.0000
 0.0000 0 1.0000

Variance Components
For the model described in “Setting Up the Model” on page 4-18, consider the
mileage for a particular car of a particular model made at a random factory.
The variance of that car is the sum of components, or contributions, one from
each of the random terms.

stats.rtnames

ans =

 'Factory'
 'Factory*Car Model'
 'Error'

You do not know those variances, but you can estimate them from the data.
Recall that the ems field of the stats structure expresses the expected value of
each term's mean square as a linear combination of unknown variances for
random terms, and unknown quadratic forms for fixed terms. If you take the

ANOVA with Random Effects

4-23

expected mean square expressions for the random terms, and equate those
expected values to the computed mean squares, you get a system of equations
that you can solve for the unknown variances. These solutions are the variance
component estimates. The varest field contains a variance component
estimate for each term. The rtnames field contains the names of the random
terms.

stats.varest

ans =

 4.4426
 -0.0313
 0.1139

Under some conditions, the variability attributed to a term is unusually low,
and that term's variance component estimate is negative. In those cases it is
common to set the estimate to zero, which you might do, for example, to create
a bar graph of the components.

bar(max(0,stats.varest))
set(gca,'xtick',1:3,'xticklabel',stats.rtnames)
bar(max(0,stats.varest))

4 Linear Models

4-24

You can also compute confidence bounds for the variance estimate. The anovan
function does this by computing confidence bounds for the variance expected
mean squares, and finding lower and upper limits on each variance component
containing all of these bounds. This procedure leads to a set of bounds that is
conservative for balanced data. (That is, 95% confidence bounds will have a
probability of at least 95% of containing the true variances if the number of
observations for each combination of grouping variables is the same.) For
unbalanced data, these are approximations that are not guaranteed to be
conservative.

[{'Term' 'Estimate' 'Lower' 'Upper'};
 stats.rtnames, num2cell([stats.varest stats.varci])]

ans =

 'Term' 'Estimate' 'Lower' 'Upper'
 'Factory' [4.4426] [1.0736] [175.6038]
 'Factory*Car Model' [-0.0313] [NaN] [NaN]
 'Error' [0.1139] [0.0586] [0.3103]

Factory Factory*Car Model Error
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Analysis of Covariance

4-25

Analysis of Covariance
Analysis of covariance is a technique for analyzing grouped data having a
response (y, the variable to be predicted) and a predictor (x, the variable used
to do the prediction). Using analysis of covariance, you can model y as a linear
function of x, with the coefficients of the line possibly varying from group to
group.

The aoctool Demo
The aoctool demo is an interactive graphical environment for fitting and
prediction with analysis of covariance (anocova) models. It is similar to the
polytool demo. The aoctool function fits the following models for the ith
group:

In the parallel lines model, for example, the intercept varies from one group to
the next, but the slope is the same for each group. In the same mean model,
there is a common intercept and no slope. In order to make the group
coefficients well determined, the demo imposes the constraints

 .

The following sections provide an illustrative example.

• “Exploring the aoctool Interface” on page 4-26

• “Confidence Bounds” on page 4-29

• “Multiple Comparisons” on page 4-31

Same mean

Separate means

Same line

Parallel lines

Separate lines

y α ε+=

y α αi+() ε+=

y α βx ε+ +=

y α αi+() βx ε+ +=

y α αi+() β βi+()x ε+ +=

αj∑ βj∑ 0= =

4 Linear Models

4-26

Exploring the aoctool Interface

1 Load the data. The Statistics Toolbox has a small data set with information
about cars from the years 1970, 1976, and 1982. This example studies the
relationship between the weight of a car and its mileage, and whether this
relationship has changed over the years. To start the demonstration, load
the data set.

load carsmall

The Workspace browser shows the variables in the data set.

You can also use aoctool with your own data.

2 Start the tool. The following command calls aoctool to fit a separate line to
the column vectors Weight and MPG for each of the three model group defined
in Model_Year. The initial fit models the y variable, MPG, as a linear function
of the x variable, Weight.

[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);
Note: 6 observations with missing values have been removed.

See the aoctool function reference page for detailed information about calling
aoctool.

Analysis of Covariance

4-27

3 Examine the output. The graphical output consists of a main window with
a plot, a table of coefficient estimates, and an analysis of variance table. In
the plot, each Model_Year group has a separate line. The data points for each
group are coded with the same color and symbol, and the fit for each group
has the same color as the data points.

The coefficients of the three lines appear in the figure titled ANOCOVA
Coefficients. You can see that the slopes are roughly -0.0078, with a small
deviation for each group:

Model year 1970:

Model year 1976:

Model year 1982:

y 45.9798 8.5805–() 0.0078 0.002+–()x ε+ +=

y 45.9798 3.8902–() 0.0078 0.0011+–()x ε+ +=

y 45.9798 12.4707+() 0.0078– 0.0031–()x ε+ +=

4 Linear Models

4-28

Because the three fitted lines have slopes that are roughly similar, you may
wonder if they really are the same. The Model_Year*Weight interaction
expresses the difference in slopes, and the ANOVA table shows a test for the
significance of this term. With an F statistic of 5.23 and a p-value of 0.0072,
the slopes are significantly different.

4 Constrain the slopes to be the same. To examine the fits when the slopes
are constrained to be the same, return to the ANOCOVA Prediction Plot
window and use the Model pop-up menu to select a Parallel Lines model.
The window updates to show the following graph.

Analysis of Covariance

4-29

Though this fit looks reasonable, it is significantly worse than the Separate
Lines model. Use the Model pop-up menu again to return to the original
model.

Confidence Bounds
The example in “Exploring the aoctool Interface” on page 4-26 provides
estimates of the relationship between MPG and Weight for each Model_Year, but
how accurate are these estimates? To find out, you can superimpose confidence
bounds on the fits by examining them one group at a time.

1 In the Model_Year menu at the lower right of the figure, change the setting
from All Groups to 82. The data and fits for the other groups are dimmed,
and confidence bounds appear around the 82 fit.

4 Linear Models

4-30

The dashed lines form an envelope around the fitted line for model year 82.
Under the assumption that the true relationship is linear, these bounds
provide a 95% confidence region for the true line. Note that the fits for the
other model years are well outside these confidence bounds for Weight
values between 2000 and 3000.

2 Sometimes it is more valuable to be able to predict the response value for a
new observation, not just estimate the average response value. Use the
aoctool function Bounds menu to change the definition of the confidence
bounds from Line to Observation. The resulting wider intervals reflect the
uncertainty in the parameter estimates as well as the randomness of a new
observation.

Analysis of Covariance

4-31

Like the polytool function, the aoctool function has crosshairs that you
can use to manipulate the Weight and watch the estimate and confidence
bounds along the y-axis update. These values appear only when a single
group is selected, not when All Groups is selected.

Multiple Comparisons
You can perform a multiple comparison test by using the stats output
structure from aoctool as input to the multcompare function. The
multcompare function can test either slopes, intercepts, or population marginal
means (the predicted MPG of the mean weight for each group). The example
“Exploring the aoctool Interface” on page 4-26, shows that the slopes are not all
the same, but could it be that two are the same and only the other one is
different? You can test that hypothesis.

4 Linear Models

4-32

multcompare(stats,0.05,'on','','s')

ans =
 1.0000 2.0000 -0.0012 0.0008 0.0029
 1.0000 3.0000 0.0013 0.0051 0.0088
 2.0000 3.0000 0.0005 0.0042 0.0079

This matrix shows that the estimated difference between the intercepts of
groups 1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the
difference is [-0.0012, 0.0029]. There is no significant difference between the
two. There are significant differences, however, between the intercept for 1982
and each of the other two. The graph shows the same information.

Note that the stats structure was created in the initial call to the aoctool
function, so it is based on the initial model fit (typically a separate-lines model).
If you change the model interactively and want to base your multiple
comparisons on the new model, you need to run aoctool again to get another
stats structure, this time specifying your new model as the initial model.

Multiple Linear Regression

4-33

Multiple Linear Regression
The purpose of multiple linear regression is to establish a quantitative
relationship between a group of predictor variables (the columns of X) and a
response, y. This relationship is useful for:

• Understanding which predictors have the greatest effect.

• Knowing the direction of the effect (i.e., increasing x increases/decreases y).

• Using the model to predict future values of the response when only the
predictors are currently known.

The following sections explain multiple linear regression in greater detail:

• “Mathematical Foundations of Multiple Linear Regression” on page 4-33

• “Example: Multiple Linear Regression” on page 4-35

• “Polynomial Curve Fitting Demo” on page 4-36

Mathematical Foundations of Multiple Linear
Regression
The linear model takes its common form

where:

• y is an n-by-1 vector of observations.

• X is an n-by-p matrix of regressors.

• β is a p-by-1 vector of parameters.

• ε is an n-by-1 vector of random disturbances.

The solution to the problem is a vector, b, which estimates the unknown vector
of parameters, β. The least squares solution is

This equation is useful for developing later statistical formulas, but has poor
numeric properties. regress uses QR decomposition of X followed by the
backslash operator to compute b. The QR decomposition is not necessary for
computing b, but the matrix R is useful for computing confidence intervals.

y Xβ ε+=

b β̂ XTX()
1–
XTy= =

4 Linear Models

4-34

You can plug b back into the model formula to get the predicted y values at the
data points.

Note Statisticians use a hat (circumflex) over a letter to denote an estimate
of a parameter or a prediction from a model. The projection matrix H is called
the hat matrix, because it puts the “hat” on y.

The residuals are the difference between the observed and predicted y values.

The residuals are useful for detecting failures in the model assumptions, since
they correspond to the errors, ε, in the model equation. By assumption, these
errors each have independent normal distributions with mean zero and a
constant variance.

The residuals, however, are correlated and have variances that depend on the
locations of the data points. It is a common practice to scale (“Studentize”) the
residuals so they all have the same variance.

In the equation below, the scaled residual, ti, has a Student’s t distribution
with (n-p-1) degrees of freedom

where

and:

• ti is the scaled residual for the ith data point.

• ri is the raw residual for the ith data point.

ŷ Xb Hy= =

H X XTX()
1–
XT

=

r y ŷ–= I H–()y=

ti
ri

σ̂ i() 1 hi–
----------------------------=

 σ̂
2

i()
r 2

n p– 1–

ri
2

n p– 1–() 1 hi–()
---–=

Multiple Linear Regression

4-35

• n is the sample size.

• p is the number of parameters in the model.

• hi is the ith diagonal element of H.

The left-hand side of the second equation is the estimate of the variance of the
errors excluding the ith data point from the calculation.

A hypothesis test for outliers involves comparing ti with the critical values of
the t distribution. If ti is large, this casts doubt on the assumption that this
residual has the same variance as the others.

A confidence interval for the mean of each error is

Confidence intervals that do not include zero are equivalent to rejecting the
hypothesis (at a significance probability of α) that the residual mean is zero.
Such confidence intervals are good evidence that the observation is an outlier
for the given model.

Example: Multiple Linear Regression
The example comes from Chatterjee and Hadi [41] in a paper on regression
diagnostics. The data set (originally from Moore [42]) has five predictor
variables and one response.

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];

Matrix X has a column of ones, and then one column of values for each of the
five predictor variables. The column of ones is necessary for estimating the
y-intercept of the linear model.

y = moore(:,6);
[b,bint,r,rint,stats] = regress(y,X);

The y-intercept is b(1), which corresponds to the column index of the column
of ones.

ci ri t
1 α

2
--- ν,–⎝ ⎠

⎛ ⎞
± σ̂ i() 1 hi–=

4 Linear Models

4-36

stats
stats =

 0.8107 11.9886 0.0001

The elements of the vector stats are the regression R2 statistic, the F statistic
(for the hypothesis test that all the regression coefficients are zero), and the
p-value associated with this F statistic.

R2 is 0.8107 indicating the model accounts for over 80% of the variability in the
observations. The F statistic of about 12 and its p-value of 0.0001 indicate that
it is highly unlikely that all of the regression coefficients are zero.

rcoplot(r,rint)

The plot shows the residuals plotted in case order (by row). The 95% confidence
intervals about these residuals are plotted as error bars. The first observation
is an outlier since its error bar does not cross the zero reference line.

In problems with just a single predictor, it is simpler to use the polytool
function (see “Polynomial Curve Fitting Demo” on page 4-36). This function
can form an X matrix with predictor values, their squares, their cubes, and so
on.

Polynomial Curve Fitting Demo
The polytool demo is an interactive graphic environment for polynomial curve
fitting and prediction. You can use polytool to do curve fitting and prediction
for any set of x-y data, but, for the sake of demonstration, the Statistics Toolbox
provides a data set (polydata.mat) to illustrate some basic concepts.

0 5 10 15 20

-0.5

0

0.5

R
es

id
ua

ls

Case Number

Multiple Linear Regression

4-37

With the polytool demo you can

• Plot the data, the fitted polynomial, and global confidence bounds on a new
predicted value.

• Change the degree of the polynomial fit.

• Evaluate the polynomial at a specific x-value, or drag the vertical reference
line to evaluate the polynomial at varying x-values.

• Display the predicted y-value and its uncertainty at the current x-value.

• Control the confidence bounds and choose between least squares or robust
fitting.

• Export fit results to the workspace.

Note From the command line, you can call polytool and specify the data set,
the order of the polynomial, and the confidence intervals, as well as labels to
replace X Values and Y Values. See the polytool function reference page for
details.

The following sections explore the use of polytool:

• “Fitting a Polynomial” on page 4-37

• “Confidence Bounds” on page 4-40

Fitting a Polynomial

1 Load the data. Before you start the demonstration, you must first load a
data set. This example uses polydata.mat. For this data set, the variables x
and y are observations made with error from a cubic polynomial. The
variables x1 and y1 are data points from the “true” function without error.

load polydata

Your variables appear in the Workspace browser.

4 Linear Models

4-38

2 Try a linear fit. Run polytool and provide it with the data to which the
polynomial is fit. Because this code does not specify the degree of the
polynomial, polytool does a linear fit to the data.

polytool(x,y)

The linear fit is not very good. The bulk of the data with x-values between 0
and 2 has a steeper slope than the fitted line. The two points to the right are
dragging down the estimate of the slope.

Predicted
value

Polynomial
degree

95%
confidence
interval

Draggable
reference
line

Lower
confidence
bound

Fitted line

Upper
confidence
bound

x-value

Data points

Export to
workspace

Multiple Linear Regression

4-39

3 Try a cubic fit. In the Degree text box at the top, type 3 for a cubic model.
Then, drag the vertical reference line to the x-value of 2 (or type 2 in the
X Values text box).

This graph shows a much better fit to the data. The confidence bounds are
closer together indicating that there is less uncertainty in prediction. The
data at both ends of the plot track the fitted curve.

4 Finally, overfit the data. If the cubic polynomial is a good fit, it is tempting
to try a higher order polynomial to see if even more precise predictions are
possible. Since the true function is cubic, this amounts to overfitting the
data. Use the data entry box for degree and type 5 for a quintic model.

4 Linear Models

4-40

As measured by the confidence bounds, the fit is precise near the data
points. But, in the region between the data groups, the uncertainty of
prediction rises dramatically.

This bulge in the confidence bounds happens because the data really does
not contain enough information to estimate the higher order polynomial
terms precisely, so even interpolation using polynomials can be risky in
some cases.

Confidence Bounds
By default, the confidence bounds are nonsimultaneous bounds for a new
observation. What does this mean? Let be the true but unknown function
you want to estimate. The graph contains the following three curves:

• , the fitted function

• , the lower confidence bounds

• , the upper confidence bounds

p x()

f x()
l x()
u x()

Multiple Linear Regression

4-41

Suppose you plan to take a new observation at the value . Call it
. This new observation has its own error , so it satisfies the

equation

What are the likely values for this new observation? The confidence bounds
provide the answer. The interval [,] is a 95% confidence bound for

.

These are the default bounds, but the Bounds menu on the polytool figure
window provides options for changing the meaning of these bounds. This menu
has options that enable you to specify whether the bounds should be
simultaneous or not, and whether the bounds are to apply to the estimated
function, i.e., curve, or to a new observation. Using these options you can
produce any of the following types of confidence bounds.

Simultaneous? For Quantity Yields Confidence Bounds for

Nonsimultaneous Observation (default)

Nonsimultaneous Curve

Simultaneous Observation , globally for any x

Simultaneous Curve , simultaneously for all x

xn 1+
yn 1+ xn 1+() εn 1+

yn 1+ xn 1+() p xn 1+() εn 1++=

ln 1+ un 1+
yn 1+ xn 1+()

yn 1+ xn 1+()

p xn 1+()

yn 1+ x()

p x()

4 Linear Models

4-42

Quadratic Response Surface Models
Response Surface Methodology (RSM) is a tool for understanding the
quantitative relationship between multiple input variables and one output
variable.

Consider one output, z, as a polynomial function of two inputs, x and y. The
function z = f(x,y) describes a two-dimensional surface in the space (x,y,z). In
general, you can have as many input variables as you want and the resulting
surface becomes a hypersurface. Also, you can have multiple output variables
with a separate hypersurface for each one.

For three inputs (x1, x2, x3), the equation of a quadratic response surface is

It is difficult to visualize a k-dimensional surface in k+1 dimensional space
for k>2. The function rstool is a graphical user interface (GUI) designed to
make this visualization more intuitive, as is discussed in the next section.

Exploring Graphs of Multidimensional Polynomials
The function rstool performs an interactive fit and plot of a multidimensional
response surface (RSM). Note that, in general, this GUI provides an
environment for exploration of the graph of a multidimensional polynomial.

You can learn about rstool by trying the commands below. The chemistry
behind the data in reaction.mat deals with reaction kinetics as a function of
the partial pressure of three chemical reactants: hydrogen, n-pentane, and
isopentane.

load reaction
rstool(reactants,rate,'quadratic',0.01,xn,yn)

rstool displays a “vector” of three plots. The dependent variable of all three
plots is the reaction rate. The first plot has hydrogen as the independent

y b0 b1x1 b2x2 b3x3 …

b12x1x2 b13x1x3 b23x2x3 …

b11x1
2 b22x2

2 b33x3
2

+ + + +

+ + + +

+ + +

= (linear terms)

(interaction terms)

(quadratic terms)

Quadratic Response Surface Models

4-43

variable. The second and third plots have n-pentane and isopentane
respectively.

Each plot shows the fitted relationship of the reaction rate to the independent
variable at a fixed value of the other two independent variables. The fixed
value of each independent variable is in an editable text box below each axis,
and is marked by a vertical dashed blue line. You can change the fixed value of
any independent variable by either typing a new value in the box or by
dragging any of the three vertical lines to a new position.

When you change the value of an independent variable, all the plots update to
show the current picture at the new point in the space of the independent
variables.

Note that while this example only uses three inputs (reactants) and one
output (rate), rstool can accommodate an arbitrary number of inputs and
outputs. Interpretability may be limited by the size of your monitor for large
numbers of inputs or outputs.

4 Linear Models

4-44

Exporting Variables to the Workspace
Click Export to save variables in the GUI to the base workspace.
(

Fitted parameters, i.e., coefficients, appear in the following order. Some
polynomial models use a subset of these terms but keep them in this order.

1 Constant term

2 Linear terms

3 Interaction terms formed by taking pairwise products of the columns of the
input matrix

4 Squared terms

Changing the Order of the Polynomial
Below the Export button, there is a pop-up menu that enables you to change
the polynomial model. If you use the commands above, this menu has the string
Full Quadratic already selected. The choices are:

• Linear – includes constant and linear terms.

• Pure Quadratic – includes constant, linear and squared terms.

• Interactions – includes constant, linear, and cross product terms.

• Full Quadratic – includes interactions and squared terms.

• User Specified – available only if you provide a matrix of model terms as the
third argument to rstool. See the rstool and x2fx function reference pages
for details.)

The rstool GUI is used by the rsmdemo function to visualize the results of a
designed experiment for studying a chemical reaction. See “Design of
Experiments Demo” on page 10-10.

Stepwise Regression

4-45

Stepwise Regression
Stepwise regression is a technique for choosing the variables, i.e., terms, to
include in a multiple regression model. Forward stepwise regression starts
with no model terms. At each step it adds the most statistically significant term
(the one with the highest F statistic or lowest p-value) until there are none left.
Backward stepwise regression starts with all the terms in the model and
removes the least significant terms until all the remaining terms are
statistically significant. It is also possible to start with a subset of all the terms
and then add significant terms or remove insignificant terms.

An important assumption behind the method is that some input variables in a
multiple regression do not have an important explanatory effect on the
response. If this assumption is true, then it is a convenient simplification to
keep only the statistically significant terms in the model.

One common problem in multiple regression analysis is multicollinearity of the
input variables. The input variables may be as correlated with each other as
they are with the response. If this is the case, the presence of one input variable
in the model may mask the effect of another input. Stepwise regression might
include different variables depending on the choice of starting model and
inclusion strategy.

The Statistics includes two functions for performing stepwise regression:

• stepwise — an interactive graphical tool that enables you to explore
stepwise regression. See “Stepwise Regression Demo” on page 4-45 for an
example of how to use this tool.

• stepwisefit — a command-line tool for performing stepwise regression. You
can use stepwisefit to return the results of a stepwise regression to the
MATLAB workspace.

Stepwise Regression Demo
The stepwise function provides an interactive graphical interface that you can
use to compare competing models.

This example uses the Hald ([17], p. 167) data set. The Hald data come from a
study of the heat of reaction of various cement mixtures. There are four
components in each mixture, and the amount of heat produced depends on the
amount of each ingredient in the mixture.

4 Linear Models

4-46

Here are the commands to get started.

load hald
stepwise(ingredients,heat)

For each term on the y-axis, the plot shows the regression (least squares)
coefficient as a dot with horizontal bars indicating confidence intervals. Blue
dots represent terms that are in the model, while red dots indicate terms that
are not currently in the model. The horizontal bars indicate 90% (colored) and
95% (grey) confidence intervals.

To the right of each bar, a table lists the value of the regression coefficient for
that term, along with its t-statistic and p-value. The coefficient for a term that
is not in the model is the coefficient that would result from adding that term to
the current model.

From the Stepwise menu, select Scale Inputs to center and normalize the
columns of the input matrix to have a standard deviation of 1.

Stepwise Regression

4-47

Note When you call the stepwise function, you can also specify the initial
state of the model and the confidence levels to use. See the stepwise function
reference page for details.

Additional Diagnostic Statistics
Several diagnostic statistics appear below the plot.

• Intercept – the estimated value of the constant term

• RMSE – the root mean squared error of the current model

• R-square – the amount of response variability explained by the model

• Adjusted R-square – the R-square statistic adjusted for the residual degrees
of freedom

• F – the overall F statistic for the regression

• P – the associated significance probability

Moving Terms In and Out of the Model
There are two ways you can move terms in and out of the model:

• Click on a line in the plot or in the table to toggle the state of the
corresponding term. The resulting change to the model depends on the color
of the line:

- Clicking a blue line, corresponding to a term currently in the model,
removes the term from the model and changes the line to red.

- Clicking a red line, corresponding to a term currently not in the model,
adds the term to the model and changes the line to blue.

• Select the recommended step shown under Next Step to the right of the
table. The recommended step is either to add the most statistically
significant term, or to remove the least significant term. Click Next Step to
perform the recommended step. After you do so, the stepwise GUI displays
the next term to add or remove. When there are no more recommended steps,
the GUI displays “Move no terms.”

Alternatively, you can perform all the recommended steps at once by clicking
All Steps.

4 Linear Models

4-48

Assessing the Effect of Adding a Term
The demo can produce a partial regression leverage plot for the term you
choose. If the term is not in the model, the plot shows the effect of adding it by
plotting the residuals of the terms that are in the model against the residuals
of the chosen term. If the term is in the model, the plot shows the effect of
adding it if it were not already in the model. That is, the demo plots the
residuals of all other terms in the model against the residuals of the chosen
term.

From the Stepwise menu, select Added Variable Plot to display a list of
terms. Select the term for which you want a plot, and click OK. This example
selects X4, the recommended term in the figure above.

Model History
The Model History plot shows the RMSE for every model generated during the
current session. Click one of the dots to return to the model at that point in the
analysis.

−30 −20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

30
Partial regression leverage plot for X4

X4 residuals

Y
 r

es
id

ua
ls

Adjusted data
Fit: y=−0.738162*x
95% conf. bounds

Stepwise Regression

4-49

Exporting Variables
The Export pop-up menu enables you to export variables from the stepwise
function to the base workspace. Check the variables you want to export and,
optionally, change the variable name in the corresponding edit box. Click OK.

4 Linear Models

4-50

Generalized Linear Models
So far, the functions in this section have dealt with models that have a linear
relationship between the response and one or more predictors. Sometimes you
may have a nonlinear relationship instead. To fit nonlinear models you can use
the functions described in “Nonlinear Regression Models” on page 5-1.
However, there are some nonlinear models, known as generalized linear
models, that you can fit using simpler linear methods. To understand
generalized linear models, first review the linear models you have seen so far.
Each of these models has the following three characteristics:

• The response has a normal distribution with mean .

• A coefficient vector defines a linear combination of the predictors .

• The model equates the two as .

In generalized linear models, these characteristics are generalized as follows:

• The response has a distribution that may be normal, binomial, Poisson,
gamma, or inverse Gaussian, with parameters including a mean µ.

• A coefficient vector defines a linear combination of the predictors .

• A link function defines the link between the two as .

The following sections explore these models in greater detail.

• “Example: Generalized Linear Models” on page 4-50

• “Generalized Linear Model Demo” on page 4-54

Example: Generalized Linear Models
For example, consider the following data derived from the carbig data set, in
which the cars have various weights. You record the total number of cars of
each weight and the number qualifying as poor-mileage cars because their
miles per gallon value is below some target. Assume that you don’t know the
miles per gallon for each car, only the number passing the test. It might be
reasonable to assume that the value of the variable poor follows a binomial
distribution with parameter N=total and with a p parameter that depends on
the car weight. A plot shows that the proportion of poor-mileage cars follows a
nonlinear S-shape.

µ
b X*b X

µ X*b=

b X*b X

f ·() f µ() X*b=

Generalized Linear Models

4-51

w = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';

[w poor total]
ans =
 2100 1 48
 2300 2 42
 2500 0 31
 2700 3 34
 2900 8 31
 3100 8 21
 3300 14 23
 3500 17 23
 3700 19 21
 3900 15 16
 4100 17 17
 4300 21 21

plot(w,poor./total,'x')

This shape is typical of graphs of proportions, as they have natural boundaries
at 0.0 and 1.0.

2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 Linear Models

4-52

A linear regression model would not produce a satisfactory fit to this graph. Not
only would the fitted line not follow the data points, it would produce invalid
proportions less than 0 for light cars, and higher than 1 for heavy cars.

There is a class of regression models for dealing with proportion data. The
logistic model is one such model. It defines the relationship between proportion
p and weight w to be

Is this a good model for the data? It would be helpful to graph the data on this
scale, to see if the relationship appears linear. However, some of the
proportions are 0 and 1, so you cannot explicitly evaluate the left-hand-side of
the equation. A useful trick is to compute adjusted proportions by adding small
increments to the poor and total values — say a half observation to poor and
a full observation to total. This keeps the proportions within range. A graph
now shows a more nearly linear relationship.

padj = (poor+.5) ./ (total+1);
plot(w,log(padj./(1-padj)),'x')

p
1 p–
------------⎝ ⎠
⎛ ⎞log b1 b2w+=

2000 2500 3000 3500 4000 4500
−5

−4

−3

−2

−1

0

1

2

3

4

Generalized Linear Models

4-53

You can use the glmfit function to fit this logistic model.

b = glmfit(w,[poor total],'binomial')

b =
 -13.3801
 0.0042

To use these coefficients to compute a fitted proportion, you have to invert the
logistic relationship. Some simple algebra shows that the logistic equation can
also be written as

Fortunately, the function glmval can decode this link function to compute the
fitted values. Using this function, you can graph fitted proportions for a range
of car weights, and superimpose this curve on the original scatter plot.

x = 2100:100:4500;
y = glmval(b,x,'logit');
plot(w,poor./total,'x',x,y,'r-')

Generalized linear models can fit a variety of distributions with a variety of
relationships between the distribution parameters and the predictors. A full
description is beyond the scope of this document. For more information see

p 1
1 b– 1 b2w–()exp+
---=

2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 Linear Models

4-54

Dobson [9], or McCullagh and Nelder [30]. Also see the reference material for
glmfit.

Generalized Linear Model Demo
The glmdemo function begins a slide show describing generalized linear models.
It presents examples of what functions and distributions are available with
generalized linear models. It then presents an example where traditional
linear least squares fitting is not appropriate, and shows how to use the glmfit
function to fit a logistic regression model and the glmval function to compute
predictions from that model. (See the glmfit and glmval function reference
pages for details.)

To run glmdemo from the command line, type playshow glmdemo.

Robust and Nonparametric Methods

4-55

Robust and Nonparametric Methods
As mentioned in the previous sections, regression and analysis of variance
procedures depend on certain assumptions, such as a normal distribution for
the error term. Sometimes such an assumption is not warranted. For example,
if the distribution of the errors is asymmetric or prone to extreme outliers, that
is a violation of the assumption of normal errors.

The Statistics Toolbox has a robust regression function that is useful when
there may be outliers. Robust methods are designed to be relatively insensitive
to large changes in a small part of the data.

The Statistics Toolbox also has nonparametric versions of the one-way and
two-way analysis of variance functions. Unlike classical tests, nonparametric
tests make only mild assumptions about the data, and are appropriate when
the distribution of the data is not normal. On the other hand, they are less
powerful than classical methods for normally distributed data.

The following sections describe the robust regression and nonparametric
functions in greater detail:

• “Robust Regression” on page 4-55

• “Kruskal-Wallis Test” on page 4-59

• “Friedman’s Test” on page 4-60

Both of the nonparametric functions described here can return a stats
structure that you can use as input to the multcompare function to perform
multiple comparisons.

Note See “Regression and Classification Trees” on page 5-8 for information
on another type of nonparametric regression.

Robust Regression
“Example: Multiple Linear Regression” on page 4-35 shows that there is an
outlier when you use ordinary least squares regression to model a response as
a function of five predictors. How does that outlier affect the results?

4 Linear Models

4-56

There is a type of regression known as “robust” regression that can be used to
limit the effect of outliers. The idea is to assign a weight to each point so that
outliers are given reduced weight. This makes the results less sensitive to the
presence of outliers. The weighting is done automatically and iteratively as
follows. In the first iteration, the fit is an ordinary least squares fit with each
point having the same weight. Then new weights are computed to give lower
weight to points that are far from their predicted values, and the fit is repeated
using these weights. The process continues until it converges.

So, to determine how the outlier affects the results in this example, first
estimate the coefficients using the robustfit function.

load moore
x = moore(:,1:5);
y = moore(:,6);
[br,statsr] = robustfit(x,y);
br
br =
 -1.7742
 0.0000
 0.0009
 0.0002
 0.0062
 0.0001

Compare these estimates to those you obtain from the regress function.

b
b =
 -2.1561
 -0.0000
 0.0013
 0.0001
 0.0079
 0.0001

To understand why the two differ, it is helpful to look at the weight variable
from the robust fit. It measures how much weight was given to each point
during the final iteration of the fit. In this case, the first point had a very low
weight so it was effectively ignored.

statsr.w'

Robust and Nonparametric Methods

4-57

ans =

 Columns 1 through 7
 0.0577 0.9977 0.9776 0.9455 0.9687 0.8734 0.9177
 Columns 8 through 14
 0.9990 0.9653 0.9679 0.9768 0.9882 0.9998 0.9979
 Columns 15 through 20
 0.8185 0.9757 0.9875 0.9991 0.9021 0.6953

Robust Fitting Demo
The robustdemo function presents a simple comparison of least squares and
robust fits for a response and a single predictor. You can use data provided by
the demo or supply your own. See the robustdemo function reference page for
information about using your own data:

1 Start the demo. To begin using robustdemo with the built-in sample data,
simply type the function name.

robustdemo

The resulting figure presents a scatter plot with two fitted lines. One line is
the fit from an ordinary least squares regression. The other is from a robust
regression. Along the bottom of the figure are the equations for the fitted line
and the estimated error standard deviation for each fit.

The effect of any point on the least squares fit depends on the residual and
leverage for that point. The residual is the vertical distance from the point
to the line. The leverage is a measure of how far the point is from the center
of the x data.

The effect of any point on the robust fit also depends on the weight assigned
to the point. Points far from the line get lower weight.

4 Linear Models

4-58

2 Compare effects of leverage and weight. Use the right mouse button to
click on any point and see its least squares leverage and robust weight.

In this example, the rightmost point has a leverage value of 0.35. It is also
far from the line, so it exerts a large influence on the least squares fit. It has
a small weight, though, so it is effectively excluded from the robust fit.

3 See how changes in data affect the two fits. Using the left mouse button,
select any point, and drag it to a new location while holding the left button
down. When you release the point, both fits update.

Bringing the rightmost point closer to the line makes the two fitted lines
nearly identical. Now, the point has nearly full weight in the robust fit.

Robust and Nonparametric Methods

4-59

Kruskal-Wallis Test
The example “One-Way Analysis of Variance (ANOVA)” on page 4-3 uses
one-way analysis of variance to determine if the bacteria counts of milk varied
from shipment to shipment. The one-way analysis rests on the assumption that
the measurements are independent, and that each has a normal distribution
with a common variance and with a mean that was constant in each column.
You can conclude that the column means were not all the same. The following
example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of
variance. The assumption behind this test is that the measurements come from
a continuous distribution, but not necessarily a normal distribution. The test
is based on an analysis of variance using the ranks of the data values, not the
data values themselves. Output includes a table similar to an anova table, and
a box plot.

4 Linear Models

4-60

You can run this test as follows.

p = kruskalwallis(hogg)
p =
 0.0020

The low p-value means the Kruskal-Wallis test results agree with the one-way
analysis of variance results.

Friedman’s Test
The example “Two-Way Analysis of Variance (ANOVA)” on page 4-8 uses
two-way analysis of variance to study the effect of car model and factory on car
mileage. The example tests whether either of these factors has a significant
effect on mileage, and whether there is an interaction between these factors.
The conclusion of the example is there is no interaction, but that each
individual factor has a significant effect. The next example examines whether
a nonparametric analysis leads to the same conclusion.

Friedman’s test is a nonparametric test for data having a two-way layout (data
grouped by two categorical factors). Unlike two-way analysis of variance,
Friedman’s test does not treat the two factors symmetrically and it does not
test for an interaction between them. Instead, it is a test for whether the
columns are different after adjusting for possible row differences. The test is
based on an analysis of variance using the ranks of the data across categories
of the row factor. Output includes a table similar to an anova table.

You can run Friedman’s test as follows.

p = friedman(mileage, 3)

ans =

 7.4659e-004

Recall the classical analysis of variance gave a p-value to test column effects,
row effects, and interaction effects. This p-value is for column effects. Using
either this p-value or the p-value from ANOVA (p < 0.0001), you conclude that
there are significant column effects.

Robust and Nonparametric Methods

4-61

In order to test for row effects, you need to rearrange the data to swap the roles
of the rows in columns. For a data matrix x with no replications, you could
simply transpose the data and type

p = friedman(x')

With replicated data it is slightly more complicated. A simple way is to
transform the matrix into a three-dimensional array with the first dimension
representing the replicates, swapping the other two dimensions, and restoring
the two-dimensional shape.

x = reshape(mileage, [3 2 3]);
x = permute(x, [1 3 2]);
x = reshape(x, [9 2])
x =
 33.3000 32.6000
 33.4000 32.5000
 32.9000 33.0000
 34.5000 33.4000
 34.8000 33.7000
 33.8000 33.9000
 37.4000 36.6000
 36.8000 37.0000
 37.6000 36.7000

friedman(x, 3)

ans =

 0.0082

Again, the conclusion is similar to that of the classical analysis of variance.
Both this p-value and the one from ANOVA (p = 0.0039) lead you to conclude
that there are significant row effects.

You cannot use Friedman’s test to test for interactions between the row and
column factors.

4 Linear Models

4-62

5
Nonlinear Regression
Models

Nonlinear Least Squares (p. 5-2) Fits a model that has a known parametric form but
unknown parameter values.

Regression and Classification Trees
(p. 5-8)

Approximates a regression relationship using a decision
tree. Such a tree partitions the data set into regions,
using values of the predictor variables, so that the
response variables are roughly constant in each region.

5 Nonlinear Regression Models

5-2

Nonlinear Least Squares
Response Surface Methodology (RSM) is an empirical modeling approach using
polynomials as local approximations to the true input/output relationship. This
empirical approach is often adequate for process improvement in an industrial
setting.

In scientific applications there is usually relevant theory for constructing a
mechanistic model. Often such models are nonlinear in the unknown
parameters. Nonlinear models are more difficult to fit, requiring iterative
methods that start with an initial guess of the unknown parameters. Each
iteration alters the current guess until the algorithm converges.

The Statistics Toolbox has functions for fitting nonlinear models of the form

where:

• y is an-n by-1 vector of observations.

• f is any function of X and β.
• X is an n-by-p matrix of input variables.

• β is a p-by-1 vector of unknown parameters to be estimated.

• ε is an n-by-1 vector of random disturbances.

This is explored further in the following sections:

• “Example: Nonlinear Modeling” on page 5-2

• “An Interactive GUI for Nonlinear Fitting and Prediction” on page 5-6

Example: Nonlinear Modeling
The Hougen-Watson model (Bates and Watts, [2], pp. 271-272) for reaction
kinetics is one specific example of this type. The form of the model is

where β1, β2, ..., β5 are the unknown parameters, and x1, x2, and x3 are the
three input variables. The three inputs are hydrogen, n-pentane, and

y f X β,() ε+=

rate
β1 x2⋅ x3 β5⁄–

1 β2 x1⋅ β3 x2⋅ β4 x3⋅+ + +
--=

Nonlinear Least Squares

5-3

isopentane. It is easy to see that the parameters do not enter the model
linearly.

The file reaction.mat contains simulated data from this reaction.

load reaction
who
Your variables are:

beta rate xn
model reactants yn

The variables are as follows:

• rate is a 13-by-1 vector of observed reaction rates.

• reactants is a 13-by-3 matrix of reactants.

• beta is 5-by-1 vector of initial parameter estimates.

• model is a string containing the nonlinear function name.

• xn is a string matrix of the names of the reactants.

• yn is a string containing the name of the response.

The data and model are explored further in the following sections:

• “Fitting the Hougen-Watson Model” on page 5-3

• “Confidence Intervals on the Parameter Estimates” on page 5-5

• “Confidence Intervals on the Predicted Responses” on page 5-5

• “An Interactive GUI for Nonlinear Fitting and Prediction” on page 5-6

Fitting the Hougen-Watson Model
The Statistics Toolbox provides the function nlinfit for finding parameter
estimates in nonlinear modeling. nlinfit returns the least squares parameter
estimates. That is, it finds the parameters that minimize the sum of the
squared differences between the observed responses and their fitted values. It
uses the Gauss-Newton algorithm with Levenberg-Marquardt modifications
for global convergence.

nlinfit requires the input data, the responses, and an initial guess of the
unknown parameters. You must also supply the name of a function that takes
the input data and the current parameter estimate and returns the predicted
responses. In MATLAB terminology, nlinfit is called a “function” function.

5 Nonlinear Regression Models

5-4

Here is the hougen function.

function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have five elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)

b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);

x1 = x(:,1);
x2 = x(:,2);
x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

To fit the reaction data, call the function nlinfit.

load reaction
betahat = nlinfit(reactants,rate,'hougen',beta)

betahat =

 1.2526
 0.0628
 0.0400
 0.1124
 1.1914

nlinfit has two optional outputs. They are the residuals and Jacobian matrix
at the solution. The residuals are the differences between the observed and
fitted responses. The Jacobian matrix is the direct analog of the matrix X in the
standard linear regression model.

Nonlinear Least Squares

5-5

These outputs are useful for obtaining confidence intervals on the parameter
estimates and predicted responses.

Confidence Intervals on the Parameter Estimates
Using nlparci, form 95% confidence intervals on the parameter estimates,
betahat, from the reaction kinetics example.

[betahat,resid,J] = nlinfit(reactants,rate,'hougen',beta);
betaci = nlparci(betahat,resid,J)

betaci =

 -0.7467 3.2519
 -0.0377 0.1632
 -0.0312 0.1113
 -0.0609 0.2857
 -0.7381 3.1208

Confidence Intervals on the Predicted Responses
Using nlpredci, form 95% confidence intervals on the predicted responses
from the reaction kinetics example.

[yhat,delta] = nlpredci('hougen',reactants,betahat,resid,J);
opd = [rate yhat delta]

opd =

 8.5500 8.2937 0.9178
 3.7900 3.8584 0.7244
 4.8200 4.7950 0.8267
 0.0200 -0.0725 0.4775
 2.7500 2.5687 0.4987
 14.3900 14.2227 0.9666
 2.5400 2.4393 0.9247
 4.3500 3.9360 0.7327
 13.0000 12.9440 0.7210
 8.5000 8.2670 0.9459
 0.0500 -0.1437 0.9537
 11.3200 11.3484 0.9228
 3.1300 3.3145 0.8418

5 Nonlinear Regression Models

5-6

Matrix opd has the observed rates in column 1 and the predictions in column 2.
The 95% confidence interval is column 2±column 3. These are simultaneous
confidence intervals for the estimated function at each input value. They are
not intervals for new response observations at those inputs, even though most
of the confidence intervals do contain the original observations.

An Interactive GUI for Nonlinear Fitting and
Prediction
The function nlintool for nonlinear models is a direct analog of rstool for
polynomial models. nlintool calls nlinfit and requires the same inputs.

The purpose of nlintool is larger than just fitting and prediction for nonlinear
models. This GUI provides an environment for exploring the graph of a
multidimensional nonlinear function.

Start by loading the data set reaction.mat and starting nlintool. The
chemistry behind the data in reaction.mat deals with reaction kinetics as a
function of the partial pressure of three chemical reactants: hydrogen,
n-pentane, and isopentane.

load reaction
nlintool(reactants,rate,'hougen',beta,0.01,xn,yn)

You will see a “vector” of three plots. The dependent variable of all three plots
is the reaction rate. The first plot has hydrogen as the independent variable.
The second and third plots have n-pentane and isopentane respectively.

Nonlinear Least Squares

5-7

Each plot shows the fitted relationship of the reaction rate to the independent
variable at a fixed value of the other two independent variables. The fixed
value of each independent variable is in an editable text box below each axis.
You can change the fixed value of any independent variable by either typing a
new value in the box or by dragging any of the three vertical lines to a new
position.

When you change the value of an independent variable, all the plots update to
show the current picture at the new point in the space of the independent
variables.

Note that while this example only uses three reactants, nlintool can
accommodate an arbitrary number of independent variables. Interpretability
may be limited by the size of your monitor for large numbers of inputs.

5 Nonlinear Regression Models

5-8

Regression and Classification Trees
In nonlinear least squares you suppose that you know the form of the
relationship between the response and predictor. Suppose instead that you do
not know that relationship, and also that you are unwilling to assume that the
relationship can be well approximated by a linear model. You need a more
nonparametric type of regression fitting approach. One such approach is based
on “trees.”

A regression tree is a sequence of questions that can be answered as yes or no,
plus a set of fitted response values. Each question asks whether a predictor
satisfies a given condition. Predictors can be continuous or discrete. Depending
on the answers to one question, you either proceed to another question or arrive
at a fitted response value.

This example fits a regression tree to variables from the carsmall data set. The
example uses the same variables as in the Analysis of Covariance example (see
“The aoctool Demo” on page 4-25), so there is one continuous predictor (car
weight) and one discrete predictor (model year).

The object of the example is to model mileage (MPG) as a function of car weight
and model year. First load the data and create a matrix x of predictor values
and a vector y of response variables. Then fit a regression tree, specifying the
model year column as a categorical variable. In this data set there are cars from
the three different model years 1970, 1976, and 1982.

load carsmall
x = [Weight,Model_Year];
y = MPG;
t = treefit(x,y,'catidx',2);
treedisp(t,'name',{'Wt' 'Yr'});

Regression and Classification Trees

5-9

Now you want to use this model to determine the predicted mileage for a car
weighing 3000 pounds from model year 1982. Start at the top node. The weight
is less than the cutoff value of 3085.5, so you take the left branch. The model
year is not 1970 or 1976, so you take the right branch. Continue moving down
the tree until you arrive at a terminal node that gives the predicted value. In
this case, the predicted value is 38 miles per gallon. You can use the treeval
function to find the fitted value for any set of predictor values.

treeval(t,[3000 82])

ans =
 38

With a tree like this one, having many branches, there is a danger that it fits
the current data set well but would not do a good job at predicting new values.
Some of its lower branches might be strongly affected by outliers and other
artifacts of the current data set. If possible you would prefer to find a simpler
tree that avoids this problem of overfitting.

5 Nonlinear Regression Models

5-10

You can estimate the best tree size by cross validation. First, compute a
resubstitution estimate of the error variance for this tree and a sequence of
simpler trees and plot it as the lower (blue) line in the figure. This estimate
probably under-estimates the true error variance. Then compute a
cross-validation estimate of the same quantity and plot it as the upper (red)
line. The cross-validation procedure also provides an estimate of the pruning
level, best, needed to achieve the best tree size.

[c,s,ntn] = treetest(t,'resub');
[c2,s2,n2,best] = treetest(t,'cross',x,y);
plot(ntn,c,'b-', n2,c2,'r-', n2(best+1),c2(best+1),'mo');
xlabel('Number of terminal nodes')
ylabel('Residual variance')
legend('Resubstitution error','Cross-validation
error','Estimated best tree size')
best

best =
 10

The best tree is the one that has a residual variance that is no more than one
standard error above the minimum value along the cross-validation line. In
this case the variance is just over 14. The output best takes on values starting

0 5 10 15 20
0

10

20

30

40

50

60

70

Number of terminal nodes

R
es

id
ua

l v
ar

ia
nc

e

Resubstitution error
Cross−validation error
Estimated best tree size

Regression and Classification Trees

5-11

with 0 (representing no pruning), so you need to add 1 to use it as an index into
the other output arguments.

c2(best+1)
ans =
 14.3440

Use the output best to create a smaller tree that is pruned to the estimated
best size.

t0 = treeprune(t,'level',best);
treedisp(t0,'name',{'Wt' 'Yr'})

Now plot the original data and overlay the fitted values that you get using this
tree. Notice that this tree does not distinguish between cars from 1970 or 1976,
so create a vector yold containing fitted values for 1976 and another ynew for
year 1982. Cars from 1970 have the same fitted values as those from 1976.

5 Nonlinear Regression Models

5-12

xx = (1500:20:5000)';
ynew = treeval(t0,[xx 82*ones(size(xx))]);
yold = treeval(t0,[xx 76*ones(size(xx))]);
gscatter(Weight,MPG,Model_Year,'rgb','osx');
hold on; plot(xx,yold,'b:', xx,ynew,'r--'); hold off

The tree functions (treedisp, treefit, treeprune, treetest, and treeval) can
also accept a categorical response variable. In that case, the fitted value from
the tree is the category with the highest predicted probability for the range of
predictor values falling in a given node. The demo Classification, in the
Multivariate Analysis section of the Statistics Toolbox demos, shows how to use
decision trees for classification.

1500 2000 2500 3000 3500 4000 4500 5000
5

10

15

20

25

30

35

40

45

Weight

M
P

G
70
76
82

6

Multivariate Statistics

Principal Components Analysis (p. 6-2) Describes how to perform principal components analysis.

Factor Analysis (p. 6-15) Describes how to perform factor analysis.

Multivariate Analysis of Variance
(MANOVA) (p. 6-24)

Describes how to perform multivariate analysis of variance.

Cluster Analysis (p. 6-30) Describes how to perform cluster analysis.

Multidimensional Scaling (p. 6-53) Describes how to perform multidimensional scaling.

6 Multivariate Statistics

6-2

Principal Components Analysis
One of the difficulties inherent in multivariate statistics is the problem of
visualizing data that has many variables. In MATLAB, the plot command
displays a graph of the relationship between two variables. The plot3 and surf
commands display different three-dimensional views. But when there are more
than three variables, it is more difficult to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move
together. One reason for this is that more than one variable might be
measuring the same driving principle governing the behavior of the system. In
many systems there are only a few such driving forces. But an abundance of
instrumentation enables you to measure dozens of system variables. When this
happens, you can take advantage of this redundancy of information. You can
simplify the problem by replacing a group of variables with a single new
variable.

Principal components analysis is a quantitatively rigorous method for
achieving this simplification. The method generates a new set of variables,
called principal components. Each principal component is a linear combination
of the original variables. All the principal components are orthogonal to each
other, so there is no redundant information. The principal components as a
whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for
several columns of data. What is so special about the principal component
basis?

The first principal component is a single axis in space. When you project each
observation on that axis, the resulting values form a new variable. And the
variance of this variable is the maximum among all possible choices of the first
axis.

The second principal component is another axis in space, perpendicular to the
first. Projecting the observations on this axis generates another new variable.
The variance of this variable is the maximum among all possible choices of this
second axis.

The full set of principal components is as large as the original set of variables.
But it is commonplace for the sum of the variances of the first few principal
components to exceed 80% of the total variance of the original data. By

Principal Components Analysis

6-3

examining plots of these few new variables, researchers often develop a deeper
understanding of the driving forces that generated the original data.

You can use the function princomp to find the principal components. The
following sections provide an example and explain the four outputs of
princomp:

• “Example: Principal Components Analysis” on page 6-3

• “The Principal Component Coefficients (First Output)” on page 6-6

• “The Component Scores (Second Output)” on page 6-6

• “The Component Variances (Third Output)” on page 6-10

• “Hotelling’s T2 (Fourth Output)” on page 6-11

• “Visualizing the Results of a Principal Components Analysis — The Biplot”
on page 6-12

To use princomp, you need to have the actual measured data you want to
analyze. However, if you lack the actual data, but have the sample covariance
or correlation matrix for the data, you can still use the function pcacov to
perform a principal components analysis. See the reference page for pcacov for
a description of its inputs and outputs.

Example: Principal Components Analysis
Consider a sample application that uses nine different indices of the quality of
life in 329 U.S. cities. These are climate, housing, health, crime,
transportation, education, arts, recreation, and economics. For each index,
higher is better. For example, a higher index for crime means a lower crime
rate.

Start by loading the data in cities.mat.

load cities
whos

 Name Size Bytes Class

 categories 9x14 252 char array
 names 329x43 28294 char array
 ratings 329x9 23688 double array

6 Multivariate Statistics

6-4

The whos command generates a table of information about all the variables in
the workspace.

The cities data set contains three variables:

• categories, a string matrix containing the names of the indices

• names, a string matrix containing the 329 city names

• ratings, the data matrix with 329 rows and 9 columns

The categories variable has the following values:

categories

categories =
 climate
 housing
 health
 crime
 transportation
 education
 arts
 recreation
 economics

The first five rows of names are

first5 = names(1:5,:)
first5 =
 Abilene, TX
 Akron, OH
 Albany, GA
 Albany-Troy, NY
 Albuquerque, NM

To get a quick impression of the ratings data, make a box plot.

boxplot(ratings,'orientation','horizontal','labels',categories)

This command generates the plot below. Note that there is substantially more
variability in the ratings of the arts and housing than in the ratings of crime
and climate.

Principal Components Analysis

6-5

Ordinarily you might also graph pairs of the original variables, but there are
36 two-variable plots. Perhaps principal components analysis can reduce the
number of variables you need to consider.

Sometimes it makes sense to compute principal components for raw data. This
is appropriate when all the variables are in the same units. Standardizing the
data is often preferable when the variables are in different units or when the
variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard
deviation.

stdr = std(ratings);
sr = ratings./repmat(stdr,329,1);

Now you are ready to find the principal components.

[coefs,scores,variances,t2] = princomp(sr);

The following sections explain the four outputs from princomp.

0 1 2 3 4 5

x 10
4

climate

housing

health

crime

transportation

education

arts

recreation

economics

Values

6 Multivariate Statistics

6-6

The Principal Component Coefficients (First Output)
The first output of the princomp function, coefs, contains the coefficients for
nine principal components. These are the linear combinations of the original
variables that generate the new variables.

The first three principal component coefficient vectors are

c3 = coefs(:,1:3)
c3 =

 0.2064 0.2178 -0.6900
 0.3565 0.2506 -0.2082
 0.4602 -0.2995 -0.0073
 0.2813 0.3553 0.1851
 0.3512 -0.1796 0.1464
 0.2753 -0.4834 0.2297
 0.4631 -0.1948 -0.0265
 0.3279 0.3845 -0.0509
 0.1354 0.4713 0.6073

The largest coefficients in the first column (first principal component) are the
third and seventh elements, corresponding to the variables health and arts.
All the coefficients of the first principal component have the same sign, making
it a weighted average of all the original variables.

Because the principal components are unit length and orthogonal,
premultiplying the matrix c3 by its transpose yields the identity matrix.

I = c3'*c3
I =

 1.0000 -0.0000 -0.0000
 -0.0000 1.0000 -0.0000
 -0.0000 -0.0000 1.0000

The Component Scores (Second Output)
The second output, scores, is the original data mapped into the new coordinate
system defined by the principal components. This output is the same size as the
input data matrix.

Principal Components Analysis

6-7

A plot of the first two columns of scores shows the ratings data projected onto
the first two principal components. princomp computes the scores to have mean
zero.

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

Note the outlying points in the right half of the plot.

While it is possible to create a three-dimensional plot using three columns of
scores, the examples in this section create two-dimensional plots, which are
easier to describe.

The function gname is useful for graphically identifying a few points in a plot
like this. You can call gname with a string matrix containing as many case
labels as points in the plot. The string matrix names works for labeling points
with the city names.

gname(names)

Move your cursor over the plot and click once near each point in the right half.
As you click each point, MATLAB labels it with the proper row from the names
string matrix. When you are finished labeling points, press the Return key.

−4 −2 0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

4

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

6 Multivariate Statistics

6-8

Here is the resulting plot.

The labeled cities are some of the biggest population centers in the United
States. They are definitely different from the remainder of the data, so perhaps
they should be considered separately. To remove the labeled cities from the
data, first identify their corresponding row numbers as follows:

1 Close the plot window.

2 Redraw the plot by entering

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

3 Enter gname without any arguments.

4 Click near the points you labeled in the preceding figure. This labels the
points by their row numbers, as shown in the following figure.

−4 −2 0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

4

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

New York, NY

Los Angeles, Long Beach, CA

San Francisco, CA

Boston, MA

Washington, DC−MD−VA

Chicago, IL

Principal Components Analysis

6-9

Then you can create an index variable containing the row numbers of all the
metropolitan areas you choose.

metro = [43 65 179 213 234 270 314];
names(metro,:)

ans =
 Boston, MA
 Chicago, IL
 Los Angeles, Long Beach, CA
 New York, NY
 Philadelphia, PA-NJ
 San Francisco, CA
 Washington, DC-MD-VA

To remove these rows from the ratings matrix, enter the following.

rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];

−4 −2 0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

4

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

270

179

213

43

314

65

6 Multivariate Statistics

6-10

size(rsubset)
ans =

 322 9

The Component Variances (Third Output)
The third output, variances, is a vector containing the variance explained by
the corresponding principal component. Each column of scores has a sample
variance equal to the corresponding element of variances.

variances
variances =

 3.4083
 1.2140
 1.1415
 0.9209
 0.7533
 0.6306
 0.4930
 0.3180
 0.1204

You can easily calculate the percent of the total variability explained by each
principal component.

percent_explained = 100*variances/sum(variances)
percent_explained =

 37.8699
 13.4886
 12.6831
 10.2324
 8.3698
 7.0062
 5.4783
 3.5338
 1.3378

Use the pareto function to make a scree plot of the percent variability
explained by each principal component.

Principal Components Analysis

6-11

pareto(percent_explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')

The preceding figure shows that the only clear break in the amount of variance
accounted for by each component is between the first and second components.
However, that component by itself explains less than 40% of the variance, so
more components are probably needed. You can see that the first three
principal components explain roughly two thirds of the total variability in the
standardized ratings, so that might be a reasonable way to reduce the
dimensions in order to visualize the data.

Hotelling’s T2 (Fourth Output)
The last output of the princomp function, t2, is Hotelling’s T2, a statistical
measure of the multivariate distance of each observation from the center of the
data set. This is an analytical way to find the most extreme points in the data.

[st2, index] = sort(t2,'descend'); % Sort in descending order.
extreme = index(1)
extreme =

 213

names(extreme,:)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Principal Component

V
ar

ia
nc

e
E

xp
la

in
ed

 (
%

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

6 Multivariate Statistics

6-12

ans =

New York, NY

It is not surprising that the ratings for New York are the furthest from the
average U.S. town.

Visualizing the Results of a Principal Components
Analysis — The Biplot
You can use the biplot function to help visualize both the principal component
coefficients for each variable and the principal component scores for each
observation in a single plot. For example, the following command plots the
results from the principal components analysis on the cities and labels each of
the variables.

biplot(coefs(:,1:2), 'scores',scores(:,1:2),...
'varlabels',categories);
axis([-.26 1 -.51 .51]);

\

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

climate
housing

health

crime

transportation

education

arts

recreation

economics

Component 1

C
om

po
ne

nt
 2

Principal Components Analysis

6-13

Each of the nine variables is represented in this plot by a vector, and the
direction and length of the vector indicates how each variable contributes to the
two principal components in the plot. For example, you have seen that the first
principal component, represented in this biplot by the horizontal axis, has
positive coefficients for all nine variables. That corresponds to the nine vectors
directed into the right half of the plot. You have also seen that the second
principal component, represented by the vertical axis, has positive coefficients
for the variables education, health, arts, and education, and negative
coefficients for the remaining five variables. That corresponds to vectors
directed into the top and bottom halves of the plot, respectively. This indicates
that this component distinguishes between cities that have high values for the
first set of variables and low for the second, and cities that have the opposite.

The variable labels in this figure are somewhat crowded. You could either leave
out the 'VarLabels' parameter when making the plot, or simply select and drag
some of the labels to better positions using the Edit Plot tool from the figure
window toolbar.

Each of the 329 observations is represented in this plot by a point, and their
locations indicate the score of each observation for the two principal
components in the plot. For example, points near the left edge of this plot have
the lowest scores for the first principal component. The points are scaled to fit
within the unit square, so only their relative locations may be determined from
the plot.

You can use the Data Cursor, in the Tools menu in the figure window, to
identify the items in this plot. By clicking on a variable (vector), you can read
off that variable's coefficients for each principal component. By clicking on an
observation (point), you can read off that observation's scores for each principal
component.

You can also make a biplot in three dimensions. This can be useful if the first
two principal coordinates do not explain enough of the variance in your data.
Selecting Rotate 3D in the Tools menu enables you to rotate the figure to see
it from different angles.

biplot(coefs(:,1:3), 'scores',scores(:,1:3),...
'obslabels',names);
axis([-.26 1 -.51 .51 -.61 .81]);
view([30 40]);

6 Multivariate Statistics

6-14

−0.2
0

0.2
0.4

0.6
0.8

1 −0.5

0

0.5

−0.5

0

0.5

Component 2

Component 1

C
om

po
ne

nt
 3

Factor Analysis

6-15

Factor Analysis
Multivariate data often includes a large number of measured variables, and
sometimes those variables overlap, in the sense that groups of them might be
dependent. For example, in a decathlon, each athlete competes in 10 events,
but several of them can be thought of as speed events, while others can be
thought of as strength events, etc. Thus, you can think of a competitor's 10
event scores as largely dependent on a smaller set of three or four types of
athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this
sort of interdependence. In a factor analysis model, the measured variables
depend on a smaller number of unobserved (latent) factors. Because each factor
might affect several variables in common, they are known as common factors.
Each variable is assumed to be dependent on a linear combination of the
common factors, and the coefficients are known as loadings. Each measured
variable also includes a component due to independent random variability,
known as “specific variance” because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data is
of the form

where is the matrix of loadings, and the elements of the diagonal matrix
are the specific variances. The function factoran fits the Factor Analysis
model using maximum likelihood.

This section includes these topics:

• “Example: Finding Common Factors Affecting Stock Prices” on page 6-16

• “Factor Rotation” on page 6-18

• “Predicting Factor Scores” on page 6-19

• “Visualizing the Results of a Factor Analysis — The Biplot” on page 6-21

• “Comparison of Factor Analysis and Principal Components Analysis” on
page 6-23

Σx ΛΛT Ψ+=

Λ Ψ

6 Multivariate Statistics

6-16

Example: Finding Common Factors Affecting Stock
Prices
Over the course of 100 weeks, the percent change in stock prices for ten
companies has been recorded. Of the ten companies, the first four can be
classified as primarily technology, the next three as financial, and the last
three as retail. It seems reasonable that the stock prices for companies that are
in the same sector might vary together as economic conditions change. Factor
Analysis can provide quantitative evidence that companies within each sector
do experience similar week-to-week changes in stock price.

In this example, you first load the data, and then call factoran, specifying a
model fit with three common factors. By default, factoran computes rotated
estimates of the loadings to try and make their interpretation simpler. But in
this example, you specify an unrotated solution.

load stockreturns
[Loadings,specificVar,T,stats] = factoran(stocks,3,...
 'rotate','none');

The first two factoran return arguments are the estimated loadings and the
estimated specific variances. Each row of the loadings matrix represents one of
the ten stocks, and each column corresponds to a common factor. With
unrotated estimates, interpretation of the factors in this fit is difficult because
most of the stocks contain fairly large coefficients for two or more factors.

Loadings
Loadings =
 0.8885 0.2367 -0.2354
 0.7126 0.3862 0.0034
 0.3351 0.2784 -0.0211
 0.3088 0.1113 -0.1905
 0.6277 -0.6643 0.1478
 0.4726 -0.6383 0.0133
 0.1133 -0.5416 0.0322
 0.6403 0.1669 0.4960
 0.2363 0.5293 0.5770
 0.1105 0.1680 0.5524

Factor Analysis

6-17

Note “Factor Rotation” on page 6-18 helps to simplify the structure in the
Loadings matrix, to make it easier to assign meaningful interpretations to the
factors.

From the estimated specific variances, you can see that the model indicates
that a particular stock price varies quite a lot beyond the variation due to the
common factors.

specificVar
specificVar =
 0.0991
 0.3431
 0.8097
 0.8559
 0.1429
 0.3691
 0.6928
 0.3162
 0.3311
 0.6544

A specific variance of 1 would indicate that there is no common factor
component in that variable, while a specific variance of 0 would indicate that
the variable is entirely determined by common factors. These data seem to fall
somewhere in between.

The p-value returned in the stats structure fails to reject the null hypothesis
of three common factors, suggesting that this model provides a satisfactory
explanation of the covariation in these data.

stats.p
ans =
 0.8144

To determine whether fewer than three factors can provide an acceptable fit,
you can try a model with two common factors. The p-value for this second fit is
highly significant, and rejects the hypothesis of two factors, indicating that the
simpler model is not sufficient to explain the pattern in these data.

[Loadings2,specificVar2,T2,stats2] = factoran(stocks, 2,...

6 Multivariate Statistics

6-18

 'rotate','none');
stats2.p
ans =
 3.5610e-006

Factor Rotation
As the results in “Example: Finding Common Factors Affecting Stock Prices”
on page 6-16 illustrate, the estimated loadings from an unrotated factor
analysis fit can have a complicated structure. The goal of factor rotation is to
find a parameterization in which each variable has only a small number of
large loadings. That is, each variable is affected by a small number of factors,
preferably only one. This can often make it easier to interpret what the factors
represent.

If you think of each row of the loadings matrix as coordinates of a point in
M-dimensional space, then each factor corresponds to a coordinate axis. Factor
rotation is equivalent to rotating those axes and computing new loadings in the
rotated coordinate system. There are various ways to do this. Some methods
leave the axes orthogonal, while others are oblique methods that change the
angles between them. For this example, you can rotate the estimated loadings
by using the promax criterion, a common oblique method.

[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');
LoadingsPM
LoadingsPM =
 0.9452 0.1214 -0.0617
 0.7064 -0.0178 0.2058
 0.3885 -0.0994 0.0975
 0.4162 -0.0148 -0.1298
 0.1021 0.9019 0.0768
 0.0873 0.7709 -0.0821
 -0.1616 0.5320 -0.0888
 0.2169 0.2844 0.6635
 0.0016 -0.1881 0.7849
 -0.2289 0.0636 0.6475

Promax rotation creates a simpler structure in the loadings, one in which most
of the stocks have a large loading on only one factor. To see this structure more
clearly, you can use the biplot function to plot each stock using its factor
loadings as coordinates.

Factor Analysis

6-19

biplot(LoadingsPM,'varlabels',num2str((1:10)'));
axis square
view(155,27);

This plot shows that promax has rotated the factor loadings to a simpler
structure. Each stock depends primarily on only one factor, and it is possible to
describe each factor in terms of the stocks that it affects. Based on which
companies are near which axes, you could reasonably conclude that the first
factor axis represents the financial sector, the second retail, and the third
technology. The original conjecture, that stocks vary primarily within sector, is
apparently supported by the data.

Predicting Factor Scores
Sometimes, it is useful to be able to classify an observation based on its factor
scores. For example, if you accepted the three-factor model and the
interpretation of the rotated factors, you might want to categorize each week

−1
−0.5

0
0.5

1

−1

0

1

−1

−0.5

0

0.5

1

Component 1

 7 5
 6

10
 8

 9

 4

 3 2

 1

Component 2

C
om

po
ne

nt
 3

6 Multivariate Statistics

6-20

in terms of how favorable it was for each of the three stock sectors, based on the
data from the ten observed stocks.

Because the data in this example are the raw stock price changes, and not just
their correlation matrix, you can have factoran return estimates of the value
of each of the three rotated common factors for each week. You can then plot
the estimated scores to see how the different stock sectors were affected during
each week.

[LoadingsPM,specVarPM,TPM,stats,F] = factoran(stocks, 3,...
 'rotate','promax');
subplot(1,1,1);
plot3(F(:,1),F(:,2),F(:,3),'b.');
line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],...
 [0 0 NaN 0 0 NaN -4 4], 'Color','black');
xlabel('Financial Sector');
ylabel('Retail Sector');
zlabel('Technology Sector');
grid on;
axis square;
view(-22.5, 8);

−4 −2 0 2 4
−5

0
5

−4

−3

−2

−1

0

1

2

3

4

Financial SectorRetail Sector

T
ec

hn
ol

og
y

S
ec

to
r

Factor Analysis

6-21

Oblique rotation often creates factors that are correlated. This plot shows some
evidence of correlation between the first and third factors, and you can
investigate further by computing the estimated factor correlation matrix.

inv(TPM'*TPM)
ans =
 1.0000 0.1559 0.4082
 0.1559 1.0000 -0.0559
 0.4082 -0.0559 1.0000

Visualizing the Results of a Factor Analysis — The
Biplot
You can use the biplot function to help visualize both the factor loadings for
each variable and the factor scores for each observation in a single plot. For
example, the following command plots the results from the factor analysis on
the stock data and labels each of the 10 stocks.

biplot(LoadingsPM, 'scores',F, 'varlabels',num2str((1:10)'));
xlabel('Financial Sector'); ylabel('Retail Sector');
zlabel('Technology Sector');
axis square
view(155,27);

6 Multivariate Statistics

6-22

In this case, the factor analysis includes three factors, and so the biplot is
three-dimensional. Each of the 10 stocks is represented in this plot by a vector,
and the direction and length of the vector indicates how each stock depends on
the underlying factors. For example, you have seen that after promax rotation,
the first four stocks have positive loadings on the first factor, and unimportant
loadings on the other two factors. That first factor, interpreted as a financial
sector effect, is represented in this biplot as one of the horizontal axes. The
dependence of those four stocks on that factor corresponds to the four vectors
directed approximately along that axis. Similarly, the dependence of stocks 5,
6, and 7 primarily on the second factor, interpreted as a retail sector effect, is
represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their
locations indicate the score of each observation for the three factors. For
example, points near the top of this plot have the highest scores for the
technology sector factor. The points are scaled to fit within the unit square, so
only their relative locations can be determined from the plot.

−1
−0.5

0
0.5

1

−1

0

1

−1

−0.5

0

0.5

1

Financial Sector

 7 5
 6

10
 8

 9

 4

 3 2

 1

Retail Sector

T
ec

hn
ol

og
y

S
ec

to
r

Factor Analysis

6-23

You can use the Data Cursor tool from the Tools menu in the figure window
to identify the items in this plot. By clicking a stock (vector), you can read off
that stock's loadings for each factor. By clicking an observation (point), you can
read off that observation’s scores for each factor.

Comparison of Factor Analysis and Principal
Components Analysis
There is a good deal of overlap in terminology and goals between principal
components analysis (PCA) and factor analysis (FA). Much of the literature on
the two methods does not distinguish between them, and some algorithms for
fitting the FA model involve PCA. Both are dimension-reduction techniques, in
the sense that they can be used to replace a large set of observed variables with
a smaller set of new variables. However, the two methods are different in their
goals and in their underlying models. Roughly speaking, you should use PCA
when you simply need to summarize or approximate your data using fewer
dimensions (to visualize it, for example), and you should use FA when you need
an explanatory model for the correlations among your data.

6 Multivariate Statistics

6-24

Multivariate Analysis of Variance (MANOVA)
The analysis of variance technique in “One-Way Analysis of Variance
(ANOVA)” on page 4-3 takes a set of grouped data and determine whether the
mean of a variable differs significantly between groups. Often there are
multiple variables, and you are interested in determining whether the entire
set of means is different from one group to the next. There is a multivariate
version of analysis of variance that can address that problem, as illustrated in
the following example.

Example: Multivariate Analysis of Variance
The carsmall data set has measurements on a variety of car models from the
years 1970, 1976, and 1982. Suppose you are interested in whether the
characteristics of the cars have changed over time.

First, load the data.

load carsmall
whos

 Name Size Bytes Class

 Acceleration 100x1 800 double array
 Cylinders 100x1 800 double array
 Displacement 100x1 800 double array
 Horsepower 100x1 800 double array
 MPG 100x1 800 double array
 Model 100x36 7200 char array
 Model_Year 100x1 800 double array
 Origin 100x7 1400 char array
 Weight 100x1 800 double array

Four of these variables (Acceleration, Displacement, Horsepower, and MPG)
are continuous measurements on individual car models. The variable
Model_Year indicates the year in which the car was made. You can create a
grouped plot matrix of these variables using the gplotmatrix function.

x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+xo')

Multivariate Analysis of Variance (MANOVA)

6-25

(When the second argument of gplotmatrix is empty, the function graphs the
columns of the x argument against each other, and places histograms along the
diagonals. The empty fourth argument produces a graph with the default
colors. The fifth argument controls the symbols used to distinguish between
groups.)

It appears the cars do differ from year to year. The upper right plot, for
example, is a graph of MPG versus Weight. The 1982 cars appear to have higher
mileage than the older cars, and they appear to weigh less on average. But as
a group, are the three years significantly different from one another? The
manova1 function can answer that question.

[d,p,stats] = manova1(x,Model_Year)

d =
 2

p =

 1.0e-006 *
 0
 0.1141

stats =
 W: [4x4 double]

2000 3000 4000200 400100 20020 40
2000

3000

4000

100

200

300

400

10

20

30

40

50

100

150

200

70
76
82

6 Multivariate Statistics

6-26

 B: [4x4 double]
 T: [4x4 double]
 dfW: 90
 dfB: 2
 dfT: 92
 lambda: [2x1 double]
 chisq: [2x1 double]
 chisqdf: [2x1 double]
 eigenval: [4x1 double]
 eigenvec: [4x4 double]
 canon: [100x4 double]
 mdist: [100x1 double]
 gmdist: [3x3 double]

The manova1 function produces three outputs:

• The first output, d, is an estimate of the dimension of the group means. If the
means were all the same, the dimension would be 0, indicating that the
means are at the same point. If the means differed but fell along a line, the
dimension would be 1. In the example the dimension is 2, indicating that the
group means fall in a plane but not along a line. This is the largest possible
dimension for the means of three groups.

• The second output, p, is a vector of p-values for a sequence of tests. The first
p-value tests whether the dimension is 0, the next whether the dimension
is 1, and so on. In this case both p-values are small. That’s why the estimated
dimension is 2.

• The third output, stats, is a structure containing several fields, described in
the following section.

The Fields of the stats Structure
The W, B, and T fields are matrix analogs to the within, between, and total sums
of squares in ordinary one-way analysis of variance. The next three fields are
the degrees of freedom for these matrices. Fields lambda, chisq, and chisqdf
are the ingredients of the test for the dimensionality of the group means. (The
p-values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in
principal components analysis (“Principal Components Analysis” on page 6-2)
you look for the combination of the original variables that has the largest
possible variation. In multivariate analysis of variance, you instead look for the

Multivariate Analysis of Variance (MANOVA)

6-27

linear combination of the original variables that has the largest separation
between groups. It is the single variable that would give the most significant
result in a univariate one-way analysis of variance. Having found that
combination, you next look for the combination with the second highest
separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear
combinations of the original variables. The eigenval field is a vector
measuring the ratio of the between-group variance to the within-group
variance for the corresponding linear combination. The canon field is a matrix
of the canonical variable values. Each column is a linear combination of the
mean-centered original variables, using coefficients from the eigenvec matrix.

A grouped scatter plot of the first two canonical variables shows more
separation between groups then a grouped scatter plot of any pair of original
variables. In this example it shows three clouds of points, overlapping but with
distinct centers. One point in the bottom right sits apart from the others. By
using the gname function, you can see that this is the 20th point.

c1 = stats.canon(:,1);
c2 = stats.canon(:,2);
gscatter(c2,c1,Model_Year,[],'oxs')
gname

−4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

c2

c1

20

70
76
82

6 Multivariate Statistics

6-28

Roughly speaking, the first canonical variable, c1, separates the 1982 cars
(which have high values of c1) from the older cars. The second canonical
variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The
mdist field measures the distance from each point to its group mean. Points
with large values may be outliers. In this data set, the largest outlier is the one
in the scatter plot, the Buick Estate station wagon. (Note that you could have
supplied the model name to the gname function above if you wanted to label the
point with its model name rather than its row number.)

max(stats.mdist)
ans =

 31.5273

find(stats.mdist == ans)
ans =

 20

Model(20,:)
ans =

buick_estate_wagon_(sw)

The gmdist field measures the distances between each pair of group means.
The following commands examine the group means and their distances:

grpstats(x, Model_Year)

ans =

 1.0e+003 *
 0.0177 0.1489 0.2869 3.4413
 0.0216 0.1011 0.1978 3.0787
 0.0317 0.0815 0.1289 2.4535

stats.gmdist

ans =
 0 3.8277 11.1106
 3.8277 0 6.1374
 11.1106 6.1374 0

Multivariate Analysis of Variance (MANOVA)

6-29

As might be expected, the multivariate distance between the extreme years
1970 and 1982 (11.1) is larger than the difference between more closely spaced
years (3.8 and 6.1). This is consistent with the scatter plots, where the points
seem to follow a progression as the year changes from 1970 through 1976 to
1982. If you had more groups, you might find it instructive to use the
manovacluster function to draw a diagram that presents clusters of the
groups, formed using the distances between their means.

6 Multivariate Statistics

6-30

Cluster Analysis
Cluster analysis, also called segmentation analysis or taxonomy analysis, is a
way to create groups of objects, or clusters, in such a way that the profiles of
objects in the same cluster are very similar and the profiles of objects in
different clusters are quite distinct.

Cluster analysis can be performed on many different types of data sets. For
example, a data set might contain a number of observations of subjects in a
study where each observation contains a set of variables.

Many different fields of study, such as engineering, zoology, medicine,
linguistics, anthropology, psychology, and marketing, have contributed to the
development of clustering techniques and the application of such techniques.
For example, cluster analysis can help in creating “balanced” treatment and
control groups for a designed study. If you find that each cluster contains
roughly equal numbers of treatment and control subjects, then statistical
differences found between the groups can be attributed to the experiment and
not to any initial difference between the groups.

This section explores two kinds of clustering:

• “Hierarchical Clustering” on page 6-30

• “K-Means Clustering” on page 6-46

Hierarchical Clustering
Hierarchical clustering is a way to investigate grouping in your data,
simultaneously over a variety of scales, by creating a cluster tree. The tree is
not a single set of clusters, but rather a multilevel hierarchy, where clusters at
one level are joined as clusters at the next higher level. This allows you to
decide what level or scale of clustering is most appropriate in your application.

The following sections explore the hierarchical clustering features in the
Statistics Toolbox:

• “Terminology and Basic Procedure” on page 6-31

• “Finding the Similarities Between Objects” on page 6-31

• “Defining the Links Between Objects” on page 6-34

• “Evaluating Cluster Formation” on page 6-36

• “Creating Clusters” on page 6-42

Cluster Analysis

6-31

Terminology and Basic Procedure
To perform hierarchical cluster analysis on a data set using the Statistics
Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the
data set. In this step, you calculate the distance between objects using the
pdist function. The pdist function supports many different ways to
compute this measurement. See “Finding the Similarities Between Objects”
on page 6-31 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step,
you link pairs of objects that are in close proximity using the linkage
function. The linkage function uses the distance information generated in
step 1 to determine the proximity of objects to each other. As objects are
paired into binary clusters, the newly formed clusters are grouped into
larger clusters until a hierarchical tree is formed. See “Defining the Links
Between Objects” on page 6-34 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this step,
you use the cluster function to prune branches off the bottom of the
hierarchical tree, and assign all the objects below each cut to a single cluster.
This creates a partition of the data. The cluster function can create these
clusters by detecting natural groupings in the hierarchical tree or by cutting
off the hierarchical tree at an arbitrary point. See “Creating Clusters” on
page 6-42 for more information.

The following sections provide more information about each of these steps.

Note The Statistics Toolbox includes a convenience function, clusterdata,
which performs all these steps for you. You do not need to execute the pdist,
linkage, or cluster functions separately.

Finding the Similarities Between Objects
You use the pdist function to calculate the distance between every pair of
objects in a data set. For a data set made up of m objects, there are

 pairs in the data set. The result of this computation is commonly
known as a distance or dissimilarity matrix.
m m 1–()⋅ 2⁄

6 Multivariate Statistics

6-32

There are many ways to calculate this distance information. By default, the
pdist function calculates the Euclidean distance between objects; however,
you can specify one of several other options. See pdist for more information.

Note You can optionally normalize the values in the data set before
calculating the distance information. In a real world data set, variables can be
measured against different scales. For example, one variable can measure
Intelligence Quotient (IQ) test scores and another variable can measure head
circumference. These discrepancies can distort the proximity calculations.
Using the zscore function, you can convert all the values in the data set to use
the same proportional scale. See zscore for more information.

For example, consider a data set, X, made up of five objects where each object
is a set of x,y coordinates.

• Object 1: 1, 2

• Object 2: 2.5, 4.5

• Object 3: 2, 2

• Object 4: 4, 1.5

• Object 5: 4, 2.5

You can define this data set as a matrix

X = [1 2;2.5 4.5;2 2;4 1.5;4 2.5]

and pass it to pdist. The pdist function calculates the distance between
object 1 and object 2, object 1 and object 3, and so on until the distances
between all the pairs have been calculated. The following figure plots these
objects in a graph. The Euclidean distance between object 2 and object 3 is
shown to illustrate one interpretation of distance.

Cluster Analysis

6-33

Returning Distance Information. The pdist function returns this distance
information in a vector, Y, where each element contains the distance between
a pair of objects.

Y = pdist(X)

Y =

 Columns 1 through 7
 2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000
 Columns 8 through 10
 2.0616 2.0616 1.0000

To make it easier to see the relationship between the distance information
generated by pdist and the objects in the original data set, you can reformat
the distance vector into a matrix using the squareform function. In this matrix,
element i,j corresponds to the distance between object i and object j in the
original data set. In the following example, element 1,1 represents the distance
between object 1 and itself (which is zero). Element 1,2 represents the distance
between object 1 and object 2, and so on.

squareform(Y)

ans =
 0 2.9155 1.0000 3.0414 3.0414
 2.9155 0 2.5495 3.3541 2.5000
 1.0000 2.5495 0 2.0616 2.0616

1 2 3 4 5

1

2

3

4

5

1

2

3
4

5

distance

6 Multivariate Statistics

6-34

 3.0414 3.3541 2.0616 0 1.0000
 3.0414 2.5000 2.0616 1.0000 0

Defining the Links Between Objects
Once the proximity between objects in the data set has been computed, you can
determine how objects in the data set should be grouped into clusters, using the
linkage function. The linkage function takes the distance information
generated by pdist and links pairs of objects that are close together into binary
clusters (clusters made up of two objects). The linkage function then links
these newly formed clusters to each other and to other objects to create bigger
clusters until all the objects in the original data set are linked together in a
hierarchical tree.

For example, given the distance vector Y generated by pdist from the sample
data set of x- and y-coordinates, the linkage function generates a hierarchical
cluster tree, returning the linkage information in a matrix, Z.

Z = linkage(Y)
Z =

 4.0000 5.0000 1.0000
 1.0000 3.0000 1.0000
 6.0000 7.0000 2.0616
 2.0000 8.0000 2.5000

In this output, each row identifies a link between objects or clusters. The first
two columns identify the objects that have been linked, that is, object 1,
object 2, and so on. The third column contains the distance between these
objects. For the sample data set of x- and y-coordinates, the linkage function
begins by grouping objects 1 and 3, which have the closest proximity (distance
value = 1.0000). The linkage function continues by grouping objects 4 and 5,
which also have a distance value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If
the original sample data set contained only five objects, what are objects 6
and 7? Object 6 is the newly formed binary cluster created by the grouping of
objects 1 and 3. When the linkage function groups two objects into a new
cluster, it must assign the cluster a unique index value, starting with the
value m+1, where m is the number of objects in the original data set. (Values 1
through m are already used by the original data set.) Similarly, object 7 is the
cluster formed by grouping objects 4 and 5.

Cluster Analysis

6-35

linkage uses distances to determine the order in which it clusters objects. The
distance vector Y contains the distances between the original objects 1 through
5. But linkage must also be able to determine distances involving clusters that
it creates, such as objects 6 and 7. By default, linkage uses a method known as
single linkage. However, there are a number of different methods available.
See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed
cluster made up of objects 6 and 7, with object 2 from the original data set. The
following figure graphically illustrates the way linkage groups the objects into
a hierarchy of clusters.

Plotting the Cluster Tree
The hierarchical, binary cluster tree created by the linkage function is most
easily understood when viewed graphically. The Statistics Toolbox includes the
dendrogram function that plots this hierarchical tree information as a graph,
as in the following example.

dendrogram(Z)

1 2 3 4 5

1

2

3

4

5

1

2

3

4

57
6

8

6 Multivariate Statistics

6-36

In the figure, the numbers along the horizontal axis represent the indices of the
objects in the original data set. The links between objects are represented as
upside-down U-shaped lines. The height of the U indicates the distance
between the objects. For example, the link representing the cluster containing
objects 1 and 3 has a height of 1. The link representing the cluster that groups
object 2 together with objects 1, 3, 4, and 5, (which are already clustered as
object 8) has a height of 2.5. The height represents the distance linkage
computes between objects 2 and 8. For more information about creating a
dendrogram diagram, see the dendrogram reference page.

Evaluating Cluster Formation
After linking the objects in a data set into a hierarchical cluster tree, you might
want to verify that the distances (that is, heights) in the tree reflect the original
distances accurately. In addition, you might want to investigate natural
divisions that exist among links between objects. The Statistics Toolbox
provides functions to perform both these tasks, as described in the following
sections:

4 5 1 3 2

1

1.5

2

2.5

Cluster Analysis

6-37

• “Verifying the Cluster Tree” on page 6-37

• “Getting More Information About Cluster Links” on page 6-38

Verifying the Cluster Tree. In a hierarchical cluster tree, any two objects in the
original data set are eventually linked together at some level. The height of the
link represents the distance between the two clusters that contain those two
objects. This height is known as the cophenetic distance between the two
objects. One way to measure how well the cluster tree generated by the
linkage function reflects your data is to compare the cophenetic distances with
the original distance data generated by the pdist function. If the clustering is
valid, the linking of objects in the cluster tree should have a strong correlation
with the distances between objects in the distance vector. The cophenet
function compares these two sets of values and computes their correlation,
returning a value called the cophenetic correlation coefficient. The closer the
value of the cophenetic correlation coefficient is to 1, the more accurately the
clustering solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of
clustering the same data set using different distance calculation methods or
clustering algorithms. For example, you can use the cophenet function to
evaluate the clusters created for the sample data set

c = cophenet(Z,Y)

c =

 0.8615

where Z is the matrix output by the linkage function and Y is the distance
vector output by the pdist function.

Execute pdist again on the same data set, this time specifying the city block
metric. After running the linkage function on this new pdist output using the
average linkage method, call cophenet to evaluate the clustering solution.

Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)

c =

 0.9044

6 Multivariate Statistics

6-38

The cophenetic correlation coefficient shows that using a different distance and
linkage method creates a tree that represents the original distances slightly
better.

Getting More Information About Cluster Links. One way to determine the natural
cluster divisions in a data set is to compare the height of each link in a cluster
tree with the heights of neighboring links below it in the tree.

A link that is approximately the same height as the links below it indicates
that there are no distinct divisions between the objects joined at this level of
the hierarchy. These links are said to exhibit a high level of consistency,
because the distance between the objects being joined is approximately the
same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of the
links below it indicates that the objects joined at this level in the cluster tree
are much farther apart from each other than their components were when they
were joined. This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural
division in a data set. The cluster function uses a quantitative measure of
inconsistency to determine where to partition your data set into clusters. (See
“Creating Clusters” on page 6-42 for more information.)

The following dendrogram, created using a data set of random numbers,
illustrates inconsistent links. Note how the objects in the dendrogram fall into
three groups that are connected by links at a much higher level in the tree.
These links are inconsistent when compared with the links below them in the
hierarchy.

Cluster Analysis

6-39

The relative consistency of each link in a hierarchical cluster tree can be
quantified and expressed as the inconsistency coefficient. This value compares
the height of a link in a cluster hierarchy with the average height of links below
it. Links that join distinct clusters have a low inconsistency coefficient; links
that join indistinct clusters have a high inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster
tree, use the inconsistent function. By default, the inconsistent function
compares each link in the cluster hierarchy with adjacent links that are less
than two levels below it in the cluster hierarchy. This is called the depth of the
comparison. You can also specify other depths. The objects at the bottom of the
cluster tree, called leaf nodes, that have no further objects below them, have an
inconsistency coefficient of zero. Clusters that join two leaves also have a zero
inconsistency coefficient.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

23 25 29 30 27 28 26 24 21 22 11 12 15 13 16 18 20 14 17 19 1 2 7 3 6 8 9 10 4 5

These links show inconsistency when compared to links below them

These links show consistency

6 Multivariate Statistics

6-40

For example, you can use the inconsistent function to calculate the
inconsistency values for the links created by the linkage function in “Defining
the Links Between Objects” on page 6-34.

I = inconsistent(Z)
I =

 1.0000 0 1.0000 0
 1.0000 0 1.0000 0
 1.3539 0.6129 3.0000 1.1547
 2.2808 0.3100 2.0000 0.7071

The inconsistent function returns data about the links in an (m-1)-by-4
matrix, whose columns are described in the following table.

In the sample output, the first row represents the link between objects 4 and 5.
This cluster is assigned the index 6 by the linkage function. Because both 4
and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero. The
second row represents the link between objects 1 and 3, both of which are also
leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6
and 7. (This new cluster is assigned index 8 in the linkage output). Column 3
indicates that three links are considered in the calculation: the link itself and
the two links directly below it in the hierarchy. Column 1 represents the mean
of the heights of these links. The inconsistent function uses the height
information output by the linkage function to calculate the mean. Column 2
represents the standard deviation between the links. The last column contains
the inconsistency value for these links, 1.1547. It is the difference between the
current link height and the mean, normalized by the standard deviation:

>> (2.0616 - 1.3539) / .6129

Column Description

1 Mean of the heights of all the links included in the calculation

2 Standard deviation of all the links included in the calculation

3 Number of links included in the calculation

4 Inconsistency coefficient

Cluster Analysis

6-41

ans =
 1.1547

The following figure illustrates the links and heights included in this
calculation.

Note In the preceding figure, the lower limit on the y-axis is set to 0 to show
the heights of the links. To set the lower limit to 0, select Axes Properties
from the Edit menu, click the Y Axis tab, and enter 0 in the field immediately
to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2.
Column 3 indicates that two links are included in this calculation: the link

4 5 1 3 2
0

0.5

1

1.5

2

2.5

Links

Heights

6 Multivariate Statistics

6-42

itself and the link directly below it in the hierarchy. The inconsistency
coefficient for this link is 0.7071.

The following figure illustrates the links and heights included in this
calculation.

Creating Clusters
After you create the hierarchical tree of binary clusters, you can prune the tree
to partition your data into clusters using the cluster function. The cluster
function lets you create clusters in two ways, as discussed in the following
sections:

4 5 1 3 2
0

0.5

1

1.5

2

2.5

Heights

Links

Cluster Analysis

6-43

• “Finding Natural Divisions in Data” on page 6-43

• “Specifying Arbitrary Clusters” on page 6-44

Finding Natural Divisions in Data. The hierarchical cluster tree may naturally
divide the data into distinct, well-separated clusters. This can be particularly
evident in a dendrogram diagram created from data where groups of objects are
densely packed in certain areas and not in others. The inconsistency coefficient
of the links in the cluster tree can identify these divisions where the
similarities between objects change abruptly. (See “Evaluating Cluster
Formation” on page 6-36 for more information about the inconsistency
coefficient.) You can use this value to determine where the cluster function
creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into
clusters, specifying an inconsistency coefficient threshold of 1.2 as the value of
the cutoff argument, the cluster function groups all the objects in the sample
data set into one cluster. In this case, none of the links in the cluster hierarchy
had an inconsistency coefficient greater than 1.2.

T = cluster(Z,'cutoff',1.2)
T =
 1
 1
 1
 1
 1

The cluster function outputs a vector, T, that is the same size as the original
data set. Each element in this vector contains the number of the cluster into
which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster function
divides the sample data set into three separate clusters.

T = cluster(Z,'cutoff',0.8)
T =

1
3
1
2
2

6 Multivariate Statistics

6-44

This output indicates that objects 1 and 3 were placed in cluster 1, objects 4
and 5 were placed in cluster 2, and object 2 was placed in cluster 3.

When clusters are formed in this way, the cutoff value is applied to the
inconsistency coefficient. These clusters may, but do not necessarily,
correspond to a horizontal slice across the dendrogram at a certain height. If
you want clusters corresponding to a horizontal slice of the dendrogram, you
can either use the 'criterion' option to specify that the cutoff should be
based on distance rather than inconsistency, or you can specify the number of
clusters directly as described in the following section.

Specifying Arbitrary Clusters. Instead of letting the cluster function create
clusters determined by the natural divisions in the data set, you can specify the
number of clusters you want created.

For example, you can specify that you want the cluster function to partition
the sample data set into two clusters. In this case, the cluster function creates
one cluster containing objects 1, 3, 4, and 5 and another cluster containing
object 2.

T = cluster(Z,'maxclust',2)

T =

 2
 1
 2
 2
 2

To help you visualize how the cluster function determines these clusters, the
following figure shows the dendrogram of the hierarchical cluster tree. The
horizontal dashed line intersects two lines of the dendrogram, corresponding to
setting 'maxclust' to 2. These two lines partition the objects into two clusters:
the objects below the left-hand line, namely 1, 3, 4, and 5, belong to one cluster,
while the object below the right-hand line, namely 2, belongs to the other
cluster.

Cluster Analysis

6-45

On the other hand, if you set 'maxclust' to 3, the cluster function groups
objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2
in a third cluster. The following command illustrates this.

T = cluster(Z,'maxclust',3)
T =

1
3
1
2
2

4 5 1 3 2
0

0.5

1

1.5

2

2.5

maxclust = 2

6 Multivariate Statistics

6-46

This time, the cluster function cuts off the hierarchy at a lower point,
corresponding to the horizontal line that intersects three lines of the
dendrogram in the following figure.

K-Means Clustering
This section gives a description and an example of using the MATLAB function
for K-means clustering, kmeans.

• “Overview of K-Means Clustering” on page 6-46

• “Example: Clustering Data in Four Dimensions” on page 6-47

Overview of K-Means Clustering
K-means clustering can best be described as a partitioning method. That is, the
function kmeans partitions the observations in your data into K mutually
exclusive clusters, and returns a vector of indices indicating to which of the k
clusters it has assigned each observation. Unlike the hierarchical clustering
methods used in linkage (see “Hierarchical Clustering” on page 6-30), kmeans
does not create a tree structure to describe the groupings in your data, but
rather creates a single level of clusters. Another difference is that K-means

4 5 1 3 2
0

0.5

1

1.5

2

2.5

maxclust = 3

Cluster Analysis

6-47

clustering uses the actual observations of objects or individuals in your data,
and not just their proximities. These differences often mean that kmeans is
more suitable for clustering large amounts of data.

kmeans treats each observation in your data as an object having a location in
space. It finds a partition in which objects within each cluster are as close to
each other as possible, and as far from objects in other clusters as possible. You
can choose from five different distance measures, depending on the kind of data
you are clustering.

Each cluster in the partition is defined by its member objects and by its
centroid, or center. The centroid for each cluster is the point to which the sum
of distances from all objects in that cluster is minimized. kmeans computes
cluster centroids differently for each distance measure, to minimize the sum
with respect to the measure that you specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from
each object to its cluster centroid, over all clusters. This algorithm moves
objects between clusters until the sum cannot be decreased further. The result
is a set of clusters that are as compact and well-separated as possible. You can
control the details of the minimization using several optional input parameters
to kmeans, including ones for the initial values of the cluster centroids, and for
the maximum number of iterations.

Example: Clustering Data in Four Dimensions
This example explores possible clustering in four-dimensional data by
analyzing the results of partitioning the points into three, four, and five
clusters.

Note Because each part of this example generates random numbers
sequentially, i.e., without setting a new state, you must perform all steps in
sequence to duplicate the results shown. If you perform the steps out of
sequence, the answers will be essentially the same, but the intermediate
results, number of iterations, or ordering of the silhouette plots may differ.
See “Random Number Generators in the Statistics Toolbox” on page 1-5 to set
the correct seed.

Creating Clusters and Determining Separation. First, load some data.

6 Multivariate Statistics

6-48

load kmeansdata;
size(X)

ans =
 560 4

Even though these data are four-dimensional, and cannot be easily visualized,
kmeans enables you to investigate whether a group structure exists in them.
Call kmeans with k, the desired number of clusters, equal to 3. For this example,
specify the city block distance measure, and use the default starting method of
initializing centroids from randomly selected data points.

idx3 = kmeans(X,3,'distance','city');

To get an idea of how well-separated the resulting clusters are, you can make
a silhouette plot using the cluster indices output from kmeans. The silhouette
plot displays a measure of how close each point in one cluster is to points in the
neighboring clusters. This measure ranges from +1, indicating points that are
very distant from neighboring clusters, through 0, indicating points that are
not distinctly in one cluster or another, to -1, indicating points that are
probably assigned to the wrong cluster. silhouette returns these values in its
first output.

[silh3,h] = silhouette(X,idx3,'city');
xlabel('Silhouette Value')
ylabel('Cluster')

Cluster Analysis

6-49

From the silhouette plot, you can see that most points in the third cluster have
a large silhouette value, greater than 0.6, indicating that the cluster is
somewhat separated from neighboring clusters. However, the second cluster
contains many points with low silhouette values, and the first contains a few
points with negative values, indicating that those two clusters are not well
separated.

Determining the Correct Number of Clusters. Increase the number of clusters to see if
kmeans can find a better grouping of the data. This time, use the optional
'display' parameter to print information about each iteration.

idx4 = kmeans(X,4, 'dist','city', 'display','iter');
 iter phase num sum
 1 1 560 2897.56
 2 1 53 2736.67
 3 1 50 2476.78
 4 1 102 1779.68
 5 1 5 1771.1
 6 2 0 1771.1
6 iterations, total sum of distances = 1771.1

Notice that the total sum of distances decreases at each iteration as kmeans
reassigns points between clusters and recomputes cluster centroids. In this
case, the second phase of the algorithm did not make any reassignments,

0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

st
er

6 Multivariate Statistics

6-50

indicating that the first phase reached a minimum after five iterations. In some
problems, the first phase might not reach a minimum, but the second phase
always will.

A silhouette plot for this solution indicates that these four clusters are better
separated than the three in the previous solution.

[silh4,h] = silhouette(X,idx4,'city');
xlabel('Silhouette Value')
ylabel('Cluster')

A more quantitative way to compare the two solutions is to look at the average
silhouette values for the two cases.

mean(silh3)
ans =
 0.52594

mean(silh4)
ans =
 0.63997

Finally, try clustering the data using five clusters.

idx5 = kmeans(X,5,'dist','city','replicates',5);
[silh5,h] = silhouette(X,idx5,'city');

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Silhouette Value

C
lu

st
er

Cluster Analysis

6-51

xlabel('Silhouette Value')
ylabel('Cluster')
mean(silh5)
ans =
 0.52657

This silhouette plot indicates that this is probably not the right number of
clusters, since two of the clusters contain points with mostly low silhouette
values. Without some knowledge of how many clusters are really in the data,
it is a good idea to experiment with a range of values for k.

Avoiding Local Minima. Like many other types of numerical minimizations, the
solution that kmeans reaches often depends on the starting points. It is possible
for kmeans to reach a local minimum, where reassigning any one point to a new
cluster would increase the total sum of point-to-centroid distances, but where
a better solution does exist. However, you can use the optional 'replicates'
parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display' parameter to
print out the final sum of distances for each of the solutions.

[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
 'display','final','replicates',5);
17 iterations, total sum of distances = 2303.36
 5 iterations, total sum of distances = 1771.1

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

Silhouette Value

C
lu

st
er

6 Multivariate Statistics

6-52

 6 iterations, total sum of distances = 1771.1
 5 iterations, total sum of distances = 1771.1
 8 iterations, total sum of distances = 2303.36

The output shows that, even for this relatively simple problem, nonglobal
minima do exist. Each of these five replicates began from a different randomly
selected set of initial centroids, and kmeans found two different local minima.
However, the final solution that kmeans returns is the one with the lowest total
sum of distances, over all replicates.

sum(sumdist)
ans =
 1771.1

Multidimensional Scaling

6-53

Multidimensional Scaling
The following sections explain how to perform multidimensional scaling, using
the functions cmdscale and mdscale:

• “Overview” on page 6-53

• “Classical Multidimensional Scaling” on page 6-53

• “Nonclassical Metric Multidimensional Scaling” on page 6-56

• “Nonmetric Multidimensional Scaling” on page 6-58

• “Example — Reconstructing a Map from Intercity Distances” on page 6-60

Overview
One of the most important goals in visualizing data is to get a sense of how near
or far points are from each other. Often, you can do this with a scatter plot.
However, for some analyses, the data that you have might not be in the form of
points at all, but rather in the form of pairwise similarities or dissimilarities
between cases, observations, or subjects. Without any points, you cannot make
a scatter plot.

Even if your data are in the form of points rather than pairwise distances, a
scatter plot of those data might not be useful. For some kinds of data, the
relevant way to measure how “near” two points are might not be their
Euclidean distance. While scatter plots of the raw data make it easy to compare
Euclidean distances, they are not always useful when comparing other kinds
of interpoint distances, city block distance for example, or even more general
dissimilarities. Also, with a large number of variables, it is very difficult to
visualize distances unless the data can be represented in a small number of
dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these
problems. MDS allows you to visualize how near points are to each other for
many kinds of distance or dissimilarity measures and can produce a
representation of your data in a small number of dimensions. MDS does not
require raw data, but only a matrix of pairwise distances or dissimilarities.

Classical Multidimensional Scaling
The function cmdscale performs classical (metric) multidimensional scaling,
also known as principal coordinates analysis. cmdscale takes as an input a

6 Multivariate Statistics

6-54

matrix of interpoint distances and creates a configuration of points. Ideally,
those points are in two or three dimensions, and the Euclidean distances
between them reproduce the original distance matrix. Thus, a scatter plot of
the points created by cmdscale provides a visual representation of the original
distances.

A Simple Example
As a very simple example, you can reconstruct a set of points from only their
interpoint distances. First, create some four dimensional points with a small
component in their fourth coordinate, and reduce them to distances.

X = [normrnd(0,1,10,3), normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');

Next, use cmdscale to find a configuration with those interpoint distances.
cmdscale accepts distances as either a square matrix, or, as in this example, in
the vector upper-triangular form produced by pdist.

[Y,eigvals] = cmdscale(D);

cmdscale produces two outputs. The first output, Y, is a matrix containing the
reconstructed points. The second output, eigvals, is a vector containing the
sorted eigenvalues of what is often referred to as the “scalar product matrix,”
which, in the simplest case, is equal to Y*Y'. The relative magnitudes of those
eigenvalues indicate the relative contribution of the corresponding columns of
Y in reproducing the original distance matrix D with the reconstructed points.

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =
 12.623 1
 4.3699 0.34618
 1.9307 0.15295
 0.025884 0.0020505
 1.7192e-015 1.3619e-016
 6.8727e-016 5.4445e-017
 4.4367e-017 3.5147e-018
 -9.2731e-016 -7.3461e-017
 -1.327e-015 -1.0513e-016
 -1.9232e-015 -1.5236e-016

Multidimensional Scaling

6-55

If eigvals contains only positive and zero (within roundoff error) eigenvalues,
the columns of Y corresponding to the positive eigenvalues provide an exact
reconstruction of D, in the sense that their interpoint Euclidean distances,
computed using pdist, for example, are identical (within roundoff) to the
values in D.

maxerr4 = max(abs(D - pdist(Y))) % exact reconstruction
maxerr4 =
 2.6645e-015

If two or three of the eigenvalues in eigvals are much larger than the rest,
then the distance matrix based on the corresponding columns of Y nearly
reproduces the original distance matrix D. In this sense, those columns form a
lower-dimensional representation that adequately describes the data. However
it is not always possible to find a good low-dimensional reconstruction.

% good reconstruction in 3D
maxerr3 = max(abs(D - pdist(Y(:,1:3))))
maxerr3 =
 0.029728

% poor reconstruction in 2D
maxerr2 = max(abs(D - pdist(Y(:,1:2))))
maxerr2 =
 0.91641

The reconstruction in three dimensions reproduces D very well, but the
reconstruction in two dimensions has errors that are of the same order of
magnitude as the largest values in D.

max(max(D))
ans =
 3.4686

Often, eigvals contains some negative eigenvalues, indicating that the
distances in D cannot be reproduced exactly. That is, there might not be any
configuration of points whose interpoint Euclidean distances are given by D. If
the largest negative eigenvalue is small in magnitude relative to the largest
positive eigenvalues, then the configuration returned by cmdscale might still
reproduce D well. “Example — Reconstructing a Map from Intercity Distances”
on page 6-60 demonstrates this.

6 Multivariate Statistics

6-56

Nonclassical Metric Multidimensional Scaling
The function cmdscale performs classical multidimensional scaling (MDS).
The Statistics Toolbox also includes the function mdscale to perform
non-classical MDS. As with cmdcale, you can use mdscale either to visualize
dissimilarity data for which no “locations” exist, or to visualize
high-dimensional data by reducing its dimensionality. Both functions take a
matrix of dissimilarities as an input and produce a configuration of points.
However, mdscale offers a choice of different criteria to construct the
configuration, and allows missing data and weights.

For example, the cereal data include measurements on 10 variables describing
breakfast cereals. You can use mdscale to visualize these data in two
dimensions. First, load the data. For clarity, this example code selects a subset
of 22 of the observations.

load cereal.mat
X = [Calories Protein Fat Sodium Fiber Carbo Sugars Shelf...
Potass Vitamins];
X = X(strmatch('G',Mfg),:); % take a subset from a single

% manufacturer
size(X)
ans =
 22 10

Then use pdist to transform the 10-dimensional data into dissimilarities. The
output from pdist is a symmetric dissimilarity matrix, stored as a vector
containing only the (23*22/2) elements in its upper triangle.

dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =
 1 231

This example code first standardizes the cereal data, and then uses city block
distance as a dissimilarity. The choice of transformation to dissimilarities is
application-dependent, and the choice here is only for simplicity. In some
applications, the original data are already in the form of dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must specify
the desired number of dimensions, and the method to use to construct the
output configuration. For this example, use two dimensions. The metric
STRESS criterion is a common method for computing the output; for other

Multidimensional Scaling

6-57

choices, see the mdscale reference page in the online documentation. The
second output from mdscale is the value of that criterion evaluated for the
output configuration. It measures the how well the interpoint distances of the
output configuration approximate the original input dissimilarities.

[Y,stress] =...
mdscale(dissimilarities,2,'criterion','metricstress');
stress
stress =

 0.1856

A scatterplot of the output from mdscale represents the original
10-dimensional data in two dimensions, and you can use the gname function to
label selected points.

plot(Y(:,1),Y(:,2),'o');
gname(Name(strmatch('G',Mfg)))

−10 −5 0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

10

12

Total Raisin Bran

Total Whole Grain

Cheerios

6 Multivariate Statistics

6-58

Nonmetric Multidimensional Scaling
Metric multidimensional scaling creates a configuration of points whose
interpoint distances approximate the given dissimilarities. This is sometimes
too strict a requirement, and non-metric scaling is designed to relax it a bit.
Instead of trying to approximate the dissimilarities themselves, non-metric
scaling approximates a nonlinear, but monotonic, transformation of them.
Because of the monotonicity, larger or smaller distances on a plot of the output
will correspond to larger or smaller dissimilarities, respectively. However, the
nonlinearity implies that mdscale only attempts to preserve the ordering of
dissimilarities. Thus, there may be contractions or expansions of distances at
different scales.

You use mdscale to perform nonmetric MDS in much the same way as for
metric scaling. The nonmetric STRESS criterion is a common method for
computing the output; for more choices, see the mdscale reference page in the
online documentation. As with metric scaling, the second output from mdscale
is the value of that criterion evaluated for the output configuration. For
nonmetric scaling, however, it measures the how well the interpoint distances
of the output configuration approximate the disparities. The disparities are
returned in the third output. They are the transformed values of the original
dissimilarities.

[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =

 0.1562

To check the fit of the output configuration to the dissimilarities, and to
understand the disparities, it helps to make a Shepard plot.

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
 dissimilarities(ord),disparities(ord),'r.-', ...
 [0 25],[0 25],'k-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...
'Location','NorthWest');

Multidimensional Scaling

6-59

This plot shows that mdscale has found a configuration of points in two
dimensions whose interpoint distances approximates the disparities, which in
turn are a nonlinear transformation of the original dissimilarities. The concave
shape of the disparities as a function of the dissimilarities indicates that fit
tends to contract small distances relative to the corresponding dissimilarities.
This may be perfectly acceptable in practice.

mdscale uses an iterative algorithm to find the output configuration, and the
results can often depend on the starting point. By default, mdscale uses
cmdscale to construct an initial configuration, and this choice often leads to a
globally best solution. However, it is possible for mdscale to stop at a
configuration that is a local minimum of the criterion. Such cases can be
diagnosed and often overcome by running mdscale multiple times with
different starting points. You can do this using the 'start' and 'replicates'
parameters. The following code runs 5 replicates of MDS, each starting at a
different randomly-chosen initial configuration. The criterion value is printed
out for each replication; mdscale returns the configuration with the best fit.

0 5 10 15 20 25
0

5

10

15

20

25

Dissimilarities

D
is

ta
nc

es
/D

is
pa

rit
ie

s

Distances
Disparities
1:1 Line

6 Multivariate Statistics

6-60

opts = statset('Display','final');
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);
90 iterations, Final stress criterion = 0.156209
100 iterations, Final stress criterion = 0.195546
116 iterations, Final stress criterion = 0.156209
85 iterations, Final stress criterion = 0.156209
106 iterations, Final stress criterion = 0.17121

Notice that mdscale finds several different local solutions, some of which do not
have as low a stress value as the solution found with the cmdscale starting
point.

Example — Reconstructing a Map from Intercity
Distances
Given only the distances between 10 US cities, cmdscale can construct a map
of those cities. First, create the distance matrix and pass it to cmdscale. In this
example, D is a full distance matrix: it is square and symmetric, has positive
entries off the diagonal, and has zeros on the diagonal.

cities =
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};
D = [0 587 1212 701 1936 604 748 2139 2182 543;
 587 0 920 940 1745 1188 713 1858 1737 597;
 1212 920 0 879 831 1726 1631 949 1021 1494;
 701 940 879 0 1374 968 1420 1645 1891 1220;
 1936 1745 831 1374 0 2339 2451 347 959 2300;
 604 1188 1726 968 2339 0 1092 2594 2734 923;
 748 713 1631 1420 2451 1092 0 2571 2408 205;
 2139 1858 949 1645 347 2594 2571 0 678 2442;
 2182 1737 1021 1891 959 2734 2408 678 0 2329;
 543 597 1494 1220 2300 923 205 2442 2329 0];
[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are
negative, indicating that the original distances are not Euclidean. This is
because of the curvature of the earth.

format short g

Multidimensional Scaling

6-61

[eigvals eigvals/max(abs(eigvals))]
ans =
 9.5821e+006 1
 1.6868e+006 0.17604
 8157.3 0.0008513
 1432.9 0.00014954
 508.67 5.3085e-005
 25.143 2.624e-006
 5.3394e-010 5.5722e-017
 -897.7 -9.3685e-005
 -5467.6 -0.0005706
 -35479 -0.0037026

However, in this case, the two largest positive eigenvalues are much larger in
magnitude than the remaining eigenvalues. So, despite the negative
eigenvalues, the first two coordinates of Y are sufficient for a reasonable
reproduction of D.

Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu - pdist(Y(:,1:2)))) ./ max(Dtriu)
maxrelerr =
 0.0075371

Here is a plot of the reconstructed city locations as a map. The orientation of
the reconstruction is arbitrary: in this case, it happens to be close to, although
not exactly, the correct orientation.

plot(Y(:,1),Y(:,2),'.');
text(Y(:,1)+25,Y(:,2),cities);
xlabel('Miles'); ylabel('Miles');

6 Multivariate Statistics

6-62

−1500 −1000 −500 0 500 1000 1500
−600

−400

−200

0

200

400

600

Atl

Chi

Den

Hou

LA

Mia

NYC

SF

Sea

WDC

Miles

M
ile

s

7

Hypothesis Tests

Introduction (p. 7-2) Introduces the concept of hypothesis tests.

Hypothesis Test Terminology (p. 7-3) Explains some basic terminology of hypothesis tests.

Hypothesis Test Assumptions (p. 7-4) Explains some assumptions underlying hypothesis tests.

Example: Hypothesis Testing (p. 7-5) Provides an example of hypothesis testing.

Available Hypothesis Tests (p. 7-9) Describes the available hypothesis tests.

7 Hypothesis Tests

7-2

Introduction
A hypothesis test is a procedure for determining if an assertion about a
characteristic of a population is reasonable.

For example, suppose that someone says that the average price of a gallon of
regular unleaded gas in Massachusetts is $1.15. How would you decide
whether this statement is true? You could try to find out what every gas station
in the state was charging and how many gallons they were selling at that price.
That approach might be definitive, but it could end up costing more than the
information is worth.

A simpler approach is to find out the price of gas at a small number of randomly
chosen stations around the state and compare the average price to $1.15.

Of course, the average price you get will probably not be exactly $1.15 due to
variability in price from one station to the next. Suppose your average price
was $1.18. Is this three cent difference a result of chance variability, or is the
original assertion incorrect? A hypothesis test can provide an answer.

The following sections provide an overview of hypothesis testing with the
Statistics Toolbox:

• “Hypothesis Test Terminology” on page 7-3

• “Hypothesis Test Assumptions” on page 7-4

• “Example: Hypothesis Testing” on page 7-5

• “Available Hypothesis Tests” on page 7-9

Hypothesis Test Terminology

7-3

Hypothesis Test Terminology
To get started, there are some terms to define and assumptions to make:

• The null hypothesis is the original assertion. In this case the null hypothesis
is that the average price of a gallon of gas is $1.15. The notation is
H0: µ = 1.15.

• There are three possibilities for the alternative hypothesis. You might only be
interested in the result if gas prices were actually higher. In this case, the
alternative hypothesis is H1: µ > 1.15. The other possibilities are H1: µ < 1.15
and H1: µ ≠ 1.15.

• The significance level is related to the degree of certainty you require in order
to reject the null hypothesis in favor of the alternative. By taking a small
sample you cannot be certain about your conclusion. So you decide in
advance to reject the null hypothesis if the probability of observing your
sampled result is less than the significance level. For a typical significance
level of 5%, the notation is α = 0.05. For this significance level, the
probability of incorrectly rejecting the null hypothesis when it is actually
true is 5%. If you need more protection from this error, then choose a lower
value of α.

• The p-value is the probability of observing the given sample result under the
assumption that the null hypothesis is true. If the p-value is less than α, then
you reject the null hypothesis. For example, if α = 0.05 and the p-value is
0.03, then you reject the null hypothesis.

The converse is not true. If the p-value is greater than α, you have
insufficient evidence to reject the null hypothesis.

• The outputs for many hypothesis test functions also include confidence
intervals. Loosely speaking, a confidence interval is a range of values that
have a chosen probability of containing the true hypothesized quantity.
Suppose, in the example, 1.15 is inside a 95% confidence interval for the
mean, µ. That is equivalent to being unable to reject the null hypothesis at a
significance level of 0.05. Conversely if the 100(1-α) confidence interval does
not contain 1.15, then you reject the null hypothesis at the α level of
significance.

7 Hypothesis Tests

7-4

Hypothesis Test Assumptions
The difference between hypothesis test procedures often arises from
differences in the assumptions that the researcher is willing to make about the
data sample. For example, the Z-test assumes that the data represents
independent samples from the same normal distribution and that you know the
standard deviation, σ. The t-test has the same assumptions except that you
estimate the standard deviation using the data instead of specifying it as a
known quantity.

Both tests have an associated signal-to-noise ratio

The signal is the difference between the average and the hypothesized mean.
The noise is the standard deviation posited or estimated.

If the null hypothesis is true, then Z has a standard normal distribution,
N(0,1). T has a Student’s t distribution with the degrees of freedom, ν, equal to
one less than the number of data values.

Given the observed result for Z or T, and knowing the distribution of Z and T
assuming the null hypothesis is true, it is possible to compute the probability
(p-value) of observing this result. A very small p-value casts doubt on the truth
of the null hypothesis. For example, suppose that the p-value was 0.001,
meaning that the probability of observing the given Z or T was one in a
thousand. That should make you skeptical enough about the null hypothesis
that you reject it rather than believe that your result was just a lucky 999 to 1
shot.

There are also nonparametric tests that do not even require the assumption
that the data come from a normal distribution. In addition, there are functions
for testing whether the normal assumption is reasonable.

Z x µ–
σ

------------ or T x µ–
s

------------==

where x
xi
n

i 1=

n

∑=

Example: Hypothesis Testing

7-5

Example: Hypothesis Testing
This example uses the gasoline price data in gas.mat. There are two samples
of 20 observed gas prices for the months of January and February, 1993.

load gas
prices = [price1 price2];

As a first step, you may want to test whether the samples from each month
follow a normal distribution. As each sample is relatively small, you might
choose to perform a Lilliefors test (rather than a Jarque-Bera test).

lillietest(price1)

ans =

 0

lillietest(price2)

ans =

 0

The result of the hypothesis test is a Boolean value that is 0 when you do not
reject the null hypothesis, and 1 when you do reject that hypothesis. In each
case, there is no need to reject the null hypothesis that the samples have a
normal distribution.

Suppose it is historically true that the standard deviation of gas prices at gas
stations around Massachusetts is four cents a gallon. The Z-test is a procedure
for testing the null hypothesis that the average price of a gallon of gas in
January (price1) is $1.15.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)

h =
 0

pvalue =

 0.8668

ci =

 1.1340 1.1690

7 Hypothesis Tests

7-6

The Boolean output is h = 0, so you do not reject the null hypothesis.

The result suggests that $1.15 is reasonable. The 95% confidence interval
[1.1340 1.1690] neatly brackets $1.15.

What about February? Try a t-test with price2. Now you are not assuming
that you know the standard deviation in price.

[h,pvalue,ci] = ttest(price2/100,1.15)

h =
 1

pvalue =

 4.9517e-04

ci =
 1.1675 1.2025

With the Boolean result h = 1, you can reject the null hypothesis at the default
significance level, 0.05.

It looks like $1.15 is not a reasonable estimate of the gasoline price in
February. The low end of the 95% confidence interval is greater than 1.15.

The function ttest2 allows you to compare the means of the two data samples.

[h,sig,ci] = ttest2(price1,price2)

h =
 1

sig =

 0.0083

ci =

 -5.7845 -0.9155

The confidence interval (ci above) indicates that gasoline prices were between
one and six cents lower in January than February.

If the two samples were not normally distributed but had similar shape, it
would have been more appropriate to use the nonparametric rank sum test in

Example: Hypothesis Testing

7-7

place of the t-test. You can still use the rank sum test with normally distributed
data, but it is less powerful than the t-test.

[p,h,stats] = ranksum(price1, price2)

p =
 0.0092

h =
 1

stats =
 zval: -2.6064
 ranksum: 314

As might be expected, the rank sum test leads to the same conclusion but is less
sensitive to the difference between samples (higher p-value).

The box plot below gives less conclusive results. On a notched box plot, two
groups have overlapping notches if their medians are not significantly
different. Here the notches just barely overlap, indicating that the difference in
medians is of borderline significance. (The results for a box plot are not always
the same as for a t-test, which is based on means rather than medians.) Refer
to the “Statistical Plots” chapter for more information about box plots.

boxplot(prices,1)
set(gca,'XtickLabel',str2mat('January','February'))
xlabel('Month')
ylabel('Prices ($0.01)')

7 Hypothesis Tests

7-8

January February

110

115

120

125

P
ri
ce

s
($

0
.0

1
)

Month

Available Hypothesis Tests

7-9

Available Hypothesis Tests
The Statistics Toolbox has functions for performing the following tests.

Function What it Tests

jbtest Normal distribution for one sample

kstest Any specified distribution for one sample

kstest2 Equal distributions for two samples

lillietest Normal distribution for one sample

ranksum Median of two unpaired samples

signrank Median of two paired samples

signtest Median of two paired samples

ttest Mean of one normal sample

ttest2 Mean of two normal samples

ztest Mean of normal sample with known standard deviation

7 Hypothesis Tests

7-10

8

Statistical Plots

Introduction (p. 8-2) Introduces the tools for creating statistical plots.

Box Plots (p. 8-3) Explains how to create box plots.

Distribution Plots (p. 8-4) Explains how to create distribution plots.

Scatter Plots (p. 8-10) Explains how to create scatter plots.

8 Statistical Plots

8-2

Introduction
The Statistics Toolbox adds specialized plots to the extensive graphics
capabilities of MATLAB:

• Box plots are graphs for describing data samples. They are also useful for
graphic comparisons of the means of many samples (see “One-Way Analysis
of Variance (ANOVA)” on page 4-3).

• Distribution plots are graphs for visualizing the distribution of one or more
samples. They include normal and Weibull probability plots,
quantile-quantile plots, and empirical cumulative distribution plots.

• Scatter plots are graphs for visualizing the relationship between a pair of
variables or several such pairs. Grouped versions of these plots use different
plotting symbols to indicate group membership. The gname function can label
points on these plots with a text label or an observation number.

The plot types are described further in the following sections:

• “Box Plots” on page 8-3

• “Distribution Plots” on page 8-4

• “Scatter Plots” on page 8-10

Box Plots

8-3

Box Plots
The graph shows an example of a notched box plot.

This plot has several graphic elements:

• The lower and upper lines of the “box” are the 25th and 75th percentiles of
the sample. The distance between the top and bottom of the box is the
interquartile range.

• The line in the middle of the box is the sample median. If the median is not
centered in the box, that is an indication of skewness.

• The “whiskers” are lines extending above and below the box. They show the
extent of the rest of the sample (unless there are outliers). Assuming no
outliers, the maximum of the sample is the top of the upper whisker. The
minimum of the sample is the bottom of the lower whisker. By default, an
outlier is a value that is more than 1.5 times the interquartile range away
from the top or bottom of the box.

• The plus sign at the top of the plot is an indication of an outlier in the data.
This point might be the result of a data entry error, a poor measurement, or
a change in the system that generated the data.

• The notches in the box are a graphic confidence interval about the median of
a sample. Box plots do not have notches by default.

A side-by-side comparison of two notched box plots provides a graphical way to
determine which groups have significantly different medians. This is similar to
a one-way analysis of variance, except that the latter compares means.
Analysis of variance is described in Chapter 4, “Linear Models.”

1

110

115

120

125
V

al
ue

s

Column Number

8 Statistical Plots

8-4

Distribution Plots
There are several types of plots for examining the distribution of one or more
samples, as described in the following sections:

• “Normal Probability Plots” on page 8-4

• “Quantile-Quantile Plots” on page 8-6

• “Weibull Probability Plots” on page 8-7

• “Empirical Cumulative Distribution Function (CDF)” on page 8-8

Normal Probability Plots
A normal probability plot is a useful graph for assessing whether data comes
from a normal distribution. Many statistical procedures make the assumption
that the underlying distribution of the data is normal, so this plot can provide
some assurance that the assumption of normality is not being violated, or
provide an early warning of a problem with your assumptions.

This example shows a typical normal probability plot.

x = normrnd(10,1,25,1);
normplot(x)

8.5 9 9.5 10 10.5 11 11.5
0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

Distribution Plots

8-5

The plot has three graphical elements. The plus signs show the empirical
probability versus the data value for each point in the sample. The solid line
connects the 25th and 75th percentiles of the data and represents a robust
linear fit (i.e., insensitive to the extremes of the sample). The dashed line
extends the solid line to the ends of the sample.

The scale of the y-axis is not uniform. The y-axis values are probabilities and,
as such, go from zero to one. The distance between the tick marks on the y-axis
matches the distance between the quantiles of a normal distribution. The
quantiles are close together near the median (probability = 0.5) and stretch out
symmetrically moving away from the median. Compare the vertical distance
from the bottom of the plot to the probability 0.25 with the distance from 0.25
to 0.50. Similarly, compare the distance from the top of the plot to the
probability 0.75 with the distance from 0.75 to 0.50.

If all the data points fall near the line, the assumption of normality is
reasonable. But, if the data is nonnormal, the plus signs may follow a curve, as
in the example using exponential data below.

x = exprnd(10,100,1);
normplot(x)

This plot is clear evidence that the underlying distribution is not normal.

0 5 10 15 20 25 30 35 40 45
0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

8 Statistical Plots

8-6

Quantile-Quantile Plots
A quantile-quantile plot is useful for determining whether two samples come
from the same distribution (whether normally distributed or not).

The example shows a quantile-quantile plot of two samples from a Poisson
distribution.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);

Even though the parameters and sample sizes are different, the straight line
relationship shows that the two samples come from the same distribution.

Like the normal probability plot, the quantile-quantile plot has three graphical
elements. The pluses are the quantiles of each sample. By default the number
of pluses is the number of data values in the smaller sample. The solid line joins
the 25th and 75th percentiles of the samples. The dashed line extends the solid
line to the extent of the sample.

The example below shows what happens when the underlying distributions are
not the same.

x = normrnd(5,1,100,1);
y = weibrnd(2,0.5,100,1);
qqplot(x,y);

2 4 6 8 10 12 14 16 18
-2

0

2

4

6

8

10

12

X Quantiles

Y
 Q

ua
nt

ile
s

Distribution Plots

8-7

These samples clearly are not from the same distribution.

It is incorrect to interpret a linear plot as a guarantee that the two samples
come from the same distribution. But, for assessing the validity of a statistical
procedure that depends on the two samples coming from the same distribution
(e.g., ANOVA), a linear quantile-quantile plot should be sufficient.

Weibull Probability Plots
A Weibull probability plot is a useful graph for assessing whether data comes
from a Weibull distribution. Many reliability analyses make the assumption
that the underlying distribution of the lifetimes is Weibull, so this plot can
provide some assurance that this assumption is not being violated, or provide
an early warning of a problem with your assumptions.

The scale of the y-axis is not uniform. The y-axis values are probabilities and,
as such, go from zero to one. The distance between the tick marks on the y-axis
matches the distance between the quantiles of a Weibull distribution.

If the data points (pluses) fall near the line, the assumption that the data comes
from a Weibull distribution is reasonable.

2 3 4 5 6 7 8
-2

0

2

4

6

8

10

12

14

16

X Quantiles

Y
 Q

ua
nt

ile
s

8 Statistical Plots

8-8

This example shows a typical Weibull probability plot.

y = weibrnd(2,0.5,100,1);
weibplot(y)

Empirical Cumulative Distribution Function (CDF)
If you are not willing to assume that your data follows a specific probability
distribution, you can use the cdfplot function to graph an empirical estimate
of the cumulative distribution function (cdf). This function computes the
proportion of data points less than each x value, and plots the proportion as a
function of x. The y-axis scale is linear, not a probability scale for a specific
distribution.

This example shows the empirical cumulative distribution function for a
Weibull sample.

y = weibrnd(2,0.5,100,1);
cdfplot(y)

10-4 10-2 100

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75
0.90
0.96
0.99

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot

Distribution Plots

8-9

The plot shows a probability function that rises steeply near x=0 and levels off
for larger values. Over 80% of the observations are less than 1, with the
remaining values spread over the range [1 5].

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

8 Statistical Plots

8-10

Scatter Plots
A scatter plot is a simple plot of one variable against another. The MATLAB
plot and scatter functions can produce scatter plots. The MATLAB
plotmatrix function can produce a matrix of such plots showing the
relationship between several pairs of variables.

The Statistics Toolbox adds functions that produce grouped versions of these
plots. These are useful for determining whether the values of two variables or
the relationship between those variables is the same in each group.

Suppose you want to examine the weight and mileage of cars from three
different model years.

load carsmall
gscatter(Weight,MPG,Model_Year,'','xos')

This shows that not only is there a strong relationship between the weight of a
car and its mileage, but also that newer cars tend to be lighter and have better
gas mileage than older cars.

(The default arguments for gscatter produce a scatter plot with the different
groups shown with the same symbol but different colors. The last two
arguments above request that all groups be shown in default colors and with
different symbols.)

1500 2000 2500 3000 3500 4000 4500 5000
5

10

15

20

25

30

35

40

45

Weight

M
P

G

70
76
82

Scatter Plots

8-11

The carsmall data set contains other variables that describe different aspects
of cars. You can examine several of them in a single display by creating a
grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'','xos')

The upper right subplot displays MPG against Horsepower, and shows that over
the years the horsepower of the cars has decreased but the gas mileage has
improved.

The gplotmatrix function can also graph all pairs from a single list of
variables, along with histograms for each variable. See “Multivariate Analysis
of Variance (MANOVA)” on page 6-24.

50 100 150 200100 200 300 4002000 3000 4000

10

15

20

25
10

20

30

40

70
76
82

8 Statistical Plots

8-12

9

Statistical Process Control

Statistical process control (SPC) refers to a number of methods for assessing and monitoring the
quality of manufactured goods. The following sections describe the SPC features of the Statistics
Toolbox:

Control Charts (p. 9-2) Explains how to create control charts.

Capability Studies (p. 9-5) Describes how to perform capability studies.

9 Statistical Process Control

9-2

Control Charts
Control charts were popularized by Walter Shewhart in his work in the 1920s
at Western Electric. A control chart is a plot of a measurements over time with
statistical limits applied. Actually, control chart is a slight misnomer. The
chart itself is really a monitoring tool. The control activity might occur if the
chart indicates that the process is changing in an undesirable systematic
direction.

The Statistics Toolbox supports three common control charts, described in the
following sections:

• “Xbar Charts” on page 9-2

• “S Charts” on page 9-3

• “EWMA Charts” on page 9-4

Xbar Charts
Xbar charts are a plot of the average of a sample of a process taken at regular
intervals. Suppose you are manufacturing pistons to a tolerance of
0.5 thousandths of an inch. You measure the runout (deviation from circularity
in thousandths of an inch) at four points on each piston.

load parts
conf = 0.99;
spec = [-0.5 0.5];
xbarplot(runout,conf,spec)

0 10 20 30 40

-0.4

-0.2

0

0.2

0.4

0.6

12

21 25
26

30

Xbar Chart

USL

LSL

Samples

M
ea

su
re

m
en

ts

LCL

UCL

Control Charts

9-3

The lines at the bottom and the top of the plot show the process specifications.
The central line is the average runout over all the pistons. The two lines
flanking the center line are the 99% statistical control limits. By chance only
one measurement in 100 should fall outside these lines. You can see that even
in this small run of 36 parts, there are several points outside the boundaries
(labeled by their observation numbers). This is an indication that the process
mean is not in statistical control. This might not be of much concern in practice,
since all the parts are well within specification.

S Charts
The S chart is a plot of the standard deviation of a process taken at regular
intervals. The standard deviation is a measure of the variability of a process.
So, the plot indicates whether there is any systematic change in the process
variability. Continuing with the piston manufacturing example, you can look
at the standard deviation of each set of four measurements of runout.

schart(runout)

The average runout is about 0.1 thousandths of an inch. There is no indication
of nonrandom variability.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
S Chart

Sample Number

S
ta

nd
ar

d
D

ev
ia

tio
n

UCL

LCL

9 Statistical Process Control

9-4

EWMA Charts
The exponentially-weighted moving average (EWMA) chart is another chart
for monitoring the process average. It operates on slightly different
assumptions than the Xbar chart. The mathematical model behind the Xbar
chart posits that the process mean is actually constant over time and any
variation in individual measurements is due entirely to chance.

The EWMA model is a little looser. Here you assume that the mean may be
varying in time. Here is an EWMA chart of the runout example. Compare this
with the plot in “Xbar Charts” on page 9-2.

ewmaplot(runout,0.5,0.01,spec)

0 5 10 15 20 25 30 35 40

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

21 2526

Exponentially Weighted Moving Average (EWMA) Chart

USL

LSL

Sample Number

E
W

M
A

UCL

LCL

Capability Studies

9-5

Capability Studies
Before going into full-scale production, many manufacturers run a pilot study
to determine whether their process can actually build parts to the
specifications demanded by the engineering drawing.

Using the data from these capability studies with a statistical model enables
you to get a preliminary estimate of the percentage of parts that will fall
outside the specifications.

[p,Cp,Cpk] = capable(mean(runout),spec)

p =
 1.3940e-09

Cp =
 2.3950

Cpk =
 1.9812

The result above shows that the probability (p = 1.3940e-09) of observing an
unacceptable runout is extremely low. Cp and Cpk are two popular capability
indices.

Cp is the ratio of the range of the specifications to six times the estimate of the
process standard deviation.

For a process that has its average value on target, a Cp of 1 translates to a little
more than one defect per thousand. Recently many industries have set a
quality goal of one part per million. This would correspond to a Cp = 1.6. The
higher the value of Cp, the more capable the process.

Cpk is the ratio of difference between the process mean and the closer
specification limit to three times the estimate of the process standard
deviation.

Cp
USL LSL–

6σ
--------------------------------=

Cpk min USL µ–
3σ

----------------------- µ LSL–
3σ

----------------------,⎝ ⎠
⎛ ⎞=

9 Statistical Process Control

9-6

where the process mean is µ. For processes that do not maintain their average
on target, Cpk, is a more descriptive index of process capability.

10

Design of Experiments

Introduction (p. 10-2) Introduces the topic of design of experiments.

Full Factorial Designs (p. 10-4) Explains how to create full factorial designs.

Fractional Factorial Designs (p. 10-6) Explains how to create fractional factorial designs.

Response Surface Designs (p. 10-8) Explains how to create response surface designs.

D-Optimal Designs (p. 10-18) Explains how to create D-optimal designs.

10 Design of Experiments

10-2

Introduction
There is a world of difference between data and information. To extract
information from data you have to make assumptions about the system that
generated the data. Using these assumptions and physical theory you may be
able to develop a mathematical model of the system.

Generally, even rigorously formulated models have some unknown constants.
The goal of experimentation is to acquire data that enable you to estimate these
constants.

But why do you need to experiment at all? You could instrument the system
you want to study and just let it run. Sooner or later you would have all the
data you could use.

In fact, this is a fairly common approach. There are three characteristics of
historical data that pose problems for statistical modeling:

• Suppose you observe a change in the operating variables of a system followed
by a change in the outputs of the system. That does not necessarily mean
that the change in the system caused the change in the outputs.

• A common assumption in statistical modeling is that the observations are
independent of each other. This is not the way a system in normal operation
works.

• Controlling a system in operation often means changing system variables in
tandem. But if two variables change together, it is impossible to separate
their effects mathematically.

Designed experiments directly address these problems. The overwhelming
advantage of a designed experiment is that you actively manipulate the system
you are studying. With Design of Experiments (DOE) you may generate fewer
data points than by using passive instrumentation, but the quality of the
information you get will be higher.

Introduction

10-3

The Statistics Toolbox provides several functions for generating experimental
designs appropriate to various situations. These are discussed in the following
sections:

• “Full Factorial Designs” on page 10-4

• “Fractional Factorial Designs” on page 10-6

• “Response Surface Designs” on page 10-8

• “D-Optimal Designs” on page 10-18

10 Design of Experiments

10-4

Full Factorial Designs
Suppose you want to determine whether the variability of a machining process
is due to the difference in the lathes that cut the parts or the operators who run
the lathes.

If the same operator always runs a given lathe then you cannot tell whether
the machine or the operator is the cause of the variation in the output. By
allowing every operator to run every lathe you can separate their effects.

This is a factorial approach. fullfact is the function that generates the design.
Suppose you have four operators and three machines. What is the factorial
design?

d = fullfact([4 3])

d =
 1 1
 2 1
 3 1
 4 1
 1 2
 2 2
 3 2
 4 2
 1 3
 2 3
 3 3
 4 3

Each row of d represents one operator/machine combination. Note that there
are 4*3 = 12 rows.

One special subclass of factorial designs is when all the variables take only two
values. Suppose you want to quickly determine the sensitivity of a process to
high and low values of three variables.

d2 = ff2n(3)

d2 =
 0 0 0
 0 0 1

Full Factorial Designs

10-5

 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

There are 23 = 8 combinations to check.

10 Design of Experiments

10-6

Fractional Factorial Designs
One difficulty with factorial designs is that the number of combinations
increases exponentially with the number of variables you want to manipulate.

For example, the sensitivity study discussed above might be impractical if
there were seven variables to study instead of just three. A full factorial design
would require 27 = 128 runs!

If you assume that the variables do not act synergistically in the system, you
can assess the sensitivity with far fewer runs. The theoretical minimum
number is eight. A design known as the Plackett-Burman design uses a
Hadamard matrix to define this minimal number of runs. To see the design (X)
matrix for the Plackett-Burman design, you use the hadamard function.

X = hadamard(8)

X =
 1 1 1 1 1 1 1 1
 1 -1 1 -1 1 -1 1 -1
 1 1 -1 -1 1 1 -1 -1
 1 -1 -1 1 1 -1 -1 1
 1 1 1 1 -1 -1 -1 -1
 1 -1 1 -1 -1 1 -1 1
 1 1 -1 -1 -1 -1 1 1
 1 -1 -1 1 -1 1 1 -1

The last seven columns are the actual variable settings (-1 for low, 1 for high.)
The first column (all ones) enables you to measure the mean effect in the linear
equation, .

The Plackett-Burman design enables you to study the main (linear) effects of
each variable with a small number of runs. It does this by using a fraction, in
this case 8/128, of the runs required for a full factorial design. A drawback of
this design is that if the effect of one variable does vary with the value of
another variable, then the estimated effects will be biased (that is, they will
tend to be off by a systematic amount).

At a cost of a somewhat larger design, you can find a fractional factorial that is
much smaller than a full factorial, but that does allow estimation of main
effects independent of interactions between pairs of variables. You can do this
by specifying generators that control the confounding between variables.

y Xβ ε+=

Fractional Factorial Designs

10-7

As an example, suppose you create a design with the first four variables
varying independently as in a full factorial, but with the other three variables
formed by multiplying different triplets of the first four. With this design the
effects of the last three variables are confounded with three-way interactions
among the first four variables. The estimated effect of any single variable,
however, is not confounded with (is independent of) interaction effects between
any pair of variables. Interaction effects are confounded with each other. Box,
Hunter, and Hunter [3] present the properties of these designs and provide the
generators needed to produce them.

The fracfact function can produce this fractional factorial design using the
generator strings that Box, Hunter, and Hunter provide.

X = fracfact('a b c d abc bcd acd')

X =
 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 1 -1 1 1
 -1 -1 1 -1 1 1 1
 -1 -1 1 1 1 -1 -1
 -1 1 -1 -1 1 1 -1
 -1 1 -1 1 1 -1 1
 -1 1 1 -1 -1 -1 1
 -1 1 1 1 -1 1 -1
 1 -1 -1 -1 1 -1 1
 1 -1 -1 1 1 1 -1
 1 -1 1 -1 -1 1 -1
 1 -1 1 1 -1 -1 1
 1 1 -1 -1 -1 1 1
 1 1 -1 1 -1 -1 -1
 1 1 1 -1 1 -1 -1
 1 1 1 1 1 1 1

10 Design of Experiments

10-8

Response Surface Designs
Sometimes simple linear and interaction models are not adequate. For
example, suppose that the outputs are defects or yield, and the goal is to
minimize defects and maximize yield. If these optimal points are in the interior
of the region in which the experiment is to be conducted, you need a
mathematical model that can represent curvature so that it has a local
optimum. The simplest such model has the quadratic form

containing linear terms for all factors, squared terms for all factors, and
products of all pairs of factors.

Designs for fitting these types of models are known as response surface
designs. One such design is the full factorial design having three values for
each input. Although the Statistics Toolbox is capable of generating this
design, it is not really a satisfactory design in most cases because it has many
more runs than are necessary to fit the model.

The two most common designs generally used in response surface modeling are
central composite designs and Box-Behnken designs. In these designs the
inputs take on three or five distinct values (levels), but not all combinations of
these values appear in the design.

The functions described here produce specific response surface designs:

• “Central Composite Designs” on page 10-8

• “Box-Behnken Designs” on page 10-9

If these do not serve your purposes, consider creating a D-optimal design.
“Design of Experiments Demo” on page 10-10 uses a D-optimal design to fit
data that conforms to a response surface model. For more information see
“D-Optimal Designs” on page 10-18.

Central Composite Designs
Central composite designs are response surface designs that can fit a full
quadratic model. To picture a central composite design, imagine you have
several factors that can vary between low and high values. For convenience,
suppose each factor varies from -1 to +1.

Y β0 β1X1 β2X2 β12X1X2 β11X1
2 β22X2

2
+ + + + +=

Response Surface Designs

10-9

One central composite design consists of cube points at the corners of a unit
cube that is the product of the intervals [-1,1], star points along the axes at or
outside the cube, and center points at the origin.

Central composite designs are of three types. Circumscribed (CCC) designs are
as described above. Inscribed (CCI) designs are as described above, but scaled
so the star points take the values -1 and +1, and the cube points lie in the
interior of the cube. Faced (CCF) designs have the star points on the faces of
the cube. Faced designs have three levels per factor, in contrast with the other
types, which have five levels per factor. The following figure shows these three
types of designs for three factors.

Box-Behnken Designs
Like central composite designs, Box-Behnken designs are response surface
designs that can fit a full quadratic model. Unlike most central composite
designs, Box-Behnken designs use just three levels of each factor. This makes
them appealing when the factors are quantitative but the set of achievable
values is small.

Central composite faced (CCF) designs also use just three factor levels.
However, they are not rotatable as Box-Behnken designs are. On the other
hand, Box-Behnken designs can be expected to have poorer prediction ability
in the corners of the cube that encloses the design, because unlike CCF designs
they do not include points at the corners of that cube.

The following figure shows a Box-Behnken design for three factors, with the
circled point appearing at the origin and possibly repeated for several runs. A

−10
1

−101

−1

0

1

Circumscribed

−1
0

1

−101
−1

−0.5

0

0.5

1

Inscribed

−1
0

1

−101
−1

0

1

Faced

10 Design of Experiments

10-10

repeated center point makes it possible to compute an estimate of the error
term that does not depend on the fitted model. For this design all points except
the center point appear at a distance from the origin. That does not hold
true for Box-Behnken designs with different numbers of factors.

Design of Experiments Demo
The rsmdemo utility is an interactive graphic environment that demonstrates
the design of experiments and surface fitting through the simulation of a
chemical reaction. The goal of the demo is to find the levels of the reactants
needed to maximize the reaction rate.

Suitable designs for this experiment include the central composite designs and
Box-Behnken designs, described in the previous two sections, and the
D-optimal designs, described in “D-Optimal Designs” on page 10-18. This demo
uses D-optimal designs.

There are two parts to the demo:

• “Comparing Results from Trial-and-Error Data and a Designed Experiment”
on page 10-11

• “Comparing Results Using a Polynomial Model and a Nonlinear Model” on
page 10-15

2

−1
0

1

−1−0.500.51
−1

−0.5

0

0.5

1

Response Surface Designs

10-11

Comparing Results from Trial-and-Error Data and a Designed Experiment
This part of the experiment compares the results obtained using data gathered
through trial and error and using data from a designed experiment:

1 To begin, run the rsmdemo function.

rsmdemo

2 Click Run in the Reaction Simulator window to generate a test reaction for
the trial and error phase of the demo.

To perform the experiment, you can click Run as many as 13 times. For each
run, based on the results of previous runs, you can move the sliders in the
Reaction Simulator window to change the levels of the reactants to increase
or decrease the reaction rate. Each time you click the Run button, the levels
for the reactants and results of the run are displayed in the Trial and Error
Data window, as shown in the following figure after 13 trials.

10 Design of Experiments

10-12

Note The results are determined using an underlying model that takes into
account the noise in the process, so even if you keep all of the levels the same,
the results will vary from run to run. In this case however, the Analyze
function will not be able to generate a fit for the results.

3 When you have completed 13 runs, select Hydrogen vs. Rate, in the field
next to Analyze, to plot the relationships between the reactants and the
reaction rate.

For this set of 13 runs, rsmdemo produces the following plot.

Response Surface Designs

10-13

4 Click the Analyze button to call the rstool function, which you can then use
to try to optimize the results. See “Exploring Graphs of Multidimensional
Polynomials” on page 4-42 for more information about using the rstool
demo.

5 Next, perform another set of 13 runs, this time from a designed experiment.
In the Experimental Data window, click the Do Experiment button.
rsmdemo calls the cordexch function to generate a D-optimal design, and
then, for each run, computes the reaction rate.

200 220 240 260 280 300 320 340 360
3

3.5

4

4.5

5

5.5

6

6.5

7

Hydrogen

R
at

e

10 Design of Experiments

10-14

6 Select Hydrogen vs. Rate in the field next to Nonlinear Model in the
Experimental Data window. This displays the following plot.

7 You can also click the Response Surface button to call rstool to find the
optimal levels of the reactants.

100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Hydrogen

R
at

e

Response Surface Designs

10-15

8 Compare the analysis results for the two sets of data. It is likely (though not
certain) that you’ll find some or all of these differences:

- You can fit a full quadratic model with the data from the designed
experiment, but the trial and error data may be insufficient for fitting a
quadratic model or interactions model.

- Using the data from the designed experiment, you are more likely to be
able to find levels for the reactants that result in the maximum reaction
rate. Even if you find the best settings using the trial and error data, the
confidence bounds are likely to be wider than those from the designed
experiment.

Comparing Results Using a Polynomial Model and a Nonlinear Model
This part of the experiment analyzes the experimental design data with a
polynomial (response surface) model and a nonlinear model, and compare the
results. The true model for the process, which is used to generate the data, is
actually a nonlinear model. However, within the range of the data, a quadratic
model approximates the true model quite well:

1 Using the results generated in the designed experiment part of “Comparing
Results from Trial-and-Error Data and a Designed Experiment” on
page 10-11, click the Response Surface button on the Experimental Data
window. rsmdemo calls rstool, which fits a full quadratic model to the data.
Drag the reference lines to change the levels of the reactants, and find the
optimal reaction rate. Observe the width of the confidence intervals.

10 Design of Experiments

10-16

2 Now click the Nonlinear Model button on the Experimental Data window.
rsmdemo calls nlintool, which fits a Hougen-Watson model to the data. As
with the quadratic model, you can drag the reference lines to change the
reactant levels. Observe the reaction rate and the confidence intervals.

Response Surface Designs

10-17

3 Compare the analysis results for the two models. Even though the true
model is nonlinear, you may find that the polynomial model provides a good
fit. Because polynomial models are much easier to fit and work with than
nonlinear models, a polynomial model is often preferable even when
modeling a nonlinear process. Keep in mind, however, that such models are
unlikely to be reliable for extrapolating outside the range of the data.

10 Design of Experiments

10-18

D-Optimal Designs
The designs above pre-date the computer age, and some were in use by early in
the 20th century. In the 1970s statisticians started to use the computer in
experimental design by recasting the design of experiments (DOE) in terms of
optimization. A D-optimal design is one that maximizes the determinant of
Fisher’s information matrix, XTX. This matrix is proportional to the inverse of
the covariance matrix of the parameters. So maximizing det(XTX) is equivalent
to minimizing the determinant of the covariance of the parameters.

A D-optimal design minimizes the volume of the confidence ellipsoid of the
regression estimates of the linear model parameters, β.

There are several functions in the Statistics Toolbox that generate D-optimal
designs. These are cordexch, daugment, dcovary, and rowexch. The following
sections explore D-optimal design in greater detail:

• “Generating D-Optimal Designs” on page 10-18

• “Augmenting D-Optimal Designs” on page 10-21

• “Designing Experiments with Uncontrolled Inputs” on page 10-23

• “Controlling Candidate Points” on page 10-24

• “Including Categorical Factors” on page 10-24

Generating D-Optimal Designs
The cordexch and rowexch functions provide two competing optimization
algorithms for computing a D-optimal design given a model specification.

Both cordexch and rowexch are iterative algorithms. They operate by
improving a starting design by making incremental changes to its elements. In
the coordinate exchange algorithm, the increments are the individual elements
of the design matrix. In row exchange, the elements are the rows of the design
matrix. Atkinson and Donev [1] is a reference.

To generate a D-optimal design you must specify the number of inputs, the
number of runs, and the order of the model you want to fit.

Both cordexch and rowexch take the following strings to specify the model:

• 'linear' or 'l' – the default model with constant and first order terms

• 'interaction' or 'i' – includes constant, linear, and cross product terms

D-Optimal Designs

10-19

• 'quadratic' or 'q' – interactions plus squared terms

• 'purequadratic' or 'p' – includes constant, linear and squared terms

Alternatively, you can use a matrix of integers to specify the terms. Details are
in the help for the utility function x2fx.

For a simple example using the coordinate-exchange algorithm, consider the
problem of quadratic modeling with two inputs. The model form is

Suppose you want the D-optimal design for fitting this model with nine runs.

settings = cordexch(2,9,'q')
settings =

 -1 1
 1 1
 0 1
 1 -1
 -1 -1
 0 -1
 1 0
 0 0
 -1 0

You can plot the columns of settings against each other to get a better picture
of the design.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

y β0 β1x1 β2x2 β12x1x2 β11x1
2 β22x2

2 ε+ + + + + +=

10 Design of Experiments

10-20

For a simple example using the row-exchange algorithm, consider the
interaction model with two inputs. The model form is

Suppose you want the D-optimal design for fitting this model with four runs.

[settings, X] = rowexch(2,4,'i')

settings =

 -1 1
 -1 -1
 1 -1
 1 1

X =
 1 -1 1 -1
 1 -1 -1 1
 1 1 -1 -1
 1 1 1 1

The settings matrix shows how to vary the inputs from run to run. The X matrix
is the design matrix for fitting the above regression model. The first column of X
is for fitting the constant term. The last column is the element-wise product of
the second and third columns.

The associated plot is simple but elegant.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])

-1 0 1
-1

0

1

y β0 β1x1 β2x2 β12x1x2 ε+ + + +=

D-Optimal Designs

10-21

set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

Augmenting D-Optimal Designs
In practice, experimentation is an iterative process. You often want to add runs
to a completed experiment to learn more about the system. The function
daugment allows you choose these extra runs optimally.

Suppose you execute the eight-run design below for fitting a linear model to
four input variables.

settings = cordexch(4,8)
settings =

 1 -1 1 1
 -1 -1 1 -1
 -1 1 1 1
 1 1 1 -1
 -1 1 -1 1
 1 -1 -1 1
 -1 -1 -1 -1
 1 1 -1 -1

-1 0 1
-1

0

1

10 Design of Experiments

10-22

This design is adequate to fit the linear model for four inputs, but cannot fit the
six cross-product (interaction) terms. Suppose you are willing to do eight more
runs to fit these extra terms. The following code show how to do so.

[augmented, X] = daugment(settings,8,'i');

augmented
augmented =

 1 -1 1 1
 -1 -1 1 -1
 -1 1 1 1
 1 1 1 -1
 -1 1 -1 1
 1 -1 -1 1
 -1 -1 -1 -1
 1 1 -1 -1
 -1 -1 -1 1
 1 1 1 1
 -1 -1 1 1
 -1 1 1 -1
 1 -1 1 -1
 1 -1 -1 -1
 -1 1 -1 -1
 1 1 -1 1

info = X'*X
info =

 16 0 0 0 0 0 0 0 0 0 0
 0 16 0 0 0 0 0 0 0 0 0
 0 0 16 0 0 0 0 0 0 0 0
 0 0 0 16 0 0 0 0 0 0 0
 0 0 0 0 16 0 0 0 0 0 0
 0 0 0 0 0 16 0 0 0 0 0
 0 0 0 0 0 0 16 0 0 0 0
 0 0 0 0 0 0 0 16 0 0 0
 0 0 0 0 0 0 0 0 16 0 0
 0 0 0 0 0 0 0 0 0 16 0
 0 0 0 0 0 0 0 0 0 0 16

D-Optimal Designs

10-23

The augmented design is orthogonal, since X'*X is a multiple of the identity
matrix. In fact, this design is the same as a 24 factorial design.

Designing Experiments with Uncontrolled Inputs
Sometimes it is impossible to control every experimental input. But you might
know the values of some inputs in advance. An example is the time each run
takes place. If a process is experiencing linear drift, you might want to include
the time of each test run as a variable in the model.

The function dcovary enables you to choose the settings for each run in order
to maximize your information despite a linear drift in the process.

Suppose you want to execute an eight-run experiment with three factors that
is optimal with respect to a linear drift in the response over time. First you
create the drift input variable. Note that drift is normalized to have mean
zero. Its minimum is -1 and its maximum is 1.

drift = (linspace(-1,1,8))'
drift =

 -1.0000
 -0.7143
 -0.4286
 -0.1429
 0.1429
 0.4286
 0.7143
 1.0000

settings = dcovary(3,drift,'linear')
settings =

 1.0000 1.0000 -1.0000 -1.0000
 -1.0000 -1.0000 -1.0000 -0.7143
 -1.0000 1.0000 1.0000 -0.4286
 1.0000 -1.0000 1.0000 -0.1429
 -1.0000 1.0000 -1.0000 0.1429
 1.0000 1.0000 1.0000 0.4286
 -1.0000 -1.0000 1.0000 0.7143
 1.0000 -1.0000 -1.0000 1.0000

10 Design of Experiments

10-24

Controlling Candidate Points
The rowexch function generates a candidate set of possible design points, and
then uses a D-optimal algorithm to select a design from those points. It does
this by invoking the candgen and candexch functions. If you need to supply
your own candidate set, or if you need to modify the one that the candgen
function provides, you might prefer to call these functions separately.

This example creates a design that represents proportions of a mixture, so the
sum of the proportions cannot exceed 1.

% Generate a matrix of (x,y) values with x+y<=1
[x,y]=meshgrid(0:.1:1);
xy = [x(:) y(:)];
xy = xy(sum(xy,2)<=1,:);

% Compute quadratic model terms for these points.
f = x2fx(xy,'q');

% Generate a 10-point design and display it
r=candexch(f,10);
xy(r,:)
ans =
 0 0
 0 1.0000
 1.0000 0
 0 0.5000
 0.5000 0
 0 1.0000
 1.0000 0
 0.5000 0.5000
 0.5000 0
 0.5000 0.5000

Including Categorical Factors
Another example where it is useful to call candexch directly is to generate a
design that includes categorical factors. For these designs you create a
candidate set containing dummy variables for the categorical factors. The
dummyvar function is useful to create such a candidate set.

D-Optimal Designs

10-25

This example contains three categorical factors, each taking three levels. You
create a candidate set F containing all 27 combinations of these factor levels.
Then you create a matrix C containing dummy variables for the factors, and
remove enough columns to make the resulting matrix full rank. (You remove
one column for each factor except the first factor.) Finally, you use the
candexch function to generate a nine-run design.

F = fullfact([3 3 3]);
C = dummyvar(F);
C(:,[4 7]) = [];
rows = candexch(C,9);
D = F(rows,:)
D =
 3 1 3
 1 3 2
 3 3 1
 1 2 3
 2 2 1
 2 1 2
 3 2 2
 2 3 3
 1 1 1

In this example, the resulting design has the property that for each pair of
factors, each of the nine possible combinations of levels appears exactly once.
That is not always true of D-optimal designs. In fact, because of some
randomness built into the candexch function, repeated runs of this example
might give different designs.

10 Design of Experiments

10-26

11

Hidden Markov Models

Introduction (p. 11-2) Introduces the concept of a hidden Markov model.

Example of a Hidden Markov Model
(p. 11-4)

Gives an example of a hidden Markov model.

Markov Chains (p. 11-6) Provides a definition of Markov chains.

Analyzing a Hidden Markov Model
(p. 11-8)

Shows how to use Statistics Toolbox functions to analyze
a hidden Markov model.

11 Hidden Markov Models

11-2

Introduction
Markov models are mathematical models of stochastic processes — processes
that generate random sequences of outcomes according to certain probabilities.
A simple example of a stochastic process is a sequence of coin tosses, the
outcomes being heads or tails. People use Markov models to analyze a wide
variety of stochastic processes, from daily stock prices to the positions of genes
in a chromosome.

You can construct Markov models very easily using state diagrams, such as the
one shown in this figure.

A State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you
are trying to model, and the arrows represent transitions between states. The
label on each arrow represents the probability of that transition, which
depends on the process you are modeling. At each step of the process, the model
generates an output, or emission, depending on which state it is in, and then
makes a transition to another state.

For example, if you are modeling a sequence of coin tosses, the two states are
heads and tails. The most recent coin toss determines the current state of the
model and each subsequent toss determines the transition to the next state. If
the coin is fair, the transition probabilities are all 1/2. In this simple example,
the emission at any moment in time is simply the current state. However, in
more complicated models, the states themselves can contain random processes
that affect their emissions. For example, after each flip of the coin, you could
roll a die to determine the emission at that step.

Introduction

11-3

A hidden Markov model is one in which you observe a sequence of emissions,
but you do not know the sequence of states the model went through to generate
the emissions. In this case, your goal is to recover the state information from
the observed data. The next section, “Example of a Hidden Markov Model” on
page 11-4, provides an example.

The Statistics Toolbox includes five functions for analyzing hidden Markov
models:

• hmmdecode — Calculates the posterior state probabilities of a sequence

• hmmgenerate — Generates a sequence for a hidden Markov model

• hmmestimate — Estimates the parameters for a Markov model

• hmmtrain — Calculates the maximum likelihood estimate of hidden Markov
model parameters

• hmmviterbi — Calculates the most likely state path for a hidden Markov
model sequence

“Analyzing a Hidden Markov Model” on page 11-8 explains how to use these
functions in detail.

11 Hidden Markov Models

11-4

Example of a Hidden Markov Model
This section describes a simple example of a Markov model in which there are
two states and six possible emissions. The example uses the following objects:

• A red die, having six sides, labeled 1 through 6.

• A green die, having twelve sides, five of which are labeled 2 through 6, while
the remaining seven sides are labeled 1.

• A weighted red coin, for which the probability of heads is .9 and the
probability of tails is .1.

• A weighted green coin, for which the probability of heads is .95 and the
probability of tails is .05.

You create a sequence of numbers from the set {1, 2, 3, 4, 5, 6} using the
following rules:

• Begin by rolling the red die and writing down the number that comes up,
which is the emission.

• Toss the red coin and do one of the following:

- If the result is heads, roll the red die and write down the result.

- If the result is tails, roll the green die and write down the result.

• At each subsequent step, you flip the coin that has the same color as the die
you rolled in the previous step. If the coin comes up heads, roll the same die
as in the previous step. If the coin comes up tails, switch to the other die.

You can model this example with a state diagram that has two states, red and
green, as shown in the following figure.

Example of a Hidden Markov Model

11-5

You determine the emission from a state by rolling the die with the same color
as the state, and the transition to the next state by flipping the coin with the
same color as the state.

So far, the model is not hidden, because you know the sequence of states from
the colors of the coins and dice. But, suppose that someone else is generating
the emissions without showing you the dice or coins. All you can see is the
sequence of numbers. If you start seeing more 1s than other numbers, you
might suspect that the model is in the green state, but you cannot be sure
because you cannot see the color of the die being rolled. This is an example of a
hidden Markov model: you can observe the sequence of emissions, but you do
not know what state the model is in — that is, what color die is being rolled —
when the emission occurs.

Not knowing the state the model is in raises the following problems:

• Given a sequence, what is the most likely state path?

• How can you estimate the parameters of the model given the state path?

• How can you estimate the parameters of the model without knowing the
state path?

• What is the probability that the model generates a given sequence? This is
known as the forward probability.

• What is the probability that the model is in a particular state at any point in
the sequence? This is the posterior probability.

11 Hidden Markov Models

11-6

Markov Chains
This section defines Markov chains, which are the mathematical descriptions
of Markov models. A Markov chain contains the following elements:

• A set of states {1, 2, ..., M}

• An M-by-M transition matrix T whose i, j entry is the probability of a
transition from state i to state j. The matrix corresponds to a state diagram
like the one shown in the Figure , A State Diagram for a Markov Model, on
page 11-2. The sum of the entries in each row of T must be 1, because this is
the sum of the probabilities of making a transition from a given state to each
of the other states.

• A set of possible outputs, or emissions, {s1, s2, ... , sN}. By default, the set of
emissions is {1, 2, ... , N}, where N is the number of possible emissions, but
you can choose a different set of numbers or symbols.

• An M-by-N emission matrix E whose i,k entry gives the probability of
emitting symbol sk given that the model is in state i.

When the model is in state i1, it emits an output with probability . The
model then makes a transition to state i2 with probability , and emits
another symbol.

You can represent the example in “Example of a Hidden Markov Model” on
page 11-4 by a Markov chain with two states, red and green. You determine
transitions between states by flipping the coins. The transition matrix is

You determine emissions by rolling the dice. The emissions matrix is

“Analyzing a Hidden Markov Model” on page 11-8 shows how to analyze this
model using functions in the Statistics Toolbox.

sk1
Ei1k1

Ti1i2

T 0.9 0.1
0.05 0.95

=

E

1
6
--- 1

6
--- 1

6
--- 1

6
--- 1

6
--- 1

6

7
12
------ 1

12
------ 1

12
------ 1

12
------ 1

12
------ 1

12

=

Markov Chains

11-7

How the Toolbox Generates Random Sequences
The hidden Markov model functions in the Statistics Toolbox generate random
sequences using the transition matrix, T, and the emission matrix, E, as
described in the preceding section. The functions always begin with the model
in the initial state, i0 = 1, at step 0. The model then makes a transition to state
i1 with probability , and emits an output with probability .
Consequently, the probability of observing the sequence of states and
the sequence of emissions in the first r steps, is

Note that if the function returns a generated sequence of states, the first state
in the sequence is i1: the initial state, i0, is not included.

In this implementation, the initial state is 1 with probability 1, and all other
states have probability 0 of being the initial state. At times, you might want to
change the probabilities of the initial states. You can do so by adding a new
artificial state 1 that has transitions to the other states with any probabilities
you want, but that never occurs after step 0. See “Changing the Probabilities
of the Initial States” on page 11-13 to learn how to do this.

T1i1
sk1

Ei1k1
i1i2…ir

sk1
sk2

…skr

T1i1
E

i1k1
Ti1i2

Ei2k2
…Tir 1– ir

Eirkr

11 Hidden Markov Models

11-8

Analyzing a Hidden Markov Model
This section explains how to use functions in the Statistics Toolbox to analyze
hidden Markov models. For illustration, the section uses the example described
in “Example of a Hidden Markov Model” on page 11-4. The section shows how
to recover information about the model, assuming that you do not know some
of the model’s parameters. The section covers the following topics:

• “Setting Up the Model and Generating Data” on page 11-8

• “Computing the Most Likely Sequence of States” on page 11-9

• “Estimating the Transition and Emission Matrices” on page 11-9

• “Changing the Probabilities of the Initial States” on page 11-13

• “Example: Changing the Initial Probabilities” on page 11-14

Setting Up the Model and Generating Data
This section shows how to set up a hidden Markov model and use it to generate
data. First, create the transition and emission matrices by entering the
following commands.

TRANS = [.9 .1; .05 .95;];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

Next, generate a random sequence of emissions from the model, seq, of length
1000, using the function hmmgenerate. You can also return the corresponding
random sequence of states in the model as the second output, states.

[seq, states] = hmmgenerate(1000, TRANS, EMIS);

Note In generating the sequences seq and states, hmmgenerate begins with
the model in state i0 = 1 at step 0. The model then makes a transition to state
i1 at step 1, and returns i1 as the first entry in states.

Analyzing a Hidden Markov Model

11-9

Computing the Most Likely Sequence of States
Suppose you know the transition and emission matrices, TRANS and EMIS. If you
observe a sequence, seq, of emissions, how can you compute the most likely
sequence of states that generated the sequence? The function hmmviterbi uses
the Viterbi algorithm to compute the most likely sequence of states that the
model would go through to generate the given sequence of emissions.

likelystates = hmmviterbi(seq, TRANS, EMIS);

likelystates is a sequence of the same length as seq.

To test the accuracy of hmmviterbi, you can compute the percentage of the time
that the actual sequence states agrees with the sequence likelystates.

sum(states==likelystates)/1000

ans =

0.8200

This shows that the most likely sequence of states agrees with the actual
sequence 82% of the time. Note that your results might differ if you run the
same commands, because the sequence seq is random.

Note The states at the beginning of the sequence returned by hmmviterbi
are less reliable because of the computational delay in the Viterbi algorithm.

Estimating the Transition and Emission Matrices
Suppose you do not know the transition and emission matrices in the model,
and you observe a sequence of emissions, seq. There are two functions that you
can use to estimate the matrices:

• hmmestimate
• hmmtrain

Using hmmestimate
To use hmmestimate, you also need to know the corresponding sequence of
states that the model went through to generate seq. The following command

11 Hidden Markov Models

11-10

takes the emission and state sequences, seq and states, and returns estimates
of the transition and emission matrices, TRANS_EST and EMIS_EST.

[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)

TRANS_EST =

0.8989 0.1011
0.0585 0.9415

EMIS_EST =

0.1721 0.1721 0.1749 0.1612 0.1803 0.1393
0.5836 0.0741 0.0804 0.0789 0.0726 0.1104

You can compare these outputs with the original transition and emission
matrices, TRANS and EMIS, to see how well hmmestimate estimates them.

TRANS

TRANS =

0.9000 0.1000
0.0500 0.9500

EMIS

EMIS =

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.5833 0.0833 0.0833 0.0833 0.0833 0.0833

Using hmmtrain
If you do not know the sequence of states, but you have an initial guess as to
the values of TRANS and EMIS, you can estimate the transition and emission
matrices using the function hmmtrain. For example, suppose you have the
following initial guesses for TRANS and EMIS.

TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 .08 .08 .08 .08 08];

Analyzing a Hidden Markov Model

11-11

You can estimate TRANS and EMIS with the following command.

[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)

TRANS_EST2 =

0.2286 0.7714
0.0032 0.9968

EMIS_EST2 =

0.1436 0.2348 0.1837 0.1963 0.2350 0.0066
0.4355 0.1089 0.1144 0.1082 0.1109 0.1220

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS and
EMIS_GUESS so that at each step the adjusted matrices are more likely to
generate the observed sequence, seq. The algorithm halts when the matrices
in two successive iterations are within a small tolerance of each other. See the
reference page for hmmtrain for more information about the tolerance.

If the algorithm fails to reach this tolerance within a maximum number of
iterations, whose default value is 100, the algorithm halts. In this case,
hmmtrain returns the last values of TRANS_EST and EMIS_EST and issues a
warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, you can increase the
default value of the maximum number of iterations with the command

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'maxiterations', maxiter)

where maxiter is the maximum number of steps the algorithm executes.

You can also change default value of the tolerance with the command

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)

where tol is the desired value of the tolerance. Increasing the value of tol
makes the algorithm halt sooner, but the results are less accurate.

Note If the sequence seq is long, the hmmtrain algorithm might take a long
time to run. If so, you might want to lower the maximum number of iterations
temporarily at first to find out how much time the algorithm requires.

11 Hidden Markov Models

11-12

There are two factors that can make the output matrices of hmmtrain less
reliable:

• The algorithm might converge to a local maximum that does not represent
the true transition and emission matrices. If you suspect that this is the case,
try different initial guesses for the matrices TRANS_EST and EMIS_EST.

• The sequence seq might be too short to properly train the matrices. If you
suspect this is the case, try using a longer sequence for seq.

Calculating Posterior State Probabilities
The posterior state probabilities of an emission sequence seq are the
conditional probabilities that the model is in a particular state when it
generates a symbol in seq, given that seq is emitted. You can compute the
posterior state probabilities with the following command:

PSTATES = hmmdecode(seq, TRANS, EMIS)

The output PSTATES is an M-by-L matrix, where M is the number of states and
L is the length of seq. PSTATES(i,j) is the conditional probability that the
model is in state i when it generates the jth symbol of seq, given that seq is
emitted.

Note The function hmmdecode begins with the model in state 1 at step 0, prior
to the first emission. PSTATES(i,1) is the probability that the model is in state
i at the following step 1.

You can also return the logarithm of the probability of the sequence seq as the
second output argument.

[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS)

The actual probability of a sequence tends to 0 rapidly as the length of the
sequence increases, so the probability of a sufficiently long sequence is less
than the smallest positive number your computer can represent. Consequently,
hmmdecode returns the logarithm of the probability instead.

Analyzing a Hidden Markov Model

11-13

For example, the following code returns the logarithm probability of the
one-element sequence [3].

[PSTATES, logpseq] = hmmdecode([3], TRANS, EMIS);
exp(logpseq)

ans =

0.1583

Note that you can compute this answer directly as

by the commands

TRANS(1,:)*EMIS(:,3)

ans =

0.1583

Changing the Probabilities of the Initial States
By default, the hidden Markov model functions begin with the model in state 1
at step 0. In other words, with probability 1, the initial state is 1, and all other
states have probability 0 of being the initial state. See “How the Toolbox
Generates Random Sequences” on page 11-7.

For some models, you might want to assign different probabilities to the initial
states. For example, you might want to choose initial state probabilities from a
probability vector p satisfying pT = p. This assignment makes the Markov
chain time independent: the probability of observing a given output at a
specified step of the sequence is independent of the step number. This section
explains how to assign any vector of probabilities for the initial states in your
model.

T1jEj3

j 1=

6

∑

11 Hidden Markov Models

11-14

To assign a vector of probabilities, p = [p1, p2, ..., pM], to the initial states, do
the following:

1 Create an M+1-by-M+1 augmented transition matrix, , that has the
following form:

where T is the true transition matrix. The first column of contains M+1
zeros.

2 Create an M+1-by-N augmented emission matrix, , that has the following
form:

If the transition and emission matrices are TRANS and EMIS, respectively, you
can create the augmented matrices with the following commands:

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS];

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];

Example: Changing the Initial Probabilities
For example, suppose that you have the following transition and emission
matrices.

TRANS = [.9 .1; .05 .95;];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

You want to assign the states initial probabilities that are given by a left
eigenvector, p, for TRANS, corresponding to the maximum eigenvalue 1. These
initial probabilities make the Markov model time independent: the probability
of observing a given emission is the same at each step of the output sequence.

T̂

T̂ 0 p
0 T

=

T̂

Ê

T̂ 0
E

=

Analyzing a Hidden Markov Model

11-15

To find the vector p, enter the following commands.

[V,D] = eigs(TRANS')

V =

-0.4472 -0.7071
-0.8944 0.7071

D =

1.0000 0
0 0.8500

The first column of V is the right eigenvector for TRANS' corresponding to
eigenvalue 1. So the transpose of this vector is a left eigenvector for TRANS. You
can create this vector as follows.

p = V(:, 1)'

p =

-0.4472 -0.8944

p*TRANS

ans =

-0.4472 -0.8944

This is not yet a probability vector, so divide p by its sum.

p = p/sum(p)

p =

0.3333 0.6667

Next, create the augmented matrices TRANS_HAT and EMIS_HAT.

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS]

TRANS_HAT =

0 0.3333 0.6667
0 0.9000 0.1000
0 0.0500 0.9500

11 Hidden Markov Models

11-16

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS]

EMIS_HAT =

0 0 0 0 0 0
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.5833 0.0833 0.0833 0.0833 0.0833 0.0833

This assignment of probabilities makes the Markov model time independent.
For example, you can calculate the probability of seeing symbol 3 at step 1 of
an emission sequence using the function hmmdecode as follows.

[pStates, logp]=hmmdecode([3],TRANS_HAT,EMIS_HAT);

exp(logp)

ans =
0.1111

Note that the second output argument, logp, is the logarithm of the probability
of the sequence [3].

On the other hand, the probability of seeing symbol 3 at step 2 is the sum of the
probabilities of the sequences [1 3], [2 3]. [3 3], [4 3], [5 3], and [6 3].

sum = 0;
for n = 1:6

[pStates, logp] = hmmdecode([n 3],TRANS_HAT,EMIS_HAT);
sum = sum + exp(logp);

end;
sum

sum =
0.1111

References
To learn more about hidden Markov models and their applications, see the
following reference.

Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis,
Cambridge Univ. Press, 1998.

12

Reference

This chapter contains detailed descriptions of all the Statistics Toolbox
functions. It is divided into two sections:

• “Functions — By Category” on page 12-2, a list of functions grouped by
subject area.

• “Functions — Alphabetical List” on page 12-22, detailed function
descriptions in alphabetical order.

Functions — By Category (p. 12-2) Brief descriptions of the Statistics Toolbox functions organized
by category

Functions — Alphabetical List
(p. 12-22)

Reference pages for the Statistics Toolbox functions in
alphabetical order

12 Reference

12-2

Functions — By Category
The Statistics Toolbox provides several categories of functions.

Probability Distributions
For each supported distribution, the Statistics Toolbox provides associated
functions in each of these categories

Probability Distributions Specific functions for each supported
distribution

Descriptive Statistics Descriptive statistics for data samples

Statistical Plotting Statistical plots

Statistical Process Control Statistical Process Control

Linear Models Fitting linear models to data

Nonlinear Regression Fitting nonlinear regression models

Design of Experiments Design of Experiments

Multivariate Statistics Multivariate statistics

Decision Tree Techniques Decision trees

Hypothesis Tests Statistical tests of hypotheses

Distribution Testing Tests for fitting distributions to data

Nonparametric Testing Nonparametric testing

Hidden Markov Models Finding hidden Markov models

File I/O Reading data from and writing data to
operating-system files

Demonstrations Demonstrations

Data Data for examples

Utility Utility functions

Parameter Estimation

Cumulative Distribution Functions (cdf)

Functions — By Category

12-3

Probability Density Functions (pdf)

Inverse Cumulative Distribution Functions

Random Number Generators

Moments of Distribution Functions

12 Reference

12-4

Parameter Estimation

Cumulative Distribution Functions (cdf)

betafit Parameter estimation for the beta distribution

betalike Negative beta log-likelihood function

binofit Parameter estimation for the binomial distribution

evfit Parameter estimation for the extreme value distribution

evlike Negative log-likelihood for the extreme value distribution

expfit Parameter estimation for the exponential distribution

explike Negative log-likelihood for the exponential distribution

gamfit Parameter estimation for the gamma distribution

gamlike Negative gamma log-likelihood function

lognfit Parameter estimation for the lognormal distribution

lognlike Negative log-likelihood for the lognormal distribution

mle Maximum likelihood estimation

nbinfit Parameter estimates and confidence intervals for negative
binomial data

normfit Parameter estimation for the normal distribution

normlike Negative normal log-likelihood function

poissfit Parameter estimation for the Poisson distribution

raylfit Rayleigh parameter estimation

unifit Parameter estimation for the uniform distribution

wblfit Weibull parameter estimation

wbllike Weibull negative log-likelihood function

betacdf Beta cdf

binocdf Binomial cdf

cdf Parameterized cdf routine

Functions — By Category

12-5

chi2cdf Chi-square cdf

ecdf Empirical (Kaplan-Meier) cdf

evcdf Extreme value cdf

expcdf Exponential cdf

fcdf F cdf

gamcdf Gamma cdf

geocdf Geometric cdf

hygecdf Hypergeometric cdf

logncdf Lognormal cdf

nbincdf Negative binomial cdf

ncfcdf Noncentral F cdf

nctcdf Noncentral t cdf

ncx2cdf Noncentral Chi-square cdf

normcdf Normal (Gaussian) cdf

poisscdf Poisson cdf

raylcdf Rayleigh cdf

tcdf Student’s t cdf

unidcdf Discrete uniform cdf

unifcdf Continuous uniform cdf

wblcdf Weibull cdf

12 Reference

12-6

Probability Density Functions (pdf)

betapdf Beta pdf

binopdf Binomial pdf

chi2pdf Chi-square pdf

evpdf Extreme value pdf

exppdf Exponential pdf

fpdf F pdf

gampdf Gamma pdf

geopdf Geometric pdf

hygepdf Hypergeometric pdf

lognpdf Lognormal pdf

mvnpdf Multivariate normal pdf

nbinpdf Negative binomial pdf

ncfpdf Noncentral F pdf

nctpdf Noncentral t pdf

ncx2pdf Noncentral Chi-square pdf

normpdf Normal (Gaussian) pdf

pdf Parameterized pdf routine

poisspdf Poisson pdf

raylpdf Rayleigh pdf

tpdf Student’s t pdf

unidpdf Discrete uniform pdf

unifpdf Continuous uniform pdf

wblpdf Weibull pdf

Functions — By Category

12-7

Inverse Cumulative Distribution Functions

Random Number Generators

betainv Beta critical values

binoinv Binomial critical values

chi2inv Chi-square critical values

evinv Extreme value critical values

expinv Exponential critical values

finv F critical values

gaminv Gamma critical values

geoinv Geometric critical values

hygeinv Hypergeometric critical values

icdf Parameterized inverse distribution routine

logninv Lognormal critical values

nbininv Negative binomial critical values

ncfinv Noncentral F critical values

nctinv Noncentral t critical values

ncx2inv Noncentral Chi-square critical values

norminv Normal (Gaussian) critical values

poissinv Poisson critical values

raylinv Rayleigh critical values

tinv Student’s t critical values

unidinv Discrete uniform critical values

unifinv Continuous uniform critical values

wblinv Weibull critical values

betarnd Beta random numbers

binornd Binomial random numbers

12 Reference

12-8

chi2rnd Chi-square random numbers

evrnd Extreme value random numbers

exprnd Exponential random numbers

frnd F random numbers

gamrnd Gamma random numbers

geornd Geometric random numbers

hygernd Hypergeometric random numbers

iwishrnd Inverse Wishart random matrix

lhsdesign Latin hypercube sample

lhsnorm Latin hypercube sample with normal distribution

lognrnd Lognormal random numbers

mvnrnd Multivariate normal random numbers

mvtrnd Multivariate t random numbers

nbinrnd Negative binomial random numbers

ncfrnd Noncentral F random numbers

nctrnd Noncentral t random numbers

ncx2rnd Noncentral Chi-square random numbers

normrnd Normal (Gaussian) random numbers

poissrnd Poisson random numbers

random Parameterized random number routine

randsample Random sample, with or without replacement

raylrnd Rayleigh random numbers

trnd Student’s t random numbers

unidrnd Discrete uniform random numbers

unifrnd Continuous uniform random numbers

Functions — By Category

12-9

wblrnd Weibull random numbers

wishrnd Wishart random matrix

12 Reference

12-10

Moments of Distribution Functions

Descriptive Statistics

betastat Beta mean and variance

binostat Binomial mean and variance

chi2stat Chi-square mean and variance

evstat Extreme value mean and variance

expstat Exponential mean and variance

fstat F mean and variance

gamstat Gamma mean and variance

geostat Geometric mean and variance

hygestat Hypergeometric mean and variance

lognstat Lognormal mean and variance

nbinstat Negative binomial mean and variance

ncfstat Noncentral F mean and variance

nctstat Noncentral t mean and variance

ncx2stat Noncentral Chi-square mean and variance

normstat Normal (Gaussian) mean and variance

poisstat Poisson mean and variance

raylstat Rayleigh mean and variance

tstat Student’s t mean and variance

unidstat Discrete uniform mean and variance

unifstat Continuous uniform mean and variance

wblstat Weibull mean and variance

bootstrp Bootstrap statistics for any function

corrcoef Correlation coefficients (in MATLAB)

Functions — By Category

12-11

cov Covariance matrix (in MATLAB)

crosstab Cross tabulation

geomean Geometric mean

grpstats Summary statistics by group

harmmean Harmonic mean

iqr Interquartile range

kurtosis Sample kurtosis

mad Mean absolute deviation

mean Arithmetic average (in MATLAB)

median 50th percentile (in MATLAB)

moment Central moments of all orders

nanmax Maximum ignoring missing data

nanmean Average ignoring missing data

nanmedian Median ignoring missing data

nanmin Minimum ignoring missing data

nanstd Standard deviation ignoring missing data

nansum Sum ignoring missing data

prctile Empirical percentiles of a sample

range Sample range

skewness Sample skewness

std Standard deviation (in MATLAB)

tabulate Frequency table

trimmean Trimmed mean

var Variance

12 Reference

12-12

Statistical Plotting

Statistical Process Control

addedvarplot Added-variable plot for stepwise regression

boxplot Box plots

cdfplot Plot of empirical cumulative distribution function

ecdfhist Histogram from ecdf output

errorbar Error bar plot

fsurfht Interactive contour plot of a function

gline Interactive line drawing

gname Interactive point labeling

gplotmatrix Matrix of scatter plots grouped by a common variable

gscatter Scatter plot of two variables grouped by a third

lsline Add least-squares fit line to plotted data

normplot Normal probability plots

pareto Pareto charts

qqplot Quantile-Quantile plots

rcoplot Regression case order plot

refcurve Reference polynomial

refline Reference line

surfht Interactive interpolating contour plot

wblplot Weibull plotting

capable Quality capability indices

capaplot Plot of process capability

ewmaplot Exponentially weighted moving average plot

histfit Histogram and normal density curve

Functions — By Category

12-13

normspec Plot normal density between limits

schart Time plot of standard deviation

xbarplot Time plot of means

12 Reference

12-14

Linear Models
anova1 One-way Analysis of Variance (ANOVA)

anova2 Two-way Analysis of Variance

anovan N-way analysis of variance

aoctool Interactive tool for analysis of covariance

dummyvar Dummy-variable coding

friedman Friedman's test (nonparametric two-way ANOVA)

glmfit Generalized linear model fitting

glmval Compute predictions for generalized linear model

kruskalwallis Kruskal-Wallis test (nonparametric one-way ANOVA)

leverage Regression diagnostic

lscov Regression given a covariance matrix (in MATLAB)

manova1 One-way multivariate analysis of variance

manovacluster Draw clusters of group means for manova1

multcompare Multiple comparisons of means and other estimates

polyconf Polynomial prediction with confidence intervals

polyfit Polynomial fitting (in MATLAB)

polyval Polynomial prediction (in MATLAB)

rcoplot Residuals case order plot

regress Multiple linear regression

regstats Regression diagnostics for linear models

ridge Ridge regression

rstool Response surface tool

robustfit Robust regression model fitting

rstool Multidimensional response surface visualization (RSM)

stepwise Stepwise regression GUI

Functions — By Category

12-15

Nonlinear Regression

Design of Experiments

stepwisefit Fit regression model using stepwise regression

x2fx Factor settings matrix (X) to design matrix (D)

nlinfit Nonlinear least-squares fitting

nlintool Prediction graph for nonlinear fits

nlparci Confidence intervals on parameters

nlpredci Confidence intervals for prediction

lsqnonneg Nonnegative least squares (in MATLAB)

treefit Fit a tree-based model for classification or regression.

treeprune Produce a sequence of subtrees by pruning.

treedisp Show classification or regression tree graphically.

treetest Compute error rate for tree.

treeval Compute fitted value for decision tree applied to data.

bbdesign Box-Behnken design

candgen Candidate set for D-optimal design

candexch D-optimal design from candidate set using row exchanges

ccdesign Central composite design

cordexch D-optimal design using coordinate exchange

daugment D-optimal augmentation of designs

dcovary D-optimal design with fixed covariates

ff2n Two-level full factorial designs

fracfact Two-level fractional factorial design

fullfact Mixed level full factorial designs

12 Reference

12-16

hadamard Hadamard designs (in MATLAB)

rowexch D-optimal design using row exchange

Functions — By Category

12-17

Multivariate Statistics

Cluster Analysis

Dimension Reduction Techniques

Other Multivariate Methods

cluster Create clusters from linkage output

clusterdata Create clusters from a data set

cophenet Calculate the cophenetic correlation coefficient

dendrogram Plot a hierarchical tree in a dendrogram graph

inconsistent Calculate the inconsistency values of objects in a cluster
hierarchy tree

kmeans K-means clustering

linkage Link objects in a dataset into a hierarchical tree of binary
clusters

pdist Calculate the pairwise distance between objects in a
dataset

silhouette Silhouette plot for clustered data

squareform Reformat output of pdist function from vector to square
matrix

factoran Maximum Likelihood Common Factor Analysis

pcacov PCA from covariance matrix

pcares Residuals from PCA

princomp PCA from raw data matrix

barttest Bartlett’s test

canoncorr Canonical correlation analysis

classify Discriminant Analysis

cmdscale Classical multidimensional scaling

12 Reference

12-18

mahal Mahalanobis distance

manova1 One-way multivariate analysis of variance

manovacluster Draw clusters of group means for manova1

procrustes Procrustes Analysis

zscore Normalize a dataset before calculating the distance

Functions — By Category

12-19

Decision Tree Techniques

Hypothesis Tests

Distribution Testing

Nonparametric Testing

treefit Fit a tree-based model for classification or regression.

treeprune Produce a sequence of subtrees by pruning.

treedisp Show classification or regression tree graphically.

treetest Compute error rate for tree.

treeval Compute fitted value for decision tree applied to data.

ranksum Wilcoxon rank sum test

signrank Wilcoxon signed rank test

signtest Sign test for paired samples

ttest One sample t-test

ttest2 Two sample t-test

ztest Z-test

jbtest Jarque-Bera test of normality

kstest Kolmogorov-Smirnov test for one sample

kstest2 Kolmogorov-Smirnov test for two samples

lillietest Lilliefors test of normality

friedman Friedman's test (nonparametric two-way anova)

kruskalwallis Kruskal-Wallis test (nonparametric one-way anova)

ksdensity Probability density estimate using a kernel smoothing
method

ranksum Wilcoxon rank sum test (independent samples)

12 Reference

12-20

Hidden Markov Models

File I/O

Demonstrations
To run glmdemo from the command line, type playshow glmdemo. You can run
all other demos by typing the demo name as a command.

signrank Wilcoxon sign rank test (paired samples)

signtest Sign test (paired samples)

hmmdecode Calculate the posterior state probabilities of a sequence

hmmestimate Estimate the parameters for a hidden Markov model

hmmgenerate Generate a sequence for a hidden Markov model

hmmtrain Calculate the maximum likelihood estimate of hidden
Markov model parameters

hmmviterbi Calculate the most probable state path for a hidden
Markov model sequence

caseread Read case names from a file

casewrite Write casenames from a string matrix to a file

tblread Retrieve tabular data from the file system

tblwrite Write data in tabular form to the file system

tdfread Read in text and numeric data from tab-delimited file

aoctool Interactive tool for analysis of covariance

disttool Interactive exploration of distribution functions

glmdemo Generalized linear model slide show.

randtool Interactive random number generation

polytool Interactive fitting of polynomial models

Functions — By Category

12-21

Data

Utility

rsmdemo Interactive process experimentation and analysis

robustdemo Interactive tool to compare robust and least squares fits

carbig.mat Measurements on 406 car models

carsmall.mat Measurements on 100 car models from 1970, 1976, and
1982

census.mat U. S. Population 1790 to 1980

cities.mat Names of U.S. metropolitan areas

discrim.mat Classification data

gas.mat Gasoline prices

hald.mat Hald data

hogg.mat Bacteria counts from milk shipments

lawdata.mat GPA versus LSAT for 15 law schools

mileage.mat Mileage data for three car models from two factories

moore.mat Five factor – one response regression data

parts.mat Dimensional run out on 36 circular parts

popcorn.mat Data for popcorn example (anova2, friedman)

polydata.mat Data for polytool demo

reaction.mat Reaction kinetics data

sat.dat ASCII data for tblread example

statget Get parameter values from a statistics options structure

statset Create or edit a statistics options structure

12 Reference

12-22

Functions — Alphabetical List 12

This section contains function reference pages listed alphabetically. The
reference pages contain detailed descriptions of the Statistics Toolbox
functions.

addedvarplot

12-23

12addedvarplotPurpose Create added-variable plot for stepwise regression

Syntax addedvarplot(X, y, vnum, inmodel)

Description addedvarplot(X, y, vnum, inmodel) produces an added variable plot for the
response y and the predictor in column vnum of X. This plot illustrates the
incremental affect of this predictor in a regression model in which the columns
listed in the vector inmodel are used as predictors. X is an n-by-p matrix of
predictor values. y is vector of n response values. vnum is a scalar index
specifying the column of X to use in the plot. inmodel is a logical vector of p
elements specifying the columns of X to use in the base model. By default, all
elements of inmodel are false, which means that the model has no predictors.
You can call the function stepwisefit, which produces a regression model
using stepwise regression, to create the vector inmodel.

addedvarplot(X, y, vnum, inmodel, stats) uses the structure stats, which
contains fitted model results created by the stepwisefit function. If you create
the structure stats by calling stepwisefit, prior to calling addedvarplot, you
can save computational time by including the argument stats in
addedvarplot.

An added variable plot contains data and fitted lines. If X1 is column vnum of X,
the data curve plots y versus X1 after removing the effects of the other
predictors specified by the vector inmodel. The solid line is a least squares fit
to the data curve, and its slope is the coefficient that X1 would have if it were
included in the model. The dotted lines are 95% confidence bounds for the fitted
line, which you can use to judge the significance of X1.

Example The following code performs a stepwise regression on the Hald data, and
creates an added variable plot for the predictor in column 2.

load hald
[b,se,p,inmodel,stats] = stepwisefit(ingredients,heat);
addedvarplot(ingredients,heat,2,inmodel,stats)

addedvarplot

12-24

See Also stepwisefit

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Added variable plot for X2
Adjusted for X1,X4

X2 residuals

Y
 r

es
id

ua
ls

Adjusted data
Fit: y=0.41611*x
95% conf. bounds

andrewsplot

12-25

12andrewsplotPurpose Andrews plot for multivariate data.

Syntax andrewsplot(X)
andrewsplot(X, ..., 'Standardize', 'on')
andrewsplot(X, ..., 'Standardize', 'PCA')
andrewsplot(X, ..., 'Standardize', 'PCAStd')
andrewsplot(X, ..., 'Quantile', alpha)
andrewsplot(X, ..., 'Group', group)
andrewsplot(X, ..., 'PropertyName', PropertyValue, ...)

Description andrewsplot(X) creates an Andrews plot of the multivariate data in the matrix
X. The rows of X correspond to observations, the columns to variables. An
Andrews plot is a tool for visualizing high-dimensional data, where each
observation is represented by a function, f(t), of a continuous dummy variable,
t, over the interval [0,1]. f(t) is defined for the i-th observation in X as

andrewsplot treats NaNs in X as missing values and ignores the corresponding
rows.

andrewsplot(X, ..., 'Standardize', 'on') scales each column of X to have

mean 0 and standard deviation 1 before making the plot.

andrewsplot(X, ..., 'Standardize', 'PCA') creates an Andrews plot from
the principal component scores of X, in order of decreasing eigenvalue.

andrewsplot(X, ..., 'Standardize', 'PCAStd') creates an Andrews plot
using the standardized principal component scores.

andrewsplot(X, ..., 'Quantile', alpha) plots only the median and the
alpha and (1 - alpha) quantiles of f(t) at each value of t. This is useful if X
contains many observations.

andrewsplot(X, ..., 'Group', group) plots the data in different groups with
different colors. Groups are defined by group, a numeric array containing a
group index for each observation. group can also be a character matrix or a cell
array of strings, containing a group name for each observation.

f t() X i 1,() 2⁄ X i 2,() 2πtsin X i 2,() 2πt …+cos+ +=

andrewsplot

12-26

andrewsplot(X, ..., 'PropertyName', PropertyValue, ...) sets
properties to the specified property values for all line graphics objects created
by andrewsplot.

h = andrewsplot(X, ...) returns a column vector of handles to the line
objects created by andrewsplot, one handle per row of X. If you use the
'Quantile' input parameter, h contains one handle for each of the three lines
objects created. If you use both the 'Quantile' and the 'Group' input
parameters, h contains three handles for each group.

Examples

% make a grouped plot of the raw data
load fisheriris
andrewsplot(meas, 'group',species);

% plot only the median and quartiles of each group
andrewsplot(meas, 'group',species, 'quantile',.25);

See Also parallelcoords, glyphplot

anova1

12-27

12anova1Purpose One-way analysis of variance (ANOVA)

Syntax p = anova1(X)
p = anova1(X,group)
p = anova1(X,group,'displayopt')
[p,table] = anova1(...)
[p,table,stats] = anova1(...)

Description p = anova1(X) performs a balanced one-way ANOVA for comparing the
means of two or more columns of data in the m-by-n matrix X, where each
column represents an independent sample containing m mutually independent
observations. The function returns the p-value for the null hypothesis that all
samples in X are drawn from the same population (or from different
populations with the same mean).

If the p-value is near zero, this casts doubt on the null hypothesis and suggests
that at least one sample mean is significantly different than the other sample
means. The choice of a critical p-value to determine whether the result is
judged “statistically significant” is left to the researcher. It is common to
declare a result significant if the p-value is less than 0.05 or 0.01.

The anova1 function displays two figures. The first figure is the standard
ANOVA table, which divides the variability of the data in X into two parts:

• Variability due to the differences among the column means (variability
between groups)

• Variability due to the differences between the data in each column and the
column mean (variability within groups)

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS) for each source, which is the ratio
SS/df.

• The fifth shows the F statistic, which is the ratio of the MS’s.

anova1

12-28

• The sixth shows the p-value, which is derived from the cdf of F. As F
increases, the p-value decreases.

The second figure displays box plots of each column of X. Large differences in
the center lines of the box plots correspond to large values of F and
correspondingly small p-values.

p = anova1(X,group) uses the values in group (a character array or cell
array) as labels for the box plot of the samples in X, when X is a matrix. Each
row of group contains the label for the data in the corresponding column of X,
so group must have length equal to the number of columns in X.

When X is a vector, anova1 performs a one-way ANOVA on the samples
contained in X, as indexed by input group (a vector, character array, or cell
array). Each element in group identifies the group (i.e., sample) to which the
corresponding element in vector X belongs, so group must have the same length
as X. The labels contained in group are also used to annotate the box plot. The
vector-input form of anova1 does not require equal numbers of observations in
each sample, so it is appropriate for unbalanced data.

It is not necessary to label samples sequentially (1, 2, 3, ...). For example, if X
contains measurements taken at three different temperatures, -27°, 65°, and
110°, you could use these numbers as the sample labels in group. If a row of
group contains an empty cell or empty string, that row and the corresponding
observation in X are disregarded. NaNs in either input are similarly ignored.

p = anova1(X,group,'displayopt') enables the ANOVA table and box plot
displays when 'displayopt' is 'on' (default) and suppresses the displays
when 'displayopt' is 'off'.

[p,table] = anova1(...) returns the ANOVA table (including column and
row labels) in cell array table. (Copy a text version of the ANOVA table to the
clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = anova1(...) returns a stats structure that you can use
to perform a follow-up multiple comparison test. The anova1 test evaluates the
hypothesis that the samples all have the same mean against the alternative
that the means are not all the same. Sometimes it is preferable to perform a
test to determine which pairs of means are significantly different, and which

anova1

12-29

are not. Use the multcompare function to perform such tests by supplying the
stats structure as input.

Assumptions
The ANOVA test makes the following assumptions about the data in X:

• All sample populations are normally distributed.

• All sample populations have equal variance.

• All observations are mutually independent.

The ANOVA test is known to be robust to modest violations of the first two
assumptions.

Examples Example 1
The five columns of X are the constants one through five plus a random normal
disturbance with mean zero and standard deviation one.

X = meshgrid(1:5)

X =

 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5

X = X + normrnd(0,1,5,5)

X =

 -0.0741 2.7782 2.2129 4.0802 5.7902
 1.2018 1.9937 3.7520 3.0627 5.1053
 1.7629 2.5245 2.8331 4.6357 4.8414
 -0.2882 3.3643 2.1838 5.6820 5.8709
 0.0470 2.4820 5.0941 4.5936 4.8052

p = anova1(X)

p =

 4.0889e-007

anova1

12-30

The very small p-value of 6e-5 indicates that differences between the column
means are highly significant. The probability of this outcome under the null
hypothesis (i.e., the probability that samples actually drawn from the same
population would have means differing by the amounts seen in X) is less than
6 in 100,000. The test therefore strongly supports the alternate hypothesis,
that one or more of the samples are drawn from populations with different
means.

Example 2
The following example comes from a study of the material strength of
structural beams in Hogg (1987). The vector strength measures the deflection
of a beam in thousandths of an inch under 3,000 pounds of force. Stronger
beams deflect less. The civil engineer performing the study wanted to
determine whether the strength of steel beams was equal to the strength of two

1 2 3 4 5

0

1

2

3

4

5

6

V
al

ue
s

Column Number

anova1

12-31

more expensive alloys. Steel is coded 'st' in the vector alloy. The other
materials are coded 'al1' and 'al2'.

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

Though alloy is sorted in this example, you do not need to sort the grouping
variable.

p = anova1(strength,alloy)

p =

 1.5264e-004

anova1

12-32

The p-value indicates that the three alloys are significantly different. The box
plot confirms this graphically and shows that the steel beams deflect more than
the more expensive alloys.

References [1] Hogg, R. V., and J. Ledolter, Engineering Statistics. MacMillan, 1987.

See Also anova2, anovan, boxplot, ttest

st al1 al2

74

76

78

80

82

84

86

V
al

ue
s

anova2

12-33

12anova2Purpose Two-way Analysis of Variance (ANOVA)

Syntax p = anova2(X,reps)
p = anova2(X,reps,'displayopt')
[p,table] = anova2(...)
[p,table,stats] = anova2(...)

Description anova2(X,reps) performs a balanced two-way ANOVA for comparing the
means of two or more columns and two or more rows of the observations in X.
The data in different columns represent changes in factor A. The data in
different rows represent changes in factor B. If there is more than one
observation for each combination of factors, input reps indicates the number of
replicates in each “cell,” which much be constant. (For unbalanced designs, use
anovan.)

The matrix below shows the format for a set-up where column factor A has two
levels, row factor B has three levels, and there are two replications (reps=2).
The subscripts indicate row, column, and replicate, respectively.

When reps is 1 (default), anova2 returns two p-values in vector p:

1 The p-value for the null hypothesis, H0A, that all samples from factor A
(i.e., all column-samples in X) are drawn from the same population

2 The p-value for the null hypothesis, H0B, that all samples from factor B
(i.e., all row-samples in X) are drawn from the same population

When reps is greater than 1, anova2 returns a third p-value in vector p:

x111 x121

x112 x122

x211 x221

x212 x222

x311 x321

x312 x322
B = 3

B = 2

B = 1

A
=

1

A
=

2

anova2

12-34

3 The p-value for the null hypothesis, H0AB, that the effects due to factors
A and B are additive (i.e., that there is no interaction between factors
A and B)

If any p-value is near zero, this casts doubt on the associated null hypothesis.
A sufficiently small p-value for H0A suggests that at least one column-sample
mean is significantly different that the other column-sample means; i.e., there
is a main effect due to factor A. A sufficiently small p-value for H0B suggests
that at least one row-sample mean is significantly different than the other
row-sample means; i.e., there is a main effect due to factor B. A sufficiently
small p-value for H0AB suggests that there is an interaction between factors A
and B. The choice of a limit for the p-value to determine whether a result is
“statistically significant” is left to the researcher. It is common to declare a
result significant if the p-value is less than 0.05 or 0.01.

anova2 also displays a figure showing the standard ANOVA table, which
divides the variability of the data in X into three or four parts depending on the
value of reps:

• The variability due to the differences among the column means

• The variability due to the differences among the row means

• The variability due to the interaction between rows and columns (if reps is
greater than its default value of one)

• The remaining variability not explained by any systematic source

The ANOVA table has five columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which is the ratio of the mean squares.

p = anova2(X,reps,'displayopt') enables the ANOVA table display when
'displayopt' is 'on' (default) and suppresses the display when 'displayopt'
is 'off'.

anova2

12-35

[p,table] = anova2(...) returns the ANOVA table (including column and
row labels) in cell array table. (Copy a text version of the ANOVA table to the
clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = anova2(...) returns a stats structure that you can use
to perform a follow-up multiple comparison test.

The anova2 test evaluates the hypothesis that the row, column, and interaction
effects are all the same, against the alternative that they are not all the same.
Sometimes it is preferable to perform a test to determine which pairs of effects
are significantly different, and which are not. Use the multcompare function to
perform such tests by supplying the stats structure as input.

Examples The data below come from a study of popcorn brands and popper type (Hogg
1987). The columns of the matrix popcorn are brands (Gourmet, National, and
Generic). The rows are popper type (Oil and Air.) The study popped a batch of
each brand three times with each popper. The values are the yield in cups of
popped popcorn.

load popcorn

popcorn

popcorn =

 5.5000 4.5000 3.5000
 5.5000 4.5000 4.0000
 6.0000 4.0000 3.0000
 6.5000 5.0000 4.0000
 7.0000 5.5000 5.0000
 7.0000 5.0000 4.5000

p = anova2(popcorn,3)

p =

 0.0000 0.0001 0.7462

anova2

12-36

The vector p shows the p-values for the three brands of popcorn, 0.0000, the
two popper types, 0.0001, and the interaction between brand and popper
type, 0.7462. These values indicate that both popcorn brand and popper type
affect the yield of popcorn, but there is no evidence of a synergistic (interaction)
effect of the two.

The conclusion is that you can get the greatest yield using the Gourmet brand
and an Air popper (the three values popcorn(4:6,1)).

Reference [1] Hogg, R. V. and J. Ledolter, Engineering Statistics. MacMillan, 1987.

See Also anova1, anovan

anovan

12-37

12anovanPurpose N-way analysis of variance (ANOVA)

Syntax p = anovan(x,group)
p = anovan(x,group,'Param1',val1,'Param2',val2,...)
[p,table] = anovan(...)
[p,table,stats] = anovan(...)
[p,table,stats,terms] = anovan(...)

Description p = anovan(X,group) performs a balanced or unbalanced multiway analysis
of variance (ANOVA) for comparing the means of the observations in the
vector X with respect to N different factors. The factors and factor levels of the
observations in X are assigned by the cell array group. Each of the N cells in
group contains a list of factor levels identifying the observations in X with
respect to one of the N factors. The list within each cell can be a vector,
character array, or cell array of strings, and must have the same number of
elements as X. For an example, see “Example of Three-Way ANOVA” on
page 12-41.

P = anovan(x,group,'Param1',val1,'Param2',val2,...) specifies one or
more of the name/value pairs described in the following table.

Parameter
Name

Parameter Value

'sstype' 1, 2, or 3, to specify the type of sum of squares (default = 3)

'varnames' A character matrix or a cell array of strings specifying
names of grouping variables, one per grouping variable.
When you do not specify 'varnames', the default labels
'X1', 'X2', 'X3', ..., 'XN' are used. See “ANOVA with
Random Effects” on page 4-18 for an example of how to use
'varnames'.

'display' 'on' displays an ANOVA table (the default)

'off' omits the display

anovan

12-38

[p,table] = anovan(...) returns the ANOVA table (including factor labels)
in cell array table. (Copy a text version of the ANOVA table to the clipboard
by using the Copy Text item on the Edit menu.)

[p,table,stats] = anovan(...) returns a stats structure that you can use
to perform a follow-up multiple comparison test with the multcompare
function. See “The stats Structure” on page 12-43 for more information.

[p,table,stats,terms] = anovan(...) returns the main and interaction
terms used in the ANOVA computations. The terms are encoded in the output
matrix terms using the same format described above for input 'model'. When
you specify 'model' itself in this matrix format, the matrix returned in terms
is identical.

The rest of this section explains the following topics:

• “Model Types” on page 12-38

• “Example of Three-Way ANOVA” on page 12-41

• “The stats Structure” on page 12-43

Model Types
This section explains how to use the argument 'model' with the syntax

p = anovan(x,group,'model', modeltype)

'random' A vector of indices indicating which grouping variables are
random effects (all are fixed by default). See “ANOVA with
Random Effects” on page 4-18 for an example of how to use
'random'.

'alpha' A number between 0 and 1 requesting 100(1 - alpha)%
confidence bounds (default 0.05 for 95% confidence)

'model' The type of model used. See “Model Types” on page 12-38 for
a description of the options for this argument.

Parameter
Name

Parameter Value

anovan

12-39

The argument modeltype, which specifies the type of model the function uses,
can be any one of the following:

• 'linear' — The default 'linear' model computes only the p-values for the
null hypotheses on the N main effects.

• 'interaction' — The 'interaction' model computes the p-values for null
hypotheses on the N main effects and the two-factor interactions.

• 'full' — The 'full' model computes the p-values for null hypotheses on
the N main effects and interactions at all levels.

• An integer — For an integer value of modeltype, k (k ≤ N), anovan computes
all interaction levels through the kth level. For example, the value 3 means
main effects plus two- and three-factor interactions. The values k=1 and k=2
are equivalent to the 'linear' and 'interaction' specifications,
respectively, while the value k=N is equivalent to the 'full' specification.

• A matrix of term definitions having the same form as the input to the x2fx
function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that anovan
computes, modeltype can specify a matrix containing one row for each main or
interaction term to include in the ANOVA model. Each row defines one term
using a vector of N zeros and ones. The table below illustrates the coding for a
3-factor ANOVA.

Row of Matrix Corresponding ANOVA Term

[1 0 0] Main term A

[0 1 0] Main term B

[0 0 1] Main term C

[1 1 0] Interaction term AB

[0 1 1] Interaction term BC

[1 0 1] Interaction term AC

[1 1 1] Interaction term ABC

N
2⎝ ⎠

⎛ ⎞

anovan

12-40

For example, if modeltype is the matrix [0 1 0;0 0 1;0 1 1], the output
vector p contains the p-values for the null hypotheses on the main effects
B and C and the interaction effect BC, in that order. A simple way to generate
the modeltype matrix is to modify the terms output, which codes the terms in
the current model using the format described above. If anovan returns
[0 1 0;0 0 1;0 1 1] for terms, for example, and there is no significant result
for interaction BC, you can recompute the ANOVA on just the main effects B
and C by specifying [0 1 0;0 0 1] for modeltype.

p = anovan(x,group,'sstype', integer) computes the ANOVA using the
type of sum-of-squares specified by integer, which can be 1, 2, or 3 to designate
Type 1, Type 2, or Type 3 sum-of-squares, respectively. The default is 3. The
value of integer only influences computations on unbalanced data.

The sum of squares for any term is determined by comparing two models. The
Type 1 sum of squares for a term is the reduction in residual sum of squares
obtained by adding that term to a fit that already includes the terms listed
before it. The Type 2 sum of squares is the reduction in residual sum of squares
obtained by adding that term to a model consisting of all other terms that do
not contain the term in question. The Type 3 sum of squares is the reduction in
residual sum of squares obtained by adding that term to a model containing all
other terms, but with their effects constrained to obey the usual “sigma
restrictions” that make models estimable.

Suppose you are fitting a model with two factors and their interaction, and that
the terms appear in the order A, B, AB. Let R(·) represent the residual sum of
squares for a model, so for example R(A,B,AB) is the residual sum of squares
fitting the whole model, R(A) is the residual sum of squares fitting just the
main effect of A, and R(1) is the residual sum of squares fitting just the mean.
The three types of sums of squares are as follows:

Term Type 1 SS Type 2 SS Type 3 SS

A R(1)-R(A) R(B)-R(A,B) R(B,AB)-R(A,B,AB)

B R(A)-R(A,B) R(A)-R(A,B) R(A,AB)-R(A,B,AB)

AB R(A,B)-R(A,B,AB) R(A,B)-R(A,B,AB) R(A,B)-R(A,B,AB)

anovan

12-41

The models for Type 3 sum of squares have sigma restrictions imposed. This
means, for example, that in fitting R(B,AB), the array of AB effects is
constrained to sum to 0 over A for each value of B, and over B for each value
of A.

Example of Three-Way ANOVA
As an example of three-way ANOVA, consider the vector y and group inputs
below.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g3 = {'may'; 'may'; 'may'; 'may'; 'june'; 'june'; 'june'; 'june'};

This defines a three-way ANOVA with two levels of each factor. Every
observation in y is identified by a combination of factor levels. If the factors are
A, B, and C, then observation y(1) is associated with

• Level 1 of factor A

• Level 'hi' of factor B

• Level 'may' of factor C

Similarly, observation y(6) is associated with

• Level 2 of factor A

• Level 'hi' of factor B

• Level 'june' of factor C

To compute the ANOVA, enter

p = anovan(y, {g1 g2 g3})

p =
 0.4174
 0.0028
 0.9140

Output vector p contains p-values for the null hypotheses on the N main
effects. Element p(1) contains the p-value for the null hypotheses, H0A, that
samples at all levels of factor A are drawn from the same population;

anovan

12-42

element p(2) contains the p-value for the null hypotheses, H0B, that samples
at all levels of factor B are drawn from the same population; and so on.

If any p-value is near zero, this casts doubt on the associated null hypothesis.
For example, a sufficiently small p-value for H0A suggests that at least one
A-sample mean is significantly different from the other A-sample means; that
is, there is a main effect due to factor A. You need to choose a bound for the
p-value to determine whether a result is statistically significant. It is common
to declare a result significant if the p-value is less than 0.05 or 0.01.

anovan also displays a figure showing the standard ANOVA table, which by
default divides the variability of the data in x into

• The variability due to differences between the levels of each factor accounted
for in the model (one row for each factor)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the sum of squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the mean squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which are the ratios of the mean squares.

• The sixth shows the p-values for the F statistics.

The table is shown in the following figure:

Two-Factor Interactions. By default, anovan computes p-values just for the three
main effects. To also compute p-values for the two-factor interactions, X1*X2,

anovan

12-43

X1*X3, and X2*X3, add the name/value pair 'model', 'interaction' as input
arguments.

p = anovan(y, {g1 g2 g3}, 'model', 'interaction')

p =

 0.0347
 0.0048
 0.2578
 0.0158
 0.1444
 0.5000

The first three entries of p are the p-values for the main effects. The last three
entries are the p-values for the two-factor interactions. You can determine the
order in which the two-factor interactions occur from the ANOVAN table
shown in the following figure.

The stats Structure
The anovan test evaluates the hypothesis that the different levels of a factor (or
more generally, a term) have the same effect, against the alternative that they
do not all have the same effect. Sometimes it is preferable to perform a test to
determine which pairs of levels are significantly different, and which are not.
Use the multcompare function to perform such tests by supplying the stats
structure as input.

anovan

12-44

The stats structure contains the fields listed below, in addition to a number of
other fields required for doing multiple comparisons using the multcompare
function:

The stats structure also contains the following fields if there are random
effects:

Examples “Two-Way Analysis of Variance (ANOVA)” on page 4-8 shows how to use
anova2 to analyze the effects of two factors on a response in a balanced design.
For a design that is not balanced, use anovan instead.

In this example, the data set carbig contains a number of measurements on
406 cars. You can use anonvan to study how the mileage depends on where and
when the cars were made.

load carbig

Stats Field Meaning

coeffs Estimated coefficients

coeffnames Name of term for each coefficient

vars Matrix of grouping variable values for each
term

resid Residuals from the fitted model

Stats Field Meaning

ems Expected mean squares

denom Denominator definition

rtnames Names of random terms

varest Variance component estimates
(one per random term)

varci Confidence intervals for
variance components

anovan

12-45

anovan(MPG,{org when},2,3,{'Origin';'Mfg date'})

ans =
 0
 0
 0.3059

The p-value for the interaction term is not small, indicating little evidence that
the effect of the car’s year or manufacture (when) depends on where the car was
made (org). The linear effects of those two factors, though, are significant.

Reference [1] Hogg, R. V., and J. Ledolter, Engineering Statistics, MacMillan, 1987.

See Also anova1, anova2, multcompare

aoctool

12-46

12aoctoolPurpose Interactive plot for fitting and predicting analysis of covariance models

Syntax aoctool(x,y,g)
aoctool(x,y,g,alpha)
aoctool(x,y,g,alpha,xname,yname,gname)
aoctool(x,y,g,alpha,xname,yname,gname,'displayopt')
aoctool(x,y,g,alpha,xname,yname,gname,'displayopt','model')
h = aoctool(...)
[h,atab,ctab] = aoctool(...)
[h,atab,ctab,stats] = aoctool(...)

Description aoctool(x,y,g) fits a separate line to the column vectors, x and y, for each
group defined by the values in the array g. These types of models are known as
one-way analysis of covariance (ANOCOVA) models. The output consists of
three figures:

• An interactive graph of the data and prediction curves

• An ANOVA table

• A table of parameter estimates

You can use the figures to change models and to test different parts of the
model. More information about interactive use of the aoctool function appears
in “The aoctool Demo” on page 4-25.

aoctool(x,y,g,alpha) determines the confidence levels of the prediction
intervals. The confidence level is 100(1-alpha)%. The default value of alpha is
0.05.

aoctool(x,y,g,alpha,xname,yname,gname) specifies the name to use for the
x, y, and g variables in the graph and tables. If you enter simple variable names
for the x, y, and g arguments, the aoctool function uses those names. If you
enter an expression for one of these arguments, you can specify a name to use
in place of that expression by supplying these arguments. For example, if you
enter m(:,2) as the x argument, you might choose to enter 'Col 2' as the
xname argument.

aoctool(x,y,g,alpha,xname,yname,gname,'displayopt') enables the
graph and table displays when 'displayopt' is 'on' (default) and suppresses
those displays when 'displayopt' is 'off'.

aoctool

12-47

aoctool(x,y,g,alpha,xname,yname,gname,'displayopt','model')
specifies the initial model to fit. The value of 'model' can be any of the
following:

• 'same mean' – fit a single mean, ignoring grouping

• 'separate means' – fit a separate mean to each group

• 'same line' – fit a single line, ignoring grouping

• 'parallel lines' – fit a separate line to each group, but constrain the lines
to be parallel

• 'separate lines' – fit a separate line to each group, with no constraints

h = aoctool(...) returns a vector of handles to the line objects in the plot.

[h,atab,ctab] = aoctool(...) returns cell arrays containing the entries in
ANOVA table (atab) and the table of coefficient estimates (ctab). (You can copy
a text version of either table to the clipboard by using the Copy Text item on
the Edit menu.)

[h,atab,ctab,stats] = aoctool(...) returns a stats structure that you
can use to perform a follow-up multiple comparison test. The ANOVA table
output includes tests of the hypotheses that the slopes or intercepts are all the
same, against a general alternative that they are not all the same. Sometimes
it is preferable to perform a test to determine which pairs of values are
significantly different, and which are not. You can use the multcompare
function to perform such tests by supplying the stats structure as input. You
can test either the slopes, the intercepts, or population marginal means (the
heights of the curves at the mean x value).

Example This example illustrates how to fit different models non-interactively. After
loading the smaller car data set and fitting a separate-slopes model, you can
examine the coefficient estimates.

load carsmall
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...

'','','','off','separate lines');
c(:,1:2)

aoctool

12-48

ans =
 'Term' 'Estimate'
 'Intercept' [45.97983716833132]
 ' 70' [-8.58050531454973]
 ' 76' [-3.89017396094922]
 ' 82' [12.47067927549897]
 'Slope' [-0.00780212907455]
 ' 70' [0.00195840368824]
 ' 76' [0.00113831038418]
 ' 82' [-0.00309671407243]

Roughly speaking, the lines relating MPG to Weight have an intercept close to
45.98 and a slope close to -0.0078. Each group’s coefficients are offset from
these values somewhat. For instance, the intercept for the cars made in 1970
is 45.98-8.58 = 37.40.

Next, try a fit using parallel lines. (The ANOVA table shows that the
parallel-lines fit is significantly worse than the separate-lines fit.)

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
'','','','off','parallel lines');

c(:,1:2)

ans =

 'Term' 'Estimate'
 'Intercept' [43.38984085130596]
 ' 70' [-3.27948192983761]
 ' 76' [-1.35036234809006]
 ' 82' [4.62984427792768]
 'Slope' [-0.00664751826198]

Again, there are different intercepts for each group, but this time the slopes are
constrained to be the same.

See Also anova1, multcompare, polytool

barttest

12-49

12barttestPurpose Bartlett’s test for dimensionality

Syntax ndim = barttest(x,alpha)
[ndim,prob,chisquare] = barttest(x,alpha)

Description ndim = barttest(x,alpha) returns the number of dimensions necessary to
explain the nonrandom variation in the data matrix x, using the significance
probability alpha. The dimension is determined by a series of hypothesis tests.
The test for ndim=1 tests the hypothesis that the variances of the data values
along each principal component are equal, the test for ndim=2 tests the
hypothesis that the variances along the second through last components are
equal, and so on.

[ndim,prob,chisquare] = barttest(x,alpha) returns the number of
dimensions, the significance values for the hypothesis tests, and the χ2 values
associated with the tests.

Example x = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,3:4) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,5:6) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
[ndim, prob] = barttest(x,0.05)

ndim =

 3

prob =
 0
 0
 0
 0.5081
 0.6618

See Also princomp, pcacov, pcares

bbdesign

12-50

12bbdesignPurpose Generate Box-Behnken design

Syntax D = bbdesign(nfactors)
D = bbdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
[D,blk] = bbdesign(...)

Description D = bbdesign(nfactors) generates a Box-Behnken design for nfactors
factors. The output matrix D is n-by-nfactors, where n is the number of points
in the design. Each row lists the settings for all factors, scaled between -1
and 1.

[D,blk] = bbdesign(nfactors) requests a blocked design. The output vector
blk is a vector of block numbers. Blocks are groups of runs that are to be
measured under similar conditions (for example, on the same day). Blocked
designs minimize the effect of between-block differences on the parameter
estimates.

[...] = bbdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
allows you to specify additional parameters and their values. Valid parameters
are:

Remarks Box and Behnken proposed designs when the number of factors was equal to
3-7, 9-12, or 16. This function produces those designs. For other values of
nfactors, this function produces designs that are constructed in a similar way,
even though they were not tabulated by Box and Behnken, and they may be too
large to be practical.

See Also ccdesign, cordexch, rowexch

'center' Number of center points to include.

'blocksize' Maximum number of points allowed in a block.

betacdf

12-51

12betacdfPurpose Beta cumulative distribution function (cdf)

Syntax p = betacdf(X,A,B)

Description p = betacdf(X,A,B) computes the beta cdf at each of the values in X using the
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other inputs.
The parameters in A and B must all be positive, and the values in X must lie on
the interval [0,1].

The beta cdf for a given value x and given pair of parameters a and b is

where B(·) is the Beta function. The result, p, is the probability that a single
observation from a beta distribution with parameters a and b will fall in the
interval [0,x].

Examples x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)

p =

0.0280 0.2160 0.5000 0.7840 0.9720

a = [1 2 3];
p = betacdf(0.5,a,a)

p =

0.5000 0.5000 0.5000

See Also betafit, betainv, betalike, betapdf, betarnd, betastat, cdf, betainc

p F x a b,() 1
B a b,()
------------------- ta 1–

0

x

∫ 1 t–()b 1– dt= =

betafit

12-52

12betafitPurpose Parameter estimates and confidence intervals for beta distributed data

Syntax phat = betafit(data)
[phat,pci] = betafit(data,alpha)

Description phat = betafit(data) computes the maximum likelihood estimates of the
beta distribution parameters a and b from the data in the vector data, where
the beta cdf is given by

and B(·) is the Beta function. The elements of data must lie in the interval
(0 1).

[phat,pci] = betafit(data,alpha) returns confidence intervals on the
a and b parameters in the 2-by-2 matrix pci. The first column of the matrix
contains the lower and upper confidence bounds for parameter a, and the
second column contains the confidence bounds for parameter b. The optional
input argument alpha is a value in the range [0 1] specifying the width of the
confidence intervals. By default, alpha is 0.05, which corresponds to 95%
confidence intervals.

Example This example generates 100 beta distributed observations. The true a and b
parameters are 4 and 3, respectively. Compare these to the values returned
in p. Note that the columns of ci both bracket the true parameters.

data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)

p =

 3.9010 2.6193

ci =

 2.5244 1.7488
 5.2776 3.4898

Reference [1] Hahn, Gerald J., and Shapiro, Samuel S., Statistical Models in Engineering.
John Wiley & Sons, 1994. p. 95.

F x a b,() 1
B a b,()
------------------- ta 1–

0

x

∫ 1 t–()b 1– dt=

betafit

12-53

See Also betalike, mle

betainv

12-54

12betainvPurpose Inverse of the beta cumulative distribution function

Syntax X = betainv(P,A,B)

Description X = betainv(P,A,B) computes the inverse of the beta cdf with parameters
specified by A and B for the corresponding probabilities in P. P, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions as the
other inputs. The parameters in A and B must all be positive, and the values
in P must lie on the interval [0 1].

The inverse beta cdf for a given probability p and a given pair of parameters
a and b is

where

and B(·) is the Beta function. Each element of output X is the value whose
cumulative probability under the beta cdf defined by the corresponding
parameters in A and B is specified by the corresponding value in P.

Algorithm The betainv function uses Newton’s method with modifications to constrain
steps to the allowable range for x, i.e., [0 1].

Examples p = [0.01 0.5 0.99];
x = betainv(p,10,5)

x =

 0.3726 0.6742 0.8981

According to this result, for a beta cdf with a=10 and b=5, a value less than or
equal to 0.3726 occurs with probability 0.01. Similarly, values less than or
equal to 0.6742 and 0.8981 occur with respective probabilities 0.5 and 0.99.

See Also betafit, icdf

x F 1–
= p a b,() x:F x a b,() p={ }=

 p F x a b,() 1
B a b,()
------------------- ta 1–

0

x

∫ 1 t–()b 1– dt= =

betalike

12-55

12betalikePurpose Negative beta log-likelihood function

Syntax logL = betalike(params,data)
[logL,AVAR] = betalike(params,data)

Description logL = betalike(params,data) returns the negative of the beta
log-likelihood function for the beta parameters a and b specified in vector
params and the observations specified in the column vector data. The length of
logL is the length of data.

[logL,AVAR] = betalike(params,data) also returns AVAR, which is the
asymptotic variance-covariance matrix of the parameter estimates if the
values in params are the maximum likelihood estimates. AVAR is the inverse of
Fisher’s information matrix. The diagonal elements of AVAR are the asymptotic
variances of their respective parameters.

betalike is a utility function for maximum likelihood estimation of the beta
distribution. The likelihood assumes that all the elements in the data sample
are mutually independent. Since betalike returns the negative beta
log-likelihood function, minimizing betalike using fminsearch is the same as
maximizing the likelihood.

Example This example continues the betafit example, which calculates estimates of
the beta parameters for some randomly generated beta distributed data.

r = betarnd(4,3,100,1);
[logl,AVAR] = betalike(betafit(r),r)

logl =

 -39.1615

AVAR =

 0.3717 0.2644
 0.2644 0.2414

See Also betafit, fminsearch, gamlike, mle, normlike, wbllike

betapdf

12-56

12betapdfPurpose Beta probability density function (pdf)

Syntax Y = betapdf(X,A,B)

Description Y = betapdf(X,A,B) computes the beta pdf at each of the values in X using the
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions of the other inputs.
The parameters in A and B must all be positive, and the values in X must lie on
the interval [0 1].

The beta probability density function for a given value x and given pair of
parameters a and b is

where B(·) is the Beta function. The result, y, is the probability that a single
observation from a beta distribution with parameters a and b will have value x.
The indicator function ensures that only values of x in the range (0 1)
have nonzero probability. The uniform distribution on (0 1) is a degenerate case
of the beta pdf where a = 1 and b = 1.

A likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the parameters that
maximize the likelihood function for a fixed value of x.

Examples a = [0.5 1; 2 4]

a =

 0.5000 1.0000
 2.0000 4.0000

y = betapdf(0.5,a,a)

y =
 0.6366 1.0000
 1.5000 2.1875

See Also betacdf, betafit, betainv, betalike, betarnd, betastat, pdf, beta, betaln

y f x a b,() 1
B a b,()
-------------------xa 1– 1 x–()b 1– I 0 1,() x()= =

I 0 1,() x()

betarnd

12-57

12betarndPurpose Random numbers from the beta distribution

Syntax R = betarnd(A,B)
R = betarnd(A,B,v)
R = betarnd(A,B,m,n)
R = betarnd(A,B,m,n,o,...)

Description R = betarnd(A,B) generates random numbers from the beta distribution with
parameters specified by A and B. A and B can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of R. A
scalar input for A or B is expanded to a constant array with the same
dimensions as the other input.

R = betarnd(A,B,v) generates an array R of size v containing random
numbers from the beta distribution with parameters A and B, where v is a row
vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2) columns.
If v is 1-by-n, R is an n-dimensional array.

R = betarnd(A,B,m,n) generates an m-by-n matrix containing random
numbers from the beta distribution with parameters A and B.

R = betarnd(A,B,m,n,o,...) generates an m-by-n-by-o-by-...
multidimensional array containing random numbers from the beta
distribution with parameters A and B.

Reproducing the Output of betarnd
betarnd uses the MATLAB functions rand and randn to generate random
numbers. When you call betarnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to betarnd or any other
functions that depend on rand or randn. If you want to reproduce the output of
betarnd, reset the states of rand and randn to the same fixed values each time
you call betarnd. For an example of how to do this, and a list of the Statistics
Toolbox functions that depend on rand or randn, see “Reproducing the Output
of Random Number Functions” on page 2-46.

betarnd

12-58

Note The results in the following examples depend on the current states of
rand and randn. If you run the code in these examples, your results may differ
from the answers shown here.

Examples a = [1 1;2 2];
b = [1 2;1 2];

r = betarnd(a,b)

r =
 0.6987 0.6139
 0.9102 0.8067

r = betarnd(10,10,[1 5])

r =
 0.5974 0.4777 0.5538 0.5465 0.6327

r = betarnd(4,2,2,3)

r =
 0.3943 0.6101 0.5768
 0.5990 0.2760 0.5474

See Also betacdf, betafit, betainv, betalike, betapdf, betastat, rand, randn,
randtool

betastat

12-59

12betastatPurpose Mean and variance for the beta distribution

Syntax [M,V] = betastat(A,B)

Description [M,V] = betastat(A,B) returns the mean and variance for the beta
distribution with parameters specified by A and B. A and B can be vectors,
matrices, or multidimensional arrays that have the same size, which is also the
size of M and V. A scalar input for A or B is expanded to a constant array with
the same dimensions as the other input.

The mean of the beta distribution with parameters a and b is and the
variance is

Examples If parameters a and b are equal, the mean is 1/2.

a = 1:6;
[m,v] = betastat(a,a)

m =
 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

v =
 0.0833 0.0500 0.0357 0.0278 0.0227 0.0192

See Also betacdf, betafit, betainv, betalike, betapdf, betarnd

a a b+()⁄

ab
a b 1+ +() a b+()2

binocdf

12-60

12binocdfPurpose Binomial cumulative distribution function (cdf)

Syntax Y = binocdf(X,N,P)

Description binocdf(X,N,P) computes a binomial cdf at each of the values in X using the
corresponding parameters in N and P. X, N, and P can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions of the other inputs.
The values in N must all be positive integers, the values in X must lie on the
interval [0,N], and the values in P must lie on the interval [0 1].

The binomial cdf for a given value and given pair of parameters and is

The result, , is the probability of observing up to successes in independent
trials, where the probability of success in any given trial is . The indicator
function ensures that only adopts values of .

Examples If a baseball team plays 162 games in a season and has a 50-50 chance of
winning any game, then the probability of that team winning more than 100
games in a season is:

1 - binocdf(100,162,0.5)

The result is 0.001 (i.e., 1-0.999). If a team wins 100 or more games in a
season, this result suggests that it is likely that the team’s true probability of
winning any game is greater than 0.5.

See Also binofit, binoinv, binopdf, binornd, binostat, cdf

x n p

y F x n p,()
n
i⎝ ⎠

⎛ ⎞

i 0=

x

∑ piq n i–()I 0 1 … n, , ,() i()= =

y x n
p

I 0 1 … n, , ,() i() x 0 1 … n, , ,

binofit

12-61

12binofitPurpose Parameter estimates and confidence intervals for binomial data

Syntax phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)

Description phat = binofit(x,n) returns a maximum likelihood estimate of the
probability of success in a given binomial trial based on the number of
successes, x, observed in n independent trials. If
x = (x(1), x(2), ... x(k)) is a vector, binofit returns a vector of the same
size as x whose ith entry is the parameter estimate for x(i). All k estimates are
independent of each other. If n = (n(1), n(2), ..., n(k)) is a vector of the
same size as x, binofit returns a vector whose ith entry is the parameter
estimate based on the number of successes x(i) in n(i) independent trials. A
scalar value for x or n is expanded to the same size as the other input.

[phat,pci] = binofit(x,n) returns the probability estimate, phat, and the
95% confidence intervals, pci.

[phat,pci] = binofit(x,n,alpha) returns the 100(1 - alpha)% confidence
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

Note binofit behaves differently than other functions in the Statistics
Toolbox that compute parameter estimates, in that it returns independent
estimates for each entry of x. By comparison, expfit returns a single
parameter estimate based on all the entries of x.

Example This example generates a binomial sample of 100 elements, where the
probability of success in a given trial is 0.6, and then estimates this probability
from the outcomes in the sample.

r = binornd(100,0.6);
[phat,pci] = binofit(r,100)

phat =

 0.5800

binofit

12-62

pci =

 0.4771 0.6780

The 95% confidence interval, pci, contains the true value, 0.6.

Reference [1] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete Distributions,
2nd edition, Wiley, 1992, pp. 124–130.

See Also binocdf, binoinv, binopdf, binornd, binostat, mle

binoinv

12-63

12binoinvPurpose Inverse of the binomial cumulative distribution function (cdf)

Syntax X = binoinv(Y,N,P)

Description X = binoinv(Y,N,P) returns the smallest integer X such that the binomial cdf
evaluated at X is equal to or exceeds Y. You can think of Y as the probability of
observing X successes in N independent trials where P is the probability of
success in each trial. Each X is a positive integer less than or equal to N.

Y, N, and P can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in N must be positive integers,
and the values in both P and Y must lie on the interval [0 1].

Examples If a baseball team has a 50-50 chance of winning any game, what is a
reasonable range of games this team might win over a season of 162 games?

binoinv([0.05 0.95],162,0.5)

ans =

71 91

This result means that in 90% of baseball seasons, a .500 team should win
between 71 and 91 games.

See Also binocdf, binofit, binopdf, binornd, binostat, icdf

binopdf

12-64

12binopdfPurpose Binomial probability density function (pdf)

Syntax Y = binopdf(X,N,P)

Description Y = binopdf(X,N,P) computes the binomial pdf at each of the values in X
using the corresponding parameters in N and P. Y, N, and P can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions of the other
inputs.

The parameters in N must be positive integers, and the values in P must lie on
the interval [0 1].

The binomial probability density function for a given value x and given pair of
parameters n and p is

where q = 1-p. The result, y, is the probability of observing x successes in n
independent trials, where the probability of success in any given trial is p. The
indicator function I(0,1,...,n)(x) ensures that x only adopts values of 0, 1, ..., n.

Examples A Quality Assurance inspector tests 200 circuit boards a day. If 2% of the
boards have defects, what is the probability that the inspector will find no
defective boards on any given day?

binopdf(0,200,0.02)
ans =

 0.0176

What is the most likely number of defective boards the inspector will find?

y = binopdf([0:200],200,0.02);
[x,i] = max(y);

i
i =
 5

See Also binocdf, binofit, binoinv, binornd, binostat, pdf

y f x n p,() n
x⎝ ⎠
⎛ ⎞pxq n x–()I 0 1 … n, , ,() x()= =

binornd

12-65

12binorndPurpose Random numbers from the binomial distribution

Syntax R = binornd(N,P)
R = binornd(N,P,v)
R = binornd(N,P,m,n)

Description R = binornd(N,P) generates random numbers from the beta distribution with
parameters specified by N and P. N and P can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of R. A
scalar input for N or P is expanded to a constant array with the same
dimensions as the other input.

R = binornd(N,P,v) generates an array R of size v containing random
numbers from the beta distribution with parameters N and P, where v is a row
vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2) columns.
If v is 1-by-n, R is an n-dimensional array.

R = binornd(N,p,m,n) generates an m-by-n matrix containing random
numbers from the binomial distribution with parameters N and P.

Algorithm The binornd function uses the direct method using the definition of the
binomial distribution as a sum of Bernoulli random variables.

Reproducing the Output of binornd
binornd uses the MATLAB function rand to generate random numbers. When
you call binornd, you change the current state of rand, and thereby alter the
output of subsequent calls to binornd or any other functions that depend on
rand. If you want to reproduce the output of binornd, reset the state of rand to
the same fixed value each time you call binornd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current state of
rand. If you run the code in these examples, your results may differ from the
answers shown here.

binornd

12-66

Examples n = 10:10:60;

r1 = binornd(n,1./n)
r1 =
 2 1 0 1 1 2

r2 = binornd(n,1./n,[1 6])
r2 =
 0 1 2 1 3 1

r3 = binornd(n,1./n,1,6)
r3 =
 0 1 1 1 0 3

See Also binocdf, binofit, binoinv, binopdf, binostat, rand, randtool

binostat

12-67

12binostatPurpose Mean and variance for the binomial distribution

Syntax [M,V] = binostat(N,P)

Description [M,V] = binostat(N,P) returns the mean and variance for the binomial
distribution with parameters specified by N and P. N and P can be vectors,
matrices, or multidimensional arrays that have the same size, which is also the
size of M and V. A scalar input for N or P is expanded to a constant array with
the same dimensions as the other input.

The mean of the binomial distribution with parameters n and p is np. The
variance is npq, where q = 1-p.

Examples n = logspace(1,5,5)
n =
 10 100 1000 10000 100000

[m,v] = binostat(n,1./n)

m =
 1 1 1 1 1

v =
 0.9000 0.9900 0.9990 0.9999 1.0000

[m,v] = binostat(n,1/2)

m =
 5 50 500 5000 50000

v =

 1.0e+04 *
 0.0003 0.0025 0.0250 0.2500 2.5000

See Also binocdf, binofit, binoinv, binopdf, binornd

biplot

12-68

12biplotPurpose Biplot of variable/factor coefficients and scores

Syntax biplot(coefs)
biplot(coefs, ..., 'Scores', scores)
biplot(coefs, ..., 'VarLabels', varlabs)
biplot(coefs, ..., 'Scores', scores, 'ObsLabels', obslabs)
biplot(coeffs, ..., 'PropertyName', PropertyValue, ...)
h = biplot(coefs, ...)

Description biplot(coefs) creates a biplot of the coefficients in the matrix coefs. The
biplot is two dimensional if coefs has two columns or three dimensional if it
has three columns. coefs usually contains principal component coefficients
created with princomp, pcacov, or factor loadings estimated with factoran.
The axes in the biplot represent the principal components or latent factors
(columns of coefs), and the observed variables (rows of coefs) are represented
as vectors.

biplot(coefs, ..., 'Scores', scores) plots both coefs and the scores in
the matrix scores in the biplot. scores usually contains principal component
scores created with princomp or factor scores estimated with factoran. Each
observation (row of scores) is represented as a point in the biplot.

A biplot allows you to visualize the magnitude and sign of each variable's
contribution to the first two or three principal components, and how each
observation is represented in terms of those components.

biplot imposes a sign convention, forcing the element with largest magnitude
in each column of coefs is positive.

biplot(coefs, ..., 'VarLabels', varlabs) labels each vector (variable)
with the text in the character array or cell array varlabs.

biplot(coefs, ..., 'Scores', scores, 'ObsLabels', obslabs) labels each

point (observation) with the text in the character array or cell array obslabs.

biplot(coeffs, ..., 'PropertyName', PropertyValue, ...) sets
properties to the specified property values for all line graphics objects created
by biplot.

h = biplot(coefs, ...) returns a column vector of handles to the graphics
objects created by biplot. h contains, in order, handles corresponding to

biplot

12-69

variables (line handles, followed by marker handles, followed by text handles),
to observations (if present, marker handles followed by text handles), and to
the axis lines.

Example load carsmall
x = [Acceleration Displacement Horsepower MPG Weight];
x = x(all(~isnan(x),2),:);
[coefs,score] = princomp(zscore(x));
vlabs = {'Accel','Disp','HP','MPG','Wgt'};
biplot(coefs(:,1:3), 'scores',score(:,1:3), 'varlabels',vlabs);

See Also factoran, princomp, pcacov, rotatefactors

bootstrp

12-70

12bootstrpPurpose Bootstrap statistics through resampling of data

Syntax bootstat = bootstrp(nboot,bootfun,d1,d2,...)
[bootstat,bootsam] = bootstrp(...)

Description bootstat = bootstrp(nboot,bootfun,d1,d2,...) draws nboot bootstrap
samples from each of the input data sets, d1, d2, etc., and passes the bootstrap
samples to function bootfun for analysis. bootfun is a function handle
specified using the @ sign. nboot must be a positive integer, and each input data
set must contain the same number of rows, n. Each bootstrap sample contains
n rows chosen randomly (with replacement) from the corresponding input data
set (d1, d2, etc.). Any scalar arguments among d1, d2, etc., are passed to
bootfun unchanged.

Each row of the output bootstat contains the results of applying bootfun to
one bootstrap sample. If bootfun returns multiple output arguments, only the
first is stored in bootstat. If the first output from bootfun is a matrix, the
matrix is reshaped to a row vector for storage in bootstat.

[bootstat,bootsam] = bootstrp(...) returns an n-by-n boot matrix of
bootstrap indices, bootsam. Each column in bootsam contains indices of the
values that were drawn from the original data sets to constitute the
corresponding bootstrap sample. For example, if d1, d2, etc., each contain 16
values, and nboot = 4, then bootsam is a 16-by-4 matrix. The first column
contains the indices of the 16 values drawn from d1, d2, etc., for the first of the
four bootstrap samples, the second column contains the indices for the second
of the four bootstrap samples, and so on. (The bootstrap indices are the same
for all input data sets.) To get the output samples bootsam without applying a
function, set bootfun to empty ([]).

Examples Correlating Two Data Sets
Correlate the LSAT scores and law-school GPA for 15 students. These 15 data
points are resampled to create 1000 different data sets, and the correlation
between the two variables is computed for each data set.

load lawdata
[bootstat,bootsam] = bootstrp(1000,'corrcoef',lsat,gpa);

bootstat(1:5,:)

bootstrp

12-71

ans =

 1.0000 0.3021 0.3021 1.0000
 1.0000 0.6869 0.6869 1.0000
 1.0000 0.8346 0.8346 1.0000
 1.0000 0.8711 0.8711 1.0000
 1.0000 0.8043 0.8043 1.0000

bootsam(:,1:5)

ans =

 4 7 5 12 8
 1 11 10 8 4
 11 9 12 4 2
 11 14 15 5 15
 15 13 6 6 2
 6 8 4 3 8
 8 2 15 8 6
 13 10 11 14 5
 1 7 12 14 14
 1 11 10 1 8
 8 14 2 14 7
 11 12 10 8 15
 1 4 14 8 1
 6 1 5 5 12
 2 12 7 15 12

hist(bootstat(:,2))

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

bootstrp

12-72

The histogram shows the variation of the correlation coefficient across all the
bootstrap samples. The sample minimum is positive, indicating that the
relationship between LSAT score and GPA is not accidental.

Estimating Density of Bootstrapped Means
Compute a sample of 100 bootstrapped means of random samples taken from
the vector Y, and plot an estimate of the density of these bootstrapped means:

y = exprnd(5,100,1);
m = bootstrp(100, @mean, y);
[fi,xi] = ksdensity(m);
plot(xi,fi);

Estimating Bootstrap Pairs
Compute a sample of 100 bootstrapped means and standard deviations of
random samples taken from the vector Y, and plot the bootstrap estimate pairs:

y = exprnd(5,100,1);
stats = bootstrp(100, @(x) [mean(x) std(x)], y);
plot(stats(:,1),stats(:,2),'o')

bootstrp

12-73

Computing a Bootstrap Regression
Compute a sample of 200 bootstrapped coefficient vectors for a regression of the
vector Y on the matrix X:

load hald
x = [ones(size(heat)), ingredients];
y = heat;
b = bootstrp(200, 'regress', y, x);

boxplot

12-74

12boxplotPurpose Box plots of a data sample

Syntax boxplot(X)
boxplot(x,G)
boxplot(...,'Param1', val1, 'Param2', val2,...)
h = boxplot(...)

Description boxplot(X) produces a box and whisker plot for each column of the matrix X.
The box has lines at the lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to show the extent of the
rest of the data. Outliers are data with values beyond the ends of the whiskers.
If there is no data outside the whisker, a dot is placed at the bottom whisker.

boxplot(x,G) produces a box and whisker plot for the vector x grouped by G. G
is a grouping variable defined as a vector, string matrix, or cell array of strings.
G can also be a cell array of several grouping variables (such as {G1 G2 G3}) to
group the values in x by each unique combination of grouping variable values.

boxplot(...,'Param1', val1, 'Param2', val2,...) specifies optional
parameter name/value pairs, as described in the following table.

Parameter
Name

Parameter Values

'notch' 'on' to include notches (default is 'off')

'symbol' Symbol to use for outliers (default is 'r+'). See
LineSpec for a description of symbols.

'orientation' Box orientation, 'vertical' (default) or 'horizontal'

'whisker' Maximum whisker length in units of interquartile range
(default 1.5)

'labels' Character array or cell array of strings containing
column labels (used only if X is a matrix, and the
default label is the column number)

boxplot

12-75

In a notched box plot the notches represent a robust estimate of the uncertainty
about the medians for box-to-box comparison. Boxes whose notches do not
overlap indicate that the medians of the two groups differ at the 5%
significance level.

Whiskers extend from the box out to the most extreme data value within
whis*iqr, where whis is the value of the 'whisker' parameter and iqr is the
interquartile range of the sample.

h = boxplot(...) returns a matrix of handles to the lines in the box plot. h
contains one column for each box. Each column contains seven handles
corresponding to the upper whisker, lower whisker, upper adjacent value,
lower adjacent value, box, median, and outliers.

 Examples The following commands create a box plot of car mileage grouped by country.

load carsmall
boxplot(MPG, Origin)

'colors' A string, such as 'bgry', or a three-column matrix of box
colors. Letters in the string specify colors, as described in
LineSpec. Each box (outline, median line, and whiskers)
is drawn in the corresponding color. The default is to
draw all boxes with blue outline, red median, and black
whiskers. Colors are reused in the same order if
necessary.

'widths' A numeric vector of box widths. The default is 0.5, or
slightly smaller for fewer than three boxes. Widths are
reused if necessary.

'positions' A numeric vector of box positions. The default is 1:n.

'grouporder' When the grouping variable G is given, a character array
or cell array of group names, specifying the ordering of
the groups in G. Ignored when G is not given.

Parameter
Name

Parameter Values

boxplot

12-76

The following example produces notched box plots for two groups of sample
data.

x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);
boxplot([x1,x2],'notch','on')

USA France Japan Germany Sweden Italy

10

15

20

25

30

35

40

45

V
al

ue
s

boxplot

12-77

The difference between the medians of the two groups is approximately 1.
Since the notches in the boxplot do not overlap, you can conclude, with 95%
confidence, that the true medians do differ.

The following figure shows the boxplot for same data with the length of the
whiskers specified as 1.0 times the interquartile range. Points beyond the
whiskers are displayed using '+'.

boxplot([x1,x2],'notch','on','whisker',1)

1 2

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

V
al

ue
s

Column Number

boxplot

12-78

References [1] McGill, R., J. W. Tukey, and W. A. Larsen, “Variations of Boxplots,” The
American Statistician, Vol. 32, 1978, pp.12-16.

[2] Velleman, P.F., and D.C. Hoaglin, Applications, Basics, and Computing of
Exploratory Data Analysis, Duxbury Press, 1981.

[3] Nelson, L. S., “Evaluating Overlapping Confidence Intervals,” Journal of
Quality Technology, Vol. 21, 1989, pp. 140-141.

See Also anova1, kruskalwallis, multcompare

1 2

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

V
al

ue
s

Column Number

candexch

12-79

12candexchPurpose D-optimal design from candidate set using row exchanges

Syntax rlist = candexch(C,nrows)
rlist = candexch(C,nrows,'param1',value1,'param2',value2,...)

Description rlist = candexch(C,nrows) uses a row-exchange algorithm to select a
D-optimal design from the candidate set C. C is an n-by-p matrix containing the
values of p model terms at each of n points. nrows is the desired number of rows
in the design. rlist is a vector of length nrows listing the selected rows.

The candexch function selects a starting design X at random, and uses a
row-exchange algorithm to iteratively replace rows of X by rows of C in an
attempt to improve the determinant of X'*X.

rlist = candexch(C,nrows,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are the following:

Note The rowexch function also generates D-optimal designs using a
row-exchange algorithm, but it accepts a model type and automatically selects
a candidate set that is appropriate for such a model.

Examples Generate a D-optimal design when there is a restriction on the candidate set.
In this case, the rowexch function isn't appropriate.

F = (fullfact([5 5 5])-1)/4; % Factor settings in unit cube.
T = sum(F,2)<=1.51; % Find rows matching a restriction.

Parameter Value

'display' Either 'on' or 'off' to control display of iteration number
The default is 'on'.

'init' Initial design as an nrows-by-p matrix. The default is a
random subset of the rows of C.

'maxiter' Maximum number of iterations. The default is 10.

candexch

12-80

F = F(T,:); % Take only those rows.
C = [ones(size(F,1),1) F F.^2]; % Compute model terms including
 % a constant and all squared terms.
R = candexch(C,12); % Find a D-optimal 12-point subset.
X = F(R,:); % Get factor settings.

See Also candgen, cordexch, rowexch, x2fx

candgen

12-81

12candgenPurpose Generate candidate set for D-optimal design

Syntax xcand = candgen(nfactors,'model')
[xcand,fxcand] = candgen(nfactors,'model')

Description xcand = candgen(nfactors,'model') generates a candidate set appropriate
for a D-optimal design with nfactors factors and the model model. The output
matrix xcand has nfactors columns, with each row representing the
coordinates of a candidate point. model is one of:

Alternatively, model can be a matrix of term definitions as accepted by the x2fx
function.

[xcand,fxcand] = candgen(nfactors,model) returns both the matrix of
factor values xcand and the matrix of term values fxcand. You can input the
latter to candexch to generate the D-optimal design.

Note The rowexch function automatically generates a candidate set using
candgen, and creates a D-optimal design from that candidate set using
candexch. Call these functions separately if you want to modify the default
candidate set.

See Also candexch, rowexch, x2fx

'linear' Constant and linear terms (the default)

'interaction' Constant, linear, and cross product terms

'quadratic' Interactions plus squared terms

'purequadratic' Constant, linear, and squared terms

canoncorr

12-82

12canoncorrPurpose Canonical correlation analysis

Syntax [A,B] = canoncorr(X,Y)
[A,B,r] = canoncorr(X,Y)
[A,B,r,U,V] = canoncorr(X,Y)
[A,B,r,U,V,stats] = canoncorr(X,Y)

Description [A,B] = canoncorr(X,Y) computes the sample canonical coefficients for the
n-by-d1 and n-by-d2 data matrices X and Y. X and Y must have the same number
of observations (rows) but can have different numbers of variables (columns). A
and B are d1-by-d and d2-by-d matrices, where d = min(rank(X),rank(Y)).
The jth columns of A and B contain the canonical coefficients, i.e., the linear
combination of variables making up the jth canonical variable for X and Y,
respectively. Columns of A and B are scaled to make the covariance matrices of
the canonical variables the identity matrix (see U and V below). If X or Y is less
than full rank, canoncorr gives a warning and returns zeros in the rows of A or
B corresponding to dependent columns of X or Y.

[A,B,r] = canoncorr(X,Y) also returns a 1-by-d vector containing the sample
canonical correlations. The jth element of r is the correlation between the jth
columns of U and V (see below).

[A,B,r,U,V] = canoncorr(X,Y) also returns the canonical variables, scores. U
and V are n-by-d matrices computed as

U = (X - repmat(mean(X),N,1))*A
V = (Y - repmat(mean(Y),N,1))*B

[A,B,r,U,V,stats] = canoncorr(X,Y) also returns a structure stats
containing information relating to the sequence of d null hypotheses , that
the (k+1)st through dth correlations are all zero, for k = 0:(d-1). stats
contains seven fields, each a 1-by-d vector with elements corresponding to the
values of k, as described in the following table:

Wilks Wilks' lambda (likelihood ratio) statistic

chisq Bartlett's approximate chi-squared statistic for with
Lawley’s modification

pChisq Right-tail significance level for chisq

H0
k()

H0
k()

canoncorr

12-83

Examples load carbig;
X = [Displacement Horsepower Weight Acceleration MPG];
nans = sum(isnan(X),2) > 0;
[A B r U V] = canoncorr(X(~nans,1:3), X(~nans,4:5));

plot(U(:,1),V(:,1),'.');
xlabel('0.0025*Disp + 0.020*HP - 0.000025*Wgt');
ylabel('-0.17*Accel + -0.092*MPG')

References [1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University
Press, 1988.

[2] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

F Rao's approximate F statistic for

pF Right-tail significance level for F

df1 Degrees of freedom for the chi-squared statistic, and the
numerator degrees of freedom for the F statistic

df2 Denominator degrees of freedom for the F statistic

H0
k()

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

0.0025*Disp + 0.020*HP − 0.000025*Wgt

−
0.

17
*A

cc
el

 +
 −

0.
09

2*
M

P
G

canoncorr

12-84

See Also manova1, princomp

capable

12-85

12capablePurpose Process capability indices

Syntax p = capable(data,specs)
[p,Cp,Cpk] = capable(data,specs)

Description p = capable(data,specs) computes the probability that a sample, data, from
some process falls outside the bounds specified in specs, a 2-element vector of
the form [lower upper].

The assumptions are that the measured values in the vector data are normally
distributed with constant mean and variance and that the measurements are
statistically independent.

[p,Cp,Cpk] = capable(data,specs) additionally returns the capability
indices Cp and Cpk.

Cp is the ratio of the range of the specifications to six times the estimate of the
process standard deviation:

For a process that has its average value on target, a Cp of 1 translates to a little
more than one defect per thousand. Recently, many industries have set a
quality goal of one part per million. This would correspond to Cp = 1.6. The
higher the value of Cp, the more capable the process.

Cpk is the ratio of difference between the process mean and the closer
specification limit to three times the estimate of the process standard
deviation:

where the process mean is µ. For processes that do not maintain their average
on target, Cpk is a more descriptive index of process capability.

Example Imagine a machined part with specifications requiring a dimension to be
within three thousandths of an inch of nominal. Suppose that the machining
process cuts too thick by one thousandth of an inch on average and also has a

Cp
USL LSL–

6σ
--------------------------------=

Cpk min USL µ–
3σ

----------------------- µ LSL–
3σ

----------------------,⎝ ⎠
⎛ ⎞=

capable

12-86

standard deviation of one thousandth of an inch. What are the capability
indices of this process?

data = normrnd(1,1,30,1);
[p,Cp,Cpk] = capable(data,[-3 3]);

indices = [p Cp Cpk]
indices =

 0.0172 1.1144 0.7053

You expect 17 parts out of a thousand to be out-of-specification. Cpk is less than
Cp because the process is not centered.

Reference [1] Montgomery, D., “Introduction to Statistical Quality Control,” John Wiley
& Sons, 1991, pp. 369-374.

See Also capaplot, histfit

capaplot

12-87

12capaplotPurpose Process capability plot

Syntax p = capaplot(data,specs)
[p,h] = capaplot(data,specs)

Description p = capaplot(data,specs) estimates the mean and variance of the
observations in input vector data, and plots the pdf of the resulting
T distribution. The observations in data are assumed to be normally
distributed. The output, p, is the probability that a new observation from the
estimated distribution will fall within the range specified by the two-element
vector specs. The portion of the distribution between the lower and upper
bounds specified in specs is shaded in the plot.

[p,h] = capaplot(data,specs) additionally returns handles to the plot
elements in h.

Example Imagine a machined part with specifications requiring a dimension to be
within 3 thousandths of an inch of nominal. Suppose that the machining
process cuts too thick by one thousandth of an inch on average and also has a
standard deviation of one thousandth of an inch.

data = normrnd(1,1,30,1);
p = capaplot(data,[-3 3])
p =

 0.9784

The probability of a new observation being within specs is 97.84%.

-3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4
Probability Between Limits is 0.9784

capaplot

12-88

See Also capable, histfit

caseread

12-89

12casereadPurpose Read casenames from a file

Syntax names = caseread('filename')
names = caseread

Description names = caseread('filename') reads the contents of filename and returns a
string matrix of names. filename is the name of a file in the current directory,
or the complete pathname of any file elsewhere. caseread treats each line as a
separate case.

names = caseread displays the Select File to Open dialog box for interactive
selection of the input file.

Example Read the file months.dat created using the function casewrite on the next
page.

type months.dat

January
February
March
April
May

names = caseread('months.dat')
names =

January
February
March
April
May

See Also tblread, gname, casewrite, tdfread

casewrite

12-90

12casewritePurpose Write casenames from a string matrix to a file

Syntax casewrite(strmat,'filename')
casewrite(strmat)

Description casewrite(strmat,'filename') writes the contents of string matrix strmat
to filename. Each row of strmat represents one casename. filename is the
name of a file in the current directory, or the complete pathname of any file
elsewhere. casewrite writes each name to a separate line in filename.

casewrite(strmat) displays the Select File to Write dialog box for interactive
specification of the output file.

Example strmat = str2mat('January','February','March','April','May')

strmat =

January
February
March
April
May

casewrite(strmat,'months.dat')
type months.dat

January
February
March
April
May

See Also gname, caseread, tblwrite, tdfread

ccdesign

12-91

12ccdesignPurpose Generate central composite design

Syntax D = ccdesign(nfactors)
D = ccdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
[D,blk] = ccdesign(...)

Description D = ccdesign(nfactors) generates a central composite design for nfactors
factors. The output matrix D is n-by-nfactors, where n is the number of points
in the design. Each row represents one run of the design, and it has the settings
of all factors for that run. Factor values are normalized so that the cube points
take values between -1 and 1.

[D,blk] = ccdesign(nfactors) requests a blocked design. The output vector
blk is a vector of block numbers. Blocks are groups of runs that are to be
measured under similar conditions (for example, on the same day). Blocked
designs minimize the effect of between-block differences on the parameter
estimates.

[...] = ccdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
enables you to specify additional parameters and their values. Valid
parameters are:

'center' Number of center points:

Integer Specific number of center points to include

'uniform' Number of center points is selected to give
uniform precision

'orthogonal' Number of center points is selected to give
an orthogonal design (default)

'fraction' Fraction of full factorial for cube portion expressed as an
exponent of 1/2. For example:

0 Whole design

1 1/2 fraction

2 1/4 fraction

'type' Either 'inscribed', 'circumscribed', or 'faced'

'blocksize' Maximum number of points allowed in a block.

ccdesign

12-92

See Also bbdesign, cordexch, rowexch

cdf

12-93

12cdfPurpose Computes a chosen cumulative distribution function (cdf)

Syntax P = cdf('name',X,A1,A2,A3)

Description P = cdf('name',X,A1,A2,A3) returns a matrix of probabilities, where name is
a string containing the name of the distribution, X is a matrix of values, and A,
A2, and A3 are matrices of distribution parameters. Depending on the
distribution, some of these parameters may not be necessary.

Vector or matrix inputs for X, A1, A2, and A3 must have the same size, which is
also the size of P. A scalar input for X, A1, A2, or A3 is expanded to a constant
matrix with the same dimensions as the other inputs.

cdf is a utility routine allowing you to access all the cdfs in the Statistics
Toolbox by using the name of the distribution as a parameter. See “Overview
of the Distributions” on page 2-45 for the list of available distributions.

Examples p = cdf('Normal',-2:2,0,1)
p =

 0.0228 0.1587 0.5000 0.8413 0.9772

p = cdf('Poisson',0:5,1:6)
p =

 0.3679 0.4060 0.4232 0.4335 0.4405 0.4457

See Also betacdf, binocdf, chi2cdf, expcdf, fcdf, gamcdf, geocdf, hygecdf, icdf,
logncdf, mle, nbincdf, ncfcdf, nctcdf, ncx2cdf, normcdf, pdf, poisscdf,
random, raylcdf, tcdf, unidcdf, unifcdf, wblcdf

cdfplot

12-94

12cdfplotPurpose Plot of empirical cumulative distribution function

Syntax cdfplot(X)
h = cdfplot(X)
[h,stats] = cdfplot(X)

Description cdfplot(X) displays a plot of the empirical cumulative distribution function
(cdf) for the data in the vector X. The empirical cdf is defined as the
proportion of X values less than or equal to x.

This plot, like those produced by hist and normplot, is useful for examining
the distribution of a sample of data. You can overlay a theoretical cdf on the
same plot to compare the empirical distribution of the sample to the theoretical
distribution.

The kstest, kstest2, and lillietest functions compute test statistics that
are derived from the empirical cdf. You may find the empirical cdf plot
produced by cdfplot useful in helping you to understand the output from those
functions.

H = cdfplot(X) returns a handle to the cdf curve.

[h,stats] = cdfplot(X) also returns a stats structure with the following
fields.

Examples Generate a normal sample and an empirical cdf plot of the data.

x = normrnd(0,1,50,1);
cdfplot(x)

Field Contents

stats.min Minimum value

stats.max Maximum value

stats.mean Sample mean

stats.median Sample median (50th percentile)

stats.std Sample standard deviation

F x()

cdfplot

12-95

See Also ecdf, hist, kstest, kstest2, lillietest, normplot

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

chi2cdf

12-96

12chi2cdfPurpose Chi-square (χ2) cumulative distribution function (cdf)

Syntax P = chi2cdf(X,V)

Description P = chi2cdf(X,V) computes the χ2 cdf at each of the values in X using the
corresponding parameters in V. X and V can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other input. The degrees
of freedom parameters in V must be positive integers, and the values in X must
lie on the interval [0 1].

The χ2 cdf for a given value x and degrees-of-freedom ν is

where Γ(·) is the Gamma function. The result, p, is the probability that a
single observation from a χ2 distribution with ν degrees of freedom will fall in
the interval [0 x].

The χ2 density function with ν degrees-of-freedom is the same as the gamma
density function with parameters ν/2 and 2.

Examples probability = chi2cdf(5,1:5)
probability =

 0.9747 0.9179 0.8282 0.7127 0.5841

probability = chi2cdf(1:5,1:5)
probability =

 0.6827 0.6321 0.6084 0.5940 0.5841

See Also cdf, chi2inv, chi2pdf, chi2rnd, chi2stat

p F x ν() t ν 2–() 2⁄ e t– 2⁄

2ν 2⁄ Γ ν 2⁄()

0

x

∫ dt= =

chi2inv

12-97

12chi2invPurpose Inverse of the chi-square (χ2) cumulative distribution function (cdf)

Syntax X = chi2inv(P,V)

Description X = chi2inv(P,V) computes the inverse of the χ2 cdf with parameters
specified by V for the corresponding probabilities in P. P and V can be vectors,
matrices, or multidimensional arrays that have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other inputs.

The degrees of freedom parameters in V must be positive integers, and the
values in P must lie in the interval [0 1].

The inverse χ2 cdf for a given probability p and ν degrees of freedom is

where

and Γ(·) is the Gamma function. Each element of output X is the value whose
cumulative probability under the χ2 cdf defined by the corresponding degrees
of freedom parameter in V is specified by the corresponding value in P.

Examples Find a value that exceeds 95% of the samples from a χ2 distribution with
10 degrees of freedom.

x = chi2inv(0.95,10)
x =

 18.3070

You would observe values greater than 18.3 only 5% of the time by chance.

See Also chi2cdf, chi2pdf, chi2rnd, chi2stat, icdf

x F 1– p ν() x:F x ν() p={ }= =

p F x ν() t ν 2–() 2⁄ e t– 2⁄

2ν 2⁄ Γ ν 2⁄()

0

x

∫ dt= =

chi2pdf

12-98

12chi2pdfPurpose Chi-square (χ2) probability density function (pdf)

Syntax Y = chi2pdf(X,V)

Description Y = chi2pdf(X,V) computes the χ2 pdf at each of the values in X using the
corresponding parameters in V. X and V can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of the
output Y. A scalar input is expanded to a constant array with the same
dimensions as the other input.

The degrees of freedom parameters in V must be positive integers, and the
values in X must lie on the interval [0 1].

The χ2 pdf for a given value x and ν degrees of freedom is

where Γ(·) is the Gamma function. The result, y, is the probability that a
single observation from a χ2 distribution with ν degrees of freedom will have
value x.

If x is standard normal, then x2 is distributed χ2 with one degree of freedom. If
x1, x2, ..., xn are n independent standard normal observations, then the sum of
the squares of the x’s is distributed χ2 with n degrees of freedom (and is
equivalent to the gamma density function with parameters ν/2 and 2).

Examples nu = 1:6;
x = nu;
y = chi2pdf(x,nu)

y =

 0.2420 0.1839 0.1542 0.1353 0.1220 0.1120

The mean of the χ2 distribution is the value of the degrees of freedom
parameter, nu. The above example shows that the probability density of the
mean falls as nu increases.

See Also chi2cdf, chi2inv, chi2rnd, chi2stat, pdf

y f x ν() x ν 2–() 2⁄ e x– 2⁄

2ν 2⁄ Γ ν 2⁄()
-------------------------------------= =

chi2rnd

12-99

12chi2rndPurpose Random numbers from the chi-square (χ2) distribution

Syntax R = chi2rnd(V)
R = chi2rnd(V,u)
R = chi2rnd(V,m,n)

Description R = chi2rnd(V) generates random numbers from the χ2 distribution with
degrees of freedom parameters specified by V. V can be a vector, a matrix, or a
multidimensional array. R is the same size as V.

R = chi2rnd(V,u) generates an array R of size u containing random numbers
from the χ2 distribution with degrees of freedom parameters specified by V,
where u is a row vector. If u is a 1-by-2 vector, R is a matrix with u(1) rows and
u(2) columns. If u is 1-by-n, R is an n-dimensional array.

R = chi2rnd(V,m,n) generates an m-by-n matrix containing random numbers
from the χ2 distribution with degrees of freedom parameter V.

Reproducing the Output of chi2rnd
chi2rnd uses the MATLAB functions rand and randn to generate random
numbers. When you call chi2rnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to chi2rnd or any other
functions that depend on rand or randn. If you want to reproduce the output of
chi2rnd, reset the states of rand and randn to the same fixed values each time
you call chi2rnd. For an example of how to do this, and a list of the Statistics
Toolbox functions that depend on rand or randn, see “Reproducing the Output
of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current states of
rand and randn. If you run the code in these examples, your results may differ
from the answers shown here.

Examples Note that the first and third commands are the same, but are different from the
second command.

r = chi2rnd(1:6)
r =

chi2rnd

12-100

0.0037 3.0377 7.8142 0.9021 3.2019 9.0729

r = chi2rnd(6,[1 6])
r =

6.5249 2.6226 12.2497 3.0388 6.3133 5.0388

r = chi2rnd(1:6,1,6)
r =

 0.7638 6.0955 0.8273 3.2506 1.5469 10.9197

See Also chi2cdf, chi2inv, chi2pdf, chi2stat

chi2stat

12-101

12chi2statPurpose Mean and variance for the chi-square (χ2) distribution

Syntax [M,V] = chi2stat(NU)

Description [M,V] = chi2stat(NU) returns the mean and variance for the χ2 distribution
with degrees of freedom parameters specified by NU.

The mean of the χ2 distribution is ν, the degrees of freedom parameter, and the
variance is 2ν.

Example nu = 1:10;
nu = nu'∗nu;
[m,v] = chi2stat(nu)

m =

 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70
 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

v =

 2 4 6 8 10 12 14 16 18 20
 4 8 12 16 20 24 28 32 36 40
 6 12 18 24 30 36 42 48 54 60
 8 16 24 32 40 48 56 64 72 80
10 20 30 40 50 60 70 80 90 100
12 24 36 48 60 72 84 96 108 120
14 28 42 56 70 84 98 112 126 140
16 32 48 64 80 96 112 128 144 160
18 36 54 72 90 108 126 144 162 180
20 40 60 80 100 120 140 160 180 200

See Also chi2cdf, chi2inv, chi2pdf, chi2rnd

classify

12-102

12classifyPurpose Discriminant analysis

Syntax class = classify(sample,training,group)
class = classify(sample,training,group,type)
class = classify(sample,training,group,type,prior)
[class,err] = classify(...)
[class,err,posterior] = classify(...)
[class,err,posterior,logp] = classify(...)

Description class = classify(sample,training,group) classifies the rows of the matrix
sample into groups, based on the grouping of the rows in training. sample and
training must be matrices with the same number of columns. group is a vector
whose distinct values define the grouping of the rows of training. Each row of
training belongs to the group whose value is the corresponding entry of group.
group can be a numeric vector, a string array, or a cell array of strings.
training and group must have the same number of rows. classify treats NaNs
or empty strings in group as missing values, and ignores the corresponding
rows of training. class indicates which group each row of sample has been
assigned to, and is of the same type as group.

class = classify(sample,training,group,type) enables you to specify the
type of discriminant function type as one of:

'linear' Fits a multivariate normal density to each group, with a
pooled estimate of covariance (default).

'diaglinear' Same as 'linear', except that the covariance matrices
are assumed to be diagonal and are estimated as
diag(var).

'quadratic' Fits multivariate normal densities with covariance
estimates stratified by group.

'diagquadratic' Same as 'quadratic', except that the covariance matrices
are assumed to be diagonal and are estimated as
diag(var).

'mahalanobis' Uses Mahalanobis distances with stratified covariance
estimates.

classify

12-103

class = classify(sample,training,group,type,prior) enables you to
specify prior probabilities for the groups in one of three ways. prior can be

• A numeric vector of the same length as the number of unique values in
group. If group is numeric, the order of prior must correspond to the sorted
values in group, or, if group contains strings, to the order of first occurrence
of the values in group.

• A 1-by-1 structure with fields:

As a structure, prior can contain groups that do not appear in group. This
can be useful if training is a subset a larger training set.

• The string value 'empirical', indicating that classify should estimate the
group prior probabilities from the group relative frequencies in training.

prior defaults to a numeric vector of equal probabilities, i.e., a uniform
distribution. prior is not used for discrimination by Mahalanobis distance,
except for error rate calculation.

[class,err] = classify(...) also returns an estimate of the
misclassification error rate. classify returns the apparent error rate, i.e., the
percentage of observations in the training that are misclassified.

[class,err,posterior] = classify(...) returns posterior, a matrix
containing estimates of the posterior probabilities that the j'th training group
was the source of the i'th sample observation, that is, Pr{group j | obs i}.
posterior is not computed for Mahalanobis discrimination.

[class,err,posterior,logp] = classify(...) returns logp, a vector
containing estimates of the logarithms of the unconditional predictive
probability density of the sample observations, p(obs i). p(obs i) is the sum of
p(obs i | group j)*Pr{group j} taken over all groups. logp is not computed for
Mahalanobis discrimination.

Examples load discrim
sample = ratings(idx,:);

prob A numeric vector

group Of the same type as group, and containing unique values
indicating which groups the elements of prob correspond to.

classify

12-104

training = ratings(1:200,:);
g = group(1:200);
class = classify(sample,training,g);
first5 = class(1:5)

first5 =

 2
 2
 2
 2
 2

See Also mahal

References [1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University
Press, 1988.

[2] Seber, G.A.F., Multivariate Observations, Wiley, 1984

cluster

12-105

12clusterPurpose Construct clusters from linkage output

Syntax T = cluster(Z,'cutoff',c)
T = cluster(Z,'maxclust',n)
T = cluster(...,'criterion','crit')
T = cluster(...,'depth',d)

Description T = cluster(Z,'cutoff',c) constructs clusters from the hierarchical cluster
tree, Z, generated by the linkage function. Z is a matrix of size (m-1)-by-3,
where m is the number of observations in the original data. c is a threshold for
cutting Z into clusters. Clusters are formed when inconsistent values are less
than c. See the inconsistent function for more information. The output T is a
vector of size m that contains the cluster number for each observation in the
original data.

T = cluster(Z,'maxclust',n) specifies n as the maximum number of
clusters to form from the hierarchical tree in Z.

T = cluster(...,'criterion','crit') uses the specified criterion for
forming clusters, where crit is either 'inconsistent' or 'distance'.

T = cluster(...,'depth',d) evaluates inconsistent values to a depth of d in
the tree. The default is d = 2. An inconsistency coefficient computation
compares a link between two objects in the cluster tree with neighboring links
up to the specified depth. See the inconsistent function for more information.

Example The example uses the pdist function to calculate the distance between items
in a matrix of random numbers and then uses the linkage function to compute
the hierarchical cluster tree based on the matrix. The example passes the
output of the linkage function to the cluster function. The 'maxclust' value
3 indicates that you want to group the items into three clusters. The find
function lists all the items grouped into cluster 1.

rand('state', 7)
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y);
T = cluster(Z,'maxclust',3);
find(T==1)

cluster

12-106

ans =
11
12
13
14
15
16
17
18
19
20

See Also clusterdata, cophenet, inconsistent, linkage, pdist

clusterdata

12-107

12clusterdataPurpose Construct clusters from data

Syntax T = clusterdata(X, cutoff)
T = clusterdata(X,'param1',val1,'param2',val2,...)

Description T = clusterdata(X, cutoff) uses the pdist, linkage, and cluster
functions to construct clusters from data X. X is an m-by-n matrix, treated as m
observations of n variables. cutoff is a threshold for cutting the hierarchical
tree generated by linkage into clusters. When 0 < cutoff < 2, clusterdata
forms clusters when inconsistent values are greater than cutoff (see the
inconsistent function). When cutoff is an integer and cutoff >= 2, then
clusterdata interprets cutoff as the maximum number of clusters to keep in
the hierarchical tree generated by linkage. The output T is a vector of size m
containing a cluster number for each observation.

T = clusterdata(X,cutoff) is the same as

Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z,'cutoff',cutoff);

T = clusterdata(X,'param1',val1,'param2',val2,...) provides more
control over the clustering through a set of parameter/value pairs. Valid
parameters are

Example The example first creates a sample data set of random numbers. It then uses
clusterdata to compute the distances between items in the data set and create
a hierarchical cluster tree from the data set. Finally, the clusterdata function
groups the items in the data set into three clusters. The example uses the find

'distance' Any of the distance metric names allowed by pdist (follow the
'minkowski' option by the value of the exponent p)

'linkage' Any of the linkage methods allowed by the linkage function

'cutoff' Cutoff for inconsistent or distance measure

'maxclust' Maximum number of clusters to form

'criterion' Either 'inconsistent' or 'distance'

'depth' Depth for computing inconsistent values

clusterdata

12-108

function to list all the items in cluster 2, and the scatter3 function to plot the
data with each cluster shown in a different color.

rand('state',12);
X = [rand(10,3); rand(10,3)+1.2; rand(10,3)+2.5];
T = clusterdata(X,'maxclust',3);
find(T==2)

ans =
 11
 11
 13
 14
 115
 16
 17
 18
 19
 20

scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')

clusterdata

12-109

See Also cluster, inconsistent, kmeans, linkage, pdist

cmdscale

12-110

12cmdscalePurpose Classical multidimensional scaling

Syntax Y = cmdscale(D)
[Y,e] = cmdscale(D)

Description Y = cmdscale(D) takes an n-by-n distance matrix D, and returns an n-by-p
configuration matrix Y. Rows of Y are the coordinates of n points in
p-dimensional space for some p < n. When D is a Euclidean distance matrix,
the distances between those points are given by D. p is the dimension of the
smallest space in which the n points whose interpoint distances are given by D
can be embedded.

[Y,e] = cmdscale(D) also returns the eigenvalues of Y*Y'. When D is
Euclidean, the first p elements of e are positive, the rest zero. If the first k
elements of e are much larger than the remaining (n-k), then you can use the
first k columns of Y as k-dimensional points whose interpoint distances
approximate D. This can provide a useful dimension reduction for visualization,
e.g., for k = 2.

D need not be a Euclidean distance matrix. If it is non-Euclidean or a more
general dissimilarity matrix, then some elements of e are negative, and
cmdscale choses p as the number of positive eigenvalues. In this case, the
reduction to p or fewer dimensions provides a reasonable approximation to D
only if the negative elements of e are small in magnitude.

You can specify D as either a full dissimilarity matrix, or in upper triangle
vector form such as is output by pdist. A full dissimilarity matrix must be real
and symmetric, and have zeros along the diagonal and positive elements
everywhere else. A dissimilarity matrix in upper triangle form must have real,
positive entries. You can also specify D as a full similarity matrix, with ones
along the diagonal and all other elements less than one. cmdscale transforms
a similarity matrix to a dissimilarity matrix in such a way that distances
between the points returned in Y equal or approximate sqrt(1-D). To use a
different transformation, you must transform the similarities prior to calling
cmdscale.

Examples Generate some points in 4-dimensional space, but close to 3-dimensional space,
then reduce them to distances only.

cmdscale

12-111

X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');

Find a configuration with those inter-point distances.

[Y,e] = cmdscale(D);
% Four, but fourth one small
dim = sum(e > eps^(3/4))
% Poor reconstruction
maxerr2 = max(abs(pdist(X) - pdist(Y(:,1:2))))
% Good reconstruction
maxerr3 = max(abs(pdist(X) - pdist(Y(:,1:3))))
% Exact reconstruction
maxerr4 = max(abs(pdist(X) - pdist(Y)))
% D is now non-Euclidean
D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);
% One is large negative
min(e)
% Poor reconstruction
maxerr = max(abs(pdist(X) - pdist(Y)))

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984

See Also mdscale, pdist, procrustes

combnk

12-112

12combnkPurpose Enumeration of all combinations of n objects k at a time

Syntax C = combnk(v,k)

Description C = combnk(v,k) returns all combinations of the n elements in v taken k at a
time.

C = combnk(v,k) produces a matrix C with k columns and n! / k!(n-k)! rows,
where each row contains k of the elements in the vector v.

It is not practical to use this function if v has more than about 15 elements.

Example Combinations of characters from a string.

C = combnk('tendril',4);
last5 = C(31:35,:)

last5 =

tedr
tenl
teni
tenr
tend

Combinations of elements from a numeric vector.

c = combnk(1:4,2)

c =
 3 4
 2 4
 2 3
 1 4
 1 3
 1 2

cophenet

12-113

12cophenetPurpose Cophenetic correlation coefficient

Syntax c = cophenet(Z,Y)
[c,d] = cophenet(Z,Y)

Description c = cophenet(Z,Y) computes the cophenetic correlation coefficient for the
hierarchical cluster tree represented by Z. Z is the output of the linkage
function. Y contains the distances or dissimilarities used to construct Z, as
output by the pdist function. Z is a matrix of size (m-1)-by-3, with distance
information in the third column. Y is a vector of size .

[c,d] = cophenet(Z,Y) returns the cophenetic distances d in the same lower
triangular distance vector format as Y.

The cophenetic correlation for a cluster tree is defined as the linear correlation
coefficient between the cophenetic distances obtained from the tree, and the
original distances (or dissimilarities) used to construct the tree. Thus, it is a
measure of how faithfully the tree represents the dissimilarities among
observations.

The cophenetic distance between two observations is represented in a
dendrogram by the height of the link at which those two observations are first
joined. That height is the distance between the two subclusters that are
merged by that link.

The output value, c, is the cophenetic correlation coefficient. The magnitude of
this value should be very close to 1 for a high-quality solution. This measure
can be used to compare alternative cluster solutions obtained using different
algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

where:

• Yij is the distance between objects i and j in Y.

• Zij is the cophenetic distance between objects i and j, from Z(:,3).

• y and z are the average of Y and Z(:,3), respectively.

m m 1–() 2⁄⋅

c
Σi j< Yij y–() Zij z–()

Σi j< Yij y–()2Σi j< Zij z–()2
--=

cophenet

12-114

Example X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'average');

% Compute Spearman's rank correlation between the
% dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
r = corr(Y',D','type','spearman')
r =
 0.8279

See Also cluster, dendrogram, inconsistent, linkage, pdist, squareform

cordexch

12-115

12cordexchPurpose D-optimal design of experiments – coordinate exchange algorithm

Syntax settings = cordexch(nfactors,nruns)
[settings,X] = cordexch(nfactors,nruns)
[settings,X] = cordexch(nfactors,nruns,'model')
[settings,X] = cordexch(...,'param1',value1,'param2',value2,...)

Description settings = cordexch(nfactors,nruns) generates the factor settings matrix,
settings, for a D-optimal design using a linear additive model with a constant
term. settings has nruns rows and nfactors columns.

[settings,X] = cordexch(nfactors,nruns) also generates the associated
design matrix X.

[settings,X] = cordexch(nfactors,nruns,'model') produces a design for
fitting a specified regression model. The input, 'model', can be one of these
strings:

Alternatively model can be a matrix of term definitions as accepted by the x2fx
function.

[settings,X] = cordexch(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.

'display' Either 'on' or 'off' to control display of iteration counter.
The default is 'on'.

'init' Initial design as an nruns-by-nfactors matrix. The default is a
randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.

cordexch

12-116

Example The D-optimal design for two factors in nine runs using a quadratic model is
the 32 factorial as shown below:

settings = cordexch(2,9,'quadratic')

settings =

 -1 1
 1 1
 0 1
 1 -1
 -1 -1
 0 -1
 1 0
 0 0
 -1 0

Algorithm The cordexch function searches for a D-optimal design using a coordinate
exchange algorithm. It creates a starting design, and then iterates by changing
each coordinate of each design point in an attempt to reduce the variance of the
coefficients that would be estimated using this design.

See Also bbdesign, candexch, candgen, ccdesign, daugment, dcovary, rowexch, x2fx

corr

12-117

12corrPurpose Linear or rank correlation

Syntax RHO = corr(X)
RHO = corr(X,Y,...)
[RHO, PVAL] = corr(...)
[...] = corr(...,'param1', val1, 'param2', val2,...)

Description RHO = corr(X) returns a p-by-p matrix containing the pairwise linear
correlation coefficient between each pair of columns in the n-by-p matrix X.

RHO = corr(X,Y,...) returns a p1-by-p2 matrix containing the pairwise
correlation coefficient between each pair of columns in the n-by-p1 and n-by-p2
matrices X and Y.

[RHO, PVAL] = corr(...) also returns PVAL, a matrix of p-values for testing
the hypothesis of no correlation against the alternative that there is a non-zero
correlation. Each element of PVAL is the p-value for the corresponding element
of RHO. If PVAL(i, j) is small, say less than 0.05, then the correlation
RHO(i, j) is significantly different from zero.

[...] = corr(...,'param1', val1, 'param2', val2,...) specifies
additional parameters and their values. The following table lists the valid
parameters and their values.

Parameter Values

'type' • 'Pearson' (the default) computes Pearson's
linear correlation coefficient

• 'Kendall' computes Kendall's tau

• 'Spearman' computes Spearman's rho

corr

12-118

Using the 'pairwise' option for the 'rows' parameter might return a matrix
that is not positive definite. The 'complete' option always returns a positive
definite matrix, but in general the estimates will be based on fewer
observations.

corr computes p-values for Pearson's correlation using a Student's t
distribution for a transformation of the correlation. This is exact when X and Y
are normal. corr computes p-values for Kendall's tau and Spearman's rho
using either the exact permutation distributions (for small sample sizes), or
large-sample approximations.

corr computes p-values for the two-tailed test by doubling the more significant
of the two one-tailed p-values.

See Also corrcoef

'rows' • 'all' (the default) uses all rows regardless of
missing values (NaNs)

• 'complete' uses only rows with no missing
values

• 'pairwise'computes RHO(i,j) using rows with
no missing values in column i or j

'tail' — The
alternative hypothesis
against which to
compute p-values for
testing the hypothesis
of no correlation

• 'ne' — Correlation is not zero (the default)

• 'gt' — Correlation is greater than zero

• 'lt' — Correlation is less than zero

Parameter Values

corrcoef

12-119

12corrcoefPurpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients calculated from
an input matrix X whose rows are observations and whose columns are
variables. The (i,j)th element of the matrix R is related to the covariance
matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag
of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing the
hypothesis of no correlation. Each p-value is the probability of getting a
correlation as large as the observed value by random chance, when the true
correlation is zero. If P(i,j) is small, say less than 0.05, then the correlation
R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP, of the same
size as R, containing lower and upper bounds for a 95% confidence interval for
each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the following.

R i j,() C i j,()
C i i,()C j j,()

-------------------------------------=

corrcoef

12-120

The p-value is computed by transforming the correlation to create a t statistic
having n-2 degrees of freedom, where n is the number of rows of X. The
confidence bounds are based on an asymptotic normal distribution of
0.5*log((1+R)/(1-R)), with an approximate variance equal to 1/(n-3).
These bounds are accurate for large samples when X has a multivariate normal
distribution. The 'pairwise' option can produce an R matrix that is not
positive definite.

The corrcoef function is part of the standard MATLAB language.

Examples Generate random data having correlation between column 4 and the other
columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.

r =
 1.0000 -0.3566 0.1929 0.3457
 -0.3566 1.0000 -0.1429 0.4461
 0.1929 -0.1429 1.0000 0.5183
 0.3457 0.4461 0.5183 1.0000

p =
 1.0000 0.0531 0.3072 0.0613
 0.0531 1.0000 0.4511 0.0135
 0.3072 0.4511 1.0000 0.0033
 0.0613 0.0135 0.0033 1.0000

ans =
 4 2

'alpha' A number between 0 and 1 to specify a confidence level of
100(1 - alpha)%. Default is 0.05 for 95% confidence intervals.

'rows' Either 'all' (default) to use all rows, 'complete' to use rows
with no NaN values, or 'pairwise' to compute R(i,j) using
rows with no NaN values in either column i or j.

corrcoef

12-121

 4 3
 2 4
 3 4

See Also cov, mean, std, var

xcorr, xcov in the Signal Processing Toolbox

cov

12-122

12covPurpose Covariance matrix.

Syntax C = cov(X)
C = cov(x,y)

Description C = cov(X) computes the covariance matrix. For a single vector, cov(x)
returns a scalar containing the variance. For matrices, where each row is an
observation, and each column a variable, cov(X) is the covariance matrix.

The variance function, var(X) is the same as diag(cov(X)).

The standard deviation function, std(X) is equivalent to sqrt(diag(cov(X))).

cov(x,y), where x and y are column vectors of equal length, gives the same
result as cov([x y]).

The cov function is part of the standard MATLAB language.

Algorithm The algorithm for cov is

[n,p] = size(X);
X = X - ones(n,1) * mean(X);
Y = X'∗X/(n-1);

See Also corrcoef, mean, std, var

xcov, xcorr in the Signal Processing Toolbox

crosstab

12-123

12crosstabPurpose Cross-tabulation of several vectors

Syntax table = crosstab(col1,col2)
table = crosstab(col1,col2,col3,...)
[table,chi2,p] = crosstab(col1,col2)
[table,chi2,p,label] = crosstab(col1,col2)

Description table = crosstab(col1,col2) takes two vectors of positive integers and
returns a matrix, table, of cross-tabulations. The ijth element of table
contains the count of all instances where col1 = i and col2 = j.

Alternatively, col1 and col2 can be vectors containing noninteger values,
character arrays, or cell arrays of strings. crosstab implicitly assigns a
positive integer group number to each distinct value in col1 and col2, and
creates a cross-tabulation using those numbers.

table = crosstab(col1,col2,col3,...) returns table as an n-dimensional
array, where n is the number of arguments you supply. The value of
table(i,j,k,...) is the count of all instances where col1 = i, col2 = j,
col3 = k, and so on.

[table,chi2,p] = crosstab(col1,col2) also returns the chi-square statistic,
chi2, for testing the independence of the rows and columns of table. The
scalar p is the significance level of the test. Values of p near zero cast doubt on
the assumption of independence of the rows and columns of table.

[table,chi2,p,label] = crosstab(col1,col2) also returns a cell array
label that has one column for each input argument. The value in label(i,j)
is the value of colj that defines group i in the jth dimension.

Example Example 1
This example generates 2 columns of 50 discrete uniform random numbers.
The first column has numbers from 1 to 3. The second has only the numbers 1
and 2. The two columns are independent so it would be surprising if p were
near zero.

r1 = unidrnd(3,50,1);
r2 = unidrnd(2,50,1);
[table,chi2,p] = crosstab(r1,r2)

crosstab

12-124

table =

 10 5
 8 8
 6 13

chi2 =

 4.1723

p =

 0.1242

The result, 0.1242, is not a surprise. A very small value of p would make you
suspect the “randomness” of the random number generator.

Example 2
you have data collected on several cars over a period of time. How many
four-cylinder cars were made in the USA during the late part of this period?

[t,c,p,l] = crosstab(cyl4,when,org);

l
l =
 'Other' 'Early' 'USA'
 'Four' 'Mid' 'Europe'
 [] 'Late' 'Japan'

t(2,3,1)

ans =
 38

See Also tabulate

daugment

12-125

12daugmentPurpose D-optimal augmentation of an experimental design

Syntax settings = daugment(startdes,nruns)
[settings,X] = daugment(startdes,nruns)
[settings,X] = daugment(startdes,nruns,'model')
[settings, X] = daugment(...,'param1',value1,'param2',value2,...)

Description settings = daugment(startdes,nruns) adds nruns runs to an experimental
design using the coordinate exchange D-optimal algorithm. startdes is a
matrix of factor settings in the original design. The output matrix settings is
the matrix of factor settings for the design.

[settings,X] = daugment(startdes,nruns) also generates the associated
design matrix, X.

[settings,X] = daugment(startdes,nruns,'model') also controls the order
of the regression model. The input, 'model', can be one of these:

Alternatively model can be a matrix of term definitions as accepted by the x2fx
function.

[settings, X] = daugment(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are the following:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.

Parameter Value

'display' Either 'on' or 'off' to control display of iteration counter.
The default is 'on'.

daugment

12-126

Example This example adds 5 runs to a 22 factorial design to fit a quadratic model.

startdes = [-1 -1; 1 -1; -1 1; 1 1];
settings = daugment(startdes,5,'quadratic')

settings =

 -1 -1
 1 -1
 -1 1
 1 1
 1 0
 -1 0
 0 1
 0 0
 0 -1

The result is a 32 factorial design.

See Also cordexch, x2fx

'init' Initial design as an nruns-by-nfactors matrix. The default
is a randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.

Parameter Value

dcovary

12-127

12dcovaryPurpose D-optimal design with specified fixed covariates

Syntax settings = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates,'model')
[settings,X] = dcovary(...,'param1',value1,'param2',value2,...)

Description settings = dcovary(nfactors,covariates) uses a coordinate exchange
algorithm to generate a D-optimal design for nfactors factors, subject to the
constraint that it also include the fixed covariate values in the input matrix
covariates. The number of runs in the design is taken to be the number of
rows in the covariates matrix. The output matrix settings is the matrix of
factor settings for the design, including the fixed covariates.

[settings,X] = dcovary(nfactors,covariates) also generates the
associated design matrix, X.

[settings,X] = dcovary(nfactors,covariates,'model') also controls the
order of the regression model. The input, 'model', can be one of these:

Alternatively 'model' can be a matrix of term definitions as accepted by the
x2fx function. The model is applied to the fixed covariates as well as the
regular factors. If you want to treat the fixed covariates specially, for example
by including linear terms for them but quadratic terms for the regular factors,
you can do this by creating the proper 'model' matrix.

[settings, X] = dcovary(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.

dcovary

12-128

Example Example 1. Generate a design for three factors in 2 blocks of 4 runs.

blk = [-1 -1 -1 -1 1 1 1 1]';
dsgn = dcovary(3,blk)

dsgn =
 -1 1 1 -1
 1 -1 -1 -1
 -1 1 -1 -1
 1 -1 1 -1
 1 1 -1 1
 1 1 1 1
 -1 -1 1 1
 -1 -1 -1 1

Example 2. Suppose you want to block an eight run experiment into 4 blocks
of size 2 to fit a linear model on two factors.

covariates = dummyvar([1 1 2 2 3 3 4 4]);
settings = dcovary(2,covariates(:,1:3),'linear')
settings =
 1 1 1 0 0
 -1 -1 1 0 0
 -1 1 0 1 0
 1 -1 0 1 0
 1 1 0 0 1
 -1 -1 0 0 1
 -1 1 0 0 0
 1 -1 0 0 0

The first two columns of the output matrix contain the settings for the two
factors. The last three columns are dummy variable codings for the four blocks.

'display' Either 'on' or 'off' to control display of iteration counter.
The default is 'on'.

'init' Initial design as an nruns-by-nfactors matrix. The default is a
randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.

dcovary

12-129

Algorithm The dcovary function creates a starting design that includes the fixed covariate
values, and then iterates by changing the non-fixed coordinates of each design
point in an attempt to reduce the variance of the coefficients that would be
estimated using this design.

See Also cordexch, daugment, rowexch, x2fx

dendrogram

12-130

12dendrogramPurpose Plot dendrogram graphs

Syntax H = dendrogram(Z)
H = dendrogram(Z,p)
[H,T] = dendrogram(...)
[H,T,perm] = dendrogram(...)
[...] = dendrogram(...,'colorthreshold',t)
[...] = dendrogram(...,'orientation','orient')
[...] = dendrogram(...,'labels', S)

Description H = dendrogram(Z) generates a dendrogram plot of the hierarchical, binary
cluster tree represented by Z. Z is an (m-1)-by-3 matrix, generated by the
linkage function, where m is the number of objects in the original data set. The
output, H, is a vector of handles to the lines in the dendrogram.

A dendrogram consists of many U-shaped lines connecting objects in a
hierarchical tree. The height of each U represents the distance between the two
objects being connected.

H = dendrogram(Z,p) generates a dendrogram with only the top p nodes. By
default, dendrogram uses 30 as the value of p. When there are more than 30
initial nodes, a dendrogram may look crowded. To display every node, set
p = 0.

[H,T] = dendrogram(...) generates a dendrogram and returns T, a vector of
length m that contains the leaf node number for each object in the original data
set. T is useful when p is less than the total number of objects, so some leaf
nodes in the display correspond to multiple objects. For example, to find out
which objects are contained in leaf node k of the dendrogram, use find(T==k).
When there are fewer than p objects in the original data, all objects are
displayed in the dendrogram. In this case, T is the identity map, i.e.,
T = (1:m)', where each node contains only a single object.

[H,T,perm] = dendrogram(...) generates a dendrogram and returns the
permutation vector of the node labels of the leaves of the dendrogram. perm is
ordered from left to right on a horizontal dendrogram and bottom to top for a
vertical dendrogram.

dendrogram

12-131

[...] = dendrogram(...,'colorthreshold',t) assigns a unique color to
each group of nodes in the dendrogram where the linkage is less than the
threshold t. t is a value in the interval [0,max(Z(:,3))]. Setting t to the
string 'default' is the same as t = .7(max(Z(:,3))). 0 is the same as not
specifying 'colorthreshold'. The value max(Z(:,3)) treats the entire tree as
one group and colors it all one color.

[...] = dendrogram(...,'orientation','orient') orients the dendrogram
within the figure window. The options for 'orient' are

[...] = dendrogram(...,'labels', S) accepts a character array or cell array
of strings S with one label for each observation. Any leaves in the tree
containing a single observation are labeled with that observation's label.

Example X= rand(100,2);
Y= pdist(X,'cityblock');
Z= linkage(Y,'average');
[H,T] = dendrogram(Z,'colorthreshold','default');

'top' Top to bottom (default)

'bottom' Bottom to top

'left' Left to right

'right' Right to left

dendrogram

12-132

find(T==20)

ans =

20
49
62
65
73
96

This output indicates that leaf node 20 in the dendrogram contains the original
data points 20, 49, 62, 65, 73, and 96.

See Also cluster, clusterdata, cophenet, inconsistent, linkage, silhouette

14 17 13 22 12 8 23 20 19 1 21 15 5 2 3 16 27 4 18 24 28 6 10 7 30 26 9 25 11 29

0.2

0.3

0.4

0.5

0.6

0.7

0.8

disttool

12-133

12disttoolPurpose Interactive plot of cdf (or pdf) for many probability distributions

Syntax disttool

Description The disttool command displays a graphical interface for exploring the effects
of changing parameters on the plot of a cdf or pdf. See “Probability
Distributions Demo” on page 2-3 for detailed information about the demo.

See Also randtool

dummyvar

12-134

12dummyvarPurpose Matrix of 0-1 “dummy” variables

Syntax D = dummyvar(group)

Description D = dummyvar(group) generates a matrix, D, of 0-1 columns. D has one column
for each unique value in each column of the matrix group. Each column of
group contains positive integers that indicate the group membership of an
individual row.

Example Suppose you are studying the effects of two machines and three operators on a
process. The first column of group would have the values 1 or 2 depending on
which machine was used. The second column of group would have the values
1, 2, or 3 depending on which operator ran the machine.

group = [1 1;1 2;1 3;2 1;2 2;2 3];
D = dummyvar(group)

D =
 1 0 1 0 0
 1 0 0 1 0
 1 0 0 0 1
 0 1 1 0 0
 0 1 0 1 0
 0 1 0 0 1

See Also pinv, regress

ecdf

12-135

12ecdfPurpose Empirical (Kaplan-Meier) cumulative distribution function

Syntax [f,x] = ecdf(y)
[f,x,flo,fup] = ecdf(y)
[...] = ecdf(y,'param1',value1,'param2',value2,...)

Description [f,x] = ecdf(y) calculates the Kaplan-Meier estimate of the cumulative
distribution function (cdf), also known as the empirical cdf. y is a vector of data
values. f is a vector of values of the empirical cdf evaluated at x.

[f,x,flo,fup] = ecdf(y) also returns lower and upper confidence bounds for
the cdf. These bounds are calculated using Greenwood's formula, and are not
simultaneous confidence bounds.

[...] = ecdf(y,'param1',value1,'param2',value2,...) specifies
additional parameter name-value pairs chosen from the following:

Examples Generate random failure times and random censoring times, and compare the
empirical cdf with the known true cdf.

y = exprnd(10,50,1); % Random failure times are exponential(10)
d = exprnd(20,50,1); % Drop-out times are exponential(20)
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe also whether the subject failed

'censoring' Boolean vector of the same size as x. Elements are 1 for
observations that are right-censored and 0 for observations
that are observed exactly. Default is all observations
observed exactly.

'frequency' Vector of the same size as x containing non-negative integer
counts. The jth element of this vector gives the number of
times the jth element of x was observed. Default is 1
observation per element of x.

'alpha' Value between 0 and 1 for a confidence level of
100(1-alpha)%. Default is alpha=0.05 for 95% confidence.

'function' Type of function returned as the f output argument, chosen
from 'cdf' (default), 'survivor', or 'cumulative hazard'.

ecdf

12-136

% Calculate and plot the empirical cdf and confidence bounds
[f,x,flo,fup] = ecdf(t,'censoring',censored);
stairs(x,f);
hold on;
stairs(x,flo,'r:'); stairs(x,fup,'r:');

% Superimpose a plot of the known true cdf
xx = 0:.1:max(t); yy = 1-exp(-xx/10); plot(xx,yy,'g-')
hold off;

References [1] Cox, D. R., and D. Oakes, Analysis of Survival Data, Chapman & Hall,
London, 1984.

See Also cdfplot

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ecdfhist

12-137

12ecdfhistPurpose Create histogram from output of ecdf

Syntax n = ecdfhist(f, x)
n = ecdfhist(f, x, m)
n = ecdfhist(f, x, c)
[n, c] = ecdfhist(...)
ecdfhist(...)

Description n = ecdfhist(f, x) takes a vector f of empirical cumulative distribution
function (cdf) values and a vector x of evaluation points, and returns a vector n
containing the heights of histogram bars for 10 equally spaced bins. The
function computes the bar heights from the increases in the empirical cdf, and
normalizes them so that the area of the histogram is equal to 1. In contrast,
hist produces bars whose heights represent bin counts.

n = ecdfhist(f, x, m), where m is a scalar, uses m bins.

n = ecdfhist(f, x, c), where c is a vector, uses bins with centers specified
by c.

[n, c] = ecdfhist(...) also returns the position of the bin centers in c.

ecdfhist(...) without output arguments produces a histogram bar plot of the
results.

Example The following code generates random failure times and random censoring
times, and compares the empirical pdf with the known true pdf.

y = exprnd(10,50,1); % random failure times
d = exprnd(20,50,1); % drop-out times
t = min(y,d); % observe the minimum of these times
censored = (y>d); % observe whether the subject failed
% Calculate the empirical cdf and plot a histogram from it
[f,x] = ecdf(t,'censoring',censored);
ecdfhist(f,x);
% Superimpose a plot of the known true pdf
hold on;
xx = 0:.1:max(t); yy = exp(-xx/10)/10; plot(xx,yy,'g-');
hold off;

ecdfhist

12-138

See Also ecdf, hist, histc

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

errorbar

12-139

12errorbarPurpose Plot error bars along a curve

Syntax errorbar(X,Y,L,U,symbol)
errorbar(X,Y,L)
errorbar(Y,L)

Description errorbar(X,Y,L,U,symbol) plots X versus Y with error bars specified by L
and U. X, Y, L, and U must be the same length. If X, Y, L, and U are matrices, then
each column produces a separate line. The error bars are each drawn a distance
of U(i) above and L(i) below the points in (X,Y). symbol is a string that
controls the line type, plotting symbol, and color of the error bars.

errorbar(X,Y,L) plots X versus Y with symmetric error bars about Y.

errorbar(Y,L) plots Y with error bars [Y-L Y+L].

The errorbar function is a part of the standard MATLAB language.

Example lambda = (0.1:0.2:0.5);
r = poissrnd(lambda(ones(50,1),:));
[p,pci] = poissfit(r,0.001);
L = p - pci(1,:)
U = pci(2,:) - p
errorbar(1:3,p,L,U,'+')

L =
 0.1200 0.1600 0.2600

U =
 0.2000 0.2200 0.3400

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

evcdf

12-140

12evcdfPurpose Extreme value cumulative distribution function

Syntax P = evcdf(X, MU, SIGMA)
[P, PLO, PUP] = evcdf(X, MU, SIGMA, PCOV, alpha)

Description P = evcdf(X, MU, SIGMA) computes the cumulative distribution function (cdf)
for the type 1 extreme value distribution, with location parameter MU and scale
parameter SIGMA, at each of the values in X. X, MU, and SIGMA can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array of the same size as the other inputs. The
default values for MU and SIGMA are 0 and 1, respectively.

[P, PLO, PUP] = evcdf(X, MU, SIGMA, PCOV, alpha) produces confidence
bounds for P when the input parameters MU and SIGMA are estimates. PCOV is a
2-by-2 covariance matrix of the estimated parameters. alpha has a default
value of 0.05, and specifies 100(1 - alpha)% confidence bounds. PLO and PUP
are arrays of the same size as P, containing the lower and upper confidence
bounds.

The function evcdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The computed
bounds give approximately the desired confidence level when you estimate MU,
SIGMA, and PCOV from large samples, but in smaller samples other methods of
computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1
extreme value distribution.

 See Also cdf, evfit, evinv, evlike, evpdf, evrnd, evstat

X µ̂–

σ̂

evfit

12-141

12evfitPurpose Parameter estimates and confidence intervals for extreme value data

Syntax parmhat = evfit(data)
[parmhat, parmci] = evfit(data)
[parmhat, parmci] = evfit(data, alpha)
[...] = evfit(data, alpha, censoring)
[...] = evfit(data, alpha, censoring, freq)
[...] = evfit(data, alpha, censoring, freq, options)

Description parmhat = evfit(data) returns maximum likelihood estimates of the
parameters of the type 1 extreme value distribution given the data in the vector
data. parmhat(1) is the location parameter, µ, and parmhat(2) is the scale
parameter, σ.

[parmhat, parmci] = evfit(data) returns 95% confidence intervals for the
parameter estimates on the µ and σ parameters in the 2-by-2 matrix parmci.
The first column of the matrix contains the lower and upper confidence bounds
for the parameter µ, and the second column contains the confidence bounds for
the parameter σ.

[parmhat, parmci] = evfit(data, alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates, where alpha is a value in the
range [0 1] specifying the width of the confidence intervals. By default, alpha
is 0.05, which corresponds to 95% confidence intervals.

[...] = evfit(data, alpha, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = evfit(data, alpha, censoring, freq) accepts a frequency vector,
freq of the same size as data. Typically, freq contains integer frequencies for
the corresponding elements in data, but can contain any nonnegative values.
Pass in [] for alpha, censoring, or freq to use their default values.

[...] = evfit(data, alpha, censoring, freq, options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates. You
can create options using the function statset. Enter statset('evfit') to see
the names and default values of the parameters that evfit accepts in the

evfit

12-142

options structure. See the reference page for statset for more information
about these options.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1
extreme value distribution.

See Also evcdf, evinv, evlike, evpdf, evrnd, evstat, mle, statset

evinv

12-143

12evinvPurpose Inverse of the extreme value cumulative distribution function

Syntax X = evinv(P, MU, SIGMA)
[X, XLO, XUP] = evinv(P, MU, SIGMA, PCOV, alpha)

Description X = evinv(P, MU, SIGMA) returns the inverse cumulative distribution function
(cdf) for a type 1 extreme value distribution with location parameter MU and
scale parameter SIGMA, evaluated at the values in P. P, MU, and SIGMA can be
vectors, matrices, or multidimensional arrays that all have the same size.A
scalar input is expanded to a constant array of the same size as the other
inputs. The default values for MU and SIGMA are 0 and 1, respectively.

[X, XLO, XUP] = evinv(P, MU, SIGMA, PCOV, alpha) produces confidence
bounds for X when the input parameters MU and SIGMA are estimates. PCOV is
the covariance matrix of the estimated parameters. alpha is a scalar that
specifies 100(1 - alpha)% confidence bounds for the estimated parameters, and
has a default value of 0.05. XLO and XUP are arrays of the same size as X
containing the lower and upper confidence bounds.

The function evinv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from an extreme value distribution with
parameters and . The computed bounds give approximately the
desired confidence level when you estimate MU, SIGMA, and PCOV from large
samples, but in smaller samples other methods of computing the confidence
bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1
extreme value distribution.

See Also evcdf, evfit, evlike, evpdf, evrnd, evstat, icdf

µ̂ σ̂q+

µ 0= σ 1=

evlike

12-144

12evlikePurpose Negative log-likelihood for the extreme value distribution

Syntax nlogL = evlike(params, data)
[nlogL, AVAR] = evlike(params, data)
[...] = evlike(params, data, censoring)
[...] = evlike(params, data, censoring, freq)

Description nlogL = evlike(params, data) returns the negative of the log-likelihood for
the type 1 extreme value distribution, evaluated at parameters params(1) =
MU and params(2) = SIGMA, given data. nlogL is a scalar.

[nlogL, AVAR] = evlike(params, data) returns the inverse of Fisher's
information matrix, AVAR. If the input parameter values in params are the
maximum likelihood estimates, the diagonal elements of AVAR are their
asymptotic variances. AVAR is based on the observed Fisher's information, not
the expected information.

[...] = evlike(params, data, censoring) accepts a Boolean vector of the
same size as data, which is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = evlike(params, data, censoring, freq) accepts a frequency vector
of the same size as data. freq typically contains integer frequencies for the
corresponding elements in data, but can contain any nonnegative values. Pass
in [] for censoring to use its default value.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1
extreme value distribution.

See Also evcdf, evfit, evinv, evpdf, evrnd, evstat

evpdf

12-145

12evpdfPurpose Extreme value probability density function

Syntax Y = evpdf(X, MU, SIGMA)

Description Y = evpdf(X, MU, SIGMA) returns the pdf of the type 1 extreme value
distribution with location parameter MU and scale parameter SIGMA, evaluated
at the values in X. X, MU, and SIGMA can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other inputs. The default
values for MU and SIGMA are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1
extreme value distribution.

See Also evcdf, evfit, evinv, evlike, evrnd, evstat, pdf

evrnd

12-146

12evrndPurpose Random matrices from the extreme value distribution

Syntax R = evrnd(MU, SIGMA)
R = evrnd(MU, SIGMA, v)
R = evrnd(MU, SIGMA, m, n)

Description R = evrnd(MU,SIGMA) generates random numbers from the extreme value
distribution with parameters specified by MU and SIGMA. MU and SIGMA can be
vectors, matrices, or multidimensional arrays that have the same size, which
is also the size of R. A scalar input for MU or SIGMA is expanded to a constant
array with the same dimensions as the other input.

R = evrnd(MU,SIGMA,v) generates an array R of size v containing random
numbers from the extreme value distribution with parameters MU and SIGMA,
where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and
v(2) columns. If v is 1-by-n, R is an n-dimensional array.

If MU and SIGMA are both scalars, R = evrnd(MU, SIGMA, m, n) returns an
m-by-n matrix.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1
extreme value distribution.

Reproducing the Output of evrnd
evrnd uses the MATLAB function rand to generate random numbers. When
you call evrnd, you change the current state of rand, and thereby alter the
output of subsequent calls to evrnd or any other functions that depend on rand.
If you want to reproduce the output of evrnd, reset the state of rand to the same
fixed value each time you call evrnd. For an example of how to do this, and a
list of the Statistics Toolbox functions that depend on rand, see “Reproducing
the Output of Random Number Functions” on page 2-46.

See Also evcdf, evfit, evinv, evlike, evpdf, evstat

evstat

12-147

12evstatPurpose Mean and variance of the extreme value distribution

Syntax [M, V] = evstat(MU, SIGMA)

Description [M, V] = evstat(MU, SIGMA) returns the mean and variance of the type 1
extreme value distribution with location parameter MU and scale parameter
SIGMA. MU and SIGMA can be vectors, matrices, or multidimensional arrays that
all have the same size. A scalar input is expanded to a constant array of the
same size as the other input. The default values for MU and SIGMA are 0 and 1,
respectively.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1
extreme value distribution.

See Also evcdf, evfit, evinv, evlike, evpdf, evrnd

ewmaplot

12-148

12ewmaplotPurpose Exponentially Weighted Moving Average (EWMA) chart for Statistical Process
Control (SPC)

Syntax ewmaplot(data)
ewmaplot(data,lambda)
ewmaplot(data,lambda,alpha)
ewmaplot(data,lambda,alpha,specs)
h = ewmaplot(...)

Description ewmaplot(data) produces an EWMA chart of the grouped responses in data.
The rows of data contain replicate observations taken at a given time. The rows
should be in time order.

ewmaplot(data,lambda) produces an EWMA chart of the grouped responses in
data, and specifies how much the current prediction is influenced by past
observations. Higher values of lambda give more weight to current
observations. By default, lambda = 0.4; lambda must be between 0 and 1.

ewmaplot(data,lambda,alpha) produces an EWMA chart of the grouped
responses in data, and specifies the significance level of the upper and lower
plotted confidence limits. alpha is 0.0027 by default. This value produces
three-sigma limits:

norminv(1-0.0027/2)

ans =
3

To get k-sigma limits, use the expression 2*(1-normcdf(k)). For example, the
correct alpha value for 2-sigma limits is 0.0455, as shown below.

k = 2;
2*(1-normcdf(k))

ans =
 0.0455

ewmaplot(data,lambda,alpha,specs) produces an EWMA chart of the
grouped responses in data, and specifies a two-element vector, specs, for the
lower and upper specification limits of the response.

ewmaplot

12-149

h = ewmaplot(...) returns a vector of handles to the plotted lines.

Example Consider a process with a slowly drifting mean. An EWMA chart is preferable
to an x-bar chart for monitoring this kind of process. The simulation below
demonstrates an EWMA chart for a slow linear drift.

t = (1:28)';
r = normrnd(10+0.02*t(:,ones(4,1)),0.5);
ewmaplot(r,0.4,0.01,[9.75 10.75])

The EWMA value for group 28 is higher than would be expected purely by
chance. If you had been monitoring this process continuously, you would have
detected the drift when group 28 was collected, and would have had an
opportunity to investigate its cause.

Reference [1] Montgomery, D., Introduction to Statistical Quality Control, John Wiley &
Sons, 1991. p. 299.

See Also xbarplot, schart

0 5 10 15 20 25 30
9.6

9.8

10

10.2

10.4

10.6

10.8

28

UCL

LCL

CL

Exponentially Weighted Moving Average (EWMA) Chart

USL

LSL

Sample Number

E
W

M
A

expcdf

12-150

12expcdfPurpose Exponential cumulative distribution function (cdf)

Syntax P = expcdf(X, MU)
[P, PLO, PUP] = expcdf(X, MU, pcov, alpha)

Description P = expcdf(X, MU) computes the exponential cdf at each of the values in X
using the corresponding parameters in MU. X and MU can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other input. The
parameters in MU must be positive.

The exponential cdf is

The result, p, is the probability that a single observation from an exponential
distribution will fall in the interval [0 x].

[P, PLO, PUP] = expcdf(X, MU, pcov, alpha) produces confidence bounds
for P when the input parameter MU is an estimate. pcov is the variance of the
estimated MU. alpha specifies 100(1 - alpha)% confidence bounds. The default
value of alpha is 0.05. PLO and PUP are arrays of the same size as P containing
the lower and upper confidence bounds. The bounds are based on a normal
approximation for the distribution of the log of the estimate of MU. If you
estimate MU from a set of data, you can get a more accurate set of bounds by
applying expfit to the data to get a confidence interval for MU, and then
evaluating expinv at the lower and upper endpoints of that interval.

Examples The following code shows that the median of the exponential distribution is
µ∗log(2).

mu = 10:10:60;
p = expcdf(log(2)*mu,mu)

p =
 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

What is the probability that an exponential random variable is less than or
equal to the mean, µ?

p F x µ() 1
µ
---e

t
µ
---–

0

x

∫ dt 1 e
x
µ
---–

–= = =

expcdf

12-151

mu = 1:6;
x = mu;
p = expcdf(x,mu)

p =
 0.6321 0.6321 0.6321 0.6321 0.6321 0.6321

See Also cdf, expfit, expinv, exppdf, exprnd, expstat

expfit

12-152

12expfitPurpose Parameter estimates and confidence intervals for exponential data

Syntax parmhat = expfit(DATA)
[parmhat,parmci] = expfit(DATA)
[parmhat,parmci] = expfit(DATA,alpha)
[...] = expfit(x, alpha, censoring)
[...] = expfit(x, alpha, censoring, freq)

Description parmhat = expfit(DATA) returns estimates of the parameter, µ, of the
exponential distribution, given the data in DATA. Each entry of parmhat
corresponds to the data in a column of DATA.

[parmhat, parmci] = expfit(DATA) returns 95% confidence intervals for the
parameter estimates in matrix parmci. The first row of parmci contains the
lower bounds of the confidence intervals, and the second row contains the
upper bounds.

[parmhat, parmci] = expfit(DATA, alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates, where alpha is a value in the
range [0 1] specifying the width of the confidence intervals. By default, alpha
is 0.05, which corresponds to 95% confidence intervals.

[...] = expfit(data, alpha, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly. data must be
a vector in order to pass in the argument censoring.

[...] = expfit(data, alpha, censoring, freq) accepts a frequency vector,
freq of the same size as data. Typically, freq contains integer frequencies for
the corresponding elements in data, but can contain any nonnegative values.
Pass in [] for alpha, censoring, or freq to use their default values.

Example This example generates 100 independent samples of exponential data with
µ = 3. muhat is an estimate of µ and muci is a 99% confidence interval around
muhat. Notice that muci contains the true value of µ.

data = exprnd(3, 100, 1);
[parmhat, parmci] = expfit(data, 0.01)

parmhat =

expfit

12-153

 2.7292

parmci =

 2.1384
 3.5854

See Also expcdf, expinv, explike, exppdf, exprnd, expstat, mle, statset

expinv

12-154

12expinvPurpose Inverse of the exponential cumulative distribution function (cdf)

Syntax X = expinv(P, MU)

[P, PLO, PUP] = expinv(X, MU, pcov, alpha)

Description X = expinv(P,MU) computes the inverse of the exponential cdf with
parameters specified by MU for the corresponding probabilities in P. P and MU
can be vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same dimensions
as the other input. The parameters in MU must be positive and the values in P
must lie on the interval [0 1].

[X, XLO, XUP] = expinv(X, MU, pcov, alpha) produces confidence bounds
for X when the input parameter MU is an estimate. pcov is the variance of the
estimated MU. alpha specifies 100(1 - alpha)% confidence bounds. The default
value of alpha is 0.05. XLO and XUP are arrays of the same size as X containing
the lower and upper confidence bounds. The bounds are based on a normal
approximation for the distribution of the log of the estimate of MU. If you
estimate MU from a set of data, you can get a more accurate set of bounds by
applying expfit to the data to get a confidence interval for MU, and then
evaluating expinv at the lower and upper end points of that interval.

The inverse of the exponential cdf is

The result, x, is the value such that an observation from an exponential
distribution with parameter µ will fall in the range [0 x] with probability p.

Examples Let the lifetime of light bulbs be exponentially distributed with µ = 700 hours.
What is the median lifetime of a bulb?

expinv(0.50,700)

ans =

 485.2030

Suppose you buy a box of “700 hour” light bulbs. If 700 hours is the mean life
of the bulbs, half of them will burn out in less than 500 hours.

x F 1– p µ() µln 1 p–()–= =

expinv

12-155

See Also expcdf, expfit, exppdf, exprnd, expstat, icdf

explike

12-156

12explikePurpose Negative log-likelihood for the exponential distribution

Syntax nlogL = explike(param, data)
[nlogL, avar] = explike(param, data)
[...] = explike(param, data, censoring)
[...] = explike(param, data, censoring, freq)

Description nlogL = explike(param, data) returns the negative of the log-likelihood for
the exponential distribution, evaluated at the parameter param = MU, given
data. nlogL is a scalar.

[nlogL, avar] = explike(param, data) returns the inverse of Fisher's
information, avar, a scalar. If the input parameter value in param is the
maximum likelihood estimate, avar is its asymptotic variance. avar is based on
the observed Fisher's information, not the expected information.

[...] = explike(param, data, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = explike(param, data, censoring, freq) accepts a frequency
vector, freq, of the same size as data. The vector freq typically contains
integer frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for censoring to use its default value.

See Also expcdf, expfit, expinv, exppdf, exprnd

exppdf

12-157

12exppdfPurpose Exponential probability density function (pdf)

Syntax Y = exppdf(X, MU)

Description Y = exppdf(X, MU) computes the exponential pdf at each of the values in X
using the corresponding parameters in MU. X and MU can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other input. The
parameters in MU must be positive.

The exponential pdf is

The exponential pdf is the gamma pdf with its first parameter equal to 1.

The exponential distribution is appropriate for modeling waiting times when
the probability of waiting an additional period of time is independent of how
long you have already waited. For example, the probability that a light bulb
will burn out in its next minute of use is relatively independent of how many
minutes it has already burned.

Examples y = exppdf(5,1:5)

y =
 0.0067 0.0410 0.0630 0.0716 0.0736

y = exppdf(1:5,1:5)

y =
 0.3679 0.1839 0.1226 0.0920 0.0736

See Also expcdf, expfit, expinv, exprnd, expstat, pdf

y f x µ() 1
µ
---e

x
µ
---–

= =

exprnd

12-158

12exprndPurpose Generate random numbers from the exponential distribution

Syntax R = exprnd(MU)
R = exprnd(MU,v)
R = exprnd(MU,m,n)

Description R = exprnd(MU) generates exponential random numbers with mean MU. MU can
be a vector, a matrix, or a multidimensional array. The size of R is the size of MU.

R = exprnd(MU,v) generates an array R of size v containing exponential
random numbers with mean MU, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = exprnd(MU,m,n) generates exponential random numbers with mean MU,
where scalars m and n are the row and column dimensions of R.

Reproducing the Output of exprnd
exprnd uses the MATLAB function rand to generate random numbers. When
you call exprnd, you change the current state of rand, and thereby alter the
output of subsequent calls to exprnd or any other functions that depend on
rand. If you want to reproduce the output of exprnd, reset the state of rand to
the same fixed value each time you call exprnd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current state of
rand. If you run the code in these examples, your results might differ from the
answers shown here.

Examples n1 = exprnd(5:10)

n1 =
 7.5943 18.3400 2.7113 3.0936 0.6078 9.5841

n2 = exprnd(5:10,[1 6])

exprnd

12-159

n2 =
 3.2752 1.1110 23.5530 23.4303 5.7190 3.9876

n3 = exprnd(5,2,3)

n3 =
 24.3339 13.5271 1.8788
 4.7932 4.3675 2.6468

See Also expcdf, expfit, expinv, exppdf, expstat

expstat

12-160

12expstatPurpose Mean and variance for the exponential distribution

Syntax [m,v] = expstat(mu)

Description [m,v] = expstat(mu) returns the mean and variance for the exponential
distribution with parameters mu. mu can be a vectors, matrix, or
multidimensional array. The mean of the exponential distribution is µ, and the
variance is µ2.

Examples [m,v] = expstat([1 10 100 1000])

m =
 1 10 100 1000

v =
 1 100 10000 1000000

See Also expcdf, expfit, expinv, exppdf, exprnd

factoran

12-161

12factoranPurpose Maximum likelihood common factor analysis

Syntax lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
[...] = factoran(...,'param1',value1,'param2',value2,...)

Definition factoran computes the maximum likelihood estimate (MLE) of the factor
loadings matrix in the factor analysis model

where is a vector of observed variables, is a constant vector of means, is
a constant d-by-m matrix of factor loadings, is a vector of independent,
standardized common factors, and is a vector of independent specific factors.

, , and are of length d. is of length m.

Alternatively, the factor analysis model can be specified as

where is a d-by-d diagonal matrix of specific variances.

Description lambda = factoran(X,m) returns the maximum likelihood estimate, lambda,
of the factor loadings matrix, in a common factor analysis model with m
common factors. X is an n-by-d matrix where each row is an observation of d
variables. The (i,j)th element of the d-by-m matrix lambda is the coefficient,
or loading, of the jth factor for the ith variable. By default, factoran calls the
function rotatefactors to rotate the estimated factor loadings using the
'varimax' option.

[lambda,psi] = factoran(X,m) also returns maximum likelihood estimates
of the specific variances as a column vector psi of length d.

[lambda,psi,T] = factoran(X,m) also returns the m-by-m factor loadings
rotation matrix T.

Λ

x µ Λf e+ +=

x µ Λ
f

e
x µ e f

cov x() ΛΛT Ψ+=

Ψ cov e()=

factoran

12-162

[lambda,psi,T,stats] = factoran(X,m) also returns a structure stats
containing information relating to the null hypothesis, H0, that the number of
common factors is m. stats includes the following fields:

factoran does not compute the chisq and p fields unless dfe is positive and all
the specific valiance estimates in psi are positive (see “Heywood Case” below).
If X is a covariance matrix, then you must also specify the 'nobs' parameter if
you want factoran to compute the chisq and p fields.

[lambda,psi,T,stats,F] = factoran(X,m) also returns, in F, predictions of
the common factors, known as factor scores. F is an n-by-m matrix where each
row is a prediction of m common factors. If X is a covariance matrix, factoran
cannot compute F. factoran rotates F using the same criterion as for lambda.

[...] = factoran(...,'param1',value1,'param2',value2,...) enables
you to specify optional parameter name/value pairs to control the model fit and
the outputs. These are the valid parameters. The most commonly used
parameters are listed first.

loglike Maximized log-likelihood value

dfe Error degrees of freedom = ((d-m)^2 - (d+m))/2

chisq Approximate chi-squared statistic for the null hypothesis

p Right-tail significance level for the null hypothesis

Parameter Value

'xtype' Type of input in the matrix X. 'xtype' can be one of:

'data' Raw data (default)

'covariance' Positive definite covariance or
correlation matrix

'scores' Method for predicting factor scores. 'scores' is ignored
if X is not raw data.

factoran

12-163

'wls'
'Bartlett'

Synonyms for a weighted least
squares estimate that treats F as
fixed (default)

'regression'
'Thomson'

Synonyms for a minimum mean
squared error prediction that is
equivalent to a ridge regression

'start' Starting point for the specific variances psi in the
maximum likelihood optimization. Can be specified as:

'random' Chooses d uniformly distributed
values on the interval [0,1].

'Rsquared' Chooses the starting vector as a scale
factor times
diag(inv(corrcoef(X))) (default).
For examples, see Jöreskog [2].

Positive
integer

Performs the given number of
maximum likelihood fits, each
initialized as with 'random'.
factoran returns the fit with the
highest likelihood.

 Matrix Performs one maximum likelihood fit
for each column of the specified
matrix. The ith optimization is
initialized with the values from the
ith column. The matrix must have d
rows.

'rotate' Method used to rotate factor loadings and scores.
'rotate' can have the same values as the 'Method'
parameter of rotatefactors. See the reference page for
rotatefactors for a full description of the available
methods.

'none' Performs no rotation.

Parameter Value

factoran

12-164

'equamax' Special case of the orthomax rotation.
Use the 'normalize', 'reltol', and
'maxit' parameters to control the
details of the rotation.

'orthomax' Orthogonal rotation that maximizes a
criterion based on the variance of the
loadings.

Use the 'coeff', 'normalize',
'reltol', and 'maxit' parameters to
control the details of the rotation.

'parsimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and 'maxit' parameters to
control the details of the rotation.

'pattern' Performs either an oblique rotation
(the default) or an orthogonal rotation
to best match a specified pattern
matrix. Use the 'type' parameter to
choose the type of rotation. Use the
'target' parameter to specify the
pattern matrix.

'procrustes' Performs either an oblique (the
default) or an orthogonal rotation to
best match a specified target matrix
in the least squares sense.

Use the 'type' parameter to choose
the type of rotation. Use 'target' to
specify the target matrix.

Parameter Value

factoran

12-165

'promax' Performs an oblique procrustes
rotation to a target matrix
determined by factoran as a function
of an orthomax solution.

Use the 'power' parameter to specify
the exponent for creating the target
matrix. Because 'promax' uses
'orthomax' internally, you can also
specify the parameters that apply to
'orthomax'.

'quartimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and 'maxit' parameters to
control the details of the rotation.

'varimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and 'maxit' parameters to
control the details of the rotation.

Function Function handle to rotation function
of the form

[B,T] = myrotation(A,...)

where A is a d-by-m matrix of
unrotated factor loadings, B is a
d-by-m matrix of rotated loadings, and
T is the corresponding m-by-m rotation
matrix.

Use the factoran parameter
'userargs' to pass additional
arguments to this rotation function.
See Example 4.

Parameter Value

factoran

12-166

'coeff' Coefficient, often denoted as , defining the specific
'orthomax' criterion. Must be between 0 and 1. The
value 0 corresponds to quartimax, and 1 corresponds to
varimax. Default is 1.

'normalize' Flag indicating whether the loading matrix should be
row-normalized (1) or left unnormalized (0) for
'orthomax' or 'varimax' rotation. Default is 1.

'reltol' Relative convergence tolerance for 'orthomax' or
'varimax' rotation. Default is sqrt(eps).

'maxit' Iteration limit for 'orthomax' or 'varimax' rotation.
Default is 250.

'target' Target factor loading matrix for 'procrustes' rotation.
Required for 'procrustes' rotation. No default value.

'type' Type of 'procrustes' rotation. Can be 'oblique'
(default) or 'orthogonal'.

'power' Exponent for creating the target matrix in the 'promax'
rotation. Must be >= 1. Default is 4.

'userargs' Denotes the beginning of additional input values for a
user-defined rotation function. factoran appends all
subsequent values, in order and without processing, to
the rotation function argument list, following the
unrotated factor loadings matrix A. See Example 4.

'nobs' If X is a covariance or correlation matrix, indicates the
number of observations that were used in its
estimation. This allows calculation of significance for
the null hypothesis even when the original data are not
available. There is no default. 'nobs' is ignored if X is
raw data.

Parameter Value

γ

factoran

12-167

Remarks Observed Data Variables. The variables in the observed data matrix X must be
linearly independent, i.e., cov(X) must have full rank, for maximum likelihood
estimation to succeed. factoran reduces both raw data and a covariance
matrix to a correlation matrix before performing the fit.

factoran standardizes the observed data X to zero mean and unit variance
before estimating the loadings lambda. This does not affect the model fit,
because MLEs in this model are invariant to scale. However, lambda and psi
are returned in terms of the standardized variables, i.e.,
lambda*lambda'+diag(psi) is an estimate of the correlation matrix of the
original data X (although not after an oblique rotation). See Examples 1 and 3.

Heywood Case. If elements of psi are equal to the value of the 'delta'
parameter (i.e., they are essentially zero), the fit is known as a Heywood case,
and interpretation of the resulting estimates is problematic. In particular,
there can be multiple local maxima of the likelihood, each with different
estimates of the loadings and the specific variances. Heywood cases can
indicate overfitting (i.e., m is too large), but can also be the result of
underfitting.

Rotation of Factor Loadings and Scores. Unless you explicitly specify no rotation
using the 'rotate' parameter, factoran rotates the estimated factor loadings,
lambda, and the factor scores, F. The output matrix T is used to rotate the
loadings, i.e., lambda = lambda0*T, where lambda0 is the initial (unrotated)
MLE of the loadings. T is an orthogonal matrix for orthogonal rotations, and

'delta' Lower bound for the specific variances psi during the
maximum likelihood optimization. Default is 0.005.

'optimopts' Structure that specifies control parameters for the
iterative algorithm the function uses to compute
maximum likelihood estimates. Create this structure
with the function statset. Enter statset('factoran')
to see the names and default values of the parameters
that factoran accepts in the options structure. See the
reference page for statset for more information about
these options.

Parameter Value

factoran

12-168

the identity matrix for no rotation. The inverse of T is known as the primary
axis rotation matrix, while T itself is related to the reference axis rotation
matrix. For orthogonal rotations, the two are identical.

factoran computes factor scores that have been rotated by inv(T'), i.e.,
F = F0 * inv(T'), where F0 contains the unrotated predictions. The
estimated covariance of F is inv(T'*T), which, for orthogonal or no rotation, is
the identity matrix. Rotation of factor loadings and scores is an attempt to
create a more easily interpretable structure in the loadings matrix after
maximum likelihood estimation.

Examples Example 1. Load the carbig data, and fit the default model with two factors.

load carbig
X = [Acceleration Displacement Horsepower MPG Weight];
X = X(all(~isnan(X),2),:);

[Lambda,Psi,T,stats,F] = factoran(X,2,'scores','regression')
inv(T'*T) % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda' + diag(Psi) % Estimated correlation matrix of X
Lambda*inv(T) % Unrotate the loadings
F*T' % Unrotate the factor scores
biplot(Lambda) % Create a biplot of the two factors

factoran

12-169

Example 2. Although the estimates are the same, the use of a covariance
matrix rather than raw data doesn’t let you request scores or significance level.

[Lambda,Psi,T] = factoran(cov(X),2,'xtype','cov')
[Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

Example 3. Use promax rotation.

[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',...
 'powerpm',4)
inv(T'*T) % Est'd correlation matrix of F, no longer eye(2)
Lambda*inv(T'*T)*Lambda' + diag(Psi) % Est'd correlation
 % matrix of X

Plot the unrotated variables with oblique axes superimposed.

invT = inv(T)
Lambda0 = Lambda*invT
biplot(Lambda0);
line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...
 [-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...
 'color','r','linewidth',2);
text(invT(:,1), invT(:,2),[' I '; ' II'],'color','r');

factoran

12-170

xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')

Plot the rotated variables against the oblique axes.

 biplot(Lambda)

factoran

12-171

Example 4. Syntax for passing additional arguments to a user-defined rotation
function.

[Lambda,Psi,T] = ...
 factoran(X,2,'rotate',@myrotation,'userargs',1,'two')

References [1] Harman, H. H., Modern Factor Analysis, 3rd Ed., University of Chicago
Press, Chicago, 1976.

[2] Jöreskog, K. G., “Some Contributions to Maximum Likelihood Factor
Analysis,” Psychometrika, Vol.32, 1967, pp. 443-482.

[3] Lawley, D. N. and A. E. Maxwell, Factor Analysis as a Statistical Method,
2nd Edition, American Elsevier Pub. Co., New York, 1971.

See Also biplot, princomp, procrustes, pcacov, rotatefactors, statset

fcdf

12-172

12fcdfPurpose F cumulative distribution function (cdf)

Syntax P = fcdf(X,V1,V2)

Description P = fcdf(X,V1,V2) computes the F cdf at each of the values in X using the
corresponding parameters in V1 and V2. X, V1, and V2 can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input is
expanded to a constant matrix with the same dimensions as the other inputs.
The parameters in V1 and V2 must be positive integers.

The F cdf is

The result, p, is the probability that a single observation from an F distribution
with parameters ν1 and ν2 will fall in the interval [0 x].

Examples This example illustrates an important and useful mathematical identity for the
F distribution.

nu1 = 1:5;
nu2 = 6:10;
x = 2:6;
F1 = fcdf(x,nu1,nu2)

F1 =

 0.7930 0.8854 0.9481 0.9788 0.9919

F2 = 1 - fcdf(1./x,nu2,nu1)

F2 =

 0.7930 0.8854 0.9481 0.9788 0.9919

See Also cdf, finv, fpdf, frnd, fstat

p F x ν1 ν2,()
Γ

ν1 ν2+()
2

Γ
ν1
2
------⎝ ⎠
⎛ ⎞Γ

ν2
2
------⎝ ⎠
⎛ ⎞

0

x

∫
ν1
ν2
------⎝ ⎠
⎛ ⎞

ν1

2
----- t

ν1 2–
2

1
ν1
ν2
------⎝ ⎠
⎛ ⎞ t+

ν1 ν2+
2

---dt= =

ff2n

12-173

12ff2nPurpose Two-level full-factorial designs

Syntax X = ff2n(n)

Description X = ff2n(n) creates a two-level full-factorial design, X, where n is the desired
number of columns of X. The number of rows in X is 2n.

Example X = ff2n(3)

X =
 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

X is the binary representation of the numbers from 0 to 2n-1.

See Also fracfact, fullfact

finv

12-174

12finvPurpose Inverse of the F cumulative distribution function (cdf)

Syntax X = finv(P,V1,V2)

Description X = finv(P,V1,V2) computes the inverse of the F cdf with numerator degrees
of freedom V1 and denominator degrees of freedom V2 for the corresponding
probabilities in P. P, V1, and V2 can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input is expanded to a constant
array with the same dimensions as the other inputs.

The parameters in V1 and V2 must all be positive integers, and the values in P
must lie on the interval [0 1].

The F inverse function is defined in terms of the F cdf as

where

Examples Find a value that should exceed 95% of the samples from an F distribution with
5 degrees of freedom in the numerator and 10 degrees of freedom in the
denominator.

x = finv(0.95,5,10)

x =
 3.3258

You would observe values greater than 3.3258 only 5% of the time by chance.

See Also fcdf, fpdf, frnd, fstat, icdf

x F 1– p ν1 ν2,() x:F x ν1 ν2,() p={ }= =

p F x ν1 ν2,()
Γ

ν1 ν2+()
2

Γ
ν1
2
------⎝ ⎠
⎛ ⎞Γ

ν2
2
------⎝ ⎠
⎛ ⎞

0

x

∫
ν1
ν2
------⎝ ⎠
⎛ ⎞

ν1

2
----- t

ν1 2–
2

1
ν1
ν2
------⎝ ⎠
⎛ ⎞ t+

ν1 ν2+
2

---dt= =

fpdf

12-175

12fpdfPurpose F probability density function (pdf)

Syntax Y = fpdf(X,V1,V2)

Description Y = fpdf(X,V1,V2) computes the F pdf at each of the values in X using the
corresponding parameters in V1 and V2. X, V1, and V2 can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other inputs.
The parameters in V1 and V2 must all be positive integers, and the values in X
must lie on the interval [0 ∞).

The probability density function for the F distribution is

Examples y = fpdf(1:6,2,2)

y =
 0.2500 0.1111 0.0625 0.0400 0.0278 0.0204

z = fpdf(3,5:10,5:10)

z =
 0.0689 0.0659 0.0620 0.0577 0.0532 0.0487

See Also fcdf, finv, frnd, fstat, pdf

y f x ν1 ν2,()
Γ

ν1 ν2+()
2

Γ
ν1
2
------⎝ ⎠
⎛ ⎞Γ

ν2
2
------⎝ ⎠
⎛ ⎞

ν1
ν2
------⎝ ⎠
⎛ ⎞

ν1

2
----- x

ν1 2–
2

1
ν1
ν2
------⎝ ⎠
⎛ ⎞ x+

ν1 ν2+
2

---= =

fracfact

12-176

12fracfactPurpose Generate fractional factorial design from generators

Syntax x = fracfact('gen')
[x,conf] = fracfact('gen')

Description x = fracfact('gen') generates a fractional factorial design as specified by
the generator string gen, and returns a matrix x of design points. The input
string gen is a generator string consisting of “words” separated by spaces. Each
word describes how a column of the output design should be formed from
columns of a full factorial. Typically gen will include single-letter words for the
first few factors, plus additional multiple-letter words describing how the
remaining factors are confounded with the first few.

The output matrix x is a fraction of a two-level full-factorial design. Suppose
there are m words in gen, and that each word is formed from a subset of the
first n letters of the alphabet. The output matrix x has 2n rows and m columns.
Let F represent the two-level full-factorial design as produced by ff2n(n). The
values in column j of x are computed by multiplying together the columns of F
corresponding to letters that appear in the jth word of the generator string.

[x,conf] = fracfact('gen') also returns a cell array, conf, that describes
the confounding pattern among the main effects and all two-factor
interactions.

Examples Example 1
You want to run an experiment to study the effects of four factors on a
response, but you can only afford eight runs. (A run is a single repetition of the
experiment at a specified combination of factor values.) Your goal is to
determine which factors affect the response. There may be interactions
between some pairs of factors.

A total of sixteen runs would be required to test all factor combinations.
However, if you are willing to assume there are no three-factor interactions,
you can estimate the main factor effects in just eight runs.

[x,conf] = fracfact('a b c abc')

x =
 -1 -1 -1 -1
 -1 -1 1 1

fracfact

12-177

 -1 1 -1 1
 -1 1 1 -1
 1 -1 -1 1
 1 -1 1 -1
 1 1 -1 -1
 1 1 1 1

conf =

 'Term' 'Generator' 'Confounding'
 'X1' 'a' 'X1'
 'X2' 'b' 'X2'
 'X3' 'c' 'X3'
 'X4' 'abc' 'X4'
 'X1*X2' 'ab' 'X1*X2 + X3*X4'
 'X1*X3' 'ac' 'X1*X3 + X2*X4'
 'X1*X4' 'bc' 'X1*X4 + X2*X3'
 'X2*X3' 'bc' 'X1*X4 + X2*X3'
 'X2*X4' 'ac' 'X1*X3 + X2*X4'
 'X3*X4' 'ab' 'X1*X2 + X3*X4'

The first three columns of the x matrix form a full-factorial design. The final
column is formed by multiplying the other three. The confounding pattern
shows that the main effects for all four factors are estimable, but the two-factor
interactions are not. For example, the X1*X2 and X3*X4 interactions are
confounded, so it is not possible to estimate their effects separately.

After conducting the experiment, you may find out that the 'ab' effect is
significant. In order to determine whether this effect comes from X1*X2 or
X3*X4 you would have to run the remaining eight runs. You can obtain those
runs by reversing the sign of the final generator.

fracfact('a b c -abc')

ans =
 -1 -1 -1 1
 -1 -1 1 -1
 -1 1 -1 -1
 -1 1 1 1
 1 -1 -1 -1
 1 -1 1 1
 1 1 -1 1

fracfact

12-178

 1 1 1 -1

Example 2
Suppose now you need to study the effects of eight factors. A full factorial would
require 256 runs. By clever choice of generators, you can find a sixteen-run
design that can estimate those eight effects with no confounding from
two-factor interactions.

[x,c] = fracfact('a b c d abc acd abd bcd');
c(1:10,:)

ans =

 'Term' 'Generator' 'Confounding'
 'X1' 'a' 'X1'
 'X2' 'b' 'X2'
 'X3' 'c' 'X3'
 'X4' 'd' 'X4'
 'X5' 'abc' 'X5'
 'X6' 'acd' 'X6'
 'X7' 'abd' 'X7'
 'X8' 'bcd' 'X8'
 'X1*X2' 'ab' 'X1*X2 + X3*X5 + X4*X7 + X6*X8'

This confounding pattern shows that the main effects are not confounded with
two-factor interactions. The final row shown reveals that a group of four
two-factor interactions is confounded. Other choices of generators would not
have the same desirable property.

[x,c] = fracfact('a b c d ab cd ad bc');
c(1:10,:)

ans =

 'Term' 'Generator' 'Confounding'
 'X1' 'a' 'X1 + X2*X5 + X4*X7'
 'X2' 'b' 'X2 + X1*X5 + X3*X8'
 'X3' 'c' 'X3 + X2*X8 + X4*X6'
 'X4' 'd' 'X4 + X1*X7 + X3*X6'
 'X5' 'ab' 'X5 + X1*X2'
 'X6' 'cd' 'X6 + X3*X4'
 'X7' 'ad' 'X7 + X1*X4'

fracfact

12-179

 'X8' 'bc' 'X8 + X2*X3'
 'X1*X2' 'ab' 'X5 + X1*X2'

Here all the main effects are confounded with one or more two-factor
interactions.

References [1] Box, G. A. F., W. G. Hunter, and J. S. Hunter, Statistics for Experimenters,
Wiley, 1978.

See Also ff2n, fullfact, hadamard

friedman

12-180

12friedmanPurpose Friedman’s nonparametric two-way Analysis of Variance (ANOVA)

Syntax p = friedman(X,reps)
p = friedman(X,reps,'displayopt')
[p,table] = friedman(...)
[p,table,stats] = friedman(...)

Description p = friedman(X,reps) performs the nonparametric Friedman’s test to
compare column effects in a two-way layout. Friedman’s test is similar to
classical balanced two-way ANOVA, but it tests only for column effects after
adjusting for possible row effects. It does not test for row effects or interaction
effects. Friedman’s test is appropriate when columns represent treatments
that are under study, and rows represent nuisance effects (blocks) that need to
be taken into account but are not of any interest.

The different columns of X represent changes in a factor A. The different rows
represent changes in a blocking factor B. If there is more than one observation
for each combination of factors, input reps indicates the number of replicates
in each “cell,” which must be constant.

The matrix below illustrates the format for a set-up where column factor A has
three levels, row factor B has two levels, and there are two replicates (reps=2).
The subscripts indicate row, column, and replicate, respectively.

Friedman’s test assumes a model of the form

where is an overall location parameter, represents the column effect,
represents the row effect, and represents the error. This test ranks the
data within each level of B, and tests for a difference across levels of A. The p
that friedman returns is the p-value for the null hypothesis that . If the
p-value is near zero, this casts doubt on the null hypothesis. A sufficiently

x111 x121 x131

x112 x122 x132

x211 x221 x231

x212 x222 x232

xijk µ αi βj εijk+ + +=

µ αi βj
εijk

αi 0=

friedman

12-181

small p-value suggests that at least one column-sample median is significantly
different than the others; i.e., there is a main effect due to factor A. The choice
of a critical p-value to determine whether a result is “statistically significant”
is left to the researcher. It is common to declare a result significant if the
p-value is less than 0.05 or 0.01.

friedman also displays a figure showing an ANOVA table, which divides the
variability of the ranks into two or three parts:

• The variability due to the differences among the column effects

• The variability due to the interaction between rows and columns (if reps is
greater than its default value of 1)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows Friedman’s chi-square statistic.

• The sixth shows the p-value for the chi-square statistic.

p = friedman(X,reps,'displayopt') enables the ANOVA table display
when 'displayopt' is 'on' (default) and suppresses the display when
'displayopt' is 'off'.

[p,table] = friedman(...) returns the ANOVA table (including column and
row labels) in cell array table. (You can copy a text version of the ANOVA table
to the clipboard by selecting Copy Text from the Edit menu.

[p,table,stats] = friedman(...) returns a stats structure that you can
use to perform a follow-up multiple comparison test. The friedman test
evaluates the hypothesis that the column effects are all the same against the
alternative that they are not all the same. Sometimes it is preferable to
perform a test to determine which pairs of column effects are significantly
different, and which are not. You can use the multcompare function to perform
such tests by supplying the stats structure as input.

friedman

12-182

Assumptions
Friedman’s test makes the following assumptions about the data in X:

• All data come from populations having the same continuous distribution,
apart from possibly different locations due to column and row effects.

• All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the stronger
assumption that data come from normal distributions.

Examples Let’s repeat the example from the anova2 function, this time applying
Friedman’s test. Recall that the data below come from a study of popcorn
brands and popper type (Hogg 1987). The columns of the matrix popcorn are
brands (Gourmet, National, and Generic). The rows are popper type (Oil and
Air). The study popped a batch of each brand three times with each popper. The
values are the yield in cups of popped popcorn.

load popcorn
popcorn
popcorn =
 5.5000 4.5000 3.5000
 5.5000 4.5000 4.0000
 6.0000 4.0000 3.0000
 6.5000 5.0000 4.0000
 7.0000 5.5000 5.0000
 7.0000 5.0000 4.5000

p = friedman(popcorn,3)
p =
 0.0010

friedman

12-183

The small p-value of 0.001 indicates the popcorn brand affects the yield of
popcorn. This is consistent with the results from anova2.

You could also test popper type by permuting the popcorn array as described
on “Friedman’s Test” on page 4-60 and repeating the test.

References [1] Hogg, R. V. and J. Ledolter, Engineering Statistics, MacMillan, 1987.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley,
1973.

See Also anova2, multcompare, kruskalwallis

frnd

12-184

12frndPurpose Random numbers from the F distribution

Syntax R = frnd(V1,V2)
R = frnd(V1,V2,v)
R = frnd(V1,V2,m,n)

Description R = frnd(V1,V2) generates random numbers from the F distribution with
numerator degrees of freedom V1 and denominator degrees of freedom V2. V1
and V2 can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input for V1 or V2 is expanded to a constant array with the
same dimensions as the other input.

R = frnd(V1,V2,v) generates random numbers from the F distribution with
parameters V1 and V2, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional
array.

R = frnd(V1,V2,m,n) generates random numbers from the F distribution
with parameters V1 and V2, where scalars m and n are the row and column
dimensions of R.

Reproducing the Output of frnd
frnd uses the MATLAB functions rand and randn to generate random
numbers. When you call frnd, you change the current states of rand and randn,
and thereby alter the output of subsequent calls to frnd or any other functions
that depend on rand or randn. If you want to reproduce the output of frnd, reset
the states of rand and randn to the same fixed values each time you call frnd.
For an example of how to do this, and a list of the Statistics Toolbox functions
that depend on rand or randn, see “Reproducing the Output of Random
Number Functions” on page 2-46.

Note The results in the following examples depend on the current states of
rand and randn. If you run the code in these examples, your results may differ
from the answers shown here.

Examples n1 = frnd(1:6,1:6)

frnd

12-185

n1 =
 0.0022 0.3121 3.0528 0.3189 0.2715 0.9539

n2 = frnd(2,2,[2 3])

n2 =
 0.3186 0.9727 3.0268
 0.2052 148.5816 0.2191

n3 = frnd([1 2 3;4 5 6],1,2,3)

n3 =
 0.6233 0.2322 31.5458
 2.5848 0.2121 4.4955

See Also fcdf, finv, fpdf, fstat

fstat

12-186

12fstatPurpose Mean and variance for the F distribution

Syntax [M,V] = fstat(V1,V2)

Description [M,V] = fstat(V1,V2) returns the mean and variance for the F distribution
with parameters specified by V1 and V2. V1 and V2 can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of M
and V. A scalar input for V1 or V2 is expanded to a constant arrays with the
same dimensions as the other input.

The mean of the F distribution for values of ν2 greater than 2 is

The variance of the F distribution for values of ν2 greater than 4 is

The mean of the F distribution is undefined if ν2 is less than 3. The variance is
undefined for ν2 less than 5.

Examples fstat returns NaN when the mean and variance are undefined.

[m,v] = fstat(1:5,1:5)

m =
NaN NaN 3.0000 2.0000 1.6667

v =
NaN NaN NaN NaN 8.8889

See Also fcdf, finv, frnd, frnd

ν2
ν2 2–

2ν2
2 ν1 ν2 2–+()

ν1 ν2 2–()2 ν2 4–()
--

fsurfht

12-187

12fsurfhtPurpose Interactive contour plot of a function

Syntax fsurfht('fun',xlims,ylims)
fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5)

Description fsurfht('fun',xlims,ylims) is an interactive contour plot of the function
specified by the text variable fun. The x-axis limits are specified by xlims in
the form [xmin xmax], and the y-axis limits are specified by ylims in the form
[ymin ymax].

fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5) allows for five optional
parameters that you can supply to the function fun.

The intersection of the vertical and horizontal reference lines on the plot
defines the current x-value and y-value. You can drag these reference lines and
watch the calculated z-values (at the top of the plot) update simultaneously.
Alternatively, you can type the x-value and y-value into editable text fields on
the x-axis and y-axis.

Example Plot the Gaussian likelihood function for the gas.mat data.

load gas

Create a function containing the following commands, and name it
gauslike.m.

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end

The gauslike function calls normpdf, treating the data sample as fixed and the
parameters µ and σ as variables. Assume that the gas prices are normally
distributed, and plot the likelihood surface of the sample.

fsurfht('gauslike',[112 118],[3 5],price1)

fsurfht

12-188

The sample mean is the x-value at the maximum, but the sample standard
deviation is not the y-value at the maximum.

mumax = mean(price1)

mumax =

 115.1500

sigmamax = std(price1)*sqrt(19/20)

sigmamax =

 3.7719

fullfact

12-189

12fullfactPurpose Full-factorial experimental design

Syntax design = fullfact(levels)

Description design = fullfact(levels) give the factor settings for a full factorial design.
Each element in the vector levels specifies the number of unique values in the
corresponding column of design.

For example, if the first element of levels is 3, then the first column of design
contains only integers from 1 to 3.

Example If levels = [2 4], fullfact generates an eight-run design with two levels in
the first column and four in the second column.

d = fullfact([2 4])

d =
 1 1
 2 1
 1 2
 2 2
 1 3
 2 3
 1 4
 2 4

See Also ff2n, dcovary, daugment, cordexch

gamcdf

12-190

12gamcdfPurpose Gamma cumulative distribution function (cdf)

Syntax P = gamcdf(X,A,B)
[P,PLO,PUP] = gamcdf(X,A,B,PCOV,ALPHA)

Description gamcdf(X,A,B) computes the gamma cdf at each of the values in X using the
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other inputs.
The parameters in A and B must be positive.

The gamma cdf is

The result, p, is the probability that a single observation from a gamma
distribution with parameters a and b will fall in the interval [0 x].

[P,PLO,PUP] = gamcdf(X,A,B,PCOV,ALPHA) produces confidence bounds for P
when the input parameters A and B are estimates. PCOV is a 2-by-2 matrix
containing the covariance matrix of the estimated parameters. ALPHA has a
default value of 0.05, and specifies 100(1-ALPHA)% confidence bounds. PLO and
PUP are arrays of the same size as P containing the lower and upper confidence
bounds.

gammainc is the gamma distribution with b fixed at 1.

Examples a = 1:6;
b = 5:10;
prob = gamcdf(a.∗b,a,b)

prob =

 0.6321 0.5940 0.5768 0.5665 0.5595 0.5543

The mean of the gamma distribution is the product of the parameters, ab. In
this example, the mean approaches the median as it increases (i.e., the
distribution becomes more symmetric).

p F x a b,() 1

baΓ a()
------------------ ta 1– e

t
b
---–

td
0

x

∫= =

gamcdf

12-191

See Also cdf, gamfit, gaminv, gamlike, gampdf, gamrnd, gamstat, gammainc

gamfit

12-192

12gamfitPurpose Parameter estimates and confidence intervals for gamma distributed data

Syntax phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,options)

Description phat = gamfit(data) returns the maximum likelihood estimates (MLEs) for
the parameters of the gamma distribution given the data in vector data.

[phat,pci] = gamfit(data) returns MLEs and 95% percent confidence
intervals. The first row of pci is the lower bound of the confidence intervals;
the last row is the upper bound.

[phat,pci] = gamfit(data,alpha) returns 100(1 - alpha)% confidence
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

[...] = gamfit(data,alpha,censoring) accepts a boolean vector of the same
size as data that is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = gamfit(data,alpha,censoring,freq) accepts a frequency vector of
the same size as data. freq typically contains integer frequencies for the
corresponding elements in data, but may contain any non-negative values.

[...] = gamfit(data,alpha,censoring,freq,options) accepts a structure,
options, that specifies control parameters for the iterative algorithm the
function uses to compute maximum likelihood estimates. You can create
options using the function statset. Enter statset('gamfit') to see the
names and default values of the parameters that gamfit accepts in the options
structure.

Example Note that the 95% confidence intervals in the example below bracket the true
parameter values of 2 and 4.

a = 2; b = 4;
data = gamrnd(a,b,100,1);
[p,ci] = gamfit(data)

p =
 2.1990 3.7426

gamfit

12-193

ci =
 1.6840 2.8298
 2.7141 4.6554

Reference [1] Hahn, G. J., and S. S. Shapiro, Statistical Models in Engineering. John
Wiley & Sons, 1994. p. 88.

See Also gamcdf, gaminv, gamlike, gampdf, gamrnd, gamstat, mle, statset

gaminv

12-194

12gaminvPurpose Inverse of the gamma cumulative distribution function (cdf)

Syntax X = gaminv(P,A,B)
[X,XLO,XUP] = gamcdf(P,A,B,PCOV,ALPHA)

Description X = gaminv(P,A,B) computes the inverse of the gamma cdf with parameters A
and B for the corresponding probabilities in P. P, A, and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other
inputs. The parameters in A and B must all be positive, and the values in P must
lie on the interval [0 1].

The gamma inverse function in terms of the gamma cdf is

where

[X,XLO,XUP] = gamcdf(P,A,B,PCOV,ALPHA) produces confidence bounds for P
when the input parameters A and B are estimates. PCOV is a 2-by-2 matrix
containing the covariance matrix of the estimated parameters. ALPHA has a
default value of 0.05, and specifies 100(1-ALPHA)% confidence bounds. PLO and
PUP are arrays of the same size as P containing the lower and upper confidence
bounds.

Algorithm There is no known analytical solution to the integral equation above. gaminv
uses an iterative approach (Newton’s method) to converge on the solution.

Examples This example shows the relationship between the gamma cdf and its inverse
function.

a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)

x =
 1.0000 2.0000 3.0000 4.0000 5.0000

x F 1– p a b,() x:F x a b,() p={ }= =

p F x a b,() 1

baΓ a()
------------------ ta 1– e

t
b
---–

td
0

x

∫= =

gaminv

12-195

See Also gamcdf, gamfit, gamlike, gampdf, gamrnd, gamstat, icdf

gamlike

12-196

12gamlikePurpose Negative gamma log-likelihood function

Syntax logL = gamlike(params,data)
[logL,AVAR] = gamlike(params,data)

Description logL = gamlike(params,data) returns the negative of the gamma
log-likelihood function for the parameters, params, given data. The length of
output vector logL is the length of vector data.

[logL,AVAR] = gamlike(params,data) also returns AVAR, which is the
asymptotic variance-covariance matrix of the parameter estimates when the
values in params are the maximum likelihood estimates. AVAR is the inverse of
Fisher's information matrix. The diagonal elements of AVAR are the asymptotic
variances of their respective parameters.

[...] = gamlike(params,data,censoring) accepts a boolean vector of the
same size as data that is 1 for observations that are right-censored and 0 for
observations that are observed exactly.

[...] = gamfit(params,data,censoring,freq) accepts a frequency vector of
the same size as data. freq typically contains integer frequencies for the
corresponding elements in data, but may contain any non-negative values.

gamlike is a utility function for maximum likelihood estimation of the gamma
distribution. Since gamlike returns the negative gamma log-likelihood
function, minimizing gamlike using fminsearch is the same as maximizing the
likelihood.

Example This example continues the example for gamfit.

a = 2; b = 3;
r = gamrnd(a,b,100,1);
[logL,info] = gamlike(gamfit(r),r)

logL =

 267.5648

info =

 0.0788 -0.1104
 -0.1104 0.1955

gamlike

12-197

See Also betalike, gamcdf, gamfit, gaminv, gampdf, gamrnd, gamstat, mle, normlike,
wbllike

gampdf

12-198

12gampdfPurpose Gamma probability density function (pdf)

Syntax Y = gampdf(X,A,B)

Description gampdf(X,A,B) computes the gamma pdf at each of the values in X using the
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other inputs.
The parameters in A and B must all be positive, and the values in X must lie on
the interval [0 ∞).

The gamma pdf is

The gamma probability density function is useful in reliability models of
lifetimes. The gamma distribution is more flexible than the exponential
distribution in that the probability of a product surviving an additional period
may depend on its current age. The exponential and χ2 functions are special
cases of the gamma function.

Examples The exponential distribution is a special case of the gamma distribution.

mu = 1:5;
y = gampdf(1,1,mu)

y =
 0.3679 0.3033 0.2388 0.1947 0.1637

y1 = exppdf(1,mu)

y1 =
 0.3679 0.3033 0.2388 0.1947 0.1637

See Also gamcdf, gamfit, gaminv, gamlike, gamrnd, gamstat, pdf, gamma, gammaln

y f x a b,() 1

baΓ a()
------------------xa 1– e

x
b
---–

= =

gamrnd

12-199

12gamrndPurpose Random numbers from the gamma distribution

Syntax R = gamrnd(A,B)
R = gamrnd(A,B,v)
R = gamrnd(A,B,m,n)

Description R = gamrnd(A,B) generates random numbers from the gamma distribution
with parameters A and B. A and B can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input for A or B is expanded to a
constant array with the same dimensions as the other input.

R = gamrnd(A,B,v) generates random numbers from the gamma distribution
with parameters A and B, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional
array.

R = gamrnd(A,B,m,n) generates gamma random numbers with parameters A
and B, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of gamrnd
gamrnd uses the MATLAB function rand to generate random numbers. When
you call gamrnd, you change the current state of rand, and thereby alter the
output of subsequent calls to gamrnd or any other functions that depend on
rand. If you want to reproduce the output of gamrnd, reset the state of rand to
the same fixed value each time you call gamrnd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current state of
rand. If you run the code in these examples, your results may differ from the
answers shown here.

Examples n1 = gamrnd(1:5,6:10)

n1 =
 9.1132 12.8431 24.8025 38.5960 106.4164

gamrnd

12-200

n2 = gamrnd(5,10,[1 5])

n2 =
 30.9486 33.5667 33.6837 55.2014 46.8265

n3 = gamrnd(2:6,3,1,5)

n3 =
 12.8715 11.3068 3.0982 15.6012 21.6739

See Also gamcdf, gamfit, gaminv, gamlike, gampdf, gamstat, randg

gamstat

12-201

12gamstatPurpose Mean and variance for the gamma distribution

Syntax [M,V] = gamstat(A,B)

Description [M,V] = gamstat(A,B) returns the mean and variance for the gamma
distribution with parameters specified by A and B. A and B can be vectors,
matrices, or multidimensional arrays that have the same size, which is also the
size of M and V. A scalar input for A or B is expanded to a constant array with
the same dimensions as the other input.

The mean of the gamma distribution with parameters a and b is ab. The
variance is ab2.

Examples [m,v] = gamstat(1:5,1:5)

m =
 1 4 9 16 25

v =
 1 8 27 64 125

[m,v] = gamstat(1:5,1./(1:5))

m =
 1 1 1 1 1

v =
 1.0000 0.5000 0.3333 0.2500 0.2000

See Also gamcdf, gamfit, gaminv, gamlike, gampdf, gamrnd

geocdf

12-202

12geocdfPurpose Geometric cumulative distribution function (cdf)

Syntax Y = geocdf(X,P)

Description geocdf(X,P) computes the geometric cdf at each of the values in X using the
corresponding probabilities in P. X and P can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other input. The
parameters in P must lie on the interval [0 1].

The geometric cdf is

where .

The result, y, is the probability of observing up to x trials before a success, when
the probability of success in any given trial is p.

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that
is a success. What is the probability of observing three or fewer tails before
getting a heads?

p = geocdf(3,0.5)

p =
 0.9375

See Also cdf, geoinv, geopdf, geornd, geostat

y F x p() pqi

i 0=

floor x()

∑= =

 q 1 p–=

geoinv

12-203

12geoinvPurpose Inverse of the geometric cumulative distribution function (cdf)

Syntax X = geoinv(Y,P)

Description X = geoinv(Y,P) returns the smallest positive integer X such that the
geometric cdf evaluated at X is equal to or exceeds Y. You can think of Y as the
probability of observing X successes in a row in independent trials where P is
the probability of success in each trial.

Y and P can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input for P or Y is expanded to a constant array with the
same dimensions as the other input. The values in P and Y must lie on the
interval [0 1].

Examples The probability of correctly guessing the result of 10 coin tosses in a row is less
than 0.001 (unless the coin is not fair).

psychic = geoinv(0.999,0.5)

psychic =

 9

The example below shows the inverse method for generating random numbers
from the geometric distribution.

rndgeo = geoinv(rand(2,5),0.5)

rndgeo =

 0 1 3 1 0
 0 1 0 2 0

See Also geocdf, geopdf, geornd, geostat, icdf

geomean

12-204

12geomeanPurpose Geometric mean of a sample

Syntax m = geomean(X)
geomean(X, dim)

Description geomean calculates the geometric mean of a sample. For vectors, geomean(x) is
the geometric mean of the elements in x. For matrices, geomean(X) is a row
vector containing the geometric means of each column. For N-dimensional
arrays, geomean operates along the first nonsingleton dimension of X.

geomean(X, dim) takes the geometric mean along the dimension dim of X.

The geometric mean is

Examples The sample average is greater than or equal to the geometric mean.

x = exprnd(1,10,6);
geometric = geomean(x)

geometric =

 0.7466 0.6061 0.6038 0.2569 0.7539 0.3478

average = mean(x)

average =

 1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, harmmean, trimmean

m xi

i 1=

n

∏

1
n

=

geopdf

12-205

12geopdfPurpose Geometric probability density function (pdf)

Syntax Y = geopdf(X,P)

Description geopdf(X,P) computes the geometric pdf at each of the values in X using the
corresponding probabilities in P. X and P can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other input. The
parameters in P must lie on the interval [0 1].

The geometric pdf is

where .

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that
is a success. What is the probability of observing exactly three tails before
getting a heads?

p = geopdf(3,0.5)

p =
 0.0625

See Also geocdf, geoinv, geornd, geostat, pdf

y f x p() pqxI 0 1 K, ,() x()= =

 q 1 p–=

geornd

12-206

12georndPurpose Random numbers from the geometric distribution

Syntax R = geornd(P)
R = geornd(P,v)
R = geornd(P,m,n)

Description The geometric distribution is useful when you want to model the number of
successive failures preceding a success, where the probability of success in any
given trial is the constant P.

R = geornd(P) generates geometric random numbers with probability
parameter P. P can be a vector, a matrix, or a multidimensional array. The size
of R is the size of P.

R = geornd(P,v) generates geometric random numbers with probability
parameter P, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = geornd(P,m,n) generates geometric random numbers with probability
parameter P, where scalars m and n are the row and column dimensions of R.

The parameters in P must lie on the interval [0 1].

Reproducing the Output of geornd
geornd uses the MATLAB function rand to generate random numbers. When
you call geornd, you change the current state of rand, and thereby alter the
output of subsequent calls to geornd or any other functions that depend on
rand. If you want to reproduce the output of geornd, reset the state of rand to
the same fixed value each time you call geornd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current state of
rand. If you run the code in these examples, your results may differ from the
answers shown here.

Examples r1 = geornd(1 ./ 2.^(1:6))

geornd

12-207

r1 =
 2 10 2 5 2 60

r2 = geornd(0.01,[1 5])

r2 =
 65 18 334 291 63

r3 = geornd(0.5,1,6)

r3 =
 0 7 1 3 1 0

See Also geocdf, geoinv, geopdf, geostat

geostat

12-208

12geostatPurpose Mean and variance for the geometric distribution

Syntax [M,V] = geostat(P)

Description [M,V] = geostat(P) returns the mean and variance for the geometric
distribution with parameters specified by P.

The mean of the geometric distribution with parameter p is q/p, where q = 1-p.
The variance is q/p2.

Examples [m,v] = geostat(1./(1:6))

m =
0 1.0000 2.0000 3.0000 4.0000 5.0000

v =
0 2.0000 6.0000 12.0000 20.0000 30.0000

See Also geocdf, geoinv, geopdf, geornd

gline

12-209

12glinePurpose Interactively draw a line in a figure

Syntax gline(fig)
h = gline(fig)
gline

Description gline(fig) allows you to draw a line segment in the figure fig by clicking the
pointer at the two end-points. A rubber band line tracks the pointer movement.

h = gline(fig) returns the handle to the line in h.

gline with no input arguments draws in the current figure.

See Also refline, gname

glmdemo

12-210

12glmdemoPurpose Demo of generalized linear models

Syntax glmdemo

Description glmdemo begins a slide show demonstration of generalized linear models. The
slides indicate when generalized linear models are useful, how to fit
generalized linear models using the glmfit function, and how to make
predictions using the glmval function.

Note To run this demo from the command line, type playshow glmdemo.

See Also glmfit, glmval

glmfit

12-211

12glmfitPurpose Generalized linear model fitting

Syntax b = glmfit(DATA,Y,'distr')
b = glmfit(DATA,Y,'distr','link','estdisp',offset,pwts,'const')
[b,dev,stats] = glmfit(...)

Description b = glmfit(DATA,Y,'distr') fits the generalized linear model for response Y,
predictor variable matrix DATA, and distribution 'distr'. The following
distributions are available: 'binomial', 'gamma', 'inverse gaussian',
'normal' (the default), and 'poisson'. In most cases Y is a vector of response
measurements, but for the binomial distribution Y is a two-column array
having the measured number of counts in the first column and the number of
trials (the binomial N parameter) in the second column. DATA is a matrix having
the same number of rows as Y and containing the values of the predictor
variables for each observation. The output b is a vector of coefficient estimates.
This syntax uses the canonical link (see below) to relate the distribution
parameter to the predictors.

b = glmfit(x,y,'distr','link','estdisp',offset,pwts,'const')
provides additional control over the fit. The 'link' argument specifies the
relationship between the distribution parameter (µ) and the fitted linear
combination of predictor variables (xb). In most cases 'link' is one of the
following:

'link' Meaning Default (Canonical) Link

'identity' µ = xb 'normal'

'log' log(µ) = xb 'poisson'

'logit' log(µ / (1-µ)) = xb 'binomial'

'probit' norminv(µ) = xb

'comploglog' log(-log(1-µ)) = xb

'logloglink' log(-log(µ)) = xb

'reciprocal' 1/µ = xb 'gamma'

p (a number) µp = xb 'inverse gaussian' (with p=-2)

glmfit

12-212

Alternatively, you can write functions to define your own custom link. You
specify the link argument as a three-element cell array containing functions
that define the link function, its derivative, and its inverse. For example,
suppose you want to define a reciprocal square root link using inline functions.
You could define the variable mylinks to use as your 'link' argument by
writing:

FL = inline('x.^-.5')
FD = inline('-.5*x.^-1.5')
FI = inline('x.^-2')
mylinks = {FL FI FD}

Alternatively, you could define functions named FL, FD, and FI in their own
M-files, and then specify mylinks in the form

mylinks = {@FL @FD @FI}

The 'estdisp' argument can be 'on' to estimate a dispersion parameter for
the binomial or Poisson distribution, or 'off' (the default) to use the
theoretical value of 1.0 for those distributions. The glmfit function always
estimates dispersion parameters for other distributions.

The offset and pwts parameters can be vectors of the same length as Y, or can
be omitted (or specified as an empty vector). The offset vector is a special
predictor variable whose coefficient is known to be 1.0. As an example, suppose
that you are modeling the number of defects on various surfaces, and you want
to construct a model in which the expected number of defects is proportional to
the surface area. You might use the number of defects as your response, along
with the Poisson distribution, the log link function, and the log surface area as
an offset.

The pwts argument is a vector of prior weights. As an example, if the response
value Y(i) is the average of f(i) measurements, you could use f as a vector of
prior weights.

The 'const' argument can be 'on' (the default) to estimate a constant term,
or 'off' to omit the constant term. If you want the constant term, use this
argument rather than specifying a column of ones in the DATA matrix.

[b,dev,stats] = glmfit(...) returns the additional outputs dev and stats.
dev is the deviance at the solution vector. The deviance is a generalization of
the residual sum of squares. It is possible to perform an analysis of deviance to

glmfit

12-213

compare several models, each a subset of the other, and to test whether the
model with more terms is significantly better than the model with fewer terms.

stats is a structure with the following fields:

• stats.dfe = degrees of freedom for error

• stats.s = theoretical or estimated dispersion parameter

• stats.sfit = estimated dispersion parameter

• stats.estdisp = 1 if dispersion is estimated, 0 if fixed

• stats.beta = vector of coefficient estimates (same as b)

• stats.se = vector of standard errors of the coefficient estimates b

• stats.coeffcorr = correlation matrix for b

• stats.t = t statistics for b

• stats.p = p-values for b

• stats.resid = vector of residuals

• stats.residp = vector of Pearson residuals

• stats.residd = vector of deviance residuals

• stats.resida = vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution,
then stats.s is set equal to stats.sfit. Also, the elements of stats.se differ
by the factor stats.s from their theoretical values.

Example You have data on cars weighing between 2100 and 4300 pounds. For each car
weight you have the total number of cars of that weight, and the number that
can be considered to get “poor mileage” according to some test. For example, 8
out of 21 cars weighing 3100 pounds get poor mileage according to a
measurement of the miles they can travel on a gallon of gasoline.

w = (2100:200:4300)';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';

You can compare several fits to these data. First, try fitting logit and probit
models:

[bl,dl,sl] = glmfit(w,[poor total],'binomial');
[bp,dp,sp] = glmfit(w,[poor total],'binomial','probit');

glmfit

12-214

dl
dl =
 6.4842

dp
dp =
 7.5693

The deviance for the logit model is smaller than for the probit model. Although
this is not a formal test, it suggests that the logit model is preferable.

You can do a formal test comparing two logit models. You already fit one model
using w as a linear predictor, so fit another logit model using both linear and
squared terms in w. If there is no true effect for the squared term, the difference
in their deviances should be small compared with a chi-square distribution
having one degree of freedom.

[b2,d2,s2] = glmfit([w w.^2],[poor total],'binomial');

dl-d2

ans =
 0.7027

chi2cdf(dl-d2,1)

ans =
 0.5981

A difference of 0.7072 is not at all unusual for a chi-square distribution with
one degree of freedom, so the quadratic model does not give a significantly
better fit than the simpler linear model.

The following are the coefficient estimates, their standard errors, t-statistics,
and p-values for the linear model:

[bl sl.se sl.t sl.p]

ans =

 -13.3801 1.3940 -9.5986 0.0000
 0.0042 0.0004 9.4474 0.0000

glmfit

12-215

This shows that you cannot simplify the model any further. Both the intercept
and slope coefficients are significantly different from 0, as indicated by
p-values that are 0.0000 to four decimal places.

References [1] Dobson, A. J., An Introduction to Generalized Linear Models, CRC Press,
1990.

[2] MuCullagh, P., and J. A. Nelder, Generalized Linear Models. 2nd edition,
Chapman & Hall, 1990.

See Also glmval, glmdemo, nlinfit, regress, regstats

glmval

12-216

12glmvalPurpose Compute predictions for generalized linear model

Syntax yfit = glmval(b,X,'link')
[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev)
[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev,N,offset,'const')

Description yfit = glmval(b,X,'link') computes the predicted distribution parameters
for observations with predictor values X using the coefficient vector b and link
function 'link'. Typically, b is a vector of coefficient estimates computed by
the glmfit function. The value of 'link' must be the same as that used in
glmfit. The result yfit is the value of the inverse of the link function at the
linear combination X*b.

[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev) returns confidence
bounds for the predicted values when you supply the stats structure returned
from glmfit, and optionally specify a confidence level as the clev argument.
(The default confidence level is 0.95 for 95% confidence.) The interval
[yfit-dlo, yfit+dhi] is a confidence bound for the true parameter value at
the specified X values.

[yhat,dlo,dhi] = glmval(beta,X,'link',stats,clev,N,offset,'const')
specifies three additional arguments that may be needed if you used certain
arguments to glmfit. If you fit a binomial distribution using glmfit, specify N
as the value of the binomial N parameter for the predictions. If you included an
offset variable, specify offset as the new value of this variable. Use the same
'const' value ('on' or 'off') that you used with glmfit.

Example Let's model the number of cars with poor gasoline mileage using the binomial
distribution. First, use the binomial distribution with the default logit link to
model the probability of having poor mileage as a function of the weight and
squared weight of the cars. Then you compute a vector wnew of new car weights
at which you want to make predictions. Next you compute the expected number
of cars, out of a total of 30 cars of each weight, that would have poor mileage.
Finally you graph the predicted values and 95% confidence bounds as a
function of weight.

w = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';

glmval

12-217

[b2,d2,s2] = glmfit([w w.^2],[poor total],'binomial')
wnew = (3000:100:4000)';
[yfit,dlo,dhi] = glmval(b2,[wnew wnew.^2],'logit',s2,0.95,30)
errorbar(wnew,yfit,dlo,dhi);

See Also glmfit, glmdemo

2800 3000 3200 3400 3600 3800 4000 4200
5

10

15

20

25

30

glyphplot

12-218

12glyphplotPurpose Plot stars or Chernoff faces for multivariate data

Syntax glyphplot(X)
glyphplot(X, 'Glyph','face')
glyphplot(X, 'Glyph','face', 'Features', F)
glyphplot(X, ..., 'Grid', [ROWS,COLS])
glyphplot(X, ..., 'Grid', [ROWS,COLS], 'Page', page)
glyphplot, ..., 'Centers', C,' Radius', r)
glyphplot(X, ..., 'ObsLabels', labels)
glyphplot(X, ..., 'Standardize', method)
glyphplot(X, ..., 'PropertyName', PropertyValue, ...)
h = glyphplot(X, ...)

Description glyphplot(X) creates a star plot from the multivariate data in the n-by-p
matrix X. Rows of X correspond to observations, columns to variables. A star
plot represents each observation as a “star” whose i-th spoke is proportional in
length to the i-th coordinate of that observation. glyphplot standardizes X by
shifting and scaling each column separately onto the interval [0,1] before
making the plot, and centers the glyphs on a rectangular grid that is as close
to square as possible. glyphplot treats NaNs in X as missing values, and does
not plot the corresponding rows of X. glyphplot(X, 'Glyph', 'star') is a
synonym for glyphplot(X).

glyphplot(X, 'Glyph','face') creates a face plot from X. A face plot
represents each observation as a “face,” whose i-th facial feature is drawn with
a characteristic proportional to the i-th coordinate of that observation. The
features are described in “Face Features” on page 12-219.

glyphplot(X, 'Glyph','face', 'Features', F) creates a face plot where the
i-th element of the index vector F defines which facial feature will represent the
i-th column of X. F must contain integers from 0 to 17, where zeros indicate that
the corresponding column of X should not be plotted. See “Face Features” on
page 12-219 for more information.

glyphplot(X, ..., 'Grid', [rows, cols]) organizes the glyphs into a
rows-by-cols grid.

glyphplot(X, ..., 'Grid', [rows, cols], 'Page', page) organizes the
glyph into one or more pages of a rows-by-cols grid, and displays the page'th
page. If page is a vector, glyphplot displays multiple pages in succession. If

glyphplot

12-219

page is 'all', glyphplot displays all pages. If page is 'scroll', glyphplot
displays a single plot with a scrollbar.

glyphplot(X, ..., 'Centers', C) creates a plot with each glyph centered at
the locations in the N-by-2 matrix C.

glyphplot, ..., 'Centers', C,' Radius', r) creates a plot with glyphs
positioned using C, and scale the glyphs so the largest has radius r.

glyphplot(X, ..., 'ObsLabels', labels) labels each glyph with the text in
the character array or cell array of strings labels. By default, the glyphs are
labelled 1:N. Pass in '' for no labels.

glyphplot(X, ..., 'Standardize', method) standardizes X before making
the plot. Choices for method are

• 'column' — Maps each column of X separately onto the interval [0,1]. This is
the default.

• 'matrix' — Maps the entire matrix X onto the interval [0,1].

• 'PCA' — Transforms X to its principal component scores, in order of
decreasing eigenvalue, and maps each one onto the interval [0,1].

• 'off' — No standardization. Negative values in X may make a star plot
uninterpretable.

glyphplot(X, ..., 'PropertyName', PropertyValue, ...) sets properties
to the specified property values for all line graphics objects created by
glyphplot.

h = glyphplot(X, ...) returns a matrix of handles to the graphics objects
created by glyphplot. For a star plot, h(:,1) and h(:,2) contain handles to
the line objects for each star's perimeter and spokes, respectively. For a face
plot, h(:,1) and h(:,2) contain object handles to the lines making up each face
and to the pupils, respectively. h(:,3) contains handles to the text objects for
the labels, if present.

Face Features
The following table describes the correspondence between the columns of the
vector F, the value of the 'Features' input parameter, and the facial features

glyphplot

12-220

of the glyph plot. If X has fewer than 17 columns, unused features are displayed
at their default value.

Examples load carsmall
X = [Acceleration Displacement Horsepower MPG Weight];
glyphplot(X, 'Standardize','column', 'ObsLabels',Model, ...
 'grid',[2 2], 'page','scroll');

Column Facial Feature

1 Size of face

2 Forehead/jaw relative arc length

3 Shape of forehead

4 Shape of jaw

5 Width between eyes

6 Vertical position of eyes

7 Height of eyes

8 Width of eyes (this also affects eyebrow width)

9 Angle of eyes (this also affects eyebrow angle)

10 Vertical position of eyebrows

11 Width of eyebrows (relative to eyes)

12 Angle of eyebrows (relative to eyes)

13 Direction of pupils

14 Length of nose

15 Vertical position of mouth

16 Shape of mouth

17 Mouth arc length

glyphplot

12-221

glyphplot(X, 'Glyph','face', 'ObsLabels',Model, 'grid',[2 3], ...
 'page',9);

See Also andrewsplot, parallelcoords

gname

12-222

12gnamePurpose Label plotted points with their case names or case number

Syntax gname(cases)
gname
h = gname(cases,line_handle)

Description gname(cases) displays a figure window and waits for you to press a mouse
button or a keyboard key. The input argument cases is a character array or a
cell array of strings, in which each row of the character array or each element
of the cell array contains the case name of a point. Moving the mouse over the
graph displays a pair of cross-hairs. If you position the cross-hairs near a point
with the mouse and click once, the graph displays the name of the city
corresponding to that point. Alternatively, you can click and drag the mouse to
create a rectangle around several points. When you release the mouse button,
the graph displays the labels for all points in the rectangle. Right-click a point
to remove its label. When you are done labelling points, press the Enter or
Escape key to stop labeling.

gname with no arguments labels each case with its case number.

h = gname(cases,line_handle) returns a vector of handles to the text objects
on the plot. Use the scalar line_handle to identify the correct line if there is
more than one line object on the plot.

You can use gname to label plots created by the plot, scatter, gscatter,
plotmatrix, and gplotmatrix functions.

Example This example uses the city ratings data sets to find out which cities are the best
and worst for education and the arts.

load cities
education = ratings(:,6);
arts = ratings(:,7);
plot(education,arts,'+')
gname(names)

gname

12-223

Click the point at the top of the graph to display its label, “New York.”

See Also gplotmatrix, gscatter, gtext, plot, plotmatrix, scatter

1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 104

Pascagoula, MS

New York, NY

gplotmatrix

12-224

12gplotmatrixPurpose Plot matrix of scatter plots by group

Syntax gplotmatrix(x,y,g)
gplotmatrix(x,y,g,'clr','sym',siz)
gplotmatrix(x,y,g,'clr','sym',siz,'doleg')
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt')
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt','xnam','ynam')
[h,ax,bigax] = gplotmatrix(...)

Description gplotmatrix(x,y,g) creates a matrix of scatter plots. Each individual set of
axes in the resulting figure contains a scatter plot of a column of x against a
column of y. All plots are grouped by the grouping variable g.

x and y are matrices with the same number of rows. If x has p columns and y
has q columns, the figure contains a p-by-q matrix of scatter plots. If you omit
y or specify it as the empty matrix, [], gplotmatrix creates a square matrix of
scatter plots of columns of x against each other.

g is a grouping variable that can be a vector, string array, or cell array of
strings. g must have the same number of rows as x and y. Points with the same
value of g are placed in the same group, and appear on the graph with the same
marker and color. Alternatively, g can be a cell array containing several
grouping variables (such as {G1 G2 G3}); in that case, observations are in the
same group if they have common values of all grouping variables.

gplotmatrix(x,y,g,'clr','sym',siz) specifies the color, marker type, and
size for each group. 'clr' is a string array of colors recognized by the plot
function. The default is 'clr' = 'bgrcmyk'. 'sym' is a string array of symbols
recognized by the plot command, with the default value '.'. siz is a vector of
sizes, with the default determined by the 'defaultlinemarkersize' property.
If you do not specify enough values for all groups, gplotmatrix cycles through
the specified values as needed.

gplotmatrix(x,y,g,'clr','sym',siz,'doleg') controls whether a legend is
displayed on the graph ('doleg' = 'on', the default) or not ('doleg' = 'off').

gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt') controls what
appears along the diagonal of a plot matrix of y versus x. Allowable values are

gplotmatrix

12-225

'none', to leave the diagonals blank, 'hist' (the default), to plot histograms,
or 'variable', to write the variable names.

gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt','xnam','ynam')
specifies the names of the columns in the x and y arrays. These names are used
to label the x- and y-axes. 'xnam' and 'ynam' must be character arrays or cell
arrays of strings, with one name for each column of x and y, respectively.

[h,ax,bigax] = gplotmatrix(...) returns three arrays of handles. h is an
array of handles to the lines on the graphs. The array’s third dimension
corresponds to groups in G. ax is a matrix of handles to the axes of the
individual plots. If 'dispopt' is 'hist', ax contains one extra row of handles
to invisible axes in which the histograms are plotted. bigax is a handle to big
(invisible) axes framing the entire plot matrix. bigax is fixed to point to the
current axes, so a subsequent title, xlabel, or ylabel command will produce
labels that are centered with respect to the entire plot matrix.

Example Load the cities data. The ratings array has ratings of the cities in nine
categories (category names are in the array categories). group is a code whose
value is 2 for the largest cities. You can make scatter plots of the first three
categories against the other four, grouped by the city size code.

load discrim
gplotmatrix(ratings(:,1:3),ratings(:,4:7),group)

The output figure (not shown) has an array of graphs with each city group
represented by a different color. The graphs are a little easier to read if you
specify colors and plotting symbols, label the axes with the rating categories,
and move the legend off the graphs.

gplotmatrix(ratings(:,1:3),ratings(:,4:7),group,...
'br','.o',[],'on','',categories(1:3,:),...
categories(4:7,:))

gplotmatrix

12-226

See Also grpstats, gscatter, plotmatrix

0 2000 4000 6000 8000
health

0.5 1 1.5 2

x 10
4housing

200 400 600 800
0

2

4

x 10
4

climate

ar
ts

2000
2500
3000
3500

ed
uc

at
io

n

2000

4000

6000

8000
tr

an
sp

or
ta

tio
n

500
1000
1500
2000
2500

cr
im

e

1
2

grpstats

12-227

12grpstatsPurpose Summary statistics by group

Syntax means = grpstats(X,group)
[means,sem,counts,name] = grpstats(X,group)
grpstats(x,group,alpha)

Description means = grpstats(X,group) returns the means of each column of X by group,
where X is a matrix of observations. group is an array that defines the grouping
such that two elements of X are in the same group if their corresponding group
values are the same. The grouping variable group can be a vector, string array,
or cell array of strings. It can also be a cell array containing several grouping
variables (such as {G1 G2 G3}); in that case observations are in the same group
if they have common values of all grouping variables.

[means,sem,counts,name] = grpstats(x,group,alpha) supplies the
standard error of the mean in sem, the number of elements in each group in
counts, and the name of each group in name. name is useful to identify and label
the groups when the input group values are not simple group numbers.

grpstats(x,group,alpha) plots 100(1 - alpha)% confidence intervals
around each mean.

Example Assign 100 observations to one of four groups. For each observation, you
measure five quantities with true means from 1 to 5. grpstats enables you to
compute the means for each group.

group = unidrnd(4,100,1);
true_mean = 1:5;
true_mean = true_mean(ones(100,1),:);
x = normrnd(true_mean,1);
means = grpstats(x,group)

means =

 0.7947 2.0908 2.8969 3.6749 4.6555
 0.9377 1.7600 3.0285 3.9484 4.8169
 1.0549 2.0255 2.8793 4.0799 5.3740
 0.7107 1.9264 2.8232 3.8815 4.9689

See Also tabulate, crosstab

gscatter

12-228

12gscatterPurpose Scatter plot by group

Syntax gscatter(x,y,g)
gscatter(x,y,g,'clr','sym',siz)
gscatter(x,y,g,'clr','sym',siz,'doleg')
gscatter(x,y,g,'clr','sym',siz,'doleg','xnam','ynam')
h = gscatter(...)

Description gscatter(x,y,g) creates a scatter plot of x and y, grouped by g, where x and y
are vectors with the same size and g can be a vector, string array, or cell array
of strings. Points with the same value of g are placed in the same group, and
appear on the graph with the same marker and color. Alternatively, g can be a
cell array containing several grouping variables (such as {G1 G2 G3}); in that
case, observations are in the same group if they have common values of all
grouping variables.

gscatter(x,y,g,'clr','sym',siz) specifies the color, marker type, and size
for each group. 'clr' is a string array of colors recognized by the plot function.
The default is 'clr' = 'bgrcmyk'. 'sym' is a string array of symbols recognized
by the plot command, with the default value '.'. siz is a vector of sizes, with
the default determined by the 'defaultlinemarkersize' property. If you do
not specify enough values for all groups, gscatter cycles through the specified
values as needed.

gscatter(x,y,g,'clr','sym',siz,'doleg') controls whether a legend is
displayed on the graph ('doleg' = 'on', the default) or not ('doleg' = 'off').

gscatter(x,y,g,'clr','sym',siz,'doleg','xnam','ynam') specifies the
name to use for the x-axis and y-axis labels. If the x and y inputs are simple
variable names and xnam and ynam are omitted, gscatter labels the axes with
the variable names.

h = gscatter(...) returns an array of handles to the lines on the graph.

Example Load the cities data and look at the relationship between the ratings for
climate (first column) and housing (second column) grouped by city size. We’ll
also specify the colors and plotting symbols.

load discrim

gscatter

12-229

gscatter(ratings(:,1),ratings(:,2),group,'br','xo')

See Also gplotmatrix, grpstats, scatter

100 200 300 400 500 600 700 800 900 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

1
2

harmmean

12-230

12harmmeanPurpose Harmonic mean of a sample of data

Syntax m = harmmean(X)
harmmean(X,dim)

Description m = harmmean(X) calculates the harmonic mean of a sample. For vectors,
harmmean(x) is the harmonic mean of the elements in x. For matrices,
harmmean(X) is a row vector containing the harmonic means of each column.
For N-dimensional arrays, harmmean operates along the first nonsingleton
dimension of X.

harmmean(X,dim) takes the harmonic mean along dimension dim of X.

The harmonic mean is

Examples The sample average is greater than or equal to the harmonic mean.

x = exprnd(1,10,6);
harmonic = harmmean(x)

harmonic =

 0.3382 0.3200 0.3710 0.0540 0.4936 0.0907

average = mean(x)

average =

 1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, geomean, trimmean

m n

1
xi

i 1=

n

∑

---------------=

hist

12-231

12histPurpose Plot histograms

Syntax hist(y)
hist(y,nb)
hist(y,x)
[n,x] = hist(y,...)

Description hist(y) draws a 10-bin histogram for the data in vector y. The bins are equally
spaced between the minimum and maximum values in y.

hist(y,nb) draws a histogram with nb bins.

hist(y,x) draws a histogram using the bins in the vector x.

[n,x] = hist(y,...) do not draw graphs, but return vectors n and x
containing the frequency counts and the bin locations such that bar(x,n) plots
the histogram. This is useful in situations where more control is needed over
the appearance of a graph, for example, to combine a histogram into a more
elaborate plot statement.

The hist function is a part of the standard MATLAB language.

Examples Generate bell-curve histograms from Gaussian data.

x = -2.9:0.1:2.9;
y = normrnd(0,1,1000,1);
hist(y,x)

See Also hist3, histc

-3 -2 -1 0 1 2 3
0

10

20

30

40

50

hist3

12-232

12hist3Purpose Three-dimensional histogram of bivariate data

Syntax hist3(X)
hist3(X, nbins)
hist3(X, ctrs)
hist3(X, 'Edges', edges)
N = hist3(X,...)
[N, C] = hist3(X,...)
hist3(..., 'param1',val1, 'param2',val2, ...)

Description hist3(X) bins the elements of the m-by-2 matrix X into a 10-by-10 grid of
equally-spaced containers, and plots a histogram. Each column of X
corresponds to one dimension in the bin grid.

hist3(X, nbins) plots a histogram using an nbins(1)-by-nbins(2) grid of
bins. hist3(X, 'Nbins', nbins) is equivalent to hist3(X, nbins).

hist3(X, ctrs), where ctrs is a two-element cell array of numeric vectors
with monotonically non-decreasing values, uses a two-dimensional grid of bins
centered on ctrs{1} in the first dimension and on ctrs{2} in the second. hist3
assigns rows of X falling outside the range of that grid to the bins along the
outer edges of the grid, and ignores rows of X containing NaNs.
hist3(X, 'Ctrs', ctrs) is equivalent to hist3(X, ctrs).

hist3(X, 'Edges', edges), where edges is a two-element cell array of
numeric vectors with monotonically non-decreasing values, uses a
two-dimensional grid of bins with edges at edges{1} in the first dimension and
at edges{2} in the second. The (i, j)-th bin includes the value X(k, :) if

edges{1}(i) <= X(k,1) < edges{1}(i+1)
edges{2}(j) <= X(k,2) < edges{2}(j+1)

Rows of X that fall on the upper edges of the grid, edges{1}(end) or
edges{2}(end), are counted in the (I,j)-th or (i, J)-th bins, where I and J
are the lengths of edges{1} and edges{2}. hist3 does not count rows of X
falling outside the range of the grid. Use -Inf and Inf in edges to include all
non-NaN values.

N = hist3(X,...) returns a matrix containing the number of elements of X
that fall in each bin of the grid, and does not plot the histogram.

hist3

12-233

[N, C] = hist3(X,...) returns the positions of the bin centers in a1-by-2 cell
array of numeric vectors, and does not plot the histogram. hist3(ax, X,...)
plots onto an axes with handle ax instead of the current axes. See the reference
page for axes for more information about handles to plots.

hist3(..., 'param1',val1, 'param2',val2, ...) allows you to specify
graphics parameter name/value pairs to fine-tune the plot.

Example Example 1
Make a 3-D figure using a histogram with a density plot underneath:

figure;
load seamount
dat = [-y,x]; % Make grid, correcting for negative y-values
hold on
hist3(dat) % Draw histogram in 2D

n = hist3(dat); % Extract histogram data; default to 10x10 bins
n1 = n';
n1(size(n,1) + 1 ,size(n,2) + 1) = 0;

% Generate grid for 2-D projected view of intensities
xb = linspace(min(dat(:,1)) , max(dat(:,1)) , size(n,1) + 1);
yb = linspace(min(dat(:,2)) , max(dat(:,2)) , size(n,1) + 1);

% Make a pseudocolor plot on this grid
h = pcolor(xb,yb,n1);

% Set the z-level and colormap of the displayed grid
set(h, 'zdata', ones(size(n1)) * -max(max(n)))
colormap(hot) % heat map
title...
('Seamount: Data Point Density Histogram and Intensity Map');
grid on
view(3); % Display the default 3-D perspective view

hist3

12-234

Example 2
Create the car data and make a histogram on a 7x7 grid of bins.

load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');

 % Make a histogram with semi-transparent bars
 hist3(X,[7 7],'FaceAlpha',.65);
 xlabel('MPG'); ylabel('Weight');
 set(gcf,'renderer','opengl');

 % Specify bin centers, different in each direction. Get back
 % counts, but don't make the plot.
 cnt = hist3(X, {0:10:50 2000:500:5000});

See Also accumarray, bar, bar3, hist, histc

histfit

12-235

12histfitPurpose Histogram with superimposed normal density

Syntax histfit(data)
histfit(data,nbins)
h = histfit(data,nbins)

Description histfit(data,nbins) plots a histogram of the values in the vector data using
nbins bars in the histogram. With nbins is omitted, its value is set to the
square root of the number of elements in data.

h = histfit(data,nbins) returns a vector of handles to the plotted lines,
where h(1) is the handle to the histogram, h(2) is the handle to the density
curve.

Example r = normrnd(10,1,100,1);
histfit(r)

See Also hist, hist3, normfit

7 8 9 10 11 12 13
0

5

10

15

20

25

hmmdecode

12-236

12hmmdecodePurpose Calculate the posterior state probabilities of a sequence

Syntax PSTATES = hmmdecode(seq, TRANS, EMIS)
[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS)
[PSTATES, logpseq, FORWARD, BACKWARD, S] = hmmdecode(seq,TRANS,EMIS)
hmmdecode(...,'Symbols', SYMBOLS)

Description PSTATES = hmmdecode(seq, TRANS, EMIS) calculates the posterior state
probabilities, PSTATES, of the sequence seq, from a hidden Markov model. The
posterior state probabilities are the conditional probabilities of being at state k
at step i, given the observed sequence of symbols, sym. You specify the model
by a transition probability matrix, TRANS, and an emissions probability matrix,
EMIS. TRANS(i,j) is the probability of transition from state i to state j.
EMIS(k, sym) is the probability that symbol sym is emitted from state k.

PSTATES is an array with the same length as seq and one row for each state in
the model. The (i, j) element of PSTATES gives the probability that the model is
in state i at the jth step, given the sequence seq.

Note The function hmmdecode begins with the model in state 1 at step 0, prior
to the first emission. hmmdecode computes the probabilities in PSTATES based
on the fact that the model begins in state 1. See “How the Toolbox Generates
Random Sequences” on page 11-7 for more information

[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS) returns logpseq, the
logarithm of the probability of sequence seq, given transition matrix TRANS and
emission matrix EMIS.

[PSTATES, logpseq, FORWARD, BACKWARD, S] = hmmdecode(seq,TRANS,EMIS)
returns the forward and backward probabilities of the sequence scaled by S.
See “Reference” on page 12-237 for a reference that explains the forward and
backward probabilities.

hmmdecode(...,'Symbols', SYMBOLS) specifies the symbols that are emitted.
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The
default symbols are integers 1 through N, where N is the number of possible
emissions.

hmmdecode

12-237

See “Calculating Posterior State Probabilities” on page 11-12 for an example of
using hmmdecode.

Examples trans = [0.95,0.05;
 0.10,0.90];

emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
 1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];

[seq, states] = hmmgenerate(100,trans,emis);
pStates = hmmdecode(seq,tr,e);

[seq, states] = hmmgenerate(100, trans, emis, 'Symbols',...
{'one','two','three','four','five','six'})

pStates = hmmdecode(seq, tr, e, 'Symbols',...
{'one','two','three','four','five','six'});

Reference Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis,
Cambridge University Press, 1998.

 See Also hmmgenerate, hmmestimate, hmmviterbi, hmmtrain

hmmestimate

12-238

12hmmestimatePurpose Estimate the parameters for a hidden Markov model given state information

Syntax [TRANS, EMIS] = hmmestimate(seq, states)
hmmestimate(..., 'Symbols', SYMBOLS)
hmmestimate(..., 'Statenames', STATENAMES)
hmmestimate(..., 'Pseudoemissions', PSEUDOE)
hmmestimate(..., 'Pseudotransitions', PSEUDOTR)

Description [TRANS, EMIS] = hmmestimate(seq, states) calculates the maximum
likelihood estimate of the transition, TRANS, and emission, EMIS, probabilities
of a hidden Markov model for sequence, seq, with known states, states.

hmmestimate(..., 'Symbols', SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of the
symbols. The default symbols are integers 1 through N, where N is the number
of possible emissions.

hmmestimate(..., 'Statenames', STATENAMES) specifies the names of the
states. STATENAMES can be a numeric array or a cell array of the names of the
states. The default state names are 1 through M, where M is the number of
states.

hmmestimate(...,'Pseudoemissions', PSEUDOE) specifies pseudocount
emission values in the matrix PSEUDO. Use this argument to avoid zero
probability estimates for emissions with very low probability that might not be
represented in the sample sequence. PSEUDOE should be a matrix of size
M-by-N, where M is the number of states in the hidden Markov model and N is
the number of possible emissions. If the emission does not occur in seq,
you can set PSEUDOE(i,k) to be a positive number representing an estimate of
the expected number of such emissions in the sequence seq.

hmmestimate(..., 'Pseudotransitions', PSEUDOTR) specifies pseudocount
transition values. You can use this argument to avoid zero probability
estimates for transitions with very low probability that might not be
represented in the sample sequence. PSEUDOTR should be a matrix of size
M-by-M, where M is the number of states in the hidden Markov model. If
the transition does not occur in states, you can set PSEUDOTR(i,j) to be
a positive number representing an estimate of the expected number of such
transitions in the sequence states.

i k→

i j→

hmmestimate

12-239

See “Using hmmestimate” on page 11-9 for an example of using hmmestimate.

Pseudotransitions and Pseudoemissions
If the probability of a specific transition or emission is very low, the transition
might never occur in the sequence states, or the emission might never occur
in the sequence seq. In either case, the algorithm returns a probability of 0 for
the given transition or emission in TRANS or EMIS. You can compensate for the
absence of transition with the 'Pseudotransitions' and 'Pseudoemissions'
arguments. The simplest way to do this is to set the corresponding entry of
PSEUDO or PSEUDOTR to 1. For example, if the transition does not occur in
states, set PSEUOTR(i,j) = 1. This forces TRANS(i,j) to be positive. If you
have an estimate for the expected number of transitions in a sequence of
the same length as states, and the actual number of transitions that
occur in seq is substantially less than what you expect, you can set
PSEUOTR(i,j) to the expected number. This increases the value of TRANS(i,j).
For transitions that do occur in states with the frequency you expect, set the
corresponding entry of PSEUDOTR to 0, which does not increase the
corresponding entry of TRANS.

If you do not know the sequence of states, use hmmtrain to estimate the model
parameters.

 Examples: trans = [0.95,0.05; 0.10,0.90];
e = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];

[seq, states] = hmmgenerate(1000,trans,emis);

[estimateTR, estimateE] = hmmestimate(seq,states);

See Also hmmgenerate, hmmdecode, hmmviterbi, hmmtrain

i j→

i j→
i j→

hmmgenerate

12-240

12hmmgeneratePurpose Generate random sequences from a Markov model

Syntax [seq, states] = hmmgenerate(len, TRANS, EMIS)
hmmgenerate(...,'Symbols', SYMBOLS)
hmmgenerate(...,'Statenames', STATENAMES)

Description [seq, states] = hmmgenerate(len,TRANS,EMIS) takes a known Markov
model, specified by transition probability matrix TRANS and emission
probability matrix EMIS, and uses it to generate

• A random sequence seq of emission symbols

• A random sequence states of states

The length of both seq and states is len. TRANS(i,j) is the probability of
transition from state i to state j. EMIS(k,l) is the probability that symbol l is
emitted from state k.

Note The function hmmgenerate begins with the model in state 1 at step 0,
prior to the first emission. The model then makes a transition to state i1, with
probability , and generates an emission with probability .
hmmgenerate returns i1 as the first entry of states, and as the first entry
of seq. See “How the Toolbox Generates Random Sequences” on page 11-7 for
more information

hmmgenerate(...,'Symbols', SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of the
symbols. The default symbols are integers 1 through N, where N is the number
of possible emissions.

hmmgenerate(...,'Statenames', STATENAMES) specifies the names of the
states. STATENAMES can be a numeric array or a cell array of the names of the
states. The default state names are 1 through M, where M is the number of
states.

Since the model always begins at state 1, whose transition probabilities are in
the first row of TRANS, in the following example, the first entry of the output
states is be 1 with probability 0.95 and 2 with probability 0.05.

T1i1
ak1

Ei1k11
ak1

hmmgenerate

12-241

See “Setting Up the Model and Generating Data” on page 11-8 for an example
of using hmmgenerate.

Examples trans = [0.95,0.05;
 0.10,0.90];

 emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
 1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
[seq, states] = hmmgenerate(100,trans,emis)

[seq, states] = hmmgenerate(100,trans,emis,'Symbols',...
{'one','two','three','four','five','six'},...
'Statenames',{'fair';'loaded'})

See Also hmmviterbi, hmmdecode, hmmestimate, hmmtrain

hmmtrain

12-242

12hmmtrainPurpose Maximum likelihood estimate of model parameters for a hidden Markov model

Syntax [ESTTR, ESTEMIT] = hmmtrain(seq, TRGUESS, EMITGUESS)
hmmtrain(...,'Algorithm', algorithm)
hmmtrain(...,'Symbols', SYMBOLS)
hmmtrain(...,'Tolerance', tol)
hmmtrain(...,'Maxiterations', maxiter)
hmmtrain(...,'Verbose', true)
hmmtrain(...,'Pseudoemissions', PSEUDOE)
hmmtrain(...,'Pesudotransitions', PSEUDOTR)

Description [ESTTR, ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates the
transition and emission probabilities for a hidden Markov model using the
Baum-Welch algorithm. seq can be a row vector containing a single sequence,
a matrix with one row per sequence, or a cell array with each cell containing a
sequence. TRGUESS and EMITGUESS are initial estimates of the transition and
emission probability matrices. TRGUESS(i,j) is the estimated probability of
transition from state i to state j. EMITGUESS(i,k) is the estimated probability
that symbol k is emitted from state i.

hmmtrain(...,'Algorithm', algorithm) specifies the training algorithm.
algorithm can be either 'BaumWelch' or 'Viterbi'. The default algorithm is
'BaumWelch'.

hmmtrain(...,'Symbols', SYMBOLS) specifies the symbols that are emitted.
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The
default symbols are integers 1 through N, where N is the number of possible
emissions.

hmmtrain(...,'Tolerance', tol) specifies the tolerance used for testing
convergence of the iterative estimation process. The default tolerance is 1e-4.

hmmtrain(...,'Maxiterations', maxiter) specifies the maximum number of
iterations for the estimation process. The default maximum is 100.

hmmtrain(...,'Verbose', true) returns the status of the algorithm at each
iteration.

hmmtrain(...,'Pseudoemissions', PSEUDOE) specifies pseudocount emission
values for the Viterbi training algorithm. Use this argument to avoid zero
probability estimates for emissions with very low probability that might not be

hmmtrain

12-243

represented in the sample sequence. PSEUDOE should be a matrix of size
M-by-N, where M is the number of states in the hidden Markov model and N is
the number of possible emissions. If the emission does not occur in seq,
you can set PSEUDOE(i,k) to be a positive number representing an estimate of
the expected number of such emissions in the sequence seq.

hmmtrain(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount
transition values for the Viterbi training algorithm. Use this argument to avoid
zero probability estimates for transitions with very low probability that might
not be represented in the sample sequence. PSEUDOTR should be a matrix of size
M-by-M, where M is the number of states in the hidden Markov model. If
the transition does not occur in states, you can set PSEUDOTR(i,j) to be
a positive number representing an estimate of the expected number of such
transitions in the sequence states.

See “Pseudotransitions and Pseudoemissions” on page 12-239 for more
information.

If you know the states corresponding to the sequences, use hmmestimate to
estimate the model parameters.

Tolerance
The input argument 'tolerance' controls how many steps the hmmtrain
algorithm executes before the function returns an answer. The algorithm
terminates when all of the following three quantities are less than the value
that you specify for tolerance:

• The log likelihood that the input sequence seq is generated by the currently
estimated values of the transition and emission matrices

• The change in the norm of the transition matrix, normalized by the size of
the matrix

• The change in the norm of the emission matrix, normalized by the size of the
matrix

The default value of 'tolerance' is .0001. Increasing the tolerance decreases
the number of steps the hmmtrain algorithm executes before it terminates.

Maxiterations
The maximum number of iterations, 'maxiterations', controls the maximum
number of steps the algorithm executes before it terminates. If the algorithm

i k→

i j→

hmmtrain

12-244

executes maxiter iterations before reaching the specified tolerance, the
algorithm terminates and the function returns a warning. If this occurs, you
can increase the value of 'maxiterations' to make the algorithm reach the
desired tolerance before terminating.

See “Using hmmtrain” on page 11-10 for an example of using hmmtrain.

Examples: tr = [0.95,0.05;
 0.10,0.90];

 e = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
 1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];

seq1 = hmmgenerate(100,tr,e);
seq2 = hmmgenerate(200,tr,e);
seqs = {seq1,seq2};
[estTR, estE] = hmmtrain(seqs,tr,e);

See Also hmmgenerate, hmmdecode, hmmestimate, hmmviterbi

hmmviterbi

12-245

12hmmviterbiPurpose Calculate the most probable state path for a hidden Markov model sequence

Syntax STATES = hmmvitervi(seq, TRANS, EMIS)
hmmviterbi(..., 'Symbols', SYMBOLS)
hmmviterbi(..., 'Statenames',STATENAMES)

Description STATES = hmmvitervi(seq, TRANS, EMIS) given a sequence, seq, calculates
the most likely path through the hidden Markov model specified by transition
probability matrix, TRANS, and emission probability matrix EMIS. TRANS(i,j)
is the probability of transition from state i to state j. EMIS(i,k) is the
probability that symbol k is emitted from state i.

Note The function hmmviterbi begins with the model in state 1 at step 0,
prior to the first emission. hmmviterbi computes the most likely path based on
the fact that the model begins in state 1. See “How the Toolbox Generates
Random Sequences” on page 11-7 for more information.

hmmviterbi(...,'Symbols', SYMBOLS) specifies the symbols that are emitted.
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The
default symbols are integers 1 through N, where N is the number of possible
emissions.

hmmviterbi(...,'Statenames', STATENAMES) specifies the names of the
states. STATENAMES can be a numeric array or a cell array of the names of the
states. The default state names are 1 through M, where M is the number of
states.

See “Computing the Most Likely Sequence of States” on page 11-9 for an
example of using hmmviterbi.

Examples trans = [0.95,0.05;
 0.10,0.90];

emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
 1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];

[seq, states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);

hmmviterbi

12-246

[seq, states] =
hmmgenerate(100,trans,emis,'Statenames',{'fair';'loaded'});
estimatesStates =
hmmviterbi(seq,trans,eemis,'Statenames',{'fair';'loaded'});

See Also hmmgenerate, hmmdecode, hmmestimate, hmmtrain

hougen

12-247

12hougenPurpose Hougen-Watson model for reaction kinetics

Syntax yhat = hougen(beta,x)

Description yhat = hougen(beta,x) returns the predicted values of the reaction rate,
yhat, as a function of the vector of parameters, beta, and the matrix of data, X.
beta must have 5 elements and X must have three columns.

hougen is a utility function for rsmdemo.

The model form is:

Reference [1] Bates, D., and D. Watts, Nonlinear Regression Analysis and Its
Applications. Wiley, 1988, pp. 271–272.

See Also rsmdemo

ŷ
β1x2 x3 β5⁄–

1 β2x1 β3x2 β4x3+ + +
---=

hygecdf

12-248

12hygecdfPurpose Hypergeometric cumulative distribution function (cdf)

Syntax P = hygecdf(X,M,K,N)

Description hygecdf(X,M,K,N) computes the hypergeometric cdf at each of the values in X
using the corresponding parameters in M, K, and N. Vector or matrix inputs for
X, M, K, and N must all have the same size. A scalar input is expanded to a
constant matrix with the same dimensions as the other inputs.

The hypergeometric cdf is

The result, p, is the probability of drawing up to x of a possible K items in N
drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them are
defective. What is the probability of drawing zero to two defective floppies if
you select 10 at random?

p = hygecdf(2,100,20,10)

p =
 0.6812

See Also cdf, hygeinv, hygepdf, hygernd, hygestat

p F x M K N, ,()

K
i⎝ ⎠

⎛ ⎞ M K–

N i–⎝ ⎠
⎛ ⎞

M
N⎝ ⎠
⎛ ⎞

i 0=

x

∑= =

hygeinv

12-249

12hygeinvPurpose Inverse of the hypergeometric cumulative distribution function (cdf)

Syntax X = hygeinv(P,M,K,N)

Description hygeinv(P,M,K,N) returns the smallest integer X such that the
hypergeometric cdf evaluated at X equals or exceeds P. You can think of P as the
probability of observing X defective items in N drawings without replacement
from a group of M items where K are defective.

Examples Suppose you are the Quality Assurance manager for a floppy disk
manufacturer. The production line turns out floppy disks in batches of 1,000.
You want to sample 50 disks from each batch to see if they have defects. You
want to accept 99% of the batches if there are no more than 10 defective disks
in the batch. What is the maximum number of defective disks should you allow
in your sample of 50?

x = hygeinv(0.99,1000,10,50)

x =
 3

What is the median number of defective floppy disks in samples of 50 disks
from batches with 10 defective disks?

x = hygeinv(0.50,1000,10,50)

x =
 0

See Also hygecdf, hygepdf, hygernd, hygestat, icdf

hygepdf

12-250

12hygepdfPurpose Hypergeometric probability density function (pdf)

Syntax Y = hygepdf(X,M,K,N)

Description Y = hygecdf(X,M,K,N) computes the hypergeometric pdf at each of the values
in X using the corresponding parameters in M, K, and N. X, M, K, and N can be
vectors, matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions as the
other inputs.

The parameters in M, K, and N must all be positive integers, with N ≤ M. The
values in X must be less than or equal to all the parameter values.

The hypergeometric pdf is

The result, y, is the probability of drawing exactly x of a possible K items in n
drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them are
defective. What is the probability of drawing 0 through 5 defective floppy disks
if you select 10 at random?

p = hygepdf(0:5,100,20,10)

p =
 0.0951 0.2679 0.3182 0.2092 0.0841 0.0215

See Also hygecdf, hygeinv, hygernd, hygestat, pdf

y f x M K N, ,()

K
x⎝ ⎠

⎛ ⎞ M K–

N x–⎝ ⎠
⎛ ⎞

M
N⎝ ⎠
⎛ ⎞

-------------------------------= =

hygernd

12-251

12hygerndPurpose Random numbers from the hypergeometric distribution

Syntax R = hygernd(M,K,N)
R = hygernd(M,K,N,v)
R = hygernd(M,K,N,m,n)

Description R = hygernd(M,K,N) generates hypergeometric random numbers with
parameters M, K, and N. M, K, and N can be vectors, matrices, or multidimensional
arrays that all have the same size, which is also the size of R. A scalar input for
M, K, or N is expanded to a constant array with the same dimensions as the other
inputs.

R = hygernd(M,K,N,v) generates hypergeometric random numbers with
parameters M, K, and N, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional
array.

R = hygernd(M,K,N,m,n) generates hypergeometric random numbers with
parameters M, K, and N, where scalars m and n are the row and column
dimensions of R.

Reproducing the Output of hygernd
hygernd uses the MATLAB function rand to generate random numbers. When
you call hygernd, you change the current state of rand, and thereby alter the
output of subsequent calls to hygernd or any other functions that depend on
rand. If you want to reproduce the output of hygernd, reset the state of rand to
the same fixed value each time you call hygernd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The result in the following example depends on the current state of
rand. If you run the code in this example, your results may differ from the
answer shown here.

Example numbers = hygernd(1000,40,50)

hygernd

12-252

numbers =

 1

See Also hygecdf, hygeinv, hygepdf, hygestat

hygestat

12-253

12hygestatPurpose Mean and variance for the hypergeometric distribution

Syntax [MN,V] = hygestat(M,K,N)

Description [MN,V] = hygestat(M,K,N) returns the mean and variance for the
hypergeometric distribution with parameters specified by M, K, and N. Vector or
matrix inputs for M, K, and N must have the same size, which is also the size of
MN and V. A scalar input for M, K, or N is expanded to a constant matrix with the
same dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters M, K, and N is
NK/M, and the variance is

Examples The hypergeometric distribution approaches the binomial distribution, where
p = K / M as M goes to infinity.

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)

m =
 0.9000 0.9000 0.9000 0.9000

v =
 0.0900 0.7445 0.8035 0.8094

[m,v] = binostat(9,0.1)

m =
 0.9000

v =
 0.8100

See Also hygecdf, hygeinv, hygepdf, hygernd

N K
M
-----M K–

M
----------------M N–

M 1–

icdf

12-254

12icdfPurpose Inverse of a specified cumulative distribution function (icdf)

Syntax X = icdf('name',P,A1,A2,A3)

Description X = icdf('name',P,A1,A2,A3) returns a matrix of critical values, X, where
'name' is a string containing the name of the distribution. P is a matrix of
probabilities, and A1, A2, and A3 are matrices of distribution parameters.
Depending on the distribution some of the parameters may not be necessary.

P, A1, A2, and A3 can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array with the
same dimensions as the other inputs.

icdf is a utility routine allowing you to access all the inverse cdfs in the
Statistics Toolbox using the name of the distribution as a parameter. See
“Overview of the Distributions” on page 2-45 for the list of available
distributions.

Examples x = icdf('Normal',0.1:0.2:0.9,0,1)

x =
 -1.2816 -0.5244 0 0.5244 1.2816

x = icdf('Poisson',0.1:0.2:0.9,1:5)

x =

 0 1 3 5 8

See Also betainv, binoinv, cdf, chi2inv, expinv, finv, gaminv, geoinv, hygeinv,
logninv, nbininv, ncfinv, nctinv, ncx2inv, norminv, pdf, poissinv, random,
raylinv, tinv, unidinv, unifinv, wblinv

inconsistent

12-255

12inconsistentPurpose Calculate the inconsistency coefficient of a cluster tree

Syntax Y = inconsistent(Z)
Y = inconsistent(Z,d)

Description Y = inconsistent(Z) computes the inconsistency coefficient for each link of
the hierarchical cluster tree Z, where Z is an (m-1)-by-3 matrix generated by the
linkage function. The inconsistency coefficient characterizes each link in a
cluster tree by comparing its length with the average length of other links at
the same level of the hierarchy. The higher the value of this coefficient, the less
similar the objects connected by the link.

Y = inconsistent(Z,d) computes the inconsistency coefficient for each link
in the hierarchical cluster tree Z to depth d, where d is an integer denoting the
number of levels of the cluster tree that are included in the calculation. By
default, d=2.

The output, Y, is an (m-1)-by-4 matrix formatted as follows.

For each link, k, the inconsistency coefficient is calculated as:

For leaf nodes, nodes that have no further nodes under them, the inconsistency
coefficient is set to 0.

Example rand('state',12);
X = rand(10,2);
Y = pdist(X);

Column Description

1 Mean of the lengths of all the links included in the calculation.

2 Standard deviation of all the links included in the calculation.

3 Number of links included in the calculation.

4 Inconsistency coefficient.

Y k 4,() z k 3,() Y k 1,()–() Y k 2,()⁄=

inconsistent

12-256

Z = linkage(Y,'centroid');
W = inconsistent(Z,3)

W =

 0.1313 0 1.0000 0
 0.1386 0 1.0000 0
 0.1727 0.0482 2.0000 0.7071
 0.2391 0 1.0000 0
 0.2242 0.0955 3.0000 1.0788
 0.2357 0.1027 3.0000 0.9831
 0.3222 0.1131 3.0000 0.9772
 0.3376 0.1485 6.0000 1.4883
 0.4920 0.1341 4.0000 1.1031

See Also cluster, cophenet, clusterdata, dendrogram, linkage, pdist, squareform

iqr

12-257

12iqrPurpose Interquartile range (IQR) of a sample

Syntax y = iqr(X)
iqr(X,dim)

Description y = iqr(X) returns the interquartile range of the values in X. For vector input,
y is the difference between the 75th and the 25th percentiles of the sample in
X. For matrix input, y is a row vector containing the interquartile range of each
column of X. For N-dimensional arrays, iqr operates along the first
non-singleton dimension of X.

iqr(X,dim) calculates the interquartile range along the dimension dim of X.

Remarks The IQR is a robust estimate of the spread of the data, since changes in the
upper and lower 25% of the data do not affect it. If there are outliers in the data,
then the IQR is more representative than the standard deviation as an
estimate of the spread of the body of the data. The IQR is less efficient than the
standard deviation as an estimate of the spread when the data is all from the
normal distribution.

Multiply the IQR by 0.7413 to estimate σ (the second parameter of the normal
distribution.)

Examples This Monte Carlo simulation shows the relative efficiency of the IQR to the
sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413 ∗ iqr(x);
efficiency = (norm(s - 1)./norm(s_IQR - 1)).^2

efficiency =

 0.3297

See Also std, mad, range

iwishrnd

12-258

12iwishrndPurpose Generate inverse Wishart random matrix

Syntax W=iwishrnd(SIGMA,df)
W=iwishrnd(SIGMA,df,DI)
[W,DI]=iwishrnd(SIGMA,df)

Description W=iwishrnd(SIGMA,df) generates a random matrix W whose inverse has the
Wishart distribution with covariance matrix inv(SIGMA) and with df degrees
of freedom. SIGMA can be a vector, a matrix, or a multidimensional array.

W=iwishrnd(SIGMA,df,DI) expects DI to be the Cholesky factor of the inverse
of SIGMA. DI is an array of the same size as SIGMA. If you call iwishrnd multiple
times using the same value of SIGMA, it is more efficient to supply DI instead of
computing it each time.

[W,DI]=iwishrnd(SIGMA,df) returns DI so you can provide it as input in
future calls to iwishrnd.

Reproducing the Output of iwishrnd
iwishrnd uses the MATLAB functions rand and randn to generate random
numbers. When you call iwishrnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to iwishrnd or any
other functions that depend on rand or randn. If you want to reproduce the
output of iwishrnd, reset the states of rand and randn to the same fixed values
each time you call iwishrnd. For an example of how to do this, and a list of the
Statistics Toolbox functions that depend on rand or randn, see “Reproducing
the Output of Random Number Functions” on page 2-46.

See Also wishrnd

jbtest

12-259

12jbtestPurpose Jarque-Bera test for goodness-of-fit to a normal distribution

Syntax H = jbtest(X)
H = jbtest(X,alpha)
[H,P,JBSTAT,CV] = jbtest(X,alpha)

Description H = jbtest(X) performs the Jarque-Bera test on the input data vector X and
returns H, the result of the hypothesis test. The result is H=1 if you can reject
the hypothesis that X has a normal distribution, or H=0 if you cannot reject that
hypothesis. you reject the hypothesis if the test is significant at the 5% level.

The Jarque-Bera test evaluates the hypothesis that X has a normal distribution
with unspecified mean and variance, against the alternative that X does not
have a normal distribution. The test is based on the sample skewness and
kurtosis of X. For a true normal distribution, the sample skewness should be
near 0 and the sample kurtosis should be near 3. The Jarque-Bera test
determines whether the sample skewness and kurtosis are unusually different
than their expected values, as measured by a chi-square statistic.

The Jarque-Bera test is an asymptotic test, and should not be used with small
samples. You may want to use lillietest in place of jbtest for small samples.

H = jbtest(X,alpha) performs the Jarque-Bera test at the 100*alpha% level
rather than the 5% level, where alpha must be between 0 and 1.

[H,P,JBSTAT,CV] = jbtest(X,alpha) returns three additional outputs. P is
the p-value of the test, JBSTAT is the value of the test statistic, and CV is the
critical value for determining whether to reject the null hypothesis.

Example you can use jbtest to determine if car weights follow a normal distribution.

load carsmall
[h,p,j] = jbtest(Weight)

h =
 1

p =
 0.026718

jbtest

12-260

j =
 7.2448

With a p-value of 2.67%, you reject the hypothesis that the distribution is
normal. With a log transformation, the distribution becomes closer to normal
but is still significantly different at the 5% level.

[h,p,j] = jbtest(log(Weight))

h =
 1

p =
 0.043474

j =
 6.2712

See lillietest for a different test of the same hypothesis.

Reference [1] Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lutkepohl, and T.-C. Lee.
Introduction to the Theory and Practice of Econometrics, Wiley, 1988.

See Also hist, kstest2, lillietest

kmeans

12-261

12kmeansPurpose K-means clustering

Syntax IDX = kmeans(X,k)
[IDX,C] = kmeans(X,k)
[IDX,C,sumd] = kmeans(X,k)
[IDX,C,sumd,D] = kmeans(X,k)
[...] = kmeans(...,'param1',val1,'param2',val2,...)

Description IDX = kmeans(X, k) partitions the points in the n-by-p data matrix X into k
clusters. This iterative partitioning minimizes the sum, over all clusters, of the
within-cluster sums of point-to-cluster-centroid distances. Rows of X
correspond to points, columns correspond to variables. kmeans returns an
n-by-1 vector IDX containing the cluster indices of each point. By default,
kmeans uses squared Euclidean distances.

[IDX,C] = kmeans(X,k) returns the k cluster centroid locations in the k-by-p
matrix C.

[IDX,C,sumd] = kmeans(X,k) returns the within-cluster sums of
point-to-centroid distances in the 1-by-k vector sumd.

[IDX,C,sumd,D] = kmeans(X,k) returns distances from each point to every
centroid in the n-by-k matrix D.

[...] = kmeans(...,'param1',val1,'param2',val2,...) enables you to
specify optional parameter name-value pairs to control the iterative algorithm
used by kmeans. Valid parameters are the following.

Parameter Value

'distance' Distance measure, in p-dimensional space, that kmeans
minimizes with respect to. kmeans computes centroid
clusters differently for the different supported distance
measures:

'sqEuclidean' Squared Euclidean distance (default).
Each centroid is the mean of the points in
that cluster.

kmeans

12-262

'cityblock' Sum of absolute differences, i.e., L1. Each
centroid is the component-wise median of
the points in that cluster.

'cosine' One minus the cosine of the included
angle between points (treated as vectors).
Each centroid is the mean of the points in
that cluster, after normalizing those
points to unit Euclidean length.

'correlation' One minus the sample correlation
between points (treated as sequences of
values). Each centroid is the
component-wise mean of the points in
that cluster, after centering and
normalizing those points to zero mean
and unit standard deviation.

'Hamming' Percentage of bits that differ (only
suitable for binary data). Each centroid is
the component-wise median of points in
that cluster.

'start' Method used to choose the initial cluster centroid positions,
sometimes known as “seeds.” Valid starting values are:

'sample' Select k observations from X at random
(default).

'uniform' Select k points uniformly at random from
the range of X. Not valid with Hamming
distance.

'cluster' Perform a preliminary clustering phase
on a random 10% subsample of X. This
preliminary phase is itself initialized
using 'sample'.

Parameter Value

kmeans

12-263

Matrix k-by-p matrix of centroid starting
locations. In this case, you can pass in []
for k, and kmeans infers k from the first
dimension of the matrix. You can also
supply a 3-dimensional array, implying a
value for the 'replicates' parameter
from the array's third dimension.

'replicates' Number of times to repeat the clustering, each with a new
set of initial cluster centroid positions. kmeans returns the
solution with the lowest value for sumd. You can supply
'replicates' implicitly by supplying a 3-dimensional
array as the value for the 'start' parameter.

'maxiter' Maximum number of iterations. Default is 100.

'emptyaction' Action to take if a cluster loses all its member observations.
Can be one of:

'error' Treat an empty cluster as an error.
(default)

'drop' Remove any clusters that become empty.
kmeans sets the corresponding return
values in C and D to NaN.

'singleton' Create a new cluster consisting of the one
point furthest from its centroid.

'display' Controls display of output.

'off' Display no output.

'iter' Display information about each iteration
during minimization, including the
iteration number, the optimization phase
(see “Algorithm”), the number of points
moved, and the total sum of distances.

Parameter Value

kmeans

12-264

Algorithm kmeans uses a two-phase iterative algorithm to minimize the sum of
point-to-centroid distances, summed over all k clusters:

• The first phase uses what the literature often describes as “batch” updates,
where each iteration consists of reassigning points to their nearest cluster
centroid, all at once, followed by recalculation of cluster centroids. You can
think of this phase as providing a fast but potentially only approximate
solution as a starting point for the second phase.

• The second phase uses what the literature often describes as “online”
updates, where points are individually reassigned if doing so will reduce the
sum of distances, and cluster centroids are recomputed after each
reassignment. Each iteration during this second phase consists of one pass
though all the points.

kmeans can converge to a local optimum, in this case, a partition of points in
which moving any single point to a different cluster increases the total sum
of distances. This problem can only be solved by a clever (or lucky, or
exhaustive) choice of starting points.

See Also clusterdata, linkage, silhouette

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

[2] Spath, H., Cluster Dissection and Analysis: Theory, FORTRAN Programs,
Examples, translated by J. Goldschmidt, Halsted Press, 1985, 226 pp.

'final' Display a summary of each replication.

'notify' Display only warning and error
messages. (default)

Parameter Value

kruskalwallis

12-265

12kruskalwallisPurpose Kruskal-Wallis nonparametric one-way Analysis of Variance (ANOVA)

Syntax p = kruskalwallis(X)
p = kruskalwallis(X,group)
p = kruskalwallis(X,group,'displayopt')
[p,table] = kruskalwallis(...)
[p,table,stats] = kruskalwallis(...)

Description p = kruskalwallis(X) performs a Kruskal-Wallis test to compare samples
from two or more groups. Each column of the m-by-n matrix X represents an
independent sample containing m mutually independent observations. The
function compares the medians of the samples in X, and returns the p-value for
the null hypothesis that all samples are drawn from the same population (or
equivalently, from different populations with the same distribution). Note that
the Kruskal-Wallis test is a nonparametric version of the classical one-way
ANOVA, and an extension of the Wilcoxon rank sum test to more than two
groups.

If the p-value is near zero, this casts doubt on the null hypothesis and suggests
that at least one sample median is significantly different from the others. The
choice of a critical p-value to determine whether the result is judged
“statistically significant” is left to the researcher. It is common to declare a
result significant if the p-value is less than 0.05 or 0.01.

The kruskalwallis function displays two figures. The first figure is a standard
ANOVA table, calculated using the ranks of the data rather than their numeric
values. Ranks are found by ordering the data from smallest to largest across all
groups, and taking the numeric index of this ordering. The rank for a tied
observation is equal to the average rank of all observations tied with it. For
example, the following table shows the ranks for a small sample.

The entries in the ANOVA table are the usual sums of squares, degrees of
freedom, and other quantities calculated on the ranks. The usual F statistic is

X value 1.4 2.7 1.6 1.6 3.3 0.9 1.1

Rank 3 6 4.5 4.5 7 1 2

kruskalwallis

12-266

replaced by a chi-square statistic. The p-value measures the significance of the
chi-square statistic.

The second figure displays box plots of each column of X (not the ranks of X).

p = kruskalwallis(X,group) uses the values in group (a character array or
cell array) as labels for the box plot of the samples in X, when X is a matrix.
Each row of group contains the label for the data in the corresponding column
of X, so group must have length equal to the number of columns in X.

When X is a vector, kruskalwallis performs a Kruskal-Wallis test on the
samples contained in X, as indexed by input group (a vector, character array,
or cell array). Each element in group identifies the group (i.e., sample) to which
the corresponding element in vector X belongs, so group must have the same
length as X. The labels contained in group are also used to annotate the box
plot.

It is not necessary to label samples sequentially (1, 2, 3, ...). For example, if X
contains measurements taken at three different temperatures, -27°, 65°, and
110°, you could use these numbers as the sample labels in group. If a row of
group contains an empty cell or empty string, that row and the corresponding
observation in X are disregarded. NaNs in either input are similarly ignored.

p = kruskalwallis(X,group,'displayopt') enables the table and box plot
displays when 'displayopt' is 'on' (default) and suppresses the displays
when 'displayopt' is 'off'.

[p,table] = kruskalwallis(...) returns the ANOVA table (including
column and row labels) in cell array table. (You can copy a text version of the
ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = kruskalwallis(...) returns a stats structure that you
can use to perform a follow-up multiple comparison test. The kruskalwallis
test evaluates the hypothesis that all samples come from populations that have
the same median, against the alternative that the medians are not all the
same. Sometimes it is preferable to perform a test to determine which pairs are
significantly different, and which are not. You can use the multcompare
function to perform such tests by supplying the stats structure as input.

kruskalwallis

12-267

Assumptions
The Kruskal-Wallis test makes the following assumptions about the data in X:

• All samples come from populations having the same continuous distribution,
apart from possibly different locations due to group effects.

• All observations are mutually independent.

The classical one-way ANOVA test replaces the first assumption with the
stronger assumption that the populations have normal distributions.

Example This example compares the material strength study used with the anova1
function, to see if the nonparametric Kruskal-Wallis procedure leads to the
same conclusion. The example studies the strength of beams made from three
alloys:

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

This example uses both classical and Kruskal-Wallis anova, omitting displays:

anova1(strength,alloy,'off')

ans =
 1.5264e-004

kruskalwallis(strength,alloy,'off')

ans =
 0.0018

Both tests find that the three alloys are significantly different, though the
result is less significant according to the Kruskal-Wallis test. It is typical that
when a data set has a reasonable fit to the normal distribution, the classical
ANOVA test is more sensitive to differences between groups.

To understand when a nonparametric test may be more appropriate, let’s see
how the tests behave when the distribution is not normal. You can simulate
this by replacing one of the values by an extreme value (an outlier).

kruskalwallis

12-268

strength(20)=120;
anova1(strength,alloy,'off')

ans =
 0.2501

kruskalwallis(strength,alloy,'off')

ans =
 0.0060

Now the classical ANOVA test does not find a significant difference, but the
nonparametric procedure does. This illustrates one of the properties of
nonparametric procedures – they are often not severely affected by changes in
a small portion of the data.

Reference [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker,
1985.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley,
1973.

See Also anova1, boxplot, friedman, multcompare, ranksum

ksdensity

12-269

12ksdensityPurpose Compute density estimate using a kernel smoothing method

Syntax [f,xi] = ksdensity(x)
f = ksdensity(x,xi)
[f,xi,u] = ksdensity(...)
[...] = ksdensity(...,'param1',val1,'param2',val2,...)

Description [f,xi] = ksdensity(x) computes a probability density estimate of the
sample in the vector x. f is the vector of density values evaluated at the points
in xi. The estimate is based on a normal kernel function, using a window
parameter ('width') that is a function of the number of points in x. The density
is evaluated at 100 equally-spaced points covering the range of the data in x.

f = ksdensity(x,xi) specifies the vector xi of values where the density
estimate is to be evaluated.

[f,xi,u] = ksdensity(...) also returns the width of the kernel smoothing
window.

[...] = ksdensity(...,'param1',val1,'param2',val2,...) specifies
parameter name/value pairs to control the density estimation. Valid
parameters and their possible values are: '

'censoring' A logical vector of the same length as x, indicating which
entries are censoring times. Default is no censoring.

'kernel' The type of kernel smoother to use. Choose the value as
'normal' (default), 'box', 'triangle', or 'epanechnikov'.

Alternatively, you can specify some other function, as a
function handle or as a string, e.g., @normpdf or 'normpdf'.
The function must take a single argument that is an array of
distances between data values and places where the density
is evaluated. It must return an array of the same size
containing corresponding values of the kernel function.

'npoints' The number of equally-spaced points in xi. Default is 100.

ksdensity

12-270

Examples This example generates a mixture of two normal distributions, and plots the
estimated density.

x = [randn(30,1); 5+randn(30,1)];
[f,xi] = ksdensity(x);
plot(xi,f);

'support' • 'unbounded' allows the density to extend over the whole
real line (default).

• 'positive' restricts the density to positive values.

• A two-element vector gives finite lower and upper bounds
for the support of the density.

'weights' Vector of the same length as x, assigning weight to each x
value. The default is equal weights).

'width' The bandwidth of the kernel smoothing window. The default
is optimal for estimating normal densities, but you may
want to choose a smaller value to reveal features such as
multiple modes.

−6 −4 −2 0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

ksdensity

12-271

References [1] Bowman, A. W., and A. Azzalini, Applied Smoothing Techniques for Data
Analysis, Oxford University Press, 1997.

See Also hist, @ (function handle)

kstest

12-272

12kstestPurpose Kolmogorov-Smirnov test of the distribution of one sample

Syntax H = kstest(X)
H = kstest(X,cdf)
H = kstest(X,cdf,alpha)
H = kstest(X,cdf,alpha,tail)
[H,P] = kstest(...)
[H,P,KSSTAT,] = kstest(...)
[H,P,KSSTAT,CV] = kstest(...)

Description H = kstest(X) performs a Kolmogorov-Smirnov test to compare the values in
the data vector X with a standard normal distribution (that is, a normal
distribution having mean 0 and variance 1). The null hypothesis for the
Kolmogorov-Smirnov test is that X has a standard normal distribution. The
alternative hypothesis that X does not have that distribution. The result H is 1
if you can reject the hypothesis that X has a standard normal distribution, or 0
if you cannot reject that hypothesis. You reject the hypothesis if the test is
significant at the 5% level.

For each potential value x, the Kolmogorov-Smirnov test compares the
proportion of values less than x with the expected number predicted by the
standard normal distribution. The kstest function uses the maximum
difference over all x values is its test statistic. Mathematically, this can be
written as

where is the proportion of X values less than or equal to x and is the
standard normal cumulative distribution function evaluated at x.

H = kstest(X,cdf) compares the distribution of X to the hypothesized
continuous distribution defined by the two-column matrix cdf. Column one
contains a set of possible x values, and column two contains the corresponding
hypothesized cumulative distribution function values . If possible, you
should define cdf so that column one contains the values in X. If there are
values in X not found in column one of cdf, kstest will approximate by
interpolation. All values in X must lie in the interval between the smallest and
largest values in the first column of cdf. If the second argument is empty

max F x() G x()–()

F x() G x()

G x()

G X()

kstest

12-273

(cdf = []), kstest uses the standard normal distribution as if there were no
second argument.

The Kolmogorov-Smirnov test requires that cdf be predetermined. It is not
accurate if cdf is estimated from the data. To test X against a normal
distribution without specifying the parameters, use lillietest instead.

H = kstest(X,cdf,alpha) specifies the significance level alpha for the test.
The default is 0.05.

H = kstest(X,cdf,alpha,tail) specifies the type of test in the string tail.
tail can have one of the following values:

• 'unequal'

• 'larger'

• 'smaller'

The tests specified by these values are described in “Tests Specified by tail” on
page 12-273.

[H,P,KSSTAT,CV] = kstest(X,cdf,alpha,tail) also returns the observed
p-value P, the observed Kolmogorov-Smirnov statistic KSSTAT, and the cutoff
value CV for determining if KSSTAT is significant. If the return value of CV is NaN,
then kstest determined the significance calculating a p-value according to an
asymptotic formula rather than by comparing KSSTAT to a critical value.

Tests Specified by tail
Let S(x) be the empirical c.d.f. estimated from the sample vector X, let F(x) be
the corresponding true (but unknown) population c.d.f., and let CDF be the
known input c.d.f. specified under the null hypothesis. The one-sample
Kolmogorov-Smirnov test tests the null hypothesis that F(x) = CDF for all x
against the alternative specified by one of the following possible values of tail:

tail Alternative Hypothesis Test Statistic

'unequal' F(x) does not equal CDF (two-sided test) max|S(x) - CDF|

'larger' F(x) > CDF (one-sided test) max[S(x) - CDF]

'smaller' F(x) < CDF (one-sided test) max[S(x) - CDF]

kstest

12-274

Examples Example 1. Let’s generate some evenly spaced numbers and perform a
Kolmogorov-Smirnov test to see how well they fit to a standard normal
distribution:

x = -2:1:4
x =
 -2 -1 0 1 2 3 4

[h,p,k,c] = kstest(x,[],0.05,0)

h =
 0
p =
 0.13632
k =
 0.41277
c =
 0.48342

You cannot reject the null hypothesis that the values come from a standard
normal distribution. Although intuitively it seems that these evenly-spaced
integers could not follow a normal distribution, this example illustrates the
difficulty in testing normality in small samples.

To understand the test, it is helpful to generate an empirical cumulative
distribution plot and overlay the theoretical normal distribution.

xx = -3:.1:5;
cdfplot(x)
hold on
plot(xx,normcdf(xx),'r--')

kstest

12-275

The Kolmogorov-Smirnov test statistic is the maximum difference between
these curves. It appears that this maximum of 0.41277 occurs as the data
approaches x = 1.0 from below. You can see that the empirical curve has the
value 3/7 here, and you can easily verify that the difference between the curves
is 0.41277.

normcdf(1) - 3/7
ans =
 0.41277

You can also perform a one-sided test. Setting tail = -1indicates that the
alternative is , so the test statistic counts only points where this
inequality is true.

[h,p,k] = kstest(x, [], .05, -1)

h =
 0

p =
 0.068181

k =

−3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

F G<

kstest

12-276

 0.41277

The test statistic is the same as before because in fact at x = 1.0.
However, the p-value is smaller for the one-sided test. If you carry out the other
one-sided test, you see that the test statistic changes, and is the difference
between the two curves near x = -1.0.

[h,p,k] = kstest(x,[],0.05,1)

h =
 0

p =
 0.77533

k =
 0.12706

2/7 - normcdf(-1)

ans =
 0.12706

Example 2. Now let’s generate random numbers from a Weibull distribution,
and test against that Weibull distribution and an exponential distribution.

x = wblrnd(1, 2, 100, 1);
kstest(x, [x wblcdf(x, 1, 2)])

ans =
 0

kstest(x, [x expcdf(x, 1)])

ans =
 1

See Also kstest2, lillietest

F G<

kstest2

12-277

12kstest2Purpose Kolmogorov-Smirnov test to compare the distribution of two samples

Syntax H = kstest2(X1,X2)
H = kstest2(X1,X2,alpha,tail)
[H,P,KSSTAT] = kstest2(X1,X2,cdf,alpha,tail)

Description H = kstest2(X1,X2) performs a two-sample Kolmogorov-Smirnov test to
compare the distributions of values in the two data vectors X1 and X2 of length
n1 and n2, respectively, representing random samples from some underlying
distribution(s). The null hypothesis for this test is that X1 and X2 are drawn
from the same continuous distribution. The alternative hypothesis is that they
are drawn from different continuous distributions. The result H is 1 if you can
reject the hypothesis that the distributions are the same, or 0 if you cannot
reject that hypothesis. You reject the hypothesis if the test is significant at the
5% level.

For each potential value x, the Kolmogorov-Smirnov test compares the
proportion of X1 values less than x with proportion of X2 values less than x. The
kstest2 function uses the maximum difference over all x values is its test
statistic. Mathematically, this can be written as

where is the proportion of X1 values less than or equal to x and is
the proportion of X2 values less than or equal to x. Missing observations,
indicated by NaNs are ignored.

H = kstest2(X1,X2,alpha) performs the test at the (100*alpha)% significance
level.

The decision to reject the null hypothesis occurs when the significance level,
alpha, equals or exceeds the P-value.

H = kstest2(X1,X2,alpha,tail) accepts a string tail that specifies the type
of test. tail can have one of the following values:

• 'unequal'
• 'larger'
• 'smaller'

max F1 x() F2 x()–()

F1 x() F2 x()

kstest2

12-278

The tests specified by these values are described in “Tests Specified by tail” on
page 12-278

[H,P] = kstest2(...) also returns the asymptotic p-value P. The asymptotic
p-value becomes very accurate for large sample sizes, and is believed to be
reasonably accurate for sample sizes n1 and n2 such that (n1*n2)/(n1 + n2)
>= 4.

[H,P,ksstat] = KSTEST2(...) also returns the Kolmogorov-Smirnov test
statistic KSSTAT defined above for the test type indicated by tail.

Tests Specified by tail
Let S1(x) and S2(x) be the empirical distribution functions from the sample
vectors X1 and X2, respectively, and F1(x) and F2(x) be the corresponding true
(but unknown) population CDFs. The two-sample Kolmogorov-Smirnov test
tests the null hypothesis that F1(x) = F2(x), for all x, against the alternative
hypothesis specified by tail, as described in the following table.

Examples The following commands compare the distributions of a small evenly-spaced
sample and a larger normal sample:

x = -1:1:5
y = randn(20,1);
[h,p,k] = kstest2(x,y)

h =
 1
p =
 0.0403
k =
 0.5714

tail Alternative Hypothesis Test Statistic

'unequal' F1(x) does not equal F2(x) (two-sided
test)

max|S1(x) - S2(x)|

'larger' F1(x) > F2(x) (one-sided test) max[S1(x) - S2(x)]

'smaller' F(x) < F2(x) (one-sided test) max[S2(x) - S1(x)]

kstest2

12-279

The difference between their distributions is significant at the 5% level
(p = 4%). To visualize the difference, you can overlay plots of the two empirical
cumulative distribution functions. The Kolmogorov-Smirnov statistic is the
maximum difference between these functions. After changing the color and line
style of one of the two curves, you can see that the maximum difference appears
to be near x = 1.9. You can also verify that the difference equals the k value
that kstest2 reports:

cdfplot(x)
hold on
cdfplot(y)
h = findobj(gca,'type','line');
set(h(1),'linestyle',':','color','r')

1 - 3/7

ans =
 0.5714

See Also kstest, lillietest

−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

kurtosis

12-280

12kurtosisPurpose Sample kurtosis

Syntax k = kurtosis(X)
k = kurtosis(X,flag)
k = kurtosis(X,flag,dim)

Description k = kurtosis(X) returns the sample kurtosis of X. For vectors, kurtosis(x) is
the kurtosis of the elements in the vector x. For matrices kurtosis(X) returns
the sample kurtosis for each column of X. For N-dimensional arrays, kurtosis
operates along the first non-singleton dimension of X.

k = kurtosis(X,flag) specifies whether to correct for bias (flag = 0) or not
(flag = 1, the default). When X represents a sample from a population, the
kurtosis of X is biased, that is, it will tend to differ from the population kurtosis
by a systematic amount that depends on the size of the sample. You can set
flag = 0 to correct for this systematic bias.

kurtosis(X,flag,dim) takes the kurtosis along dimension dim of X.

kurtosis treats NaNs as missing values and removes them.

Remarks Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the
normal distribution is 3. Distributions that are more outlier-prone than the
normal distribution have kurtosis greater than 3; distributions that are less
outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as

where is the mean of x, is the standard deviation of x, and E(t) represents
the expected value of the quantity t.

Note Some definitions of kurtosis subtract 3 from the computed value, so
that the normal distribution has kurtosis of 0. The kurtosis function does not
use this convention.

k E x µ–()4

σ4
------------------------=

µ σ

kurtosis

12-281

Example X = randn([5 4])

X =
 1.1650 1.6961 -1.4462 -0.3600
 0.6268 0.0591 -0.7012 -0.1356
 0.0751 1.7971 1.2460 -1.3493
 0.3516 0.2641 -0.6390 -1.2704
 -0.6965 0.8717 0.5774 0.9846

k = kurtosis(X)

k =
 2.1658 1.2967 1.6378 1.9589

See Also mean, moment, skewness, std, var

leverage

12-282

12leveragePurpose Leverage values for a regression

Syntax h = leverage(data)
h = leverage(data,'model')

Description h = leverage(data) finds the leverage of each row (point) in the matrix data
for a linear additive regression model.

h = leverage(data,'model') finds the leverage on a regression, using a
specified model type, where 'model' can be one of these strings:

• 'linear' – includes constant and linear terms

• 'interaction' – includes constant, linear, and cross product terms

• 'quadratic' – includes interactions and squared terms

• 'purequadratic' – includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a regression
due to its location in the space of the inputs.

Example One rule of thumb is to compare the leverage to 2p/n where n is the number of
observations and p is the number of parameters in the model. For the Hald
data set this value is 0.7692.

load hald
h = max(leverage(ingredients,'linear'))

h =
 0.7004

Since 0.7004 < 0.7692, there are no high leverage points using this rule.

Algorithm [Q,R] = qr(x2fx(data,'model'));

leverage = (sum(Q'.*Q'))'

Reference [1] Goodall, C. R., “Computation Using the QR Decomposition,” Handbook in
Statistics, Volume 9. Statistical Computing, ed. C. R. Rao.
Elsevier/North-Holland, 1993.

See Also regstats

lhsdesign

12-283

12lhsdesignPurpose Generate a latin hypercube sample

Syntax X = lhsdesign(n,p)
X = lhsdesign(...,'smooth','off')
X = lhsdesign(...,'criterion','c')
X = lhsdesign(...,'iterations',k)

Description X = lhsdesign(n,p) generates a latin hypercube sample X containing n values
on each of p variables. For each column, the n values are randomly distributed
with one from each interval (0,1/n), (1/n,2/n), ..., (1-1/n,1), and they are
randomly permuted.

X = lhsdesign(...,'smooth','off') produces points at the midpoints of the
above intervals: 0.5/n, 1.5/n, ..., 1-0.5/n. The default is 'on'.

X = lhsdesign(...,'criterion','c') iteratively generates latin hypercube
samples to find the best one according to the criterion 'c', which can be:

X = lhsdesign(...,'iterations',k) iterates up to k times in an attempt to
improve the design according to the specified criterion. Default is K = 5.

Latin hypercube designs are useful when you need a sample that is random but
that is guaranteed to be relatively uniformly distributed over each dimension.

See Also lhsnorm, unifrnd

'none' No iteration

'maximin' Maximize minimum distance between points

'correlation' Reduce correlation

lhsnorm

12-284

12lhsnormPurpose Generate a latin hypercube sample with a normal distribution

Syntax X = lhsnorm(mu,SIGMA,n)
X = lhsnorm(mu,SIGMA,n,'onoff')

Description X = lhsnorm(mu,SIGMA,n) generates a latin hypercube sample X of size n from
the multivariate normal distribution with mean vector mu and covariance
matrix SIGMA. X is similar to a random sample from the multivariate normal
distribution, but the marginal distribution of each column is adjusted so that
its sample marginal distribution is close to its theoretical normal distribution.

X = lhsnorm(mu,SIGMA,n,'onoff') controls the amount of smoothing in the
sample. If 'onoff' is 'off', each column has points equally spaced on the
probability scale. In other words, each column is a permutation of the values
G(0.5/n), G(1.5/n), ..., G(1-0.5/n) where G is the inverse normal
cumulative distribution for that column's marginal distribution. If 'onoff' is
'on' (the default), each column has points uniformly distributed on the
probability scale. For example, in place of 0.5/n you use a value having a
uniform distribution on the interval (0/n,1/n).

See Also lhsdesign, mvnrnd

lillietest

12-285

12lillietestPurpose Lilliefors test for goodness of fit to a normal distribution

Syntax H = lillietest(X)
H = lillietest(X,alpha)
[H,P,LSTAT,CV] = lillietest(X,alpha)

Description H = lillietest(X) performs the Lilliefors test on the input data vector X and
returns H, the result of the hypothesis test. The result H is 1 if you can reject the
hypothesis that X has a normal distribution, or 0 if you cannot reject that
hypothesis. you reject the hypothesis if the test is significant at the 5% level.

The Lilliefors test evaluates the hypothesis that X has a normal distribution
with unspecified mean and variance, against the alternative that X does not
have a normal distribution. This test compares the empirical distribution of X
with a normal distribution having the same mean and variance as X. It is
similar to the Kolmogorov-Smirnov test, but it adjusts for the fact that the
parameters of the normal distribution are estimated from X rather than
specified in advance.

H = lillietest(X,alpha) performs the Lilliefors test at the 100*alpha%
level rather than the 5% level. alpha must be between 0.01 and 0.2.

[H,P,LSTAT,CV] = lillietest(X,alpha) returns three additional outputs. P
is the p-value of the test, obtained by linear interpolation in a set of table
created by Lilliefors. LSTAT is the value of the test statistic. CV is the critical
value for determining whether to reject the null hypothesis. If the value of
LSTAT is outside the range of the Lilliefors table, P is returned as NaN but H
indicates whether to reject the hypothesis.

Example Do car weights follow a normal distribution? Not exactly, because weights are
always positive, and a normal distribution allows both positive and negative
values. However, perhaps the normal distribution is a reasonable
approximation.

load carsmall
[h p l c] = lillietest(Weight);
[h p l c]

ans =
 1.0000 0.0232 0.1032 0.0886

lillietest

12-286

The Lilliefors test statistic of 0.10317 is larger than the cutoff value of 0.0886
for a 5% level test, so you reject the hypothesis of normality. In fact, the p-value
of this test is approximately 0.02.

To visualize the distribution, you can make a histogram. This graph shows that
the distribution is skewed to the right – from the peak near 2250, the
frequencies drop off abruptly to the left but more gradually to the right.

hist(Weight)

Sometimes it is possible to transform a variable to make its distribution more
nearly normal. A log transformation, in particular, tends to compensate for
skewness to the right.

[h p l c] = lillietest(log(Weight))

ans =
 0 0.13481 0.077924 0.0886

Now the p-value is approximately 0.13, so you do not reject the hypothesis.

Reference [1] Conover, W. J., Practical Nonparametric Statistics. Wiley, 1980.

See Also hist, jbtest, kstest2

1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

18

linkage

12-287

12linkagePurpose Create hierarchical cluster tree

Syntax Z = linkage(Y)
Z = linkage(Y,'method')

Description Z = linkage(Y) creates a hierarchical cluster tree, using the Single Linkage
algorithm. The input Y is a distance vector of length -by-1,
where m is the number of objects in the original data set. You can generate
such a vector with the pdist function. Y can also be a more general
dissimilarity matrix conforming to the output format of pdist.

Z = linkage(Y,'method') computes a hierarchical cluster tree using the
algorithm specified by 'method', where 'method' can be any of the following
character strings, whose definitions are explained in “Mathematical
Definitions” on page 12-288.

Note When 'method' is 'centroid', 'median', or 'ward', the output of
linkage is meaningful only if the input Y contains Euclidean distances.

The output, Z, is an (m-1)-by-3 matrix containing cluster tree information. The
leaf nodes in the cluster hierarchy are the objects in the original data set,
numbered from 1 to m. They are the singleton clusters from which all higher

'single' Shortest distance (default)

'complete' Furthest distance

'average' Unweighted average distance (UPGMA) (also
known as group average)

'weighted' Weighted average distance (WPGMA)

'centroid' Centroid distance (UPGMC)

'median' Weighted center of mass distance (WPGMC)

'ward' Inner squared distance (minimum variance
algorithm)

m 1–() m 2⁄⋅()

linkage

12-288

clusters are built. Each newly formed cluster, corresponding to row i in Z, is
assigned the index m+i, where m is the total number of initial leaves.

Columns 1 and 2, Z(i,1:2), contain the indices of the objects that were linked
in pairs to form a new cluster. This new cluster is assigned the index value m+i.
There are m-1 higher clusters that correspond to the interior nodes of the
hierarchical cluster tree.

Column 3, Z(i,3), contains the corresponding linkage distances between the
objects paired in the clusters at each row i.

For example, consider a case with 30 initial nodes. If the tenth cluster formed
by the linkage function combines object 5 and object 7 and their distance is
1.5, then row 10 of Z will contain the values (5, 7, 1.5). This newly formed
cluster will have the index 10+30=40. If cluster 40 shows up in a later row, that
means this newly formed cluster is being combined again into some bigger
cluster.

Mathematical Definitions
The 'method' argument is a character string that specifies the algorithm used
to generate the hierarchical cluster tree information. These linkage algorithms
are based on different ways of measuring the distance between two clusters of
objects. If nr is the number of objects in cluster r and ns is the number of objects
in cluster s, and xri is the ith object in cluster r, the definitions of these various
measurements are as follows:

• Single linkage, also called nearest neighbor, uses the smallest distance
between objects in the two clusters.

• Complete linkage, also called furthest neighbor, uses the largest distance
between objects in the two clusters.

• Average linkage uses the average distance between all pairs of objects in
cluster r and cluster s.

d r s,() min dist xri xsj,()() i i … nr, ,()∈ j 1 … ns, ,()∈, ,=

d r s,() max dist xri xsj,()() i 1 … nr, ,()∈ j 1 … ns, ,()∈, ,=

d r s,() 1
nrns
------------ dist xri xsj,()

j 1=

ns

∑
i 1=

nr

∑=

linkage

12-289

• Centroid linkage uses the Euclidean distance between the centroids of the
two clusters,

where

 is defined similarly. The input Y should contain Euclidean distances.

• Median linkage uses the Euclidean distance between weighted centroids of
the two clusters,

where and are weighted centroids for the clusters r and s. If cluster r
was created by combining clusters p and q, is defined recursively as

 is defined similarly. The input Y should contain Euclidean distances.

• Ward’s linkage uses the incremental sum of squares; that is, the increase in
the total within-cluster sum of squares as a result of joining clusters r and s.
The within-cluster sum of squares is defined as the sum of the squares of the
distances between all objects in the cluster and the centroid of the cluster.
The equivalent distance is given by

where is Euclidean distance, and and are the centroids of clusters
r and s, as defined in the Centroid linkage, respectively. The input Y should
contain Euclidean distances.

The centroid and median methods can produce a cluster tree that is not
monotonic. This occurs when the distance from the union of two clusters, r
and s, to a third cluster is less than the distance from either r or s to that

d r s,() xr xs– 2=

xr
1
nr
------ xri

i 1=

nr

∑=

xs

d r s,() x̃r x̃s– 2=

x̃r x̃s
x̃r

x̃r
1
2
--- x̃p x̃q+()=

x̃s

d2 r s,() nrns

xr xs– 2
2

nr ns+()
---------------------------=

2 xr xs

linkage

12-290

third cluster. In this case, sections of the dendrogram change direction. This
is an indication that you should use another method.

Example X = [3 1.7; 1 1; 2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];
Y = pdist(X);
Z = linkage(Y)

Z =
2.0000 5.0000 0.2000
3.0000 4.0000 0.5000
8.0000 6.0000 0.5099
1.0000 7.0000 0.7000
11.0000 9.0000 1.2806
12.0000 10.0000 1.3454

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, kmeans, pdist,
silhouette, squareform

logncdf

12-291

12logncdfPurpose Lognormal cumulative distribution function

Syntax P = logncdf(X,MU,SIGMA)
[P, PLO, PUP] = logncdf(X, MU, SIGMA, PCOV, alpha)

Description P = logncdf(X,MU,SIGMA) computes the lognormal cdf at each of the values in
X using the corresponding means in MU and standard deviations in SIGMA. X, MU,
and SIGMA can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input for X, MU, or SIGMA is expanded to a constant array
with the same dimensions as the other inputs.

[P, PLO, PUP] = logncdf(X, MU, SIGMA, PCOV, alpha) produces confidence
bounds for P when the input parameters MU and SIGMA are estimates. PCOV is
the covariance matrix of the estimated parameters. alpha specifies
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. PLO and
PUP are arrays of the same size as P containing the lower and upper confidence
bounds.

The function logncdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The computed
bounds give approximately the desired confidence level when you estimate MU,
SIGMA, and PCOV from large samples, but in smaller samples other methods of
computing the confidence bounds might be more accurate.

The lognormal cdf is

Example x = (0:0.2:10);
y = logncdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p');

X µ̂–

σ̂

p F x µ σ,() 1
σ 2π
--------------- e

ln t() µ–()– 2

2σ2

t
----------------------------- td0

x

∫= =

logncdf

12-292

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, p. 102-105.

See Also cdf, logninv, lognpdf, lognrnd, lognstat

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

p

lognfit

12-293

12lognfitPurpose Parameter estimates and confidence intervals for lognormal data

Syntax parmhat = lognfit(data)
[parmhat,parmci] = lognfit(data)
[parmhat,parmci] = lognfit(data, alpha)
[...] = lognfit(data, alpha, censoring)
[...] = lognfit(data, alpha, censoring, freq)
[...] = lognfit(data, alpha, censoring, freq, options)

Description parmhat = lognfit(data) returns the estimate of the parameters µ and σ of
the lognormal distribution, given the data in the vector data.

[parmhat, parmci] = lognfit(data) returns 95% confidence intervals for the
parameter estimates on the µ and σ parameters in the 2-by-2 matrix parmci.
The first column of the matrix contains the lower and upper confidence bounds
for parameter µ, and the second column contains the confidence bounds for
parameter σ.

[parmhat, parmci] = lognfit(data, alpha) returns 100(1 - alpha) %
confidence intervals for the parameter estimates, where alpha is a value in the
range (0 1) specifying the width of the confidence intervals. By default, alpha
is 0.05, which corresponds to 95% confidence intervals.

[...] = lognfit(data, alpha, censoring) accepts a Boolean vector
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = lognfit(data, alpha, censoring, freq) accepts a frequency
vector, freq, of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for alpha, censoring, or freq to use their
default values.

[...] = lognfit(data, alpha, censoring, freq, options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates when
there is censoring. You can create options using the function statset. Enter
statset('lognfit') to see the names and default values of the parameters
that lognfit accepts in the options structure. See the reference page for
statset for more information about these options.

lognfit

12-294

Example This example generates 100 independent samples of lognormal data with µ = 0
and σ = 3. parmhat is an estimate of µ and parmci is a 99% confidence interval
around parmhat. Notice that parmci contains the true value of µ.

data = lognrnd(0, 3, 100, 1);
[parmhat,parmci] = lognfit(data, 0.01)

parmhat =

 -0.2480 2.8902

parmci =

 -1.0071 2.4393

 0.5111 3.5262

See Also logncdf, logninv, lognlike, lognpdf, lognrnd, lognstat, mle, statset

logninv

12-295

12logninvPurpose Inverse of the lognormal cumulative distribution function (cdf)

Syntax X = logninv(P, MU,SIGMA)
[X, XLO, XUP] = logninv(P, MU, SIGMA, PCOV, alpha)

Description X = logninv(P,MU,SIGMA) computes the inverse lognormal cdf with
parameters MU and SIGMA, at the corresponding probabilities in P. P, MU, and
SIGMA can be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of X. A scalar input for P, MU, or SIGMA is
expanded to a constant array with the same dimensions as the other inputs.

[X, XLO, XUP] = logninv(P, MU, SIGMA, PCOV, alpha) produces confidence
bounds for X when the input parameters MU and SIGMA are estimates. PCOV is
the covariance matrix of the estimated parameters. alpha specifies
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. XLO and
XUP are arrays of the same size as X containing the lower and upper confidence
bounds.

The function logninv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and
standard deviation 1. The computed bounds give approximately the desired
confidence level when you estimate MU, SIGMA, and PCOV from large samples, but
in smaller samples other methods of computing the confidence bounds might
be more accurate.

The lognormal inverse function is defined in terms of the lognormal cdf as

where

Example p = (0.005:0.01:0.995);

µ̂ σ̂q+

x F 1– p µ σ,() x:F x µ σ,() p={ }= =

p F x µ σ,() 1
σ 2π
--------------- e

ln t() µ–()– 2

2σ2

t
----------------------------- td0

x

∫= =

logninv

12-296

crit = logninv(p,1,0.5);
plot(p,crit)
xlabel('Probability');ylabel('Critical Value'); grid

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
edition, John Wiley and Sons, 1993, pp. 102-105.

See Also icdf, logncdf, lognpdf, lognrnd, lognstat

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Probability

C
rit

ic
al

 V
al

ue

lognlike

12-297

12lognlikePurpose Negative log-likelihood for the lognormal distribution

Syntax nlogL = lognlike(params, data)
[nlogL, AVAR] = lognlike(params, data)
[...] = lognlike(params, data, censoring)
[...] = lognlike(params, data, censoring, freq)

Description nlogL = lognlike(params, data) returns the negative of the log-likelihood
for the lognormal distribution, evaluated at the parameters params(1) = mu
and params(2) = sigma, given data. The values of mu and sigma are scalars,
and the output nlogL is a scalar.

[nlogL, avar] = lognlike(params, data) returns the inverse of Fisher's
information matrix, AVAR. If the input parameter value in params is the
maximum likelihood estimate, avar is its asymptotic variance. AVAR is based on
the observed Fisher's information, not the expected information.

[...] = lognlike(params, data, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = lognlike(params, data, censoring, freq) accepts a frequency
vector, freq, of the same size as data. The vector freq typically contains
integer frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for censoring to use its default value.

See Also logncdf, lognfit, logninv, lognpdf, lognrnd

lognpdf

12-298

12lognpdfPurpose Lognormal probability density function (pdf)

Syntax Y = lognpdf(X,MU,SIGMA)

Description Y = logncdf(X,MU,SIGMA) computes the lognormal cdf at each of the values
in X using the corresponding means in MU and standard deviations in SIGMA. X,
MU, and SIGMA can be vectors, matrices, or multidimensional arrays that all
have the same size, which is also the size of Y. A scalar input for X, MU, or SIGMA
is expanded to a constant array with the same dimensions as the other inputs.

The lognormal pdf is

Example x = (0:0.02:10);
y = lognpdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p')

Reference [1] Mood, A. M., F. A. Graybill, and D. C. Boes, Introduction to the Theory of
Statistics, 3rd edition, McGraw-Hill, 1974, pp. 540-541.

See Also logncdf, logninv, lognrnd, lognstat, pdf

y f x µ σ,() 1
xσ 2π
------------------e

ln x() µ–()– 2

2σ2

= =

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

x

p

lognrnd

12-299

12lognrndPurpose Random matrices from the lognormal distribution

Syntax R = lognrnd(MU,SIGMA)
R = lognrnd(MU,SIGMA,v)
R = lognrnd(MU,SIGMA,m,n)

Description R = lognrnd(MU,SIGMA) generates lognormal random numbers with
parameters MU and SIGMA. MU and SIGMA can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of R. A
scalar input for MU or SIGMA is expanded to a constant array with the same
dimensions as the other input.

R = lognrnd(MU,SIGMA,v) generates lognormal random numbers with
parameters MU and SIGMA, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional
array.

R = lognrnd(MU,SIGMA,m,n) generates lognormal random numbers with
parameters MU and SIGMA, where scalars m and n are the row and column
dimensions of R.

Reproducing the Output of lognrnd
lognrnd uses the MATLAB function randn to generate random numbers. When
you call lognrnd, you change the current state of randn, and thereby alter the
output of subsequent calls to lognrnd or any other functions that depend on
randn. If you want to reproduce the output of lognrnd, reset the state of randn
to the same fixed value each time you call lognrnd. For an example of how to
do this, and a list of the Statistics Toolbox functions that depend on randn, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The result in the following example depends on the current state of
randn. If you run the code in this example, your results might differ from the
answer shown here.

Example r = lognrnd(0,1,4,3)

lognrnd

12-300

r =
 3.2058 0.4983 1.3022
 1.8717 5.4529 2.3909
 1.0780 1.0608 0.2355
 1.4213 6.0320 0.4960

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
edition, John Wiley and Sons, 1993, pp. 102-105.

See Also random, logncdf, logninv, lognpdf, lognstat

lognstat

12-301

12lognstatPurpose Mean and variance for the lognormal distribution

Syntax [M,V] = lognstat(MU,SIGMA)

Description [M,V] = lognstat(MU,SIGMA) returns the mean and variance of the
lognormal distribution with parameters MU and SIGMA. MU and SIGMA can be
vectors, matrices, or multidimensional arrays that all have the same size,
which is also the size of M and V. A scalar input for MU or SIGMA is expanded to
a constant array with the same dimensions as the other input.

The mean of the lognormal distribution with parameters µ and σ is

and the variance is

Example [m,v]= lognstat(0,1)

m =
 1.6487

v =
 4.6708

Reference [1] Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of
Statistics, 3rd edition, McGraw-Hill 1974, pp. 540–541.

See Also logncdf, logninv, lognrnd, lognrnd

e
µ σ2

2
-----+⎝ ⎠

⎛ ⎞

e 2µ 2σ2+() e 2µ σ2+()
–

lsline

12-302

12lslinePurpose Least squares fit line(s)

Syntax lsline
h = lsline

Description lsline superimposes the least squares line on each line object in the current
axes (except LineStyles '-','--','.-').

h = lsline returns the handles to the line objects.

Example y = [2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
plot(y,'+');
lsline;

See Also polyfit, polyval

0 2 4 6 8 10
0

5

10

15

20

mad

12-303

12madPurpose Mean or median absolute deviation (MAD) of a sample of data

Syntax y = mad(X)
y = mad(X,dim)
y = mad(X,flag,dim)

Description y = mad(X) returns the mean absolute deviation of the values in X. For vector
input, y is mean(abs(X - mean(X)). For a matrix input, y is a row vector
containing the mean absolute deviation of each column of X. For N-dimensional
arrays, mad operates along the first nonsingleton dimension of X.

Y = mad(X,1) computes Y based on medians, that is,
median(abs(X-median(X)).

Y = mad(X,0) is the same as mad(X), and uses means.

mad(X,flag,dim) takes the MAD along dimension dim of X.

mad treats NaNs as missing values and removes them.

Remarks The MAD is less efficient than the standard deviation as an estimate of the
spread when all the data is from the normal distribution.

For normal data, multiply the MAD by 1.3 as a robust estimate of σ (the scale
parameter of the normal distribution).

Note The default version of MAD, based on means, is also commonly referred
to as the average absolute deviation (AAD).

Examples This example shows a Monte Carlo simulation of the relative efficiency of the
MAD to the sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_MAD = 1.3 ∗ mad(x);
efficiency = (norm(s - 1)./norm(s_MAD - 1)).^2

efficiency =

mad

12-304

 0.5972

Reference [1] Sachs, L., Applied Statistics: A Handbook of Techniques, Springer-Verlag,
1984, p. 253.

See Also std, range, iqr

mahal

12-305

12mahalPurpose Mahalanobis distance

Syntax d = mahal(Y,X)

Description mahal(Y,X) computes the Mahalanobis distance (in squared units) of each
point (row) of the matrix Y from the sample in the matrix X.

The number of columns of Y must equal the number of columns in X, but the
number of rows may differ. The number of rows in X must exceed the number
of columns.

The Mahalanobis distance is a multivariate measure of the separation of a data
set from a point in space. It is the criterion minimized in linear discriminant
analysis.

Example The Mahalanobis distance of a matrix r when applied to itself is a way to find
outliers.

r = mvnrnd([0 0],[1 0.9;0.9 1],100);
r = [r;10 10];
d = mahal(r,r);
last6 = d(96:101)

last6 =

 1.1036
 2.2353
 2.0219
 0.3876
 1.5571
 52.7381

The last element is clearly an outlier.

See Also classify

manova1

12-306

12manova1Purpose One-way Multivariate Analysis of Variance (MANOVA)

Syntax d = manova1(X,group)
d = manova1(X,group,alpha)
[d,p] = manova1(...)
[d,p,stats] = manova1(...)

Description d = manova1(X,group) performs a one-way Multivariate Analysis of Variance
(MANOVA) for comparing the multivariate means of the columns of X, grouped
by group. X is an m-by-n matrix of data values, and each row is a vector of
measurements on n variables for a single observation. group is a grouping
variable defined as a vector, string array, or cell array of strings. Two
observations are in the same group if they have the same value in the group
array. The observations in each group represent a sample from a population.

The function returns d, an estimate of the dimension of the space containing
the group means. manova1 tests the null hypothesis that the means of each
group are the same n-dimensional multivariate vector, and that any difference
observed in the sample X is due to random chance. If d = 0, there is no evidence
to reject that hypothesis. If d = 1, then you can reject the null hypothesis at the
5% level, but you cannot reject the hypothesis that the multivariate means lie
on the same line. Similarly, if d = 2 the multivariate means may lie on the same
plane in n-dimensional space, but not on the same line.

d = manova1(X,group,alpha) gives control of the significance level, alpha.
The return value d will be the smallest dimension having p > alpha, where p is
a p-value for testing whether the means lie in a space of that dimension.

[d,p] = manova1(...) also returns a p, a vector of p-values for testing
whether the means lie in a space of dimension 0, 1, and so on. The largest
possible dimension is either the dimension of the space, or one less than the
number of groups. There is one element of p for each dimension up to, but not
including, the largest.

If the ith p-value is near zero, this casts doubt on the hypothesis that the group
means lie on a space of i-1 dimensions. The choice of a critical p-value to
determine whether the result is judged “statistically significant” is left to the
researcher and is specified by the value of the input argument alpha. It is
common to declare a result significant if the p-value is less than 0.05 or 0.01.

manova1

12-307

[d,p,stats] = manova1(...) also returns stats, a structure containing
additional MANOVA results. The structure contains the following fields.

The canonical variables C are linear combinations of the original variables,
chosen to maximize the separation between groups. Specifically, C(:,1) is the
linear combination of the X columns that has the maximum separation between
groups. This means that among all possible linear combinations, it is the one
with the most significant F statistic in a one-way analysis of variance.

Field Contents

W Within-groups sum of squares and cross-products matrix

B Between-groups sum of squares and cross-products matrix

T Total sum of squares and cross-products matrix

dfW Degrees of freedom for W

dfB Degrees of freedom for B

dfT Degrees of freedom for T

lambda Vector of values of Wilk’s lambda test statistic for testing
whether the means have dimension 0, 1, etc.

chisq Transformation of lambda to an approximate chi-square
distribution

chisqdf Degrees of freedom for chisq

eigenval Eigenvalues of

eigenvec Eigenvectors of ; these are the coefficients for the
canonical variables C, and they are scaled so the within-group
variance of the canonical variables is 1

canon Canonical variables C, equal to XC*eigenvec, where XC is X with
columns centered by subtracting their means

mdist A vector of Mahalanobis distances from each point to the mean
of its group

gmdist A matrix of Mahalanobis distances between each pair of group
means

W 1– B

W 1– B

manova1

12-308

C(:,2) has the maximum separation subject to it being orthogonal to C(:,1),
and so on.

You may find it useful to use the outputs from manova1 along with other
functions to supplement your analysis. For example, you may want to start
with a grouped scatter plot matrix of the original variables using gplotmatrix.
You can use gscatter to visualize the group separation using the first two
canonical variables. You can use manovacluster to graph a dendrogram
showing the clusters among the group means.

Assumptions
The MANOVA test makes the following assumptions about the data in X:

• The populations for each group are normally distributed.

• The variance-covariance matrix is the same for each population.

• All observations are mutually independent.

Example you can use manova1 to determine whether there are differences in the
averages of four car characteristics, among groups defined by the country
where the cars were made.

load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],Origin)

d =
 3

p =
 0
 0.0000
 0.0075
 0.1934

There are four dimensions in the input matrix, so the group means must lie in
a four-dimensional space. manova1 shows that you cannot reject the hypothesis
that the means lie in a three-dimensional subspace.

References [1] Krzanowski, W. J., Principles of Multivariate Analysis. Oxford University
Press, 1988.

manova1

12-309

See Also anova1, canoncorr, gscatter, gplotmatrix, manovacluster

manovacluster

12-310

12manovaclusterPurpose Plot dendrogram showing group mean clusters after MANOVA

Syntax manovacluster(stats)
manovacluster(stats,'method')
H = manovacluster(stats)

Description manovacluster(stats) generates a dendrogram plot of the group means after
a multivariate analysis of variance (MANOVA). stats is the output stats
structure from manova1. The clusters are computed by applying the single
linkage method to the matrix of Mahalanobis distances between group means.

See dendrogram for more information on the graphical output from this
function. The dendrogram is most useful when the number of groups is large.

manovacluster(stats,'method') uses the specified method in place of single
linkage. 'method' can be any of the following character strings that identify
ways to create the cluster hierarchy. See linkage for further explanation.

H = manovacluster(stats,'method') returns a vector of handles to the lines
in the figure.

Example Let’s analyze the larger car data set to determine which countries produce cars
with the most similar characteristics.

load carbig
X = [MPG Acceleration Weight Displacement];
[d,p,stats] = manova1(X,Origin);
manovacluster(stats)

'single' Shortest distance (default)

'complete' Largest distance

'average' Average distance

'centroid' Centroid distance

'ward' Incremental sum of squares

manovacluster

12-311

See Also cluster, dendrogram, linkage, manova1

Japan Germany Italy France Sweden England USA
0

0.5

1

1.5

2

2.5

3

mdscale

12-312

12mdscalePurpose Nonmetric and metric multidimensional scaling

Syntax Y = mdscale(D, p)
[Y, stress] = mdscale(D, p)
[...] = mdscale(..., 'param1', val1, 'param2', val2, ...)

Description Y = mdscale(D, p) performs non-metric multidimensional scaling on the
n-by-n dissimilarity matrix D, and returns Y, a configuration of n points (rows)
in p dimensions (columns). The Euclidean distances between points in Y
approximate a monotonic transformation of the corresponding dissimilarities
in D. By default, mdscale uses Kruskal's normalized stress1 criterion.

You can specify D as either a full n-by-n matrix, or in upper triangle form such
as is output by pdist. A full dissimilarity matrix must be real and symmetric,
and have zeros along the diagonal and non-negative elements everywhere else.
A dissimilarity matrix in upper triangle form must have real, non-negative
entries. mdscale treats NaNs in D as missing values, and ignores those elements.
Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the diagonal
and all other elements less than one. mdscale transforms a similarity matrix
to a dissimilarity matrix in such a way that distances between the points
returned in Y approximate sqrt(1-D). To use a different transformation,
transform the similarities prior to calling mdscale.

[Y, stress] = mdscale(D, p) returns the minimized stress, i.e., the stress
evaluated at Y.

[Y, stress, disparities] = mdscale(D, p) returns the disparities, that is,
the monotonic transformation of the dissimilarities D.

[...] = mdscale(..., 'param1', val1, 'param2', val2, ...) enables you
to specify optional parameter name/value pairs that control further details of
mdscale. The parameters are

• 'Criterion'— The goodness-of-fit criterion to minimize. This also
determines the type of scaling, either non-metric or metric, that mdscale
performs. Choices for non-metric scaling are:

- 'stress' — Stress normalized by the sum of squares of the interpoint
distances, also known as stress1. This is the default.

mdscale

12-313

- 'sstress' — Squared stress, normalized with the sum of 4th powers of the
interpoint distances.

Choices for metric scaling are:

- 'metricstress' — Stress, normalized with the sum of squares of the
dissimilarities.

- 'metricsstress' — Squared stress, normalized with the sum of
4th powers of the dissimilarities.

- 'sammon'— Sammon's nonlinear mapping criterion. Off-diagonal
dissimilarities must be strictly positive with this criterion.

- 'strain' — A criterion equivalent to that used in classical
multidimensional scaling.

• 'Weights' — A matrix or vector the same size as D, containing nonnegative
dissimilarity weights. You can use these to weight the contribution of the
corresponding elements of D in computing and minimizing stress. Elements
of D corresponding to zero weights are effectively ignored.

• 'Start' — Method used to choose the initial configuration of points for Y. The
choices are

- 'cmdscale' — Use the classical multidimensional scaling solution. This is
the default. 'cmdscale' is not valid when there are zero weights.

- 'random' — Choose locations randomly from an appropriately scaled
p-dimensional normal distribution with uncorrelated coordinates.

- An n-by-p matrix of initial locations, where n is the size of the matrix D and
p is the number of columns of the output matrix Y. In this case, you can
pass in [] for p and mdscale infers p from the second dimension of the
matrix. You can also supply a three-dimensional array, implying a value
for 'Replicates' from the array's third dimension.

• 'Replicates' — Number of times to repeat the scaling, each with a new

 initial configuration. The default is 1.

• 'Options' — Options for the iterative algorithm used to minimize the fitting
criterion. Pass in an options structure created by statset. For example,
opts = statset('param1', val1, 'param2', val2, ...);

mdscale

12-314

[...] = mdscale(..., 'Options', opts)

The choices of statset parameters are

- 'Display'— Level of display output. The choices are 'off' (the
default), 'iter', and 'final'.

- 'MaxIter' — Maximum number of iterations allowed. The default is 200.

- 'TolFun' — Termination tolerance for the stress criterion and its
gradient. The default is 1e-4.

- 'TolX'— Termination tolerance for the configuration location step size.
The default is 1e-4.

Example % Generate some 4D data, and create a dissimilarity matrix.
load cereal.mat
X = [Calories Protein Fat Sodium Fiber Carbo Sugars Shelf ...
Potass Vitamins];
X = X(strmatch('K',Mfg),:); % take a subset from a single
% manufacturer
dissimilarities = pdist(X);

% Use non-metric scaling to recreate the data in 2D, and make a
% Shepard plot of the results.
[Y,stress,disparities] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord),disparities(ord),'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'}, 'Location','NorthWest');

% Do metric scaling on the same dissimilarities.
[Y,stress] = ...
mdscale(dissimilarities,2,'criterion','metricsstress');
distances = pdist(Y);
plot(dissimilarities,distances,'bo', ...
[0 max(dissimilarities)],[0 max(dissimilarities)],'k:');
xlabel('Dissimilarities'); ylabel('Distances')

See Also cmdscale, pdist, statset

mean

12-315

12meanPurpose Average or mean value of vectors and matrices

Syntax m = mean(X)
m = mean(X,dim)

Description m = mean(X) calculates the sample average

For vectors, mean(x) is the mean value of the elements in vector x. For
matrices, mean(X) is a row vector containing the mean value of each column.

m = mean(X,dim) returns the mean values for elements along the dimension of
X specified by scalar dim. For matrices, mean(X,2) is a column vector containing
the mean value of each row. The default of dim is 1.

The mean function is part of the standard MATLAB language.

Example These commands generate five samples of 100 normal random numbers with
mean, zero, and standard deviation, one. The sample averages in xbar are
much less variable (0.00 ± 0.10).

x = normrnd(0,1,100,5);
xbar = mean(x)

xbar =

 0.0727 0.0264 0.0351 0.0424 0.0752

See Also median, std, cov, corrcoef, var

xj
1
n
--- xij

i 1=

n

∑=

median

12-316

12medianPurpose Median value of vectors and matrices

Syntax m = median(X)

Description m = median(X) calculates the median value, which is the 50th percentile of a
sample. The median is a robust estimate of the center of a sample of data, since
outliers have little effect on it.

For vectors, median(x) is the median value of the elements in vector x. For
matrices, median(X) is a row vector containing the median value of each
column. Since median is implemented using sort, it can be costly for large
matrices.

The median function is part of the standard MATLAB language.

Examples xodd = 1:5;
modd = median(xodd)
modd =
 3

xeven = 1:4;
meven = median(xeven)
meven =
 2.5000

This example shows robustness of the median to outliers.

xoutlier = [(1:4) 10000];
moutlier = median(xoutlier)
moutlier =
 3

See Also mean, std, cov, corrcoef

mle

12-317

12mlePurpose Maximum likelihood estimation

Syntax phat = mle(data)
[phat, pci] = mle(data)
[...] = mle(data,'distribution', dist)
[...] = mle(data, ..., 'name1', value1, 'name2', value2,...)
[...] = mle(data, 'pdf', pdf, 'cdf', cdf, 'start', start,...)
[...] = mle(data, 'logpdf' logpdf, 'logsf', logsf, ...

'start', start,...)
[...] = mle(data, 'nloglf', nloglf, 'start', start,...)

Description phat = mle(data) returns maximum likelihood estimates (MLEs) for the
parameters of a normal distribution, computed using the sample data in the
vector data.

[phat, pci] = mle(data) returns MLEs and 95% confidence intervals for the
parameters.

[...] = mle(data,'distribution', dist) computes parameter estimates for
the distribution specified by dist. dist is a character string containing the
name of one of the distributions supported by mle.

[...] = mle(data, ..., 'name1', value1, 'name2', value2,...) specifies
optional argument name/value pairs chosen from the following list, in which
argument names are case insensitive and partial matches are allowed.

Name Value

'censoring' A boolean vector of the same size as data, containing ones
when the corresponding elements of data are
right-censored observations and zeros when the
corresponding elements are exact observations. The
default is that all observations are observed exactly.
Censoring is not supported for all distributions.

'frequency' A vector of the same size as data, containing non-negative
integer frequencies for the corresponding elements in
data. The default is one observation per element of data.

mle

12-318

The following table lists the distributions that you can use for the input
argument 'distribution'. Arguments are not case sensitive and partial
matches are accepted.

'alpha' A value between 0 and 1 specifying a confidence level of
100(1-alpha)% for pci. The default is 0.05 for 95%
confidence.

'ntrials' A scalar, or a vector of the same size as data, containing
the total number of trials for the corresponding element of
data. Applies only to the binomial distribution.

'options' A structure created by a call to statset, containing
numerical options for the fitting algorithm. Not applicable
to all distributions.

Distribution Value of 'dist'

Beta 'Beta'

Bernoulli 'Bernoulli'

Binomial 'binomial'

Discrete uniform 'Discrete uniform'

Exponential 'Exponential'

Extreme value 'Extreme Value'

Gamma 'Gamma'

Geometric 'Geometric'

Log normal 'lognormal'

Negative binomial 'negative binomial'

Normal 'Normal'

Poisson 'Poisson'

Name Value

mle

12-319

mle can also fit a custom distribution that you define using distribution
functions, in one of three ways.

[...] = mle(data, 'pdf', pdf, 'cdf', cdf, 'start', start,...) returns
MLEs for the parameters of the distribution defined by the probability density
and cumulative distribution functions pdf and cdf. pdf and cdf are function
handles created using the @ sign. They accept as inputs a vector data and one
or more individual distribution parameters, and return vectors of probability
density values and cumulative probability values, respectively. If the
'censoring' name/value pair is not present, you can omit the 'cdf'
name/value pair. mle computes the estimates by numerically maximizing the
distribution's log-likelihood, and start is a vector containing initial values for
the parameters.

[...] = mle(data, 'logpdf' logpdf, 'logsf', logsf, 'start',
start,...) returns MLEs for the parameters of the distribution defined by the
log probability density and log survival functions logpdf and logsf. logpdf
and logsf are function handles created using the @ sign. They accept as inputs
a vector data and one or more individual distribution parameters, and return
vectors of logged probability density values and logged survival function
values, respectively. This form is sometimes more robust to the choice of
starting point than using pdf and cdf functions. If the 'censoring'
name/value pair is not present, you can omit the 'logsf' name/value pair.
start is a vector containing initial values for the distribution's parameters.

[...] = mle(data, 'nloglf', nloglf, 'start', start,...) returns MLEs
for the parameters of the distribution whose negative log-likelihood is given by
nloglf. nloglf is a function handle, specified using the @ sign, that accepts the
four input arguments:

• params - a vector of distribution parameter values

• data - a vector of data

Rayleigh 'Rayleigh'

Uniform 'Uniform'

Weibull 'Weibull'

Distribution Value of 'dist'

mle

12-320

• cens - a boolean vector of censoring values

• freq - a vector of integer data frequencies

nloglf must accept all four arguments even if you do not supply the
'censoring' or 'frequency' name/value pairs (see above). However, nloglf
can safely ignore its cens and freq arguments in that case. nloglf returns a
scalar negative log-likelihood value and, optionally, a negative log-likelihood
gradient vector (see the 'GradObj' statset parameter below). start is a vector
containing initial values for the distribution's parameters.

pdf, cdf, logpdf, logsf, or nloglf can also be cell arrays whose first element
is a function handle as defined above, and whose remaining elements are
additional arguments to the function. mle places these arguments at the end of
the argument list in the function call.

The following optional argument name/value pairs are valid only when 'pdf'
and 'cdf', 'logpdf' and 'logcdf', or 'nloglf' are given:

• 'lowerbound' — A vector the same size as start containing lower bounds for
the distribution parameters. The default is -Inf.

• 'upperbound' — A vector the same size as start containing upper bounds
for the distribution parameters. The default is Inf.

• 'optimfun' — A string, either 'fminsearch' or 'fmincon', naming the
optimization function to be used in maximizing the likelihood. The default is
'fminsearch'. You can only specify 'fmincon' if the Optimization Toolbox
is available.

When fitting a custom distribution, use the 'options' parameter to control
details of the maximum likelihood optimization. See statset('mlecustom')

mle

12-321

for parameter names and default values. mle interprets the following statset
parameters for custom distribution fitting as follows:

Example rv = binornd(20,0.75)
rv =
 16
[p,pci] = mle('binomial',rv,0.05,20)
p =
 0.8000
pci =
 0.5634

Parameter Value

'GradObj' 'on' or 'off', indicating whether or not fmincon can
expect the function provided with the 'nloglf'
name/value pair to return the gradient vector of the
negative log-likelihood as a second output. The default is
'off'. Ignored when using fminsearch.

'DerivStep' The relative difference used in finite difference derivative
approximations when using fmincon, and 'GradObj' is
'off'. 'DerivStep' can be a scalar, or the same size as
'start'. The default is eps^(1/3). Ignored when using
fminsearch.

'FunValCheck' 'on' or 'off', indicating whether or not mle should check
the values returned by the custom distribution functions
for validity. The default is 'on'. A poor choice of starting
point can sometimes cause these functions to return NaNs,
infinite values, or out of range values if they are written
without suitable error-checking.

'TolBnd' An offset for upper and lower bounds when using
fmincon. mle treats upper and lower bounds as strict
inequalities (i.e., open bounds). With fmincon, this is
approximated by creating closed bounds inset from the
specified upper and lower bounds by TolBnd. The default
is 1e-6.

mle

12-322

 0.9427

See Also betafit, binofit, evfit, expfit, gamfit, lognfit, nbinfit, normfit, mlecov,
poissfit, raylfit, statset, unifit, wblfit

mlecov

12-323

12mlecovPurpose Asymptotic covariance matrix of maximum likelihood estimators

Syntax ACOV = mlecov(params, data, ...)
ACOV = mlecov(params, DATA, 'pdf',PDF, 'cdf', CDF)
ACOV = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf)
ACOV = mlecov(params, data, 'nloglf', nloglf)
[...] = mlecov(params, data, ..., 'parm1', val1, 'parm2', val2, ...)

Description ACOV = mlecov(params, data, ...) returns an approximation to the
asymptotic covariance matrix of the maximum likelihood estimators of the
parameters for a specified distribution. The following paragraphs describe how
to specify the distribution. mlecov computes a finite difference approximation
to the hessian of the log-likelihood at the maximum likelihood estimates
params, given the observed data, and returns the negative inverse of that
hessian. ACOV is a p-by-p matrix, where p is the number of elements in params.

You must specify a distribution after the input argument data, as follows.

ACOV = mlecov(params, data, 'pdf', pdf, 'cdf', cdf) enables you to
define a distribution by its probability density and cumulative distribution
functions, pdf and cdf, respectively. pdf and cdf are function handles that you
create using the @ sign. They accept a vector of data and one or more individual
distribution parameters as inputs and return vectors of probability density
function values and cumulative distribution values, respectively. If the
'censoring' name/value pair (see below) is not present, you can omit the
'cdf' name/value pair.

ACOV = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf) enables
you to define a distribution by its log probability density and log survival
functions, logpdf and logsf, respectively. logpdf and logsf are function
handles that you create using the @ sign. They accept as inputs a vector of data
and one or more individual distribution parameters, and return vectors of
logged probability density values and logged survival function values,
respectively. If the 'censoring' name/value pair (see below) is not present, you
can omit the 'logsf' name/value pair.

ACOV = mlecov(params, data, 'nloglf', nloglf) enables you to define a
distribution by its log-likelihood function. nloglf is a function handle, specified
using the @ sign, that accepts the following four input arguments:

mlecov

12-324

• params — Vector of distribution parameter values

• data — Vector of data

• cens — Boolean vector of censoring values

• freq — Vector of integer data frequencies

nloglf must accept all four arguments even if you do not supply the
'censoring' or 'frequency' name/value pairs (see below). However, nloglf
can safely ignore its cens and freq arguments in that case. nloglf returns a
scalar negative log-likelihood value and, optionally, the negative log-likelihood
gradient vector (see the 'gradient' name/value pair below).

pdf, cdf, logpdf, logsf, and nloglf can also be cell arrays whose first element
is a function handle, as defined above, and whose remaining elements are
additional arguments to the function. mle places these arguments at the end of
the argument list, in the function call. [...] = mlecov(params, data, ...,
'parm1', val1, 'parm2', val2, ...) specifies optional argument
name/value pairs chosen from the following:

Name Value

'censoring' Boolean vector of the same size as data, containing 1’s when
the corresponding elements of data are right-censored
observations and 0’s when the corresponding elements are
exact observations. The default is that all observations are
observed exactly. Censoring is not supported for all
distributions.

mlecov

12-325

Example % Fit a beta distribution to some simulated data, and compute the
% approximate covariance matrix of the parameter estimates.
x = betarnd(1.23, 3.45, 25, 1);
phat = mle(x, 'dist','beta')
acov = mlecov(phat, x, 'logpdf',@betalogpdf)

function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)*log(x) + (b-1)*log(1-x) - betaln(a,b);

See Also mle

'frequency' A vector of the same size as data containing nonnegative
frequencies for the corresponding elements in data. The
default is one observation per element of data.

'options' A structure opts containing numerical options for the finite
difference Hessian calculation. You create opts by calling
statset. The applicable statset parameters are:

• 'GradObj'— 'on' or 'off', indicating whether or not the
function provided with the 'nloglf' name/value pair can
return the gradient vector of the negative log-likelihood as
its second output. The default is 'off'.

• 'DerivStep' — Relative step size used in finite difference
for Hessian calculations. Can be a scalar, or the same size
as params. The default is eps^(1/4). A smaller value might
be appropriate if 'GradObj' is 'on'.

Name Value

moment

12-326

12momentPurpose Central moment of all orders

Syntax m = moment(X,order)
m = moment(X,order,dim)

Description m = moment(X,order) returns the central sample moment of X specified by the
positive integer order. For vectors, moment(x,order) returns the central
moment of the specified order for the elements of x. For matrices,
moment(X,order) returns central moment of the specified order for each
column. For N-dimensional arrays, moment operates along the first
nonsingleton dimension of X.

moment(X,order,dim) takes the moment along dimension dim of X.

Remarks Note that the central first moment is zero, and the second central moment is
the variance computed using a divisor of n rather than n-1, where n is the
length of the vector x or the number of rows in the matrix X.

The central moment of order k of a distribution is defined as

where E(x) is the expected value of x.

Example X = randn([6 5])

X =
 1.1650 0.0591 1.2460 -1.2704 -0.0562
 0.6268 1.7971 -0.6390 0.9846 0.5135
 0.0751 0.2641 0.5774 -0.0449 0.3967
 0.3516 0.8717 -0.3600 -0.7989 0.7562
 -0.6965 -1.4462 -0.1356 -0.7652 0.4005
 1.6961 -0.7012 -1.3493 0.8617 -1.3414

m = moment(X,3)

m =
 -0.0282 0.0571 0.1253 0.1460 -0.4486

See Also kurtosis, mean, skewness, std, var

mn E x µ–()k
=

multcompare

12-327

12multcomparePurpose Multiple comparison test of means or other estimates

Syntax c = multcompare(stats)
c = multcompare(stats, param1, val1, param2, val2,...)
[c,m] = multcompare(...)
[c,m,h] = multcompare(...)
[c,m,h,gnames] = multcompare(...)

Description c = multcompare(stats) performs a multiple comparison test using the
information in the stats structure, and returns a matrix c of pairwise
comparison results. It also displays an interactive graph of the estimates with
comparison intervals around them. See “Examples” on page 12-332.

In a one-way analysis of variance, you compare the means of several groups to
test the hypothesis that they are all the same, against the general alternative
that they are not all the same. Sometimes this alternative may be too general.
You may need information about which pairs of means are significantly
different, and which are not. A test that can provide such information is called
a “multiple comparison procedure.”

When you perform a simple t-test of one group mean against another, you
specify a significance level that determines the cutoff value of the t statistic.
For example, you can specify the value alpha = 0.05 to insure that when there
is no real difference, you will incorrectly find a significant difference no more
than 5% of the time. When there are many group means, there are also many
pairs to compare. If you applied an ordinary t-test in this situation, the alpha
value would apply to each comparison, so the chance of incorrectly finding a
significant difference would increase with the number of comparisons. Multiple
comparison procedures are designed to provide an upper bound on the
probability that any comparison will be incorrectly found significant.

The output c contains the results of the test in the form of a five-column matrix.
Each row of the matrix represents one test, and there is one row for each pair
of groups. The entries in the row indicate the means being compared, the
estimated difference in means, and a confidence interval for the difference.

For example, suppose one row contains the following entries.

2.0000 5.0000 1.9442 8.2206 14.4971

multcompare

12-328

These numbers indicate that the mean of group 2 minus the mean of group 5 is
estimated to be 8.2206, and a 95% confidence interval for the true mean is
[1.9442, 14.4971].

In this example the confidence interval does not contain 0.0, so the difference
is significant at the 0.05 level. If the confidence interval did contain 0.0, the
difference would not be significant at the 0.05 level.

The multcompare function also displays a graph with each group mean
represented by a symbol and an interval around the symbol. Two means are
significantly different if their intervals are disjoint, and are not significantly
different if their intervals overlap. You can use the mouse to select any group,
and the graph will highlight any other groups that are significantly different
from it.

c = multcompare(stats, param1, val1, param2, val2,...) specifies one or
more of the parameter name/value pairs described in the following table.

Parameter Name Parameter Values

'alpha' Scalar between 0 and 1 that determines the
confidence levels of the intervals in the matrix c and
in the figure (default is 0.05). The confidence level is
100(1-alpha)%.

'displayopt' Either 'on' (the default) to display a graph of the
estimates with comparison intervals around them, or
'off' to omit the graph. See “Examples” on
page 12-332.

'ctype' Specifies the type of critical value to use for the
multiple comparison. “Values of ctype” on
page 12-330 describes the allowed values for
'ctype'.

multcompare

12-329

[c,m] = multcompare(...) returns an additional matrix m. The first column
of m contains the estimated values of the means (or whatever statistics are
being compared) for each group, and the second column contains their standard
errors.

[c,m,h] = multcompare(...) returns a handle h to the comparison graph.
Note that the title of this graph contains instructions for interacting with the
graph, and the x-axis label contains information about which means are
significantly different from the selected mean. If you plan to use this graph for
presentation, you may want to omit the title and the x-axis label. You can
remove them using interactive features of the graph window, or you can use the
following commands.

title('')
xlabel('')

[c,m,h,gnames] = multcompare(...) returns gnames, a cell array with one
row for each group, containing the names of the groups.

'dimension' A vector specifying the dimension or dimensions over
which the population marginal means are to be
calculated. Use only if you create stats with the
function anovan. The default is 1 to compute over the
first dimension. See “dimension Parameter” on
page 12-331 for more information.

'estimate' Specifies the estimate to be compared. The allowable
values of estimate depend on the function that was
the source of the stats structure, as described in
“Values of estimate” on page 12-331

Parameter Name Parameter Values

multcompare

12-330

Values of ctype
The following table describes the allowed values for the parameter 'ctype'.

Values 'ctype' Meaning

'hsd' or
'tukey-kramer'

Use Tukey's honestly significant difference criterion.
This is the default, and it is based on the Studentized
range distribution. It is optimal for balanced one-way
ANOVA and similar procedures with equal sample
sizes. It has been proven to be conservative for one-way
ANOVA with different sample sizes. According to the
unproven Tukey-Kramer conjecture, it is also accurate
for problems where the quantities being compared are
correlated, as in analysis of covariance with
unbalanced covariate values.

'lsd' Use Tukey's least significant difference procedure. This
procedure is a simple t-test. It is reasonable if the
preliminary test (say, the one-way ANOVA F statistic)
shows a significant difference. If it is used
unconditionally, it provides no protection against
multiple comparisons.

'bonferroni' Use critical values from the t distribution, after a
Bonferroni adjustment to compensate for multiple
comparisons. This procedure is conservative, but
usually less so than the Scheffé procedure.

'dunn-sidak' Use critical values from the t distribution, after an
adjustment for multiple comparisons that was
proposed by Dunn and proved accurate by Šidák. This
procedure is similar to, but less conservative than, the
Bonferroni procedure.

 'scheffe' Use critical values from Scheffé’s S procedure, derived
from the F distribution. This procedure provides a
simultaneous confidence level for comparisons of all
linear combinations of the means, and it is conservative
for comparisons of simple differences of pairs.

multcompare

12-331

Values of estimate
The allowable values of the parameter 'estimate' depend on the function that
was the source of the stats structure, according to the following table.

dimension Parameter
The dimension parameter is a vector specifying the dimension or dimensions
over which the population marginal means are to be calculated.For example, if
dim = 1, the estimates that are compared are the means for each value of the
first grouping variable, adjusted by removing effects of the other grouping
variables as if the design were balanced. If dim = [1 3], population marginal
means are computed for each combination of the first and third grouping
variables, removing effects of the second grouping variable. If you fit a singular
model, some cell means may not be estimable and any population marginal
means that depend on those cell means will have the value NaN.

Population marginal means are described by Milliken and Johnson (1992) and
by Searle, Speed, and Milliken (1980). The idea behind population marginal
means is to remove any effect of an unbalanced design by fixing the values of
the factors specified by dim, and averaging out the effects of other factors as if

Source Allowable Values of 'estimate'

'anova1' Ignored. Always compare the group means.

'anova2' Either 'column' (the default) or 'row' to compare
column or row means.

'anovan' Ignored. Always compare the population marginal
means as specified by the dim argument.

'aoctool' Either 'slope', 'intercept', or 'pmm' to compare
slopes, intercepts, or population marginal means. If
the analysis of covariance model did not include
separate slopes, then 'slope' is not allowed. If it did
not include separate intercepts, then no comparisons
are possible.

'friedman' Ignored. Always compare average column ranks.

'kruskalwallis' Ignored. Always compare average group ranks.

multcompare

12-332

each factor combination occurred the same number of times. The definition of
population marginal means does not depend on the number of observations at
each factor combination. For designed experiments where the number of
observations at each factor combination has no meaning, population marginal
means can be easier to interpret than simple means ignoring other factors. For
surveys and other studies where the number of observations at each
combination does have meaning, population marginal means may be harder to
interpret.

Examples Example 1
The following example performs a 1-way analysis of variance (ANOVA) and
displays group means with their names.

load carsmall
 [p,t,st] = anova1(MPG,Origin,'off');
 [c,m,h,nms] = multcompare(st,'display','off');
 [nms num2cell(m)]

ans =

 'USA' [21.1328] [0.8814]
 'Japan' [31.8000] [1.8206]
 'Germany' [28.4444] [2.3504]
 'France' [23.6667] [4.0711]
 'Sweden' [22.5000] [4.9860]
 'Italy' [28] [7.0513]

multcompare also displays the following graph of the estimates with
comparison intervals around them.

multcompare

12-333

You can click the graphs of each country to compare its mean to those of other
countries.

Example 2
The following continues the example described in the anova1 reference page,
which is related to testing the material strength in structural beams. From the
anova1 output you found significant evidence that the three types of beams are
not equivalent in strength. Now you can determine where those differences lie.
First you create the data arrays and you perform one-way ANOVA.

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
 'al1','al1','al1','al1','al1','al1',...
 'al2','al2','al2','al2','al2','al2'};
[p,a,s] = anova1(strength,alloy);

Among the outputs is a structure that you can use as input to multcompare.

[c,m,h,nms] = multcompare(s);

10 15 20 25 30 35 40 45

Italy

Sweden

France

Germany

Japan

USA

Click on the group you want to test

The means of groups USA and Japan are significantly different

multcompare

12-334

[nms num2cell(c)]

ans =

 'st' [1] [2] [3.6064] [7] [10.3936]
 'al1' [1] [3] [1.6064] [5] [8.3936]
 'al2' [2] [3] [-5.6280] [-2] [1.6280]

The third row of the output matrix shows that the differences in strength
between the two alloys is not significant. A 95% confidence interval for the
difference is [-5.6, 1.6], so you cannot reject the hypothesis that the true
difference is zero.

The first two rows show that both comparisons involving the first group (steel)
have confidence intervals that do not include zero. In other words, those
differences are significant. The graph shows the same information.

See Also anova1, anova2, anovan, aoctool, friedman, kruskalwallis

74 76 78 80 82 84 86

al2

al1

st

Click on the group you want to test

2 groups have means significantly different from st

multcompare

12-335

References [1] Hochberg, Y., and A. C. Tamhane, Multiple Comparison Procedures, Wiley,
1987.

[2] Milliken, G. A., and D. E. Johnson, Analysis of Messy Data, Volume 1:
Designed Experiments, Chapman & Hall, 1992.

[3] Searle, S. R., F. M. Speed, and G. A. Milliken, “Population marginal means
in the linear model: an alternative to least squares means,” American
Statistician, 1980, pp. 216-221.

mvnpdf

12-336

12mvnpdfPurpose Multivariate normal probability density function (pdf)

Syntax y = mvnpdf(X)
y = mvnpdf(X,mu)
y = mvnpdf(X,mu,SIGMA)

Description y = mvnpdf(X) returns the n-by-1 vector y, containing the probability density
of the multivariate normal distribution with zero mean and identity covariance
matrix, evaluated at each row of the n-by-d matrix X. Rows of X correspond to
observations and columns correspond to variables or coordinates.

y = mvnpdf(X,mu) returns the density of the multivariate normal distribution
with mean mu and identity covariance matrix, evaluated at each row of X. mu is
a 1-by-d vector, or an n-by-d matrix. If mu is a matrix, the density is evaluated
for each row of X with the corresponding row of mu. mu can also be a scalar value,
which mvnpdf replicates to match the size of X.

y = mvnpdf(X,mu,SIGMA) returns the density of the multivariate normal
distribution with mean mu and covariance SIGMA, evaluated at each row of X.
SIGMA is a d-by-d matrix, or an d-by-d-by-n array, in which case the density is
evaluated for each row of X with the corresponding page of SIGMA, i.e., mvnpdf
computes y(i) using X(i,:) and SIGMA(:,:,i). Specify [] for mu to use its
default value when you want to specify only SIGMA.

If X is a 1-by-d vector, mvnpdf replicates it to match the leading dimension of mu
or the trailing dimension of SIGMA.

Example mu = [1 -1];
Sigma = [.9 .4; .4 .3];
X = mvnrnd(mu,Sigma,10);
p = mvnpdf(X,mu,Sigma);

See Also mvnrnd, normpdf

mvnrnd

12-337

12mvnrndPurpose Random matrices from the multivariate normal distribution

Syntax R = mvnrnd(mu,SIGMA)
R = mvnrnd(mu,SIGMA,cases)

Description R = mvnrnd(mu,SIGMA) returns an n-by-d matrix R of random vectors chosen
from the multivariate normal distribution with mean mu, and covariance SIGMA.
mu is an n-by-d matrix, and mvnrnd generates each row of R using the
corresponding row of mu. SIGMA is a d-by-d symmetric positive semi-definite
matrix, or a d-by-d-by-n array. If SIGMA is an array, mvnrnd generates each row
of R using the corresponding page of SIGMA, i.e., mvnrnd computes R(i,:) using
mu(i,:) and SIGMA(:,:,i). If mu is a 1-by-d vector, mvnrnd replicates it to
match the trailing dimension of SIGMA.

r = mvnrnd(mu,SIGMA,cases) returns a cases-by-d matrix R of random
vectors chosen from the multivariate normal distribution with a common
1-by-d mean vector mu, and a common d-by-d covariance matrix SIGMA.

Reproducing the Output of mvnrnd
mvnrnd uses the MATLAB function randn to generate random numbers. When
you call mvnrnd, you change the current state of randn, and thereby alter the
output of subsequent calls to mvnrnd or any other functions that depend on
randn. If you want to reproduce the output of mvnrnd, reset the state of randn
to the same fixed value each time you call mvnrnd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on randn, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The result in the following example depends on the current state of
randn. If you run the code in this example, your results may differ from the
plot shown here.

Example mu = [2 3];
sigma = [1 1.5; 1.5 3];
r = mvnrnd(mu,sigma,100);
plot(r(:,1),r(:,2),'+')

mvnrnd

12-338

See Also lhsnorm, mvnpdf, normrnd

-1 0 1 2 3 4 5
-2

0

2

4

6

8

mvtrnd

12-339

12mvtrndPurpose Random matrices from the multivariate t distribution

Syntax r = mvtrnd(C,df,cases)

Description r = mvtrnd(C,df,cases) returns a matrix of random numbers chosen from
the multivariate t distribution, where C is a correlation matrix. df is the
degrees of freedom and is either a scalar or is a vector with cases elements. If
p is the number of columns in C, then the output r has cases rows and p
columns.

Let t represent a row of r. Then the distribution of t is that of a vector having
a multivariate normal distribution with mean 0, variance 1, and covariance
matrix C, divided by an independent chi-square random value having df
degrees of freedom. The rows of r are independent.

C must be a square, symmetric and positive definite matrix. If its diagonal
elements are not all 1 (that is, if C is a covariance matrix rather than a
correlation matrix), mvtrnd computes the equivalent correlation matrix before
generating the random numbers.

Reproducing the Output of mvtrnd
mvtrnd uses the MATLAB functions rand and randn to generate random
numbers. When you call mvtrnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to mvtrnd or any other
functions that depend on rand or randn. If you want to reproduce the output of
mvtrnd, reset the states of rand and randn to the same fixed values each time
you call mvtrnd. For an example of how to do this, and a list of the Statistics
Toolbox functions that depend on rand or randn, see “Reproducing the Output
of Random Number Functions” on page 2-46.

Note The results in the following example depend on the current states of
rand and randn. If you run the code in this example, your results may differ
from the plot shown here.

Example sigma = [1 0.8;0.8 1];
r = mvtrnd(sigma,3,100);
plot(r(:,1),r(:,2),'+')

mvtrnd

12-340

See Also mvnrnd, trnd

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

nancov

12-341

12nancovPurpose Covariance matrix, ignoring NaNs

Syntax C = nancov(X)
C = nancov(X,Y)
C = nancov(X,Y)
C = nancov(...,1)
C = nancov(...,'pairwise')

Description C = nancov(X), where X is a vector, returns the sample variance of the values
in X, treating NaNs as missing values. If X is a matrix, in which each row is an
observation and each column a variable, nancov(X) is the covariance matrix
computing using rows of X that do not contain any NaN values.

nancov(X,Y), where X and Y are vectors of equal length, is equivalent to
nancov([X(:) Y(:)]), where X(:) and Y(:) are column vectors corresponding
to X and Y, respectively.

nancov(X) or nancov(X,Y) normalizes the result by N - 1 where N is the
number of observations after removing missing values. This makes nancov(X)
the best unbiased estimate of the covariance matrix if the observations are
from a normal distribution.

nancov(X,1) or nancov(X,Y,1) normalizes the result by N. That is, it returns
the second moment matrix of the observations about their mean.
nancov(X,Y,0) is the same as nancov(X,Y), and nancov(X,0) is the same as
nancov(X).

C = NANCOV(...,'pairwise') computes C(i,j) using rows with no NaN values
in columns i or j. The result may not be a positive definite matrix.
C = NANCOV(...,'complete') is the default, and it omits rows with any NaN
values, even if they are not in column i or j.

The mean is removed from each column before calculating the result.

Example The following example generates random data having nonzero covariance
between column 4 and the other columns.

X = randn(30,4); % uncorrelated data
X(:,4) = sum(x,2); % introduce correlation
X(2,3) = NaN; % introduce one missing value
C = nancov(x) % compute sample covariance

nancov

12-342

See Also cov, var, nanvar

nanmax

12-343

12nanmaxPurpose Maximum ignoring NaNs

Syntax M = nanmax(A)
M = nanmax(A,B)
M = nanmax(A,[],dim)
[M,ndx] = nanmax(...)

Description M = nanmax(A) returns the maximum with NaNs treated as missing. For
vectors, nanmax(A) is the largest non-NaN element in A. For matrices,
nanmax(A) is a row vector containing the maximum non-NaN element from each
column. For N-dimensional arrays, nanmax operates along the first
nonsingleton dimension of X.

M = nanmax(A,B) returns an array of the same size as A and B, each of whose
entries is the maximum of the corresponding entries of A or B. A scalar input is
expanded to an array of the same size as the other input.

M = nanmax(A,[],dim) operates along the dimension dim of X.

[M,ndx] = nanmax(...) also returns the indices of the maximum values in the
vector ndx.

Example A = magic(3);
A([1 6 8]) = [NaN NaN NaN]

A =

 NaN 1 6
 3 5 NaN
 4 NaN 2

[nmax,maxidx] = nanmax(A)

nmax =

 4 5 6

maxidx =

 3 2 1

See Also nanmin, nanmean, nanmedian, nanstd, nansum

nanmean

12-344

12nanmeanPurpose Mean ignoring NaNs

Syntax y = nanmean(X)
y = nanmean(X,dim)

Description y = nanmean(X) is the mean computed by treating NaNs as missing values.

For vectors, nanmean(x) is the mean of the non-NaN elements of x. For matrices,
nanmean(X) is a row vector containing the mean of the non-NaN elements in
each column. For N-dimensional arrays, nanmean operates along the first
nonsingleton dimension of X.

nanmean(X,dim) takes the mean along dimension dim of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

nmean = nanmean(m)

nmean =

 3.5000 3.0000 4.0000

See Also nanmin, nanmax, nanmedian, nanstd, nansum

nanmedian

12-345

12nanmedianPurpose Median ignoring NaNs

Syntax y = nanmedian(X)
y = nanmedian(X,dim)

Description y = nanmedian(X) is the median computed by treating NaNs as missing values.

For vectors, nanmedian(x) is the median of the non-NaN elements of x. For
matrices, nanmedian(X) is a row vector containing the median of the non-NaN
elements in each column of X. For N-dimensional arrays, nanmedian operates
along the first nonsingleton dimension of X.

y = nanmedian(X,dim) takes the median along the dimension dim of X.

Example m = magic(4);
m([1 6 9 11]) = [NaN NaN NaN NaN]

m =

 NaN 2 NaN 13
 5 NaN 10 8
 9 7 NaN 12
 4 14 15 1

nmedian = nanmedian(m)

nmedian =

 5.0000 7.0000 12.5000 10.0000

See Also nanmin, nanmax, nanmean, nanstd, nansum

nanmin

12-346

12nanminPurpose Minimum ignoring NaNs

Syntax M = nanmin(A)
M = nanmin(A,B)
M = nanmin(A,[],dim)
[M,ndx] = nanmin(...)

Description M = nanmin(A) is the minimum computed by treating NaNs as missing values.
For vectors, M is the smallest non-NaN element in A. For matrices, M is a row
vector containing the minimum non-NaN element from each column. For
N-dimensional arrays, nanmin operates along the first nonsingleton dimension
of X.

M = nanmin(A,B) returns an array of the same size as A and B, each of whose
entries is the minimum of the corresponding entries of A or B. A scalar input is
expanded to an array of the same size as the other input.

M = nanmin(A,[],dim) operates along the dimension dim of X.

[M,ndx] = nanmin(...) also returns the indices of the minimum values in
vector ndx.

Example A = magic(3);
A([1 6 8]) = [NaN NaN NaN]

A =

 NaN 1 6
 3 5 NaN
 4 NaN 2

[nmin,minidx] = nanmin(A)

nmin =

 3 1 2

minidx =

 2 1 3

See Also nanmax, nanmean, nanmedian, nanstd, nansum

nanstd

12-347

12nanstdPurpose Standard deviation ignoring NaNs

Syntax Y = nanstd(X)
Y = nanstd(X,1)
Y = nanstd(X,0)
Y = nanstd(X,flag,dim)

Description Y = nanstd(X) is the standard deviation computed by treating NaNs as
missing values. For vectors, nanstd(X) is the standard deviation of the non-NaN
elements of X. For matrices, nanstd(X) is a row vector containing the standard
deviations of the non-NaN elements in each column of X. For N-dimensional
arrays, nanstd operates along the first nonsingleton dimension of X.

nanstd normalizes Y by N-1, where N is the sample size. The result Y is the
square root of an unbiased estimator of the variance of the population from
which X is drawn, as long as X consists of independent, identically distributed
samples, and data are missing at random.

Y = nanstd(X,1) normalizes Y by N. The result Y is the square root of the
second moment of the sample about its mean. nanstd(X,0) is the same as
nanstd(X).

Y = nanstd(X,flag,dim) takes the standard deviation along the dimension
dim of X. Set flag to 0 to normalize the result by N-1; set flag to 1 to normalize
the result by N.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

nstd = nanstd(m)

nstd =

 0.7071 2.8284 2.8284

nanstd

12-348

See Also nanmax, nanmin, nanmean, nanmedian, nansum

nansum

12-349

12nansumPurpose Sum ignoring NaNs

Syntax y = nansum(X)
Y = nansum(X,dim)

Description y = nansum(X) is the sum computed by treating NaNs as missing values.

For vectors, nansum(x) is the sum of the non-NaN elements of x. For matrices,
nansum(X) is a row vector containing the sum of the non-NaN elements in each
column of X. For N-dimensional arrays, nansum operates along the first
nonsingleton dimension of X.

Y = nansum(X,dim) takes the sum along dimension dim of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

nsum = nansum(m)

nsum =

 7 6 8

See Also nanmax, nanmin, nanmean, nanmedian, nanstd

nanvar

12-350

12nanvarPurpose Variance ignoring NaNs.

Syntax Y = nanvar(X)
Y = nanvar(X,1)
Y = nanvar(X,0)
Y = nanvar(X,w)
Y = nanvar(X,w,dim)

Description Y = nanvar(X) returns the sample variance of the values in X, treating NaNs as
missing values. For a vector input, Y is the variance of the non-NaN elements of
X. For a matrix input, Y is a row vector containing the variance of the non-NaN
elements in each column of X. For N-dimensional arrays, nanvar operates along
the first nonsingleton dimension of X.

nanvar normalizes Y by N-1, where N is the sample size. The result Y is an
unbiased estimator of the variance of the population from which X is drawn, as
long as X consists of independent, identically distributed samples, and data are
missing at random.

Y = nanvar(X,1) normalizes Y by N. The result Y is the second moment of the
sample about its mean. nanvar(X,0) is the same as nanvar(X).

Y = nanvar(X,w) computes the variance using the weight vector w. The length
of w must equal the length of the dimension over which nanvar operates, and
its elements must be nonnegative. nanvar normalizes w so that its sum is one.

Y = nanvar(X,w,dim) takes the variance along the dimension dim of X. Set w
to [] to use the default normalization by N-1.

See Also var, nanstd, nanmean, nanmedian, nanmin, nanmax, nansum

nbincdf

12-351

12nbincdfPurpose Negative binomial cumulative distribution function (cdf)

Syntax Y = nbincdf(X,R,P)

Description Y = nbincdf(X,R,P) computes the negative binomial cdf at each of the values
in X using the corresponding parameters in R and P. X, R, and P can be vectors,
matrices, or multidimensional arrays that all have the same size, which is also
the size of Y. A scalar input for X, R, or P is expanded to a constant array with
the same dimensions as the other inputs.

The negative binomial cdf is

The simplest motivation for the negative binomial is the case of successive
random trials, each having a constant probability P of success. The number of
extra trials you must perform in order to observe a given number R of successes
has a negative binomial distribution. However, consistent with a more general
interpretation of the negative binomial, nbincdf allows R to be any positive
value, including nonintegers. When R is noninteger, the binomial coefficient in
the definition of the cdf is replaced by the equivalent expression

Example x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)

y F x r p,() r i 1–+
i⎝ ⎠

⎛ ⎞

i 0=

x

∑ prqiI 0 1 …, ,() i()= =

Γ r i+()
Γ r()Γ i 1+()

nbincdf

12-352

See Also cdf, nbinfit, nbininv, nbinpdf, nbinrnd, nbinstat

0 5 10 15
0

0.2

0.4

0.6

0.8

1

nbinfit

12-353

12nbinfitPurpose Parameter estimates and confidence intervals for negative binomial data

Syntax parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)

Description parmhat = nbinfit(data) returns the maximum likelihood estimates (MLEs)
of the parameters of the negative binomial distribution given the data in the
vector data.

[parmhat,parmci] = nbinfit(data,alpha) returns MLEs and 100(1-alpha)
percent confidence intervals. By default, alpha = 0.05, which corresponds to
95% confidence intervals.

[...] = nbinfit(data,alpha,options) accepts a structure, options, that
specifies control parameters for the iterative algorithm the function uses to
compute maximum likelihood estimates. You can create options using the
function statset. Enter statset('nbinfit') to see the names and default
values of the parameters that nbinfit accepts in the options structure. See
the reference page for statset for more information about these options.

Note The variance of a negative binomial distribution is greater than its
mean. If the sample variance of the data in data is less than its sample mean,
nbinfit cannot compute MLEs. You should use the poissfit function
instead.

See Also nbincdf, nbininv, nbinpdf, nbinrnd, nbinstat, mle, statset

nbininv

12-354

12nbininvPurpose Inverse of the negative binomial cumulative distribution function (cdf)

Syntax X = nbininv(Y,R,P)

Description X = nbininv(Y,R,P) returns the inverse of the negative binomial cdf with
parameters R and P at the corresponding probabilities in P. Since the binomial
distribution is discrete, nbininv returns the least integer X such that the
negative binomial cdf evaluated at X equals or exceeds Y. Y, R, and P can be
vectors, matrices, or multidimensional arrays that all have the same size,
which is also the size of X. A scalar input for Y, R, or P is expanded to a constant
array with the same dimensions as the other inputs.

The simplest motivation for the negative binomial is the case of successive
random trials, each having a constant probability P of success. The number of
extra trials you must perform in order to observe a given number R of successes
has a negative binomial distribution. However, consistent with a more general
interpretation of the negative binomial, nbininv allows R to be any positive
value, including nonintegers.

Example How many times would you need to flip a fair coin to have a 99% probability of
having observed 10 heads?

flips = nbininv(0.99,10,0.5) + 10

flips =

 33

Note that you have to flip at least 10 times to get 10 heads. That is why the
second term on the right side of the equals sign is a 10.

See Also icdf, nbincdf, nbinfit, nbinpdf, nbinrnd, nbinstat

nbinpdf

12-355

12nbinpdfPurpose Negative binomial probability density function

Syntax Y = nbinpdf(X,R,P)

Description Y = nbinpdf(X,R,P) returns the negative binomial pdf at each of the values
in X using the corresponding parameters in R and P. X, R, and P can be vectors,
matrices, or multidimensional arrays that all have the same size, which is also
the size of Y. A scalar input for X, R, or P is expanded to a constant array with
the same dimensions as the other inputs. Note that the density function is zero
unless the values in X are integers.

The negative binomial pdf is

The simplest motivation for the negative binomial is the case of successive
random trials, each having a constant probability P of success. The number of
extra trials you must perform in order to observe a given number R of successes
has a negative binomial distribution. However, consistent with a more general
interpretation of the negative binomial, nbinpdf allows R to be any positive
value, including nonintegers. When R is noninteger, the binomial coefficient in
the definition of the pdf is replaced by the equivalent expression

Example x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'Xlim',[-0.5,10.5])

y f x r p,() r x 1–+
x⎝ ⎠

⎛ ⎞prqxI 0 1 …, ,() x()= =

Γ r x+()
Γ r()Γ x 1+()

nbinpdf

12-356

See Also nbincdf, nbinfit, nbininv, nbinrnd, nbinstat, pdf

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

nbinrnd

12-357

12nbinrndPurpose Random matrices from a negative binomial distribution

Syntax RND = nbinrnd(R,P)
RND = nbinrnd(R,P,m)
RND = nbinrnd(R,P,m,n)

Description RND = nbinrnd(R,P) is a matrix of random numbers chosen from a negative
binomial distribution with parameters R and P. R and P can be vectors,
matrices, or multidimensional arrays that have the same size, which is also the
size of RND. A scalar input for R or P is expanded to a constant array with the
same dimensions as the other input.

RND = nbinrnd(R,P,m) generates random numbers with parameters R and P,
where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and
v(2) columns. If v is 1-by-n, R is an n-dimensional array.

RND = nbinrnd(R,P,m,n) generates random numbers with parameters R
and P, where scalars m and n are the row and column dimensions of RND.

The simplest motivation for the negative binomial is the case of successive
random trials, each having a constant probability P of success. The number of
extra trials you must perform in order to observe a given number R of successes
has a negative binomial distribution. However, consistent with a more general
interpretation of the negative binomial, nbinrnd allows R to be any positive
value, including nonintegers.

Reproducing the Output of nbinrnd
nbinrnd uses the MATLAB functions rand and randn to generate random
numbers. When you call nbinrnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to nbinrnd or any other
functions that depend on rand or randn. If you want to reproduce the output of
nbinrnd, reset the states of rand and randn to the same fixed values each time
you call nbinrnd. For an example of how to do this, and a list of the Statistics
Toolbox functions that depend on rand or randn, see “Reproducing the Output
of Random Number Functions” on page 2-46.

nbinrnd

12-358

Note The result in the following example depends on the current states of
rand and randn. If you run the code in this example, your results may differ
from the answer shown here.

Example Suppose you want to simulate a process that has a defect probability of 0.01.
How many units might Quality Assurance inspect before finding three
defective items?

r = nbinrnd(3,0.01,1,6) + 3

r =

 496 142 420 396 851 178

See Also nbincdf, nbinfit, nbininv, nbinpdf, nbinstat

nbinstat

12-359

12nbinstatPurpose Mean and variance of the negative binomial distribution

Syntax [M,V] = nbinstat(R,P)

Description [M,V] = nbinstat(R,P) returns the mean and variance of the negative
binomial distribution with parameters R and P. R and P can be vectors,
matrices, or multidimensional arrays that all have the same size, which is also
the size of M and V. A scalar input for R or P is expanded to a constant array with
the same dimensions as the other input.

The mean of the negative binomial distribution with parameters r and p is rq/p,
where q = 1-p. The variance is rq/p2.

The simplest motivation for the negative binomial is the case of successive
random trials, each having a constant probability P of success. The number of
extra trials you must perform in order to observe a given number R of successes
has a negative binomial distribution. However, consistent with a more general
interpretation of the negative binomial, nbinstat allows R to be any positive
value, including nonintegers.

Example p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)

M =

 9.0000 18.0000 27.0000 36.0000 45.0000
 2.3333 4.6667 7.0000 9.3333 11.6667
 1.0000 2.0000 3.0000 4.0000 5.0000
 0.4286 0.8571 1.2857 1.7143 2.1429
 0.1111 0.2222 0.3333 0.4444 0.5556

V =

 90.0000 180.0000 270.0000 360.0000 450.0000
 7.7778 15.5556 23.3333 31.1111 38.8889
 2.0000 4.0000 6.0000 8.0000 10.0000
 0.6122 1.2245 1.8367 2.4490 3.0612
 0.1235 0.2469 0.3704 0.4938 0.6173

nbinstat

12-360

See Also nbincdf, nbinfit, nbininv, nbinpdf, nbinrnd

ncfcdf

12-361

12ncfcdfPurpose Noncentral F cumulative distribution function (cdf)

Syntax P = ncfcdf(X,NU1,NU2,DELTA)

Description P = ncfcdf(X,NU1,NU2,DELTA) computes the noncentral F cdf at each of the
values in X using the corresponding numerator degrees of freedom in NU1,
denominator degrees of freedom in NU2, and positive noncentrality parameters
in DELTA. NU1, NU2, and DELTA can be vectors, matrices, or multidimensional
arrays that have the same size, which is also the size of P. A scalar input for X,
NU1, NU2, or DELTA is expanded to a constant array with the same dimensions
as the other inputs.

The noncentral F cdf is

where I(x|a,b) is the incomplete beta function with parameters a and b.

Example Compare the noncentral F cdf with δ = 10 to the F cdf with the same number of
numerator and denominator degrees of freedom (5 and 20 respectively).

x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'--',x,p1,'-')

F x ν1 ν2 δ, ,()

1
2
---δ⎝ ⎠
⎛ ⎞ j

j!
--------------e

δ
2
---–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

I
ν1 x⋅

ν2 ν+ 1 x⋅

ν1
2
------ j+

ν2
2
------,

⎝ ⎠
⎜ ⎟
⎛ ⎞

j 0=

∞

∑=

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

ncfcdf

12-362

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also cdf, ncfpdf, ncfinv, ncfrnd, ncfstat

ncfinv

12-363

12ncfinvPurpose Inverse of the noncentral F cumulative distribution function (cdf)

Syntax X = ncfinv(P,NU1,NU2,DELTA)

Description X = ncfinv(P,NU1,NU2,DELTA) returns the inverse of the noncentral F cdf
with numerator degrees of freedom NU1, denominator degrees of freedom NU2,
and positive noncentrality parameter DELTA for the corresponding probabilities
in P. P, NU1, NU2, and DELTA can be vectors, matrices, or multidimensional
arrays that all have the same size, which is also the size of X. A scalar input for
P, NU1, NU2, or DELTA is expanded to a constant array with the same dimensions
as the other inputs.

Example One hypothesis test for comparing two sample variances is to take their ratio
and compare it to an F distribution. If the numerator and denominator degrees
of freedom are 5 and 20 respectively, then you reject the hypothesis that the
first variance is equal to the second variance if their ratio is less than that
computed below.

critical = finv(0.95,5,20)

critical =

 2.7109

Suppose the truth is that the first variance is twice as big as the second
variance. How likely is it that you would detect this difference?

prob = 1 - ncfcdf(critical,5,20,2)

prob =

 0.1297

If the true ratio of variances is 2, what is the typical (median) value you would
expect for the F statistic?

ncfinv(0.5,5,20,2)

ans =
 1.2786

ncfinv

12-364

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
edition, John Wiley and Sons, 1993, pp. 102–105.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also icdf, ncfcdf, ncfpdf, ncfrnd, ncfstat

ncfpdf

12-365

12ncfpdfPurpose Noncentral F probability density function

Syntax Y = ncfpdf(X,NU1,NU2,DELTA)

Description Y = ncfpdf(X,NU1,NU2,DELTA) computes the noncentral F pdf at each of the
values in X using the corresponding numerator degrees of freedom in NU1,
denominator degrees of freedom in NU2, and positive noncentrality parameters
in DELTA. X, NU1, N2, and B can be vectors, matrices, or multidimensional arrays
that all have the same size, which is also the size of Y. A scalar input for P, NU1,
NU2, or DELTA is expanded to a constant array with the same dimensions as the
other inputs.

The F distribution is a special case of the noncentral F where δ = 0. As δ
increases, the distribution flattens like the plot in the example.

Example Compare the noncentral F pdf with δ = 10 to the F pdf with the same number
of numerator and denominator degrees of freedom (5 and 20 respectively).

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'--',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also ncfcdf, ncfinv, ncfrnd, ncfstat, pdf

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

ncfrnd

12-366

12ncfrndPurpose Random matrices from the noncentral F distribution

Syntax R = ncfrnd(NU1,NU2,DELTA)
R = ncfrnd(NU1,NU2,DELTA,v)
R = ncfrnd(NU1,NU2,DELTA,m,n)

Description R = ncfrnd(NU1,NU2,DELTA) returns a matrix of random numbers chosen from
the noncentral F distribution with parameters NU1, NU2 and DELTA. NU1, NU2,
and DELTA can be vectors, matrices, or multidimensional arrays that have the
same size, which is also the size of R. A scalar input for NU1, NU2, or DELTA is
expanded to a constant matrix with the same dimensions as the other inputs.

R = ncfrnd(NU1,NU2,DELTA,v) returns a matrix of random numbers with
parameters NU1, NU2, and DELTA, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = ncfrnd(NU1,NU2,DELTA,m,n) generates random numbers with
parameters NU1, NU2, and DELTA, where scalars m and n are the row and column
dimensions of R.

Reproducing the Output of ncfrnd
ncfrnd uses the MATLAB functions rand and randn to generate random
numbers. When you call ncfrnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to ncfrnd or any other
functions that depend on rand or randn. If you want to reproduce the output of
ncfrnd, reset the states of rand and randn to the same fixed values each time
you call ncfrnd. For an example of how to do this, and a list of the Statistics
Toolbox functions that depend on rand or randn, see “Reproducing the Output
of Random Number Functions” on page 2-46.

Note The results in the following example depend on the current states of
rand and randn. If you run the code in this example, your results may differ
from the answers shown here.

Example Compute six random numbers from a noncentral F distribution with 10
numerator degrees of freedom, 100 denominator degrees of freedom and a

ncfrnd

12-367

noncentrality parameter, δ, of 4.0. Compare this to the F distribution with the
same degrees of freedom.

r = ncfrnd(10,100,4,1,6)

r =
 2.5995 0.8824 0.8220 1.4485 1.4415 1.4864

r1 = frnd(10,100,1,6)

r1 =
 0.9826 0.5911 1.0967 0.9681 2.0096 0.6598

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also ncfcdf, ncfinv, ncfpdf, ncfstat

ncfstat

12-368

12ncfstatPurpose Mean and variance of the noncentral F distribution

Syntax [M,V] = ncfstat(NU1,NU2,DELTA)

Description [M,V] = ncfstat(NU1,NU2,DELTA) returns the mean and variance of the
noncentral F pdf with NU1 and NU2 degrees of freedom and noncentrality
parameter DELTA. NU1, NU2, and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of M
and V. A scalar input for NU1, NU2, or DELTA is expanded to a constant array with
the same dimensions as the other input.

The mean of the noncentral F distribution with parameters ν1, ν2, and δ is

where ν2 > 2.

The variance is

where ν2 > 4.

Example [m,v]= ncfstat(10,100,4)

m =
 1.4286

v =
 0.4252

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 73–74.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also ncfcdf, ncfinv, ncfpdf, ncfrnd

ν2 δ ν+ 1()
ν1 ν2 2–()

2
ν2
ν1
------⎝ ⎠
⎛ ⎞

2 δ ν+ 1()2 2δ ν+ 1() ν2 2–()+

ν2 2–()2 ν2 4–()
--

nctcdf

12-369

12nctcdfPurpose Noncentral T cumulative distribution function

Syntax P = nctcdf(X,NU,DELTA)

Description P = nctcdf(X,NU,DELTA) computes the noncentral T cdf at each of the values
in X using the corresponding degrees of freedom in NU and noncentrality
parameters in DELTA. X, NU, and DELTA can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of P. A
scalar input for X, NU, or DELTA is expanded to a constant array with the same
dimensions as the other inputs.

Example Compare the noncentral T cdf with DELTA = 1 to the T cdf with the same
number of degrees of freedom (10).

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'--',x,p1,'-')

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also cdf, nctcdf, nctinv, nctpdf, nctrnd, nctstat

-5 0 5
0

0.2

0.4

0.6

0.8

1

nctinv

12-370

12nctinvPurpose Inverse of the noncentral T cumulative distribution

Syntax X = nctinv(P,NU,DELTA)

Description X = nctinv(P,NU,DELTA) returns the inverse of the noncentral T cdf with NU
degrees of freedom and noncentrality parameter DELTA for the corresponding
probabilities in P. P, NU, and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size., which is also the size of X.
A scalar input for P, NU, or DELTA is expanded to a constant array with the same
dimensions as the other inputs.

Example x = nctinv([0.1 0.2],10,1)

x =
 -0.2914 0.1618

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also icdf, nctcdf, nctpdf, nctrnd, nctstat

nctpdf

12-371

12nctpdfPurpose Noncentral T probability density function (pdf)

Syntax Y = nctpdf(X,V,DELTA)

Description Y = nctpdf(X,V,DELTA) computes the noncentral T pdf at each of the values
in X using the corresponding degrees of freedom in V and noncentrality
parameters in DELTA. Vector or matrix inputs for X, V, and DELTA must have the
same size, which is also the size of Y. A scalar input for X, V, or DELTA is
expanded to a constant matrix with the same dimensions as the other inputs.

Example Compare the noncentral T pdf with DELTA = 1 to the T pdf with the same
number of degrees of freedom (10).

x = (-5:0.1:5)';
p1 = nctpdf(x,10,1);
p = tpdf(x,10);
plot(x,p,'--',x,p1,'-')

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also nctcdf, nctinv, nctrnd, nctstat, pdf

-5 0 5
0

0.1

0.2

0.3

0.4

nctrnd

12-372

12nctrndPurpose Random matrices from noncentral T distribution

Syntax R = nctrnd(V,DELTA)
R = nctrnd(V,DELTA,v)
R = nctrnd(V,DELTA,m,n)

Description R = nctrnd(V,DELTA) returns a matrix of random numbers chosen from the
noncentral T distribution with parameters V and DELTA. V and DELTA can be
vectors, matrices, or multidimensional arrays. A scalar input for V or DELTA is
expanded to a constant array with the same dimensions as the other input.

R = nctrnd(V,DELTA,v) returns a matrix of random numbers with
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional
array.

R = nctrnd(V,DELTA,m,n) generates random numbers with parameters V and
DELTA, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of nctrnd
nctrnd uses the MATLAB functions rand and randn to generate random
numbers. When you call nctrnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to nctrnd or any other
functions that depend on rand or randn. If you want to reproduce the output of
nctrnd, reset the states of rand and randn to the same fixed values each time
you call nctrnd. For an example of how to do this, and a list of the Statistics
Toolbox functions that depend on rand or randn, see “Reproducing the Output
of Random Number Functions” on page 2-46.

Note The result in the following example depends on the current states of
rand and randn. If you run the code in these examples, your results may differ
from the answer shown here.

Example nctrnd(10,1,5,1)

ans =

nctrnd

12-373

 1.6576
 1.0617
 1.4491
 0.2930
 3.6297

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also nctcdf, nctinv, nctpdf, nctstat

nctstat

12-374

12nctstatPurpose Mean and variance for the noncentral t distribution

Syntax [M,V] = nctstat(NU,DELTA)

Description [M,V] = nctstat(NU,DELTA) returns the mean and variance of the
noncentral t pdf with NU degrees of freedom and noncentrality parameter
DELTA. NU and DELTA can be vectors, matrices, or multidimensional arrays that
all have the same size, which is also the size of M and V. A scalar input for NU or
DELTA is expanded to a constant array with the same dimensions as the other
input.

The mean of the noncentral t distribution with parameters ν and δ is

where ν > 1.

The variance is

where ν > 2.

Example [m,v] = nctstat(10,1)

m =
 1.0837

v =
 1.3255

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also nctcdf, nctinv, nctpdf, nctrnd

δ ν 2⁄()1 2⁄ Γ ν 1–() 2⁄()
Γ ν 2⁄()

ν
ν 2–()

----------------- 1 δ2
+() ν

2
---– δ2 Γ ν 1–() 2⁄()

Γ ν 2⁄()

2

ncx2cdf

12-375

12ncx2cdfPurpose Noncentral chi-square cumulative distribution function (cdf)

Syntax P = ncx2cdf(X,V,DELTA)

Description P = ncx2cdf(X,V,DELTA) computes the noncentral chi-square cdf at each of
the values in X using the corresponding degrees of freedom in V and positive
noncentrality parameters in DELTA. X, V, and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of P.
A scalar input for X, V, or DELTA is expanded to a constant array with the same
dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is

Example x = (0:0.1:10)';
p1 = ncx2cdf(x,4,2);
p = chi2cdf(x,4);
plot(x,p,'--',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

F x ν δ,()

1
2
---δ⎝ ⎠
⎛ ⎞ j

j!
--------------e

δ
2
---–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Pr χ
ν 2j+

2 x≤[]

j 0=

∞

∑=

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ncx2cdf

12-376

See Also cdf, ncx2inv, ncx2pdf, ncx2rnd, ncx2stat

ncx2inv

12-377

12ncx2invPurpose Inverse of the noncentral chi-square cdf

Syntax X = ncx2inv(P,V,DELTA)

Description X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral chi-square cdf
with parameters V and DELTA at the corresponding probabilities in P. P, V, and
DELTA can be vectors, matrices, or multidimensional arrays that all have the
same size., which is also the size of X. A scalar input for P, V, or DELTA is
expanded to a constant array with the same dimensions as the other inputs.

Algorithm ncx2inv uses Newton's method to converge to the solution.

Example ncx2inv([0.01 0.05 0.1],4,2)

ans =

 0.4858 1.1498 1.7066

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd Edition,
John Wiley and Sons, 1993, pp. 50–52.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also icdf, ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat

ncx2pdf

12-378

12ncx2pdfPurpose Noncentral chi-square probability density function (pdf)

Syntax Y = ncx2pdf(X,V,DELTA)

Description Y = ncx2pdf(X,V,DELTA) computes the noncentral chi-square pdf at each of
the values in X using the corresponding degrees of freedom in V and positive
noncentrality parameters in DELTA. Vector or matrix inputs for X, V, and DELTA
must have the same size, which is also the size of Y. A scalar input for X, V, or
DELTA is expanded to a constant array with the same dimensions as the other
inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

Example As the noncentrality parameter δ increases, the distribution flattens as shown
in the plot.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'--',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2rnd, ncx2stat, pdf

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

ncx2rnd

12-379

12ncx2rndPurpose Random matrices from the noncentral chi-square distribution

Syntax R = ncx2rnd(V,DELTA)
R = ncx2rnd(V,DELTA,v)
R = ncx2rnd(V,DELTA,m,n)

Description R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen from the
non-central chi-square distribution with parameters V and DELTA. V and DELTA
can be vectors, matrices, or multidimensional arrarys that have the same size,
which is also the size of R. A scalar input for V or DELTA is expanded to a
constant array with the same dimensions as the other input.

R = ncx2rnd(V,DELTA,v) returns a matrix of random numbers with
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional
array.

R = ncx2rnd(V,DELTA,m,n) generates random numbers with parameters V and
DELTA, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of ncx2rnd
ncx2rnd uses the MATLAB function randn to generate random numbers. When
you call ncx2rnd, you change the current state of randn, and thereby alter the
output of subsequent calls to ncx2rnd or any other functions that depend on
randn. If you want to reproduce the output of ncx2rnd, reset the state of randn
to the same fixed value each time you call ncx2rnd. For an example of how to
do this, and a list of the Statistics Toolbox functions that depend on randn, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The result in the following example depends on the current state of
randn. If you run the code in this example, your results may differ from the
answer shown here.

Example ncx2rnd(4,2,6,3)

ans =

ncx2rnd

12-380

 6.8552 5.9650 11.2961
 5.2631 4.2640 5.9495
 9.1939 6.7162 3.8315
 10.3100 4.4828 7.1653
 2.1142 1.9826 4.6400
 3.8852 5.3999 0.9282

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2stat

ncx2stat

12-381

12ncx2statPurpose Mean and variance for the noncentral chi-square distribution

Syntax [M,V] = ncx2stat(NU,DELTA)

Description [M,V] = ncx2stat(NU,DELTA) returns the mean and variance of the noncentral
chi-square pdf with NU degrees of freedom and noncentrality parameter DELTA.
NU and DELTA can be vectors, matrices, or multidimensional arrays that all have
the same size., which is also the size of M and V. A scalar input for NU or DELTA
is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral chi-square distribution with parameters ν and δ is
, and the variance is .

Example [m,v] = ncx2stat(4,2)

m =
 6

v =
 16

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
Edition, John Wiley and Sons, 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd

ν δ+ 2 ν 2δ+()

nlinfit

12-382

12nlinfitPurpose Nonlinear least-squares regression

Syntax beta = nlinfit(X,y,fun,beta0)
[beta,r,J] = nlinfit(X,y,fun,beta0)
[...] = nlinfit(X, y, fun, beta0, options)

Description beta = nlinfit(X,y,fun,beta0) estimates the coefficients of a nonlinear
regression function using least squares. y is a vector of response (dependent
variable) values. Typically, X is a design matrix of predictor (independent
variable) values, with one row for each value in y. However, X can be any array
that fun can accept. fun is a function, specified using the @ sign, of the form

yhat = myfun(beta,X)

where beta is a coefficient vector. fun returns a vector yhat of fitted y values.
beta0 is a vector containing initial values for the coefficients.

[beta,r,J] = nlinfit(X,y,fun,beta0) returns the fitted coefficients, beta,
the residuals, r, and the Jacobian, J. You can use these outputs with nlpredci
to produce error estimates on predictions, and with nlparci to produce error
estimates on the estimated coefficients.

Note nlintool provides a GUI for performing nonlinear fits and computing
confidence intervals.

[...] = nlinfit(X, y, fun, beta0, options) accepts the input argument
options, a structure that sets parameters for the algorithm used in nlinfit.
You can create options using statset. The fields of options are

• MaxIter — Maximum number of iterations allowed. The default is 100.

• TolFun — Termination tolerance on the residual sum of squares. The
defaults is 1e-8.

• TolX — Termination tolerance on the estimated coefficients beta. The
default is 1e-8.

• Display — Level of display output during estimation. The choices are

- 'off' (the default),

nlinfit

12-383

- 'iter'
- 'final'

• 'DerivStep' — Relative difference used in finite difference gradient
calculation. May be a scalar, or the same size as the parameter vector beta0.
The default is eps^(1/3).

• 'FunValCheck' — Check for invalid values, such as NaN or Inf, from the
objective function. Values are 'off' or 'on' (the default).

nlinfit treats NaNs in y or fun(beta, X) as missing data and ignores the
corresponding rows.

Example Find the coefficients that best fit the data in reaction.mat. The chemistry
behind this data set deals with reaction kinetics as a function of the partial
pressure of three chemical reactants: hydrogen, n-pentane, and isopentane.

The hougen function uses the Hougen-Watson model for reaction kinetics to
return the predicted values of the reaction rate.

load reaction
betafit = nlinfit(reactants,rate,@hougen,beta)

betafit =

 1.2526
 0.0628
 0.0400
 0.1124
 1.1914

Reference [1] Seber, G. A. F, and C. J. Wild, Nonlinear Regression, Wiley, 1989.

See Also hougen, nlintool, nlparci, nlpredci

nlintool

12-384

12nlintoolPurpose Fit a nonlinear equation to data and display an interactive graph

Syntax nlintool(x,y,fun,beta0)
nlintool(x,y,fun,beta0,alpha)
nlintool(x,y,fun,beta0,alpha,'xname','yname')

Description nlintool displays a “vector” of plots, one for each column of the matrix of
inputs, x. The response variable, y, is a column vector that matches the number
of rows in x.

nlintool(x,y,fun,beta0) is a prediction plot that provides a nonlinear curve
fit to (x,y) data. It plots a 95% global confidence interval for predictions as two
red curves. beta0 is a vector containing initial guesses for the parameters.

fun is a MATLAB function that returns a vector of fitted y values. It is of the
form

yhat = myfun(beta,x)

nlintool(x,y,fun,beta0,alpha) plots a 100(1 - alpha)% confidence
interval for predictions.

The default value for alpha is 0.05, which produces 95% confidence intervals.

nlintool(x,y,fun,beta0,alpha,'xname','yname') labels the plot using the
string matrix 'xname' for the x variables and the string 'yname' for the y
variable.

nlintool treats NaNs in y or fun(beta, X) as missing data and ignores the
corresponding rows.

Example See “An Interactive GUI for Nonlinear Fitting and Prediction” on page 5-6 for
an example and for details about using the graphical interface.

See Also nlinfit, rstool

nlparci

12-385

12nlparciPurpose Confidence intervals on estimates of parameters in nonlinear models

Syntax ci = nlparci(beta,resid,J)
ci = nlparci(beta,resid,J,alpha)

Description nlparci(beta,resid,J) returns the 95% confidence interval ci on the
nonlinear least squares parameter estimates beta. Before calling nlparci, use
nlinfit to fit a nonlinear regression model and get the coefficient estimates
beta, residuals resid, and Jacobian J.

ci = nlparci(beta,resid,J,alpha) returns 100(1-alpha) percent
confidence intervals.

nlparci treats NaNs in resid or J as missing values, and ignores the
corresponding observations.

The confidence interval calculation is valid for systems where the length of
resid exceeds the length of beta and J has full column rank. When J is
ill-conditioned, confidence intervals may be inaccurate.

Example Continuing the example from nlinfit:

load reaction
[beta,resid,J] = nlinfit(reactants,rate,'hougen',beta);
ci = nlparci(beta,resid,J)

ci =

 -1.0798 3.3445
 -0.0524 0.1689
 -0.0437 0.1145
 -0.0891 0.2941
 -1.1719 3.7321

See Also nlinfit, nlintool, nlpredci

nlpredci

12-386

12nlpredciPurpose Confidence intervals on predictions of nonlinear models

Syntax ypred = nlpredci(fun,inputs,beta,r,J)
[ypred,delta] = nlpredci(FUN,inputs,beta,r,J)
ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt')

Description ypred = nlpredci(FUN,inputs,beta,r,J) returns the predicted responses,
ypred, given the fitted parameters beta, residuals r, and the Jacobian
matrix J. inputs is a matrix of values of the independent variables in the
nonlinear function.

[ypred,delta] = nlpredci(FUN,inputs,beta,r,J) also returns the
half-width, delta, of confidence intervals for the nonlinear least squares
predictions. The confidence interval calculation is valid for systems where the
length of r exceeds the length of beta and J is of full column rank. The interval
[ypred-delta,ypred+delta] is a 95% non-simultaneous confidence interval
for the true value of the function at the specified input values.

ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt')
controls the type of confidence intervals. The confidence level is
100(1 - alpha)%. 'simopt' can be 'on' for simultaneous intervals or 'off'
(the default) for non-simultaneous intervals. 'predopt' can be 'curve' (the
default) for confidence intervals for the function value at the inputs, or
'observation' for confidence intervals for a new response value.

nlpredci uses the outputs of nlinfit for its inputs.

Example Continuing the example from nlinfit, you can determine the predicted
function value at [100 300 80] and the half-width of a confidence interval for
it.

load reaction
[beta,resids,J] = nlinfit(reactants,rate,@hougen,beta);
[ypred,delta] = nlpredci(@hougen,[100 300 80],beta,resids,J)

ypred =
 13

delta =
 1.4277

nlpredci

12-387

See Also nlinfit, nlintool, nlparci

normcdf

12-388

12normcdfPurpose Normal cumulative distribution function (cdf)

Syntax P = normcdf(X,MU,SIGMA)
[P, PLO, PUP] = normcdf(X, MU, SIGMA, PCOV, alpha)

Description normcdf(X,MU,SIGMA) computes the normal cdf at each of the values in X using
the corresponding parameters in MU and SIGMA. X, MU, and SIGMA can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other
inputs. The parameters in SIGMA must be positive.

[P, PLO, PUP] = normcdf(X, MU, SIGMA, PCOV, alpha) produces confidence
bounds for P when the input parameters MU and SIGMA are estimates. PCOV is
the covariance matrix of the estimated parameters. alpha specifies
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. PLO and
PUP are arrays of the same size as P containing the lower and upper confidence
bounds.

The function normdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The computed
bounds give approximately the desired confidence level when you estimate MU,
SIGMA, and PCOV from large samples, but in smaller samples other methods of
computing the confidence bounds might be more accurate.

The normal cdf is

The result, p, is the probability that a single observation from a normal
distribution with parameters µ and σ will fall in the interval (-∞ x].

The standard normal distribution has µ = 0 and σ = 1.

X µ̂–

σ̂

p F x µ σ,() 1
σ 2π
--------------- e

t µ–()– 2

2σ2

td∞–

x

∫= =

normcdf

12-389

Examples What is the probability that an observation from a standard normal
distribution will fall on the interval [-1 1]?

p = normcdf([-1 1]);
p(2) - p(1)

ans =

 0.6827

More generally, about 68% of the observations from a normal distribution fall
within one standard deviation, σ, of the mean, µ.

See Also cdf, normfit, norminv, normpdf, normplot, normrnd, normspec, normstat

normfit

12-390

12normfitPurpose Parameter estimates and confidence intervals for normal data

Syntax [muhat, sigmahat] = normfit(DATA)
[muhat,sigmahat,muci,sigmaci] = normfit(DATA)
[muhat,sigmahat,muci,sigmaci] = normfit(DATA,alpha)
[...] = normfit(DATA, alpha, censoring)
[...] = normfit(DATA, alpha, censoring, freq)
[...] = normfit(DATA, alpha, censoring, freq, options)

Description [muhat, sigmahat] = normfit(DATA) returns estimates of the mean, µ, and
standard deviation, σ, of the normal distribution given the data in DATA.

[muhat,sigmahat,muci,sigmaci] = normfit(DATA) returns 95% confidence
intervals for the parameter estimates on the µ and σ parameters in the arrays
muci and sigmaci. The first row of muci contains the lower bounds of the
confidence intervals for µ, and the second row contains the upper bounds. The
first row of sigmaci contains the lower bounds of the confidence intervals for σ,
and the second row contains the upper bounds .

[muhat,sigmahat,muci,sigmaci] = normfit(DATA, alpha) returns
100(1 - alpha) % confidence intervals for the parameter estimates, where
alpha is a value in the range [0 1] specifying the width of the confidence
intervals. By default, alpha is 0.05, which corresponds to 95% confidence
intervals.

[...] = normfit(data, alpha, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly. data must be
a vector in order to pass in the argument censoring.

[...] = normfit(data, alpha, censoring, freq) accepts a frequency
vector, freq, of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for alpha, censoring, or freq to use their
default values.

[...] = evfit(DATA, alpha, censoring, freq, options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates when
there is censoring. You can create options using the function statset. Enter

normfit

12-391

statset('normfit') to see the names and default values of the parameters
that normfit accepts in the options structure. See the reference page for
statset for more information about these options.

Example In this example the data is a two-column random normal matrix. Both columns
have µ = 10 and σ = 2. Note that the confidence intervals below contain the
“true values.”

data = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(data)

mu =
 10.1455 10.0527

sigma =
 1.9072 2.1256

muci =
 9.7652 9.6288
 10.5258 10.4766

sigmaci =
 1.6745 1.8663
 2.2155 2.4693

See Also normcdf, norminv, normlike, normpdf, normplot, normrnd, normspec,
normstat, mle, statset

norminv

12-392

12norminvPurpose Inverse of the normal cumulative distribution function (cdf)

Syntax X = norminv(P,MU,SIGMA)
[X, XLO, XUP] = norminv(P, MU, SIGMA, PCOV, alpha)

Description X = norminv(P,MU,SIGMA) computes the inverse of the normal cdf with
parameters MU and SIGMA at the corresponding probabilities in P. P, MU, and
SIGMA can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in SIGMA must be positive, and
the values in P must lie in the interval [0 1].

[X, XLO, XUP] = norminv(P, MU, SIGMA, PCOV, alpha) produces confidence
bounds for X when the input parameters MU and SIGMA are estimates. PCOV is
the covariance matrix of the estimated parameters. alpha specifies
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. XLO and
XUP are arrays of the same size as X containing the lower and upper confidence
bounds.

The function norminv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and
standard deviation 1. The computed bounds give approximately the desired
confidence level when you estimate MU, SIGMA, and PCOV from large samples, but
in smaller samples other methods of computing the confidence bounds may be
more accurate.

The normal inverse function is defined in terms of the normal cdf as

where

µ̂ σ̂q+

x F 1– p µ σ,() x:F x µ σ,() p={ }= =

p F x µ σ,() 1
σ 2π
--------------- e

t µ–()– 2

2σ2

td∞–

x

∫= =

norminv

12-393

The result, x, is the solution of the integral equation above where you supply
the desired probability, p.

Examples Find an interval that contains 95% of the values from a standard normal
distribution.

x = norminv([0.025 0.975],0,1)

x =
 -1.9600 1.9600

Note that the interval x is not the only such interval, but it is the shortest.

xl = norminv([0.01 0.96],0,1)

xl =
 -2.3263 1.7507

The interval xl also contains 95% of the probability, but it is longer than x.

See Also icdf, normfit, normfit, normpdf, normplot, normrnd, normspec, normstat

normlike

12-394

12normlikePurpose Negative normal log-likelihood function

Syntax nlogL = normlike(params,data)
[nlogL,AVAR] = normlike(params,data)
[...] = normlike(param, data, censoring)
[...] = normlike(param, data, censoring, freq)

Description nlogL = normlike(params,data) returns the negative of the normal
log-likelihood function for the parameters params(1) = MU and
params(2) = SIGMA, given the vector data.

[nlogL,AVAR] = normlike(params,data) also returns the inverse of Fisher's
information matrix, AVAR. If the input parameter values in params are the
maximum likelihood estimates, the diagonal elements of AVAR are their
asymptotic variances. AVAR is based on the observed Fisher's information, not
the expected information.

[...] = normlike(param, data, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = normlike(param, data, censoring, freq) accepts a frequency
vector, freq, of the same size as data. The vector freq typically contains
integer frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for censoring to use its default value.

normlike is a utility function for maximum likelihood estimation.

See Also betalike, gamlike, mle, normfit, wbllike

normpdf

12-395

12normpdfPurpose Normal probability density function (pdf)

Syntax Y = normpdf(X,MU,SIGMA)

Description normpdf(X,MU,SIGMA) computes the normal pdf at each of the values in X using
the corresponding parameters in MU and SIGMA. X, MU, and SIGMA can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other
inputs. The parameters in SIGMA must be positive.

The normal pdf is

The likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the parameters that
maximize the likelihood function for a fixed value of x.

The standard normal distribution has µ = 0 and σ = 1.

If x is standard normal, then xσ + µ is also normal with mean µ and standard
deviation σ. Conversely, if y is normal with mean µ and standard deviation σ,
then x = (y-µ) / σ is standard normal.

Examples mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)

MLE =

 1.5000

See Also mvnpdf, normfit, norminv, normplot, normrnd, normspec, normstat, pdf

y f x µ σ,() 1
σ 2π
---------------e

x µ–()– 2

2σ2

= =

normplot

12-396

12normplotPurpose Normal probability plot for graphical normality testing

Syntax normplot(X)
h = normplot(X)

Description normplot(X) displays a normal probability plot of the data in X. For matrix X,
normplot displays a line for each column of X.

The plot has the sample data displayed with the plot symbol '+'.
Superimposed on the plot is a line joining the first and third quartiles of each
column of X (a robust linear fit of the sample order statistics.) This line is
extrapolated out to the ends of the sample to help evaluate the linearity of the
data.

If the data does come from a normal distribution, the plot will appear linear.
Other probability density functions will introduce curvature in the plot.

h = normplot(X) returns a handle to the plotted lines.

Examples Generate a normal sample and a normal probability plot of the data.

x = normrnd(0,1,50,1);
h = normplot(x);

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

normplot

12-397

The plot is linear, indicating that you can model the sample by a normal
distribution.

See Also cdfplot, hist, normfit, normfit, norminv, normpdf, normrnd, normspec,
normstat

normrnd

12-398

12normrndPurpose Generate random numbers from the normal distribution

Syntax R = normrnd(MU,SIGMA)
R = normrnd(MU,SIGMA,v)
R = normrnd(MU,SIGMA,m,n)

Description R = normrnd(MU,SIGMA) generates normal random numbers with mean MU
and standard deviation SIGMA. MU and SIGMA can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of R. A
scalar input for MU or SIGMA is expanded to a constant array with the same
dimensions as the other input.

R = normrnd(MU,SIGMA,v) generates normal random numbers with
parameters MU and SIGMA, where v is a row vector. If v is a 1-by-2 vector, R is a
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional
array.

R = normrnd(MU,SIGMA,m,n) generates normal random numbers with
parameters MU and SIGMA, where scalars m and n are the row and column
dimensions of R.

Reproducing the Output of normrnd
normrnd uses the MATLAB function randn to generate random numbers. When
you call normrnd, you change the current state of randn, and thereby alter the
output of subsequent calls to normrnd or any other functions that depend on
randn. If you want to reproduce the output of normrnd, reset the state of randn
to the same fixed value each time you call normrnd. For an example of how to
do this, and a list of the Statistics Toolbox functions that depend on randn, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current state of
randn. If you run the code in these examples, your results might differ from
the answers shown here.

Examples n1 = normrnd(1:6,1./(1:6))

normrnd

12-399

n1 =
 2.1650 2.3134 3.0250 4.0879 4.8607 6.2827

n2 = normrnd(0,1,[1 5])

n2 =
 0.0591 1.7971 0.2641 0.8717 -1.4462

n3 = normrnd([1 2 3;4 5 6],0.1,2,3)

n3 =
 0.9299 1.9361 2.9640
 4.1246 5.0577 5.9864

See Also normfit, normfit, norminv, normpdf, normplot, normspec, normstat

normspec

12-400

12normspecPurpose Plot normal density between specification limits

Syntax p = normspec(specs, mu, sigma)
[p,h] = normspec(specs, mu, sigma)

Description p = normspec(specs,mu,sigma) plots the normal density between a lower
and upper limit defined by the two elements of the vector specs, where mu and
sigma are the parameters of the plotted normal distribution.

[p,h] = normspec(specs,mu,sigma) returns the probability p of a sample
falling between the lower and upper limits. h is a handle to the line objects.

If specs(1) is -Inf, there is no lower limit, and similarly if specs(2) = Inf,
there is no upper limit.

Example Suppose a cereal manufacturer produces 10 ounce boxes of corn flakes.
Variability in the process of filling each box with flakes causes a 1.25 ounce
standard deviation in the true weight of the cereal in each box. The average box
of cereal has 11.5 ounces of flakes. What percentage of boxes will have less than
10 ounces?

normspec([10 Inf],11.5,1.25)

See Also capaplot, disttool, histfit, normfit, normfit, norminv, normpdf, normplot,
normrnd, normstat

6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

Critical Value

D
en

si
ty

Probability Between Limits is 0.8849

normstat

12-401

12normstatPurpose Mean and variance for the normal distribution

Syntax [M,V] = normstat(MU,SIGMA)

Description [M,V] = normstat(MU,SIGMA) returns the mean and variance for the normal
distribution with parameters MU and SIGMA. MU and SIGMA can be vectors,
matrices, or multidimensional arrays that all have the same size, which is also
the size of M and V. A scalar input for MU or SIGMA is expanded to a constant
array with the same dimensions as the other input.

The mean of the normal distribution with parameters µ and σ is µ, and the
variance is σ2.

Examples n = 1:5;
[m,v] = normstat(n'∗n,n'*n)

m =
 1 2 3 4 5
 2 4 6 8 10
 3 6 9 12 15
 4 8 12 16 20
 5 10 15 20 25

v =
 1 4 9 16 25
 4 16 36 64 100
 9 36 81 144 225
 16 64 144 256 400
 25 100 225 400 625

See Also normfit, normfit, norminv, normpdf, normplot, normrnd, normspec

parallelcoords

12-402

12parallelcoordsPurpose Parallel coordinates plot for multivariate data

Syntax parallelcoords(X)
parallelcoords(X, ..., 'Standardize', 'on')
parallelcoords(X, ..., 'Standardize', 'PCA')
parallelcoords(X, ..., 'Standardize', 'PCAStd')
parallelcoords(X, ..., 'Quantile', alpha)
parallelcoords(X, ..., 'Group', group)
parallelcoords(X, ..., 'Labels', labs)
parallelcoords(X, ..., 'PropertyName', PropertyValue, ...)
h = parallelcoords(X, ...)

Description parallelcoords(X) creates a parallel coordinates plot of the multivariate data
in the n-by-p matrix X. Rows of X correspond to observations, columns to
variables. A parallel coordinates plot is a tool for visualizing high dimensional
data, where each observation is represented by the sequence of its coordinate
values plotted against their coordinate indices. parallelcoords treats NaNs in
X as missing values and does not plot those coordinate values.

parallelcoords(X, ..., 'Standardize', 'on') scales each column of X to
have mean 0 and standard deviation 1 before making the plot.

parallelcoords(X, ..., 'Standardize', 'PCA') creates a parallel
coordinates plot from the principal component scores of X, in order of
decreasing eigenvalues. parallelcoords removes rows of X containing missing
values (NaNs) for principal components analysis (PCA) standardization.

parallelcoords(X, ..., 'Standardize','PCAStd') creates a parallel
coordinates plot using the standardized principal component scores.

parallelcoords(X, ..., 'Quantile', alpha) plots only the median and the
alpha and (1-alpha) quantiles of f(t) at each value of t. This is useful if X
contains many observations.

parallelcoords(X, ..., 'Group', group) plots the data in different groups
with different colors. Groups are defined by group, a numeric array containing
a group index for each observation. group can also be a character matrix or cell
array of strings, containing a group name for each observation.

parallelcoords(X, ..., 'Labels', labs) labels the coordinate tick marks
along the horizontal axis using labs, a character array or cell array of strings.

parallelcoords

12-403

parallelcoords(X, ..., 'PropertyName', PropertyValue, ...) sets
properties to the specified property values for all line graphics objects created
by parallelcoords.

h = parallelcoords(X, ...) returns a column vector of handles to the line
objects created by parallelcoords, one handle per row of X. If you use the
'Quantile' input parameter, h contains one handle for each of the three lines
objects created. If you use both the 'Quantile' and the 'Group' input
parameters, h contains three handles for each group.

Examples % make a grouped plot of the raw data
load fisheriris
labs = {'Sepal Length','Sepal Width','Petal Length',...
'Petal Width'};
parallelcoords(meas, 'group',species, 'labels',labs);
% plot only the median and quartiles of each group
parallelcoords(meas, 'group',species, 'labels', labs,...
'quantile',.25);

See Also andrewsplot, glyphplot

pareto

12-404

12paretoPurpose Pareto charts for Statistical Process Control

Syntax pareto(y)
pareto(y,names)
h = pareto(...)

Description pareto(y,names) displays a Pareto chart where the values in the vector y are
drawn as bars in descending order. Each bar is labeled with the associated
value in the string matrix names. pareto(y) labels each bar with the index of
the corresponding element in y.

The line above the bars shows the cumulative percentage.

pareto(y,names) labels each bar with the row of the string matrix names that
corresponds to the plotted element of y.

h = pareto(...) returns a combination of patch and line handles.

Example Create a Pareto chart from data measuring the number of manufactured parts
rejected for various types of defects.

defects = {'pits';'cracks';'holes';'dents'};
quantity = [5 3 19 25];
pareto(quantity,defects)

See Also bar, capaplot, ewmaplot, hist, histfit, schart, xbarplot

dents holes pits cracks
0

20

40

60

pcacov

12-405

12pcacovPurpose Principal components analysis (PCA) using the covariance matrix

Syntax COEFF = pcacov(V)
[COEFF, latent] = pcacov(V)
[COEFF, latent, explained] = pcacov(V)

Description COEFF = pcacov(V) performs principal components analysis on the p-by-p
covariance matrix V and returns the principal component coefficients, also
known as loadings. COEFF is a p-by-p matrix, with each column containing
coefficients for one principal component. The columns are in order of
decreasing component variance.

pcacov does not standardize V to have unit variances. To perform principal
components analysis on standardized variables, use the correlation matrix
R = V./(SD*SD')), where SD = sqrt(diag(V)), in place of V. To perform
principal components analysis directly on the data matrix, use princomp or
pcacov.

[COEFF, latent] = pcacov(V) returns latent, a vector containing the
principal component variances, that is, the eigenvalues of V.

[COEFF, latent, explained] = pcacov(V) returns explained, a vector
containing the percentage of the total variance explained by each principal
component.

Example load hald
covx = cov(ingredients);
[COEFF, latent, explained] = pcacov(covx)

COEFF =

 0.0678 -0.6460 0.5673 -0.5062
 0.6785 -0.0200 -0.5440 -0.4933
 -0.0290 0.7553 0.4036 -0.5156
 -0.7309 -0.1085 -0.4684 -0.4844

variances =

 517.7969
 67.4964
 12.4054

pcacov

12-406

 0.2372

explained =

 86.5974
 11.2882
 2.0747
 0.0397

References [1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and
Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University
Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also barttest, biplot, factoran, pcares, princomp

pcares

12-407

12pcaresPurpose Residuals from a principal components analysis

Syntax residuals = pcares(X,ndim)
[residuals, reconstructed] = pcares(X, ndim)

Description pcares(X,ndim) returns the residuals obtained by retaining ndim principal
components of the n-by-p matrix X. Rows of X correspond to observations,
columns to variables. ndim is a scalar and must be less than or equal to p.
residuals is a matrix of the same size as X. Use the data matrix, not the
covariance matrix, with this function.

pcares does not normalize the columns of X. To perform the principal
components analysis based on standardized variables, that is, based on
correlations, use pcares(zscore(X), ndim). You can perform principal
components analysis directly on a covariance or correlation matrix, but without
constructing residuals, by using pcacov.

[residuals, reconstructed] = pcares(X, ndim) returns the reconstructed
observations; that is, the approximation to X obtained by retaining its first ndim
principal components.

Example This example shows the drop in the residuals from the first row of the Hald
data as the number of component dimensions increases from one to three.

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);

r11 = r1(1,:)
r11 =

 2.0350 2.8304 -6.8378 3.0879

r21 = r2(1,:)
r21 =

 -2.4037 2.6930 -1.6482 2.3425

r31 = r3(1,:)
r31 =

pcares

12-408

 0.2008 0.1957 0.2045 0.1921

References [1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and
Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University
Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also factoran, pcacov, princomp

pdf

12-409

12pdfPurpose Probability density function (pdf) for a specified distribution

Syntax Y = pdf('name',X,A1,A2,A3)

Description pdf('name',X,A1,A2,A3) returns a matrix of densities, where 'name' is a
string containing the name of the distribution. X is a matrix of values, and A1,
A2, and A3 are matrices of distribution parameters. Depending on the
distribution, some of the parameters may not be necessary.

Vector or matrix inputs for X, A1, A2, and A3 must all have the same size. A
scalar input is expanded to a constant matrix with the same dimensions as the
other inputs.

pdf is a utility routine allowing access to all the pdfs in the Statistics Toolbox
using the name of the distribution as a parameter. See “Overview of the
Distributions” on page 2-45 for the list of available distributions.

Examples p = pdf('Normal',-2:2,0,1)

p =
 0.0540 0.2420 0.3989 0.2420 0.0540

p = pdf('Poisson',0:4,1:5)

p =
 0.3679 0.2707 0.2240 0.1954 0.1755

See Also betapdf, binopdf, cdf, chi2pdf, exppdf, fpdf, gampdf, geopdf, hygepdf,
lognpdf, nbinpdf, ncfpdf, nctpdf, ncx2pdf, normpdf, poisspdf, raylpdf,
tpdf, unidpdf, unifpdf, wblpdf

pdist

12-410

12pdistPurpose Pairwise distance between observations

Syntax Y = pdist(X)
Y = pdist(X,distance)
Y = pdist(X,distfun)
Y = pdist(X,'minkowski',p)

Description Y = pdist(X) computes the Euclidean distance between pairs of objects in
n-by-p data matrix X. Rows of X correspond to observations; columns
correspond to variables. Y is a row vector of length ,
corresponding to the pairs of observations in X. The distances are
arranged in the order (1,2), (1,3), ..., (1,n), (2,3), ..., (2,n), ..., ..., (n-1,n). Y is
commonly used as a dissimilarity matrix in clustering or multidimensional
scaling.

To save space and computation time, Y is formatted as a vector. However, you
can convert this vector into a square matrix using the squareform function so
that element i,j in the matrix, where , corresponds to the distance between
objects i and j in the original data set.

Y = pdist(X,distance) computes the distance between objects in the data
matrix, X, using the method specified by distance, where distance can be any
of the following character strings that identify ways to compute the distance.

 'euclidean' Euclidean distance (default)

'seuclidean' Standardized Euclidean distance. Each coordinate in the
sum of squares is inverse weighted by the sample
variance of that coordinate.

'mahalanobis' Mahalanobis distance

'cityblock' City Block metric

'minkowski' Minkowski metric

'cosine' One minus the cosine of the included angle between
points (treated as vectors)

'correlation' One minus the sample correlation between points
(treated as sequences of values).

n 1–() n 2⁄⋅
n 1–() n 2⁄⋅

i j<

pdist

12-411

Y = pdist(X,@distfun) accepts a function handle to a distance function of the
form

d = distfun(u,V)

which takes as arguments a 1-by-p vector u, corresponding to a single row of X,
and an m-by-p matrix V, corresponding to multiple rows of X. distfun must
accept a matrix V with an arbitrary number of rows. distfun must return an
m-by-1 vector of distances d, whose kth element is the distance between u and
V(k,:).

Parameterizing Functions Called by Functions, in the online MATLAB
documentation, explains how to provide the additional parameters to the
distance function, if necessary.

Y = pdist(X,'minkowski',p) computes the distance between objects in the
data matrix, X, using the Minkowski metric. p is the exponent used in the
Minkowski computation which, by default, is 2.

Mathematical Definitions of Methods
Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x1,
x2, ..., xm, the various distances between the vector xr and xs are defined as
follows:

• Euclidean distance

• Standardized Euclidean distance

'spearman' One minus the sample Spearman's rank correlation
between observations, treated as sequences of values

'hamming' Hamming distance, the percentage of coordinates that
differ

'jaccard' One minus the Jaccard coefficient, the percentage of
nonzero coordinates that differ

'chebychev' Chebychev distance (maximum coordinate difference)

drs
2 xr xs–() xr xs–()'=

pdist

12-412

where D is the diagonal matrix with diagonal elements given by , which
denotes the variance of the variable Xj over the m objects.

• Mahalanobis distance

where V is the sample covariance matrix.

• City Block metric

• Minkowski metric

Notice that for the special case of p = 1, the Minkowski metric gives the City
Block metric, and for the special case of p = 2, the Minkowski metric gives
the Euclidean distance.

• Cosine distance

• Correlation distance

where

drs
2 xr xs–()D 1– xr xs–()'=

vj
2

drs
2 xr xs–()V 1– xr xs–()′=

drs xrj xsj–
j 1=

n

∑=

drs xrj xsj–
p

j 1=

n

∑
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

1
p

=

drs 1 x– rx′s x′rxr()
1
2

x′sxs()
1
2

⁄
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

drs 1
xr xr–() xs xs–()′

xr xr–() xr xr–()′[]
1
2

xs xs–() xs xs–()′[]
1
2

--–=

pdist

12-413

 and

• Hamming distance

• Jaccard distance

Examples X = [1 2; 1 3; 2 2; 3 1]

X =
 1 2
 1 3
 2 2
 3 1

Y = pdist(X,'mahal')
Y =
 2.3452 2.0000 2.3452 1.2247 2.4495 1.2247

Y = pdist(X)
Y =
 1.0000 1.0000 2.2361 1.4142 2.8284 1.4142

squareform(Y)

ans =
 0 1.0000 1.0000 2.2361
 1.0000 0 1.4142 2.8284
 1.0000 1.4142 0 1.4142
 2.2361 2.8284 1.4142 0

See Also cluster, clusterdata, cmdscale, cophenet, dendrogram, inconsistent,
linkage, silhouette, squareform

xr
1
n
--- xrj

j
∑= xs

1
n
--- xsj

j
∑=

drs # xrj xsj≠() n⁄()=

drs
xrj xsj≠() xrj 0≠() xsj 0≠()∨()∧[]

xrj 0≠() xsj 0≠()∨[]
---=

perms

12-414

12permsPurpose All permutations

Syntax P = perms(v)

Description P = perms(v) where v is a row vector of length n, creates a matrix whose rows
consist of all possible permutations of the n elements of v. The matrix P
contains n! rows and n columns.

perms is only practical when n is less than 8 or 9.

Example perms([2 4 6])

ans =

 6 4 2
 6 2 4
 4 6 2
 4 2 6
 2 4 6
 2 6 4

poisscdf

12-415

12poisscdfPurpose Poisson cumulative distribution function (cdf)

Syntax P = poisscdf(X,LAMBDA)

Description poisscdf(X,LAMBDA) computes the Poisson cdf at each of the values in X using
the corresponding parameters in LAMBDA. X and LAMBDA can be vectors,
matrices, or multidimensional arrays that have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other input.
The parameters in LAMBDA must be positive.

The Poisson cdf is

Examples For example, consider a Quality Assurance department that performs random
tests of individual hard disks. Their policy is to shut down the manufacturing
process if an inspector finds more than four bad sectors on a disk. What is the
probability of shutting down the process if the mean number of bad sectors (λ)
is two?

probability = 1 - poisscdf(4,2)

probability =

 0.0527

About 5% of the time, a normally functioning manufacturing process will
produce more than four flaws on a hard disk.

Suppose the average number of flaws (λ) increases to four. What is the
probability of finding fewer than five flaws on a hard drive?

probability = poisscdf(4,4)

probability =

 0.6288

This means that this faulty manufacturing process continues to operate after
this first inspection almost 63% of the time.

p F x λ() e λ– λi

i!

i 0=

floor x()

∑= =

poisscdf

12-416

See Also cdf, poissfit, poissinv, poisspdf, poissrnd, poisstat

poissfit

12-417

12poissfitPurpose Parameter estimates and confidence intervals for Poisson data

Syntax lambdahat = poissfit(DATA)
[lambdahat,lambdaci] = poissfit(DATA)
[lambdahat,lambdaci] = poissfit(DATA,alpha)

Description poissfit(DATA) returns the maximum likelihood estimate (MLE) of the
parameter of the Poisson distribution, λ, given the data DATA.

[lambdahat,lambdaci] = poissfit(DATA) also gives 95% confidence
intervals in lamdaci.

[lambdahat,lambdaci] = poissfit(DATA,alpha) gives 100(1 - alpha)%
confidence intervals. For example alpha = 0.001 yields 99.9% confidence
intervals.

The sample average is the MLE of λ.

Example r = poissrnd(5,10,2);
[l,lci] = poissfit(r)

l =
7.4000 6.3000

lci =
5.8000 4.8000
9.1000 7.9000

See Also betafit, binofit, expfit, gamfit, poisscdf, poissinv, poisspdf, poissrnd,
poisstat, unifit, wblfit

λ̂ 1
n
--- xi

i 1=

n

∑=

poissinv

12-418

12poissinvPurpose Inverse of the Poisson cumulative distribution function (cdf)

Syntax X = poissinv(P,LAMBDA)

Description poissinv(P,LAMBDA) returns the smallest value X such that the Poisson cdf
evaluated at X equals or exceeds P. P and LAMBDA can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other input.

Examples If the average number of defects (λ) is two, what is the 95th percentile of the
number of defects?

poissinv(0.95,2)

ans =

 5

What is the median number of defects?

median_defects = poissinv(0.50,2)

median_defects =

 2

See Also icdf, poisscdf, poissfit, poisspdf, poissrnd, poisstat

poisspdf

12-419

12poisspdfPurpose Poisson probability density function (pdf)

Syntax Y = poisspdf(X,LAMBDA)

Description poisspdf(X,LAMBDA) computes the Poisson pdf at each of the values in X using
the corresponding parameters in LAMBDA. X and LAMBDA can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other
input. The parameters in LAMBDA must all be positive.

The Poisson pdf is

where x can be any nonnegative integer. The density function is zero unless x
is an integer.

Examples A computer hard disk manufacturer has observed that flaws occur randomly in
the manufacturing process at the average rate of two flaws in a 4 Gb hard disk
and has found this rate to be acceptable. What is the probability that a disk will
be manufactured with no defects?

In this problem, λ = 2 and x = 0.

p = poisspdf(0,2)

p =
 0.1353

See Also pdf, poisscdf, poissfit, poissinv, poissrnd, poisstat

y f x λ() λx

x!
-----e λ– I 0 1 …, ,() x()= =

poissrnd

12-420

12poissrndPurpose Random numbers from the Poisson distribution

Syntax R = poissrnd(LAMBDA)
R = poissrnd(LAMBDA,v)
R = poissrnd(LAMBDA,m,n)

Description R = poissrnd(LAMBDA) generates Poisson random numbers with mean
LAMBDA. LAMBDA can be a vector, a matrix, or a multidimensional array. The size
of R is the size of LAMBDA.

R = poissrnd(LAMBDA,m) generates Poisson random numbers with mean
LAMBDA, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1)
rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = poissrnd(LAMBDA,m,n) generates Poisson random numbers with mean
LAMBDA, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of poissrnd
poissrnd uses the MATLAB functions rand and randn to generate random
numbers. When you call poissrnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to poissrnd or any
other functions that depend on rand or randn. If you want to reproduce the
output of poissrnd, reset the states of rand and randn to the same fixed values
each time you call poissrnd. For an example of how to do this, and a list of the
Statistics Toolbox functions that depend on rand or randn, see “Reproducing
the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current states of
rand and randn. If you run the code in these examples, your results may differ
from the answers shown here.

Examples Generate a random sample of 10 pseudo-observations from a Poisson
distribution with λ = 2.

lambda = 2;

random_sample1 = poissrnd(lambda,1,10)

poissrnd

12-421

random_sample1 =

 1 0 1 2 1 3 4 2 0 0

random_sample2 = poissrnd(lambda,[1 10])
random_sample2 =

 1 1 1 5 0 3 2 2 3 4

random_sample3 = poissrnd(lambda(ones(1,10)))
random_sample3 =

 3 2 1 1 0 0 4 0 2 0

See Also poisscdf, poissfit, poissinv, poisspdf, poisstat

poisstat

12-422

12poisstatPurpose Mean and variance for the Poisson distribution

Syntax M = poisstat(LAMBDA)
[M,V] = poisstat(LAMBDA)

Description M = poisstat(LAMBDA) returns the mean of the Poisson distribution with
parameter LAMBDA. The size of M is the size of LAMBDA.

[M,V] = poisstat(LAMBDA) also returns the variance V of the Poisson
distribution.

For the Poisson distribution with parameter λ, both the mean and variance are
equal to λ.

Examples Find the mean and variance for the Poisson distribution with λ = 2.

[m,v] = poisstat([1 2; 3 4])

m =
 1 2
 3 4

v =
 1 2
 3 4

See Also poisscdf, poissfit, poissinv, poisspdf, poissrnd

polyconf

12-423

12polyconfPurpose Polynomial evaluation and confidence interval estimation

Syntax [Y,DELTA] = polyconf(p,X,S)
[Y,DELTA] = polyconf(p,X,S,alpha)

Description [Y,DELTA] = polyconf(p,X,S) uses the optional output S generated by
polyfit to give 95% prediction intervals Y ± DELTA for future observations at X.
This assumes the errors in the data input to polyfit are independent normal
with constant variance.

[Y,DELTA] = polyconf(p,X,S,alpha) gives 100(1 - alpha)% prediction
intervals. For example, alpha = 0.1 yields 90% intervals.

If p is a vector whose elements are the coefficients of a polynomial in
descending powers, such as those output from polyfit, then polyconf(p,X) is
the value of the polynomial evaluated at X. If X is a matrix or vector, the
polynomial is evaluated at each of the elements.

Examples This example gives predictions and 90% prediction intervals for computing
time for LU factorizations of square matrices with 100 to 200 columns.

n = [100 100:20:200];
for i = n
A = rand(i,i);
tic
B = lu(A);

t(ceil((i-80)/20)) = toc;
end

[p,S] = polyfit(n(2:7),t,3);
[time,delta_t] = polyconf(p,n(2:7),S,0.1)

time =

 0.0829 0.1476 0.2277 0.3375 0.4912 0.7032

delta_t =

 0.0064 0.0057 0.0055 0.0055 0.0057 0.0064

polyfit

12-424

12polyfitPurpose Polynomial curve fitting

Syntax p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n
that fits the data, p(x(i)) to y(i), in a least squares sense. The result p is a
row vector of length n+1 containing the polynomial coefficients in descending
powers:

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p and a
structure S for use with polyval to obtain error estimates or predictions. S
contains fields for the triangular factor (R) from a QR decomposition of the
Vandermonde matrix of x, the degrees of freedom (df), and the norm of the
residuals (normr). If the data is random, an estimate of the covariance matrix
of p is (Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

where µ1 = mean(x) and µ2 = std(x). mu is the two-element vector [µ1 , µ2]. This
centering and scaling transformation improves the numerical properties of
both the polynomial and the fitting algorithm.

The polyfit function is part of the standard MATLAB language.

Example Fitting a random data set to a first-order polynomial:

[p,S] = polyfit(1:10,[1:10] + normrnd(0,1,1,10),1)
p =
 1.1433 -0.7868
S =
 R: [2x2 double]
 df: 8
 normr: 2.3773

p x() p1xn p2xn 1– … pnx pn 1++ + + +=

x̂
x µ1–

µ2
---------------=

polyfit

12-425

See Also polyval, polytool, polyconf

polytool

12-426

12polytoolPurpose Interactive plot for prediction of fitted polynomials

Syntax polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha,xname,yname)
h = polytool(...)

Description polytool(x,y) fits a line to the vectors x and y and displays an interactive plot
of the result in a graphical interface. You can use the interface to explore the
effects of changing the parameters of the fit and to export fit results to the
workspace. See “Polynomial Curve Fitting Demo” on page 4-36 for details.

polytool(x,y,n) initially fits a polynomial of degree n. The default is 1, which
produces a linear fit.

polytool(x,y,n,alpha) initially plots 100(1 - alpha)% confidence intervals
on the predicted values. The default is 0.05 which results in 95% confidence
intervals.

polytool(x,y,n,alpha,xname,yname) labels the x and y values on the
graphical interface using the strings xname and yname. Specify n and alpha as
[] to use their default values.

h = polytool(...) outputs a vector of handles, h, to the line objects in the
plot. The handles are returned in the order: data, fit, lower bounds, upper
bounds.

Algorithm polytool fits by least-squares using the regression model

yi β0 β1xi β2xi
2 … βnxi

n εi+ + ++ +=

εi N 0 σ2,()∼ i∀

Cov εi εj,() 0= i j,∀

polyval

12-427

12polyvalPurpose Polynomial evaluation

Syntax Y = polyval(p,X)
[Y,DELTA] = polyval(p,X,S)

Description Y = polyval(p,X) returns the predicted value of a polynomial given its
coefficients, p, at the values in X.

[Y,DELTA] = polyval(p,X,S) uses the optional output S generated by
polyfit to generate error estimates, Y ± DELTA. If the errors in the data input
to polyfit are independent normal with constant variance, Y ± DELTA contains
at least 50% of future observations at X.

If p is a vector whose elements are the coefficients of a polynomial in
descending powers, then polyval(p,X) is the value of the polynomial
evaluated at X. If X is a matrix or vector, the polynomial is evaluated at each of
the elements.

The polyval function is part of the standard MATLAB language.

Examples Simulate the function y = x, adding normal random errors with a standard
deviation of 0.1. Then use polyfit to estimate the polynomial coefficients. Note
that predicted Y values are within DELTA of the integer X in every case.

[p,S] = polyfit(1:10,(1:10) + normrnd(0,0.1,1,10),1);
X = magic(3);
[Y,D] = polyval(p,X,S)

Y =
 8.0696 1.0486 6.0636
 3.0546 5.0606 7.0666
 4.0576 9.0726 2.0516

D =
 0.0889 0.0951 0.0861
 0.0889 0.0861 0.0870
 0.0870 0.0916 0.0916

See Also polyfit, polytool, polyconf

prctile

12-428

12prctilePurpose Percentiles of a sample

Syntax Y = prctile(X,p)
Y = prctile(X,p,dim)

Description Y = prctile(X,p) returns percentiles of the values in X. p is a scalar or a
vector of percent values. When X is a vector, Y is the same size as p and Y(i)
contains the p(i)-th percentile. When X is a matrix, the i-th row of Y contains
the p(i)-th percentiles of each column of X. For N-dimensional arrays, prctile
operates along the first nonsingleton dimension of X.

Y = prctile(X,p,dim) calculates percentiles along dimension dim. The dim'th
dimension of Y has length length(p).

Percentiles are specified using percentages, from 0 to 100. For an n-element
vector X, prctile computes percentiles as follows:

1 The sorted values in X are taken to be the 100(0.5/n), 100(1.5/n), ...,
100([n-0.5]/n) percentiles.

2 Linear interpolation is used to compute percentiles for percent values
between 100(0.5/n) and 100([n-0.5]/n).

3 The minimum or maximum values in X are assigned to percentiles for
percent values outside that range.

prctile treats NaNs as missing values and removes them.

Examples x = (1:5)'*(1:5)

x =
 1 2 3 4 5
 2 4 6 8 10
 3 6 9 12 15
 4 8 12 16 20
 5 10 15 20 25

y = prctile(x,[25 50 75])

y =
 1.7500 3.5000 5.2500 7.0000 8.7500
 3.0000 6.0000 9.0000 12.0000 15.0000
 4.2500 8.5000 12.7500 17.0000 21.2500

princomp

12-429

12princompPurpose Principal components analysis (PCA)

Syntax COEFF = princomp(X)
[COEFF,SCORE,latent,tsquare] = princomp(X)
[...] = princomp(X, 'econ')

Description COEFF = princomp(X) performs principal components analysis on the n-by-p
data matrix X, and returns the principal component coefficients, also known as
loadings. Rows of X correspond to observations, columns to variables. COEFF is
a p-by-p matrix, each column containing coefficients for one principal
component. The columns are in order of decreasing component variance.

princomp centers X by subtracting off column means, but does not rescale the
columns of X. To perform principal components analysis with standardized
variables, that is, based on correlations, use princomp(zscore(X)). To perform
principal components analysis directly on a covariance or correlation matrix,
use pcacov.

[COEFF, SCORE] = princomp(X) returns SCORE, the principal component
scores; that is, the representation of X in the principal component space. Rows
of SCORE correspond to observations, columns to components.

[COEFF, SCORE,latent] = princomp(X) returns latent, a vector containing
the eigenvalues of the covariance matrix of X.

[COEFF, SCORE,latent,tsquare] = princomp(X) returns tsquare, which
contains Hotelling’s T2 statistic for each data point.

The scores are the data formed by transforming the original data into the space
of the principal components. The values of the vector latent are the variance
of the columns of SCORE. Hotelling’s T2 is a measure of the multivariate
distance of each observation from the center of the data set.

When n <= p, SCORE(:,n:p) and latent(n:p) are necessarily zero, and the
columns of COEFF(:,n:p) define directions that are orthogonal to X.

[...] = princomp(X, 'econ') returns only the elements of latent that are
not necessarily zero, and the corresponding columns of COEFF and SCORE, that
is, when n <= p, only the first n-1. This can be significantly faster when p is
much larger than n.

princomp

12-430

Example Compute principal components for the ingredients data in the Hald data set,
and the variance accounted for by each component.

load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent

pc =
 0.0678 -0.6460 0.5673 -0.5062
 0.6785 -0.0200 -0.5440 -0.4933
 -0.0290 0.7553 0.4036 -0.5156
 -0.7309 -0.1085 -0.4684 -0.4844

latent =

 517.7969
 67.4964
 12.4054
 0.2372

Reference [1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and
Sons, 1991, p. 592.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd edition, Springer, 2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University
Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also barttest, biplot, canoncorr, factoran, pcacov, pcares

probplot

12-431

12probplotPurpose Probability plot

Syntax probplot(Y)
probplot('distname', Y)
probplot(Y, cens, req)
probplot(ax, Y)
probplot(...,'noref')
probplot(ax, fun, params)
h = probplot(...)

Description probplot(Y) produces a normal probability plot comparing the distribution of
the data Y to the normal distribution. Y can be a single vector, or a matrix with
a separate sample in each column. The plot includes a reference line useful for
judging whether the data follow a normal distribution.

probplot('distname', Y) creates a probability plot for the specified
distribution.

probplot(Y, cens, freq) or probplot('distname', Y, cens, freq)
requires a vector Y. cens is a vector of the same size as Y and contains 1 for
observations that are right-censored and 0 for observations that are observed
exactly. freq is a vector of the same size as Y, containing integer frequencies
for the corresponding elements in Y.

probplot(ax, Y) takes a handle ax to an existing probability plot, and adds
additional lines for the samples in Y. ax is a handle for a set of axes.

probplot(...,'noref') omits the reference line.

probplot(ax, fun, params) takes a function fun and a set of parameters,
params, and adds fitted lines to the axes specified by ax. fun is a function to
compute a cdf function, and is specified with @, for example, @weibcdf. params
is the set of parameters required to evaluate fun, and is specified as a cell array
or vector. The function must accept a vector of X values as its first argument,
then the optional parameters, and must return a vector of cdf values evaluated
at X.

h = probplot(...) returns handles to the plotted lines.

See Also normplot, ecdf

procrustes

12-432

12procrustesPurpose Procrustes analysis

Syntax d = procrustes(X,Y)
[d,Z] = procrustes(X,Y)
[d,Z,transform] = procrustes(X,Y)

Description d = procrustes(X,Y) determines a linear transformation (translation,
reflection, orthogonal rotation, and scaling) of the points in matrix Y to best
conform them to the points in matrix X. The goodness-of-fit criterion is the sum
of squared errors. procrustes returns the minimized value of this dissimilarity
measure in d. d is standardized by a measure of the scale of X, given by

sum(sum((X-repmat(mean(X,1),size(X,1),1)).^2,1))

i.e., the sum of squared elements of a centered version of X. However, if X
comprises repetitions of the same point, the sum of squared errors is not
standardized.

X and Y must have the same number of points (rows), and procrustes matches
the ith point in Y to the ith point in X. Points in Y can have smaller dimension
(number of columns) than those in X. In this case, procrustes adds columns of
zeros to Y as necessary.

[d,Z] = procrustes(X,Y) also returns the transformed Y values.

[d,Z,transform] = procrustes(X,Y) also returns the transformation that
maps Y to Z. transform is a structure with fields:

That is, Z = transform.b * Y * transform.T + transform.c.

Examples This example creates some random points in two dimensions, then rotates,
scales, translates, and adds some noise to those points. It then uses procrustes
to conform Y to X, and plots the original X and Y, and the transformed Y.

 X = normrnd(0,1,[10 2]);

c Translation component

T Orthogonal rotation and reflection component

b Scale component

procrustes

12-433

 S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
 Y = normrnd(0.5*X*S + 2,0.05,size(X));
 [d,Z,tr] = procrustes(X,Y);
 plot(X(:,1),X(:,2),'rx',...
 Y(:,1),Y(:,2),'b.',...
 Z(:,1),Z(:,2),'bx');

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984

[2] Bulfinch, T., The Age of Fable; or, Stories of Gods and Heroes, Sanborn,
Carter, and Bazin, Boston, 1855.

See Also cmdscale, factoran

qqplot

12-434

12qqplotPurpose Quantile-quantile plot of two samples

Syntax qqplot(X)
qqplot(X,Y)
qqplot(X,Y,pvec)
h = qqplot(...)

Description qqplot(X) displays a quantile-quantile plot of the sample quantiles of X versus
theoretical quantiles from a normal distribution. If the distribution of X is
normal, the plot will be close to linear.

qqplot(X,Y) displays a quantile-quantile plot of two samples. If the samples
do come from the same distribution, the plot will be linear.

For matrix X and Y, qqplot displays a separate line for each pair of columns.
The plotted quantiles are the quantiles of the smaller data set.

The plot has the sample data displayed with the plot symbol '+'.
Superimposed on the plot is a line joining the first and third quartiles of each
distribution (this is a robust linear fit of the order statistics of the two samples).
This line is extrapolated out to the ends of the sample to help evaluate the
linearity of the data.

Use qqplot(X,Y,pvec) to specify the quantiles in the vector pvec.

h = qqplot(X,Y,pvec) returns handles to the lines in h.

Examples Generate two normal samples with different means and standard deviations.
Then make a quantile-quantile plot of the two samples.

x = normrnd(0,1,100,1);
y = normrnd(0.5,2,50,1);
qqplot(x,y);

qqplot

12-435

See Also normplot

-3 -2 -1 0 1 2 3
-10

-5

0

5

10

X Quantiles

Y
 Q

ua
nt

ile
s

quantile

12-436

12quantilePurpose Quantiles of a sample

Syntax Y = quantile(X, p)
Y = quantile(X, p, dim)

Description Y = quantile(X, p) returns quantiles of the values in X. p is a scalar or a
vector of cumulative probability values. When X is a vector, Y is the same size
as p, and Y(i) contains the p(i)th quantile. When X is a matrix, the ith row of
Y contains the p(i)th quantiles of each column of X. For N-dimensional arrays,
quantile operates along the first nonsingleton dimension of X.

Y = quantile(X, p, dim) calculates quantiles along dimension dim. The dimth
dimension of Y has length length(P).

Quantiles are specified using cumulative probabilities from 0 to 1. For an
n-element vector X, quantile computes quantiles as follows:

1 The sorted values in X are taken as the (0.5/n), (1.5/n), ..., ([n-0.5]/n)
quantiles.

2 Linear interpolation is used to compute quantiles for probabilities between
(0.5/n) and ([n-0.5]/n).

3 The minimum or maximum values in X are assigned to quantiles for
probabilities outside that range.

quantile treats NaNs as missing values and removes them.

Examples y = quantile(x,.50); % the median of x
y = quantile(x,[.025 .25 .50 .75 .975]); % a useful summary of x

See Also prctile, iqr, median

randg

12-437

12randgPurpose Gamma distributed random numbers and arrays (unit scale)

Syntax Y = randg
Y = randg(A)
Y = randg(A,M)
Y = randg(A,M,N,...)
Y = randg(A,[M,N,...])

Description Y = randg returns a scalar random value chosen from a gamma distribution
with unit scale and shape.

Y = randg(A) returns a matrix of random values chosen from gamma
distributions with unit scale. Y is the same size as A, and randg generates each
element of Y using a shape parameter equal to the corresponding element of A.

Y = randg(A,M) returns an M-by-M matrix of random values chosen from
gamma distributions with shape parameters A. A is either an M-by-M matrix or
a scalar. If A is a scalar, randg uses that single shape parameter value to
generate all elements of Y.

Y = randg(A,M,N,...) or Y = randg(A,[M,N,...]) returns an M-by-N-by-...
array of random values chosen from gamma distributions with shape
parameters A. A is either an M-by-N-by-... array or a scalar.

randg produces pseudorandom numbers using the MATLAB functions rand
and randn. The sequence of numbers generated is determined by the states of
both generators. To create reproducible output from randg, set the states of
both rand and randn to a fixed pair of values before calling randg. For example,

rand('state',j);
randn('state',s);
r = randg(1,[10,1]);

always generates the same 10 values. You can also use the MATLAB
generators by calling rand and randn with the argument 'seed'. Calling randg
changes the current states of rand and randn and therefore alters the outputs
of subsequent calls to those functions.

To generate gamma random numbers and specify both the scale and shape
parameters, you should call gamrand rather than calling randg directly.

randg

12-438

References [1] Marsaglia, G., and Tsang, W. W., “A Simple Method for Generating Gamma
Variables,” ACM Transactions on Mathematical Software, Vol. 26, 2000, pp.
363-372.

See Also gamrnd

random

12-439

12randomPurpose Random numbers from a specified distribution

Syntax y = random('name',A1,A2,A3,m,n)

Description y = random('name',A1,A2,A3,m,n) returns a matrix of random numbers,
where 'name' is a string containing the name of the distribution, and A1, A2,
and A3 are matrices of distribution parameters. Depending on the distribution
some of the parameters may not be necessary.

Vector or matrix inputs must all have the same size. A scalar input is expanded
to a constant matrix with the same dimensions as the other inputs.

The last two parameters, d and e, are the size of the matrix y. If the
distribution parameters are matrices, then these parameters are optional, but
they must match the size of the other matrix arguments (see second example).

random is a utility routine allowing you to access all the random number
generators in the Statistics Toolbox using the name of the distribution as a
parameter. See “Overview of the Distributions” on page 2-45 for the list of
available distributions.

Examples rn = random('Normal',0,1,2,4)

rn =
 1.1650 0.0751 -0.6965 0.0591
 0.6268 0.3516 1.6961 1.7971

rp = random('Poisson',1:6,1,6)

rp =
 0 0 1 2 5 7

See Also betarnd, binornd, cdf, chi2rnd, exprnd, frnd, gamrnd, geornd, hygernd, icdf,
lognrnd, nbinrnd, ncfrnd, nctrnd, ncx2rnd, normrnd, pdf, poissrnd, raylrnd,
trnd, unidrnd, unifrnd, wblrnd

randsample

12-440

12randsamplePurpose Random sample, with or without replacement

Syntax y = randsample(n,k)
y = randsample(population,k)
y = ransample(...,replace)
y = randsample(...,true,w)

Description y = randsample(n,k) returns a 1-by-k vector y of values sampled uniformly at
random, without replacement, from the integers 1 to n.

y = randsample(population,k) returns k values sampled uniformly at
random, without replacement, from the values in the vector population.

y = ransample(...,replace) returns a sample taken with replacement if
replace is true, or without replacement if replace is false. The default is
false.

y = randsample(...,true,w) returns a weighted sample taken with
replacement, using a vector of positive weights w, whose length is n. The
probability that the integer i is selected for an entry of y is w(i)/sum(w).
Usually, w is a vector of probabilities. randsample does not support weighted
sampling without replacement.

Example The following command generates a random sequence of the characters A, C, G,
and T, with replacement, according to the specified probabilities.

R = randsample('ACGT',48,true,[0.15 0.35 0.35 0.15])

See Also rand, randperm

randtool

12-441

12randtoolPurpose Interactive random number generation using histograms for display

Syntax randtool

Description randtool sets up a graphic user interface for exploring the effects of changing
parameters and sample size on the histogram of random samples from the
supported probability distributions. See “Random Sample Generation Demo”
on page 2-4 for detailed information about the demo.

See Also disttool

range

12-442

12rangePurpose Sample range

Syntax y = range(X)
y = range(X,dim)

Description range(X) returns the difference between the maximum and the minimum of a
sample. For vectors, range(x) is the range of the elements. For matrices,
range(X) is a row vector containing the range of each column of X. For
N-dimensional arrays, range operates along the first nonsingleton dimension
of X.

y = range(X,dim) operates along the dimension dim of X.

range treats NaNs as missing values and ignores them.

The range is an easily-calculated estimate of the spread of a sample. Outliers
have an undue influence on this statistic, which makes it an unreliable
estimator.

Example The range of a large sample of standard normal random numbers is
approximately six. This is the motivation for the process capability indices Cp
and Cpk in statistical quality control applications.

rv = normrnd(0,1,1000,5);
near6 = range(rv)

near6 =

 6.1451 6.4986 6.2909 5.8894 7.0002

See Also std, iqr, mad

ranksum

12-443

12ranksumPurpose Wilcoxon rank sum test for equal medians

Syntax h = ranksum(x,y)
[p,h] = ranksum(x,y)
[p,h] = ranksum(x,y,'alpha',alpha)
[p,h,stats] = ranksum(...)

Description h = ranksum(x,y) performs a two-sided rank sum test of the hypothesis that
two independent samples, in the vectors x and y, come from distributions with
equal medians, and returns the p-value from the test. p is the probability of
observing the given result, or one more extreme, by chance if the null
hypothesis is true, i.e., the medians are equal. Small values of p cast doubt on
the validity of the null hypothesis. The two sets of data are assumed to come
from continuous distributions that are identical except possibly for a location
shift, but are otherwise arbitrary. x and y can be different lengths.

The Wilcoxon rank sum test is equivalent to the Mann-Whitney U test.

[p,h] = ranksum(x,y) returns the result of the hypothesis test, performed at
the 0.05 significance level, in h. If h = 0, then the null hypothesis, i.e., medians
are equal, cannot be rejected at the 5% level. If h = 1, then the null hypothesis
can be rejected at the 5% level.

[p,h] = ranksum(x,y,'alpha',alpha) returns the result of the hypothesis
test performed at the significance level alpha.

[p,h] = ranksum(...,'method', method) computes the p-value using an
exact algorithm, if you set method to 'exact' or a normal approximation, if you
set method to 'approximate'.

If you omit this argument, ranksum uses the exact method for small samples
and the approximate method for larger samples.

[p,h,stats] = ranksum(...) returns stats, a structure with one or two
fields. The field 'ranksum' contains the value of the rank sum statistic. If the
sample size is large, then p is calculated using a normal approximation and the
field 'zval' contains the value of the normal (Z) statistic.

ranksum

12-444

Example This example tests the hypothesis of equal medians for two independent
unequal-sized samples. The theoretical distributions are identical except for a
shift of 0.25.

x = unifrnd(0,1,10,1);
y = unifrnd(.25,1.25,15,1);
[p,h] = ranksum(x,y,0.05)

p =
 0.0375

h =
 1

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker,
1985.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley,
1973.

See Also kruskalwallis, signrank, signtest, ttest2

raylcdf

12-445

12raylcdfPurpose Rayleigh cumulative distribution function (cdf)

Syntax P = raylcdf(X,B)

Description P = raylcdf(X,B) computes the Rayleigh cdf at each of the values in X using
the corresponding parameters in B. X and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input for X or B
is expanded to a constant array with the same dimensions as the other input.

The Rayleigh cdf is

Example x = 0:0.1:3;
p = raylcdf(x,1);
plot(x,p)

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd
edition, Wiley, 1993, pp. 134–136.

See Also cdf, raylinv, raylpdf, raylrnd, raylstat

y F x b() t

b2

0

x

∫ e

t2–

2b2
---------⎝ ⎠
⎛ ⎞

= = dt

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

raylfit

12-446

12raylfitPurpose Parameter estimates and confidence intervals for Rayleigh data

Syntax raylfit(data, alpha)
[phat, pci] = raylfit(data, alpha)

Description raylfit(data, alpha) returns the maximum likelihood estimates of the
parameter of the Rayleigh distribution given the data in the vector data.

[phat, pci] = raylfit(data, alpha) returns the maximum likelihood
estimate and 100(1 - alpha)% confidence interval given the data. The default
value of the optional parameter alpha is 0.05, corresponding to 95% confidence
intervals.

See Also raylcdf, raylinv, raylpdf, raylrnd, raylstat, mle

raylinv

12-447

12raylinvPurpose Inverse of the Rayleigh cumulative distribution function

Syntax X = raylinv(P,B)

Description X = raylinv(P,B) returns the inverse of the Rayleigh cumulative distribution
function with parameter B at the corresponding probabilities in P. P and B can
be vectors, matrices, or multidimensional arrays that all have the same size. A
scalar input for P or B is expanded to a constant array with the same
dimensions as the other input.

Example x = raylinv(0.9,1)

x =
 2.1460

See Also icdf, raylcdf, raylpdf, raylrnd, raylstat

raylpdf

12-448

12raylpdfPurpose Rayleigh probability density function

Syntax Y = raylpdf(X,B)

Description Y = raylpdf(X,B) computes the Rayleigh pdf at each of the values in X using
the corresponding parameters in B. X and B can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of Y.
A scalar input for X or B is expanded to a constant array with the same
dimensions as the other input.

The Rayleigh pdf is

Example x = 0:0.1:3;
p = raylpdf(x,1);
plot(x,p)

See Also pdf, raylcdf, raylinv, raylrnd, raylstat

y f x b() x

b2
------e

x2–

2b2
---------⎝ ⎠
⎛ ⎞

= =

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

raylrnd

12-449

12raylrndPurpose Random matrices from the Rayleigh distribution

Syntax R = raylrnd(B)
R = raylrnd(B,v)
R = raylrnd(B,m,n)

Description R = raylrnd(B) returns a matrix of random numbers chosen from the
Rayleigh distribution with parameter B. B can be a vector, a matrix, or a
multidimensional array. The size of R is the size of B.

R = raylrnd(B,v) returns a matrix of random numbers chosen from the
Rayleigh distribution with parameter B, where v is a row vector. If v is a 1-by-2
vector, R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = raylrnd(B,m,n) returns a matrix of random numbers chosen from the
Rayleigh distribution with parameter B, where scalars m and n are the row and
column dimensions of R.

Reproducing the Output of raylrnd
raylrnd uses the MATLAB function randn to generate random numbers. When
you call raylrnd, you change the current state of randn, and thereby alter the
output of subsequent calls to raylrnd or any other functions that depend on
randn. If you want to reproduce the output of raylrnd, reset the state of randn
to the same fixed value each time you call raylrnd. For an example of how to
do this, and a list of the Statistics Toolbox functions that depend on randn, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The result in the following example depends on the current state of
randn. If you run the code in this example, your results may differ from the
answer shown here.

Example r = raylrnd(1:5)

r =
 1.7986 0.8795 3.3473 8.9159 3.5182

raylrnd

12-450

See Also random, raylcdf, raylinv, raylpdf, raylstat

raylstat

12-451

12raylstatPurpose Mean and variance for the Rayleigh distribution

Syntax M = raylstat(B)
[M,V] = raylstat(B)

Description [M,V] = raylstat(B) returns the mean and variance of the Rayleigh
distribution with parameter B.

The mean of the Rayleigh distribution with parameter b is and the
variance is

Example [mn,v] = raylstat(1)

mn =
 1.2533

v =
 0.4292

See Also raylcdf, raylinv, raylpdf, raylrnd

b π 2⁄

4 π–
2

------------b2

rcoplot

12-452

12rcoplotPurpose Residual case order plot

Syntax rcoplot(r,rint)

Description rcoplot(r,rint) displays an errorbar plot of the confidence intervals on the
residuals from a regression. The residuals appear in the plot in case order.
Inputs r and rint are outputs from the regress function.

Example X = [ones(10,1) (1:10)'];
y = X ∗ [10;1] + normrnd(0,0.1,10,1);
[b,bint,r,rint] = regress(y,X,0.05);
rcoplot(r,rint);

The figure shows a plot of the residuals with error bars showing 95% confidence
intervals on the residuals. All the error bars pass through the zero line,
indicating that there are no outliers in the data.

See Also regress

0 2 4 6 8 10

-0.2

-0.1

0

0.1

0.2

R
es

id
ua

ls

Case Number

refcurve

12-453

12refcurvePurpose Add a polynomial curve to the current plot

Syntax h = refcurve(p)

Description refcurve adds a graph of the polynomial p to the current axes. The function for
a polynomial of degree n is:

y = p1xn + p2x(n-1) + ... + pnx + pn+1

Note that p1 goes with the highest order term.

h = refcurve(p) returns the handle to the curve.

Example Plot data for the height of a rocket against time, and add a reference curve
showing the theoretical height (assuming no air friction). The initial velocity of
the rocket is 100 m/sec.

h = [85 162 230 289 339 381 413 437 452 458 456 440 400 356];
plot(h,'+')
refcurve([-4.9 100 0])

See Also polyfit, polyval, refline

0 2 4 6 8 10 12 14
0

100

200

300

400

500

refline

12-454

12reflinePurpose Add a reference line to the current axes

Syntax refline(slope,intercept)
refline(slope)
h = refline(slope,intercept)
refline

Description refline(slope,intercept) adds a reference line with the given slope and
intercept to the current axes.

refline(slope), where slope is a two-element vector, adds the line

 y = slope(2) + slope(1)*x

to the figure.

h = refline(slope,intercept) returns the handle to the line.

refline with no input arguments superimposes the least squares line on each
line object in the current figure (except LineStyles '-','--','.-'). This
behavior is equivalent to lsline.

Example y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
plot(y,'+')
refline(0,3)

See Also lsline, polyfit, polyval, refcurve

0 2 4 6 8 10 12
2

2.5

3

3.5

regress

12-455

12regressPurpose Multiple linear regression

Syntax b = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X,alpha)

Description b = regress(y,X) returns the least squares fit of y on X by solving the linear
model

for β, where:

• y is an n-by-1 vector of observations

• X is an n-by-p matrix of regressors

• β is a p-by-1 vector of parameters

• ε is an n-by-1 vector of random disturbances

[b,bint,r,rint,stats] = regress(y,X) returns an estimate of β in b, a 95%
confidence interval for β in the p-by-2 vector bint. The residuals are returned
in r and a 95% confidence interval for each residual is returned in the n-by-2
vector rint. The vector stats contains the R2 statistic along with the F and p
values for the regression.

[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1 - alpha)%
confidence intervals for bint and rint. For example, alpha = 0.2 gives 80%
confidence intervals.

X should include a column of ones so that the model contains a constant term.
The F statistic and p value are computed under the assumption that the model
contains a constant term, and they are not correct for models without a
constant. The R-square value is one minus the ratio of the error sum of squares
to the total sum of squares. This value can be negative for models without a
constant, which indicates that the model is not appropriate for the data.

If the columns of X are linearly dependent, regress sets the maximum possible
number of elements of B to zero to obtain a basic solution, and returns zeros in
elements of bint corresponding to the zero elements of B.

y Xβ ε+=

ε N 0 σ2I,()∼

regress

12-456

regress treats NaNs in X or y as missing values, and removes them.

Examples Suppose the true model is

where I is the identity matrix.

X = [ones(10,1) (1:10)']

X =
 1 1
 1 2
 1 3
 1 4
 1 5
 1 6
 1 7
 1 8
 1 9
 1 10

y = X ∗ [10;1] + normrnd(0,0.1,10,1)

y =
 11.1165
 12.0627
 13.0075
 14.0352
 14.9303
 16.1696
 17.0059
 18.1797
 19.0264
 20.0872

[b,bint] = regress(y,X,0.05)

b =
 10.0456
 1.0030

y 10 x ε+ +=

ε N 0 0.01I,()∼

regress

12-457

bint =
 9.9165 10.1747
 0.9822 1.0238

Compare b to [10 1]'. Note that bint includes the true model values.

Reference [1] Chatterjee, S., and A. S. Hadi. “Influential Observations, High Leverage
Points, and Outliers in Linear Regression,” Statistical Science, 1986, pp. 379–
416.

regstats

12-458

12regstatsPurpose Regression diagnostics for linear models

Syntax regstats(responses,DATA)
regstats(responses,DATA,model)
stats = regstats(...)
stats = regstats(responses,data,model,whichstats)

Description regstats(responses, data) fits a multiple linear regression of the
measurements in the vector, responses, on the values in the matrix, DATA. By
default, regstats uses a linear additive model with a constant term. With this
syntax, the function creates a graphical user interface (GUI) that displays a list
of diagnostic statistics, as shown in the following figure.

regstats

12-459

When you select the check boxes, corresponding to the statistics you want to
compute, and click OK, regstats returns the selected statistics as variables in
the MATLAB workspace. The names of the variables are displayed on the
right-hand side of the GUI. For example, if you select Coefficients in the GUI,
as shown in the following figure, regstats returns the regression coefficients
in the variable beta.

regstats(responses,data,model) enables you to specify the order of the
regression model. model can be one of the following strings

Alternatively, model can be a matrix of model terms as accepted by the x2fx
function. See x2fx for a description of this matrix and for a description of the
order in which terms appear. You can use this matrix to specify other models
including ones without a constant term.

stats = regstats(...) creates an output structure stats, whose fields
contain all the diagnostic statistics for the regression. This syntax does not
open the GUI. The following table lists the fields of stats:

'linear' Includes constant and linear terms (default).

'interaction' Includes constant, linear, and cross product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear, and squared terms.

'Q' Q from the QR decomposition of the design matrix, which
contains the values of the model terms for each observation

'R' R from the QR decomposition of the design matrix

'beta' Regression coefficients

'covb' Covariance of regression coefficients

'yhat' Fitted values of the response data

'r' Residuals

'mse' Mean squared error

Regression coefficients returned in the variable beta

regstats

12-460

Note that the fields names of stats correspond to the names of the variables
returned to the MATLAB workspace when you use the GUI. For example,
stats.beta corresponds to the variable beta that is returned when you select
Coefficients in the GUI and click OK.

stats = regstats(responses,DATA,model,whichstats) returns only the
statistics that you specify in whichstats. whichstats can be a single name
such as 'leverage' or a cell array of names such as {'leverage' 'standres'
'studres'}. Set whichstats to 'all' to return all of the statistics.

The F statistic and its p-value are computed under the assumption that the
model contains a constant term. They are not correct for models without a
constant. The R-square value is one minus the ratio of the error sum of squares
to the total sum of squares. This value can be negative for models without a
constant, which indicates that the model is not appropriate for the data.

'rsquare' R-square statistic

'adjrsquare' Adjusted R-square statistic

'leverage' Leverage

'hatmat' Hat (projection) matrix

's2_i' Delete-1 variance

'beta_i' Delete-1 coefficients

'standres' Standardized residuals

'studres' Studentized residuals

'dfbetas' Scaled change in regression coefficients

'dffit' Change in fitted values

'dffits' Scaled change in fitted values

'covratio' Change in covariance

'cookd' Cook's distance

'tstat' t statistics for coefficients

'fstat' F statistic

regstats

12-461

Example The following commands load the array hald and open the regstats GUI using
the data in hald.

load hald
regstats(heat,ingredients,'linear');

Select Fitted Values and Residuals in the GUI.

Click OK to export the fitted values and residuals to the MATLAB workspace
as variables named yhat and r, respectively. The following commands create a
scatter plot of yhat and r.

scatter(yhat,r)
xlabel('Fitted Values'); ylabel('Residuals');

70 80 90 100 110 120
−4

−3

−2

−1

0

1

2

3

4

Fitted Values

R
es

id
ua

ls

regstats

12-462

Alternatively, you can create the same plot, without using the regstats GUI,
by entering the following commands.

whichstats = {'yhat','r'};
stats = regstats(heat,ingredients,'linear', whichstats)

stats =

 source: ''
 yhat: [13x1 double]
 r: [13x1 double]

scatter(stats.yhat,stats.r)
xlabel('Fitted Values'); ylabel('Residuals');

The output stats contains the fields yhat and r, corresponding to setting

whichstats = {'yhat','r'};

stats.yhat and stats.r are the same as the workspace variables yhat and r,
respectively, created by the GUI.

Algorithm The usual regression model is y = Xβ + ε, where:

• y is an n-by-1 vector of responses

• X is an n-by-p design matrix

• β is an p-by-1 vector of parameters

• ε is an n-by-1 vector of random disturbances

The standard textbook equation for the least squares estimator of β is

However, this definition has poor numeric properties. Particularly dubious is
the computation of , which is both expensive and imprecise.

Let X = Q*R where Q and R come from a QR Decomposition of X. Q is orthogonal
and R is triangular. Numerically stable MATLAB code for β is

beta = R\(Q'*y);

β̂ X'X() 1– X'y=

X'X() 1–

regstats

12-463

Regression
Diagnostics

This section describes the diagnostic statistics provided by regstats for
evaluating multiple linear regression. Many regression diagnostics can be
easily calculated using the QR decomposition of X.

The following sections describe the diagnostics supplied by regstats:

• “QR Decomposition (Q)”

• “QR Decomposition (R)”

• “Regression Coefficients”

• “Fitted Values of the Response”

• “Residuals”

• “Mean Squared Error”

• “R-Square Statistic”

• “Adjusted R-Square Statistic”

• “Covariance Matrix of Estimated Coefficients”

• “Hat (Projection) Matrix”

• “Leverage”

• “Delete-1 Variance”

• “Delete-1 Coefficients”

• “Standardized Residuals”

• “Studentized Residuals”

• “Scaled Change in Regression Coefficients”

• “Change in Fitted Values”

• “Scaled Change in Fitted Values”

• “Change in Covariance”

• “Cook's Distance”

• “Student's t statistics”

• “F statistic”

QR Decomposition (Q)
Q is the first matrix from the QR Decomposition of X.

[Q,R] = qr(X,0)

regstats

12-464

This is the so-called economy-sized QR decomposition. Q is n-by-p, and its
columns are orthogonal. That is, Q'*Q = I (the identity matrix).

QR Decomposition (R)
R is the second matrix from the QR Decomposition of X.

[Q,R] = qr(X,0)

This is the economy-sized QR decomposition. R is p-by-p and triangular. This
makes solving linear systems simple.

Regression Coefficients
The least squares estimator for the regression coefficients is

beta = R\(Q'*y)

If you only want the coefficients and do not need to use Q and R later, then

beta = X\y

is the simplest code.

Fitted Values of the Response
Substituting the least squares estimator for beta into the model equation
(leaving out the error term e) gives the fitted values.

yhat = X*beta = X*(R\(Q'*y))

yhat is an n-by-1 vector of fitted (or predicted) values of y.

Residuals
The residuals are simply the observed values minus the fitted (or predicted)
values.

r = y - yhat

r is an n-by-1 vector, the same size as y.

Mean Squared Error
The mean squared error is an estimator of the variance of the random
disturbances e. This variance is assumed to be constant for all observations.

regstats

12-465

mse = r'*r./(n-p)

where

• r is the vector of residuals.

• n is the number of observations.

• p is the number of unknown coefficients.

R-Square Statistic
The R-square statistic is

rsquare = 1 - sse/sst

where

• sse = norm(r).^2, where r is the vector of residuals.
• sst = norm(y - mean(y)).^2

Adjusted R-Square Statistic
The adjusted R-square statistic is

adjrsquare = 1 - (1-rsquare)*(n/(n-p))

where

• rsquare is the R-square statistic.

• n is the number of observations.

• p is the number of unknown coefficients.

Covariance Matrix of Estimated Coefficients
The covariance matrix for the estimated coefficients is a p-by-p matrix. Its
diagonal elements are the variances of the individual coefficients in beta.

Rinv = R \ eye(p); % inverse of R
XtXinv = Rinv*Rinv'; % equivalent to inv(X'*X)
covb = XtXinv*mse;

covb is proportional to inv(X'*X), but the above calculation involving R is
faster and more stable.

regstats

12-466

Hat (Projection) Matrix
The hat matrix is an n-by-n matrix that projects the vector of observations, y,
onto the vector of fitted values yhat.

hatmat = Q*Q'
yhat = hatmat*y

Leverage
Leverage is a measure of the effect of a particular observation on the fitted
regression, due to the position of that observation in the space of the predictor
variables, X. In general, the more extreme a point is in the predictor space, the
more leverage it has.

leverage = diag(hatmat) = diag(Q*Q')

leverage is an n-by-1 vector containing the leverages of each observation. It is
the diagonal of the hat matrix.

Delete-1 Variance
The delete-1 variance is an n-by-1 vector. Each element contains the mean
squared error of the regression obtained by deleting the corresponding
observation.

s2_i = ((n-p)*mse - r.*r./(1-h))./(n-p-1)

where

• n is the number of observations.

• p is the number of unknown coefficients.

• mse is the mean squared error.

• r is the vector of residuals.

• h is the leverage vector.

Delete-1 Coefficients
The delete-1 coefficients is a p-by-n matrix. Each column contains the
coefficients of the regression obtained by deleting the corresponding
observation.

b_i(:,j) = beta - Rinv*(Q(j,:) .* r(j)./(1-h(j)))'

regstats

12-467

where

• Rinv is the inverse of the R matrix.

• r is the vector of residuals.

• h is the leverage vector.

Standardized Residuals
The standardized residuals are the raw residuals, normalized by an estimate
of their standard deviation.

standres = r ./ sqrt(mse*(1-h))

where

• r is the vector of residuals.

• mse is the mean squared error.

• h is the leverage vector.

Studentized Residuals
The studentized residuals are the raw residuals, normalized by an independent
estimate of their standard deviation.

studres = r ./ sqrt(s2_i*(1-h))

where

• r is the vector of residuals.

• s2_i is the delete-1 variance.

• h is the leverage vector.

Scaled Change in Regression Coefficients
The scaled change in regression coefficients is a p-by-n matrix. Each column
contains the scaled change in the estimated coefficients, beta, caused by
deleting the corresponding observation.

d = sqrt(diag(Rinv*Rinv'));
dfbetas(:,j) = (beta - b_i(:,j)) ./ (sqrt(s2_i(j).*d(j))

where

regstats

12-468

• Rinv is the inverse of the R matrix.

• b_i is the matrix of delete-1 coefficients.

• s2_i is the vector of delete-1 variances.

Change in Fitted Values
The change in fitted values is an n-by-1 vector. Each element contains the
change in a fitted value caused by deleting the corresponding observation.

dffit = r .* (h./(1-h))

where

• r is the vector of residuals.

• h is the leverage vector.

Scaled Change in Fitted Values
The scaled change in fitted values is an n-by-1 vector. Each element contains
the change in a fitted value caused by deleting the corresponding observation,
scaled by the standard error.

dffits = studres .* sqrt(h./(1-h))

where

• studres is the vector of studentized residuals.

• h is the leverage vector.

Change in Covariance
The change in covariance is an n-by-1 vector. Each element is the ratio of the
generalized variance of the estimated coefficients when the corresponding
element is deleted, to the generalized variance of the coefficients using all the
data.

covr = 1 ./ ((((n-p-1+studres.*studres)./(n-p)).^p).*(1-h))

where

• n is the number of observations.

• p is the number of unknown coefficients.

• studres is the vector of studentized residuals.

regstats

12-469

• h is the leverage vector.

Cook's Distance
Cook's distance is an n-by-1 vector. Each element is the normalized change in
the vector of fitted values, yhat, due to the deletion of the corresponding
observation.

cookd = r .* r .* (h./(1-h).^2)./(p*mse)

where

• r is the vector of residuals.

• h is the leverage vector.

• mse is the mean squared error.

• p is the number of unknown coefficients.

Student's t statistics
The Student's t statistics output is a structure containing t statistics and
related information. The structure contains the following fields:

• beta — Regression coefficient estimates

• se — Standard errors for the regression coefficient estimates

• t — t statistics for the regression coefficient estimates, each one for a test
that the corresponding coefficient is zero

• dfe — Degrees of freedom for error

• pval — p-values for each t statistic, which is calculated by the following code:

beta = R\(Q'*y)
se = sqrt(diag(covb))
t = beta ./ se
dfe = n-p
pval = 2*(tcdf(-abs(t), dfe))

F statistic
The F statistic output is a structure containing an F statistic and related
information. The structure contains the following fields:

• sse — Error sum of squares

regstats

12-470

• ssr — Regression sum of squares

• dfe — Error degrees of freedom

• dfr — Regression degrees of freedom

• f — F statistic value, for a test that all regression coefficients other than the
constant term are zero

• pval — p-value for the F statistic, which is calculated by the following code:

sse = norm(r).^2
ssr = norm(yfit - mean(yfit)).^2
dfe = n-p
dfr = p-1
f = (ssr/dfr) / (sse/dfe)
pval = 1 - fcdf(f, dfr, dfe)

Reference [1] Belsley, D. A., E. Kuh, and R. E. Welsch, Regression Diagnostics, Wiley,
1980.

[2] Chatterjee, S., and A. S. Hadi, “Influential Observations, High Leverage
Points, and Outliers in Linear Regression,” Statistical Science, 1986, pp. 379–
416.

[3] Cook, R. D., and S. Weisberg, Residuals and Influence in Regression, Wiley,
1982.

[4] Goodall, C. R., “Computation using the QR decomposition,” Statistical
Computing, ed. C. R. Rao, Handbook in Statistics, Volume 9.
Elsevier/North-Holland, 1993.

See Also leverage, stepwise, regress

ridge

12-471

12ridgePurpose Parameter estimate for ridge regression

Syntax b1 = ridge(y,X,k)
b0 = ridge(y,X,k,0)

Description b1 = ridge(y,X,k) returns the vector b1 of regression coefficients for the
linear model y = Xβ + ε, obtained by performing ridge regression of the
response vector y on the predictors X using ridge parameter k. The matrix X
should not contain a column of ones. The results are computed after centering
and scaling the X columns so they have mean 0 and standard deviation 1. If y
is an n-by-1 vector of observations, X is an n-by-p matrix, and k is a scalar, the
result b1 is a column vector with p elements. If k has m elements, b1 is p-by-m.

The ridge estimator of β is , where is a centered and
scaled version of X. b0 = ridge(y,X,k,0) performs the regression without
centering and scaling. The result b0 has p+1 coefficients, with the first being
the constant term. ridge(y,X,k,1) is the same as ridge(y,X,k).

The relationship between b1 and b0 is given by

b0 = [mean(y)-mean(X)*t; t]

where

t = b1./std(X,0,1)

When k = 0, the result b (either b0 or b1) is the least squares estimator. For
increasing k, the bias of b increases, but the variance of b falls. For poorly
conditioned X, the drop in the variance more than compensates for the bias.

Example This example creates a ridge trace (a plot of the coefficients as a function of the
ridge parameter) for the Hald data.

load hald
k = 0:.01:1;
b = ridge(heat, ingredients, k);
plot(k, b');
xlabel('Ridge parameter'); ylabel('Standardized coef.');
title('Ridge trace for Hald Data')
legend('x1','x2','x3','x4');

b1 X1
TX1 kI+() 1– X1y= X1

ridge

12-472

See Also regress, stepwise

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

10

Ridge parameter

S
ta

nd
ar

di
ze

d
co

ef
.

Ridge Trace for Hald Data

x1
x2
x3
x4

robustdemo

12-473

12robustdemoPurpose Demo of robust regression

Syntax robustdemo
robustdemo(X,Y)

Description robustdemo demonstrates robust regression and ordinary least squares
regression on a sample data set. The function creates a figure window
containing a scatter plot of sample data vectors X and Y, along with two fitted
lines calculated using least squares and the robust bisquare method. The
bottom of the figure shows the equations of the lines and the estimated error
standard deviations for each fit. If you use the left mouse button to select an
point and move it to a new location, both fits will update. If you hold down the
right mouse button over any point, the point will be labeled with the leverage
of that point on the least squares fit, and the weight of that point in the robust
fit.

robustdemo(X,Y) performs the same demonstration using the X and Y values
that you specify.

Example See “Robust Regression” on page 4-55 and “Robust Fitting Demo” on page 4-57.

See Also robustfit, leverage

robustfit

12-474

12robustfitPurpose Robust linear regression

Syntax b = robustfit(X,Y)
[b,stats] = robustfit(X,Y)
[b,stats] = robustfit(X,Y,'wfun',tune,'const')

Description b = robustfit(X,Y) uses robust linear regression to fit Y as a function of the
columns of X, and returns the vector b of coefficient estimates. The robustfit
function uses an iteratively reweighted least squares algorithm, with the
weights at each iteration calculated by applying the bisquare function to the
residuals from the previous iteration. This algorithm gives lower weight to
points that do not fit well. The results are less sensitive to outliers in the data
as compared with ordinary least squares regression. robustfit prepends a
column of ones to X to account for a constant term.

[b,stats] = robustfit(X,Y) also returns a stats structure with the
following fields:

Field Description

stats.ols_s Sigma estimate (rmse) from least squares fit

stats.robust_s Robust estimate of sigma

stats.mad_s Estimate of sigma computed using the median
absolute deviation of the residuals from their median;
used for scaling residuals during the iterative fitting

stats.s Final estimate of sigma, the larger of robust_s and a
weighted average of ols_s and robust_s

stats.se Standard error of coefficient estimates

stats.t Ratio of b to stats.se

stats.p p-values for stats.t

stats.coeffcorr Estimated correlation of coefficient estimates

stats.w Vector of weights for robust fit

stats.h Vector of leverage values for least squares fit

robustfit

12-475

The robustfit function estimates the variance-covariance matrix of the
coefficient estimates as V = inv(X'*X)*stats.s^2. The standard errors and
correlations are derived from V.

[b,stats] = robustfit(X,Y,'wfun',tune,'const') specifies a weight
function, a tuning constant, and the presence or absence of a constant term.
The weight function 'wfun' can be any of the names listed in the following
table.

The value r in the weight function expression is equal to

resid/(tune*s*sqrt(1-h))

where resid is the vector of residuals from the previous iteration, tune is the
tuning constant, h is the vector of leverage values from a least squares fit, and
s is an estimate of the standard deviation of the error term.

s = MAD/0.6745

stats.dfe Degrees of freedom for error

stats.R R factor in QR decomposition of X matrix

Weight Function Meaning Tuning Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339

'bisquare' w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385

'fair' w = 1 ./ (1 + abs(r)) 1.400

'huber' w = 1 ./ max(1, abs(r)) 1.345

'logistic' w = tanh(r) ./ r 1.205

'talwar' w = 1 * (abs(r)<1) 2.795

'welsch' w = exp(-(r.^2)) 2.985

Field (Continued) Description (Continued)

robustfit

12-476

The quantity MAD is the median absolute deviation of the residuals from their
median. The constant 0.6745 makes the estimate unbiased for the normal
distribution. If there are p columns in the X matrix (including the constant
term, if any), the smallest p-1 absolute deviations are excluded when
computing their median.

In addition to the function names listed above, 'wfun' can be 'ols' to perform
unweighted ordinary least squares.

The argument tune overrides the default tuning constant from the table. A
smaller tuning constant tends to downweight large residuals more severely,
and a larger tuning constant downweights large residuals less severely. The
default tuning constants, shown in the table, yield coefficient estimates that
are approximately 95% as efficient as least squares estimates, when the
response has a normal distribution with no outliers. The value of 'const' can
be 'on' (the default) to add a constant term or 'off' to omit it. If you want a
constant term, you should set 'const' to 'on' rather than adding a column of
ones to your X matrix.

As an alternative to specifying one of the named weight functions shown above,
you can write your own weight function that takes a vector of scaled residuals
as input and produces a vector of weights as output. You can specify 'wfun'
using @ (for example, @myfun) or as an inline function.

robustfit treats NaNs in X or Y as missing values, and removes them.

Example Let’s see how a single erroneous point affects least squares and robust fits.
First you generate a simple data set following the equation y = 10-2*x plus
some random noise. Then you change one y value to simulate an outlier that
could be an erroneous measurement.

x = (1:10)';
y = 10 - 2*x + randn(10,1);
y(10) = 0;

you use both ordinary least squares and robust fitting to estimate the
equations of a straight line fit.

bls = regress(y,[ones(10,1) x])

robustfit

12-477

bls =

 8.6305
 -1.4721

brob = robustfit(x,y)

brob =

 10.5089
 -1.9844

A scatter plot with both fitted lines shows that the robust fit (solid line) fits
most of the data points well but ignores the outlier. The least squares fit (dotted
line) is pulled toward the outlier.

scatter(x,y)
hold on
plot(x,bls(1)+bls(2)*x,'g:')
plot(x,brob(1)+brob(2)*x,'r-')

References [1] DuMouchel, W.H., and F. L. O’Brien, “Integrating a Robust Option into a
Multiple Regression Computing Environment,” Computer Science and
Statistics: Proceedings of the 21st Symposium on the Interface, Alexandria, VA:
American Statistical Association, 1989.

1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

robustfit

12-478

[2] Holland, P. W., and R. E. Welsch, “Robust Regression Using Iteratively
Reweighted Least-Squares,” Communications in Statistics: Theory and
Methods, A6, 1977, pp. 813-827.

[3] Huber, P. J., Robust Statistics, Wiley, 1981.

[4] Street, J. O., R. J. Carroll, and D. Ruppert, “A Note on Computing Robust
Regression Estimates via Iteratively Reweighted Least Squares,” The
American Statistician, 42, 1988, pp. 152-154.

See Also regress, robustdemo

rotatefactors

12-479

12rotatefactorsPurpose Rotation of factor analysis or principal components analysis loadings

Syntax B = rotatefactors(A)
B = rotatefactors(A, 'Method', 'orthomax', 'Coeff', gamma)
B = rotatefactors(A, 'Method', 'procrustes', 'Target', target)
B = rotatefactors(A, 'Method', 'pattern', 'Target', target)
B = rotatefactors(A, 'Method', 'promax')
[B, T] = rotatefactors(A, ...)

Description B = rotatefactors(A) rotates the d-by-m loadings matrix A to maximize the
varimax criterion, and returns the result in B. Rows of A and B correspond to
variables and columns correspond to factors, for example, the (i, j)th element of
A is the coefficient for the i-th variable on the j-th factor. The matrix A usually
contains principal component coefficients created with princomp or pcacov, or
factor loadings estimated with factoran.

B = rotatefactors(A, 'Method', 'orthomax', 'Coeff', gamma) rotates A
to maximize the orthomax criterion with the coefficient gamma, i.e., B is the
orthogonal rotation of A that maximizes

sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)

The default value of 1 for gamma corresponds to varimax rotation. Other
possibilities include gamma = 0, m/2, and d(m - 1)/(d + m - 2), corresponding to
quartimax, equamax, and parsimax. You can also supply the strings
'varimax', 'quartimax', 'equamax', or 'parsimax' for the 'method'
parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or
'parsimax', then additional parameters are

• 'Normalize' — Flag indicating whether the loadings matrix should be
row-normalized for rotation. If 'on' (the default), rows of A are normalized
prior to rotation to have unit Euclidean norm, and unnormalized after
rotation. If 'off', the raw loadings are rotated and returned.

• 'Reltol' — Relative convergence tolerance in the iterative algorithm used
to find T. The default is sqrt(eps).

• 'Maxit' — Iteration limit in the iterative algorithm used to find T. The
default is 250.

rotatefactors

12-480

B = rotatefactors(A, 'Method', 'procrustes', 'Target', target)
performs an oblique procrustes rotation of A to the d-by-m target loadings
matrix target.

B = rotatefactors(A, 'Method', 'pattern', 'Target', target) performs
an oblique rotation of the loadings matrix A to the d-by-m target pattern matrix
target, and returns the result in B. target defines the “restricted” elements of
B, i.e., elements of B corresponding to zero elements of target are constrained
to have small magnitude, while elements of B corresponding to nonzero
elements of target are allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is 'Type',
the type of rotation. If 'Type' is 'orthogonal', the rotation is orthogonal,
and the factors remain uncorrelated. If 'Type' is 'oblique' (the default), the
rotation is oblique, and the rotated factors might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has m
columns, then for orthogonal rotation, the jth column of target must contain
at least m - j zeros. For oblique rotation, each column of target must contain
at least m - 1 zeros.

B = rotatefactors(A, 'Method', 'promax') rotates A to maximize the
promax criterion, equivalent to an oblique Procrustes rotation with a target
created by an orthomax rotation. Use the four orthomax parameters to control
the orthomax rotation used internally by promax.

An additional parameter for 'promax' is 'Power', the exponent for creating
promax target matrix. 'Power' must be 1 or greater. The default is 4.

[B, T} = rotatefactors(A, ...) returns the rotation matrix T used to create
B, that is, B = A*T. inv(T'*T) is the correlation matrix of the rotated factors.
For orthogonal rotation, this is the identity matrix, while for oblique rotation,
it has unit diagonal elements but nonzero off-diagonal elements.

Examples X = randn(100,10);
 L = princomp(X);

% Default (normalized varimax) rotation of the first three
% components from a PCA.
[L1,T] = rotatefactors(L(:,1:3));

rotatefactors

12-481

% Equamax rotation of the first three components from a PCA.
[L2, T] = rotatefactors(L(:,1:3),'method','equamax');

% Promax rotation of the first three factors from an FA.
L = factoran(X,3,'Rotate','none');
L3, T] = rotatefactors(L,'method','promax','power',2);

% Pattern rotation of the first three factors from an FA.
Tgt = [1 1 1 1 1 0 1 0 1; 0 0 0 1 1 1 0 0 0; 1 0 0 1 0 1 1 1 1]';
[L4,T] = rotatefactors(L,'method','pattern','target',Tgt);
inv(T'*T) % the correlation matrix of the rotated factors

References [1] Harman, H. H., Modern Factor Analysis, 3rd edition, University of Chicago
Press, 1976.

[2] Lawley, D. N. and A. E. Maxwell, A. E., Factor Analysis as a Statistical
Method, 2nd edition, American Elsevier Publishing, 1971.

See Also biplot, factoran, princomp, pcacov, procrustes

rowexch

12-482

12rowexchPurpose D-optimal design of experiments – row exchange algorithm

Syntax settings = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns,'model')
[settings,X] = rowexch(...,'param1',value1,'param2',value2,...)

Description settings = rowexch(nfactors,nruns) generates the factor settings matrix,
settings, for a D-Optimal design using a linear additive model with a constant
term. settings has nruns rows and nfactors columns.

[settings,X] = rowexch(nfactors,nruns) also generates the associated
matrix X of term settings, often called the design matrix.

[settings,X] = rowexch(nfactors,nruns,'model') produces a design for
fitting a specified regression model. The input, 'model', can be one of these
strings:

[settings,X] = rowexch(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are:

Example This example illustrates that the D-optimal design for three factors in eight
runs, using an interactions model, is a two level full-factorial design.

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross product terms.

'quadratic' Includes interactions plus squared terms.

'purequadratic' Includes constant, linear and squared terms.

'display' Either 'on' or 'off' to control display of iteration counter.
The default is 'on'.

'init' Initial design as an nruns-by-nfactors matrix. The default is a
randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.

rowexch

12-483

s = rowexch(3,8,'interaction')

s =
 -1 -1 1
 1 -1 -1
 1 -1 1
 -1 -1 -1
 -1 1 1
 1 1 1
 -1 1 -1
 1 1 -1

Algorithm The rowexch function searches for a D-optimal design using a row-exchange
algorithm. It first generates a candidate set of points that are eligible to be
included in the design, and then iteratively exchanges design points for
candidate points in an attempt to reduce the variance of the coefficients that
would be estimated using this design. If you need to use a candidate set that
differs from the default one, call the candgen and candexch functions in place
of rowexch.

See Also bbdesign, candexch, candgen, ccdesign, cordexch, x2fx

rsmdemo

12-484

12rsmdemoPurpose Demo of design of experiments and surface fitting

Syntax rsmdemo

Description rsmdemo creates a GUI that simulates a chemical reaction. To start, you have
a budget of 13 test reactions. Try to find out how changes in each reactant affect
the reaction rate. Determine the reactant settings that maximize the reaction
rate. Estimate the run-to-run variability of the reaction. Now run a designed
experiment using the model pop-up. Compare your previous results with the
output from response surface modeling or nonlinear modeling of the reaction.
The GUI has the following elements:

• A Run button to perform one reactor run at the current settings

• An Export button to export the x and y data to the base workspace

• Three sliders with associated data entry boxes to control the partial
pressures of the chemical reactants: Hydrogen, n-Pentane, and Isopentane

• A text box to report the reaction rate

• A text box to keep track of the number of test reactions you have left

Example See “Design of Experiments Demo” on page 10-10.

See Also rstool, nlintool, cordexch

rstool

12-485

12rstoolPurpose Interactive fitting and visualization of a response surface

Syntax rstool(X,Y)
rstool(X,Y,model)
rstool(X,Y,model,alpha,'xname','yname')

Description rstool(X,Y) opens an interactive GUI for fitting and visualizing a polynomial
response surface for a response variable Y as a function of the multiple
predictor variables in X. Columns of X correspond to variables, rows to
observations. Y can be a vector, corresponding to a single response, or a matrix,
with columns corresponding to multiple responses. Y must have as many
elements (or rows if it is a matrix) as X has rows. rstool displays a family of
plots, one for each combination of X and Y columns. The plots show 95% global
confidence intervals for the predictions as two red curves.

rstool(x,y,model) enables you to control the initial regression model, where
model can be one of the following strings:

• 'linear' includes constant and first-order terms only

• 'purequadratic' includes constant, linear and squared terms

• 'interaction' includes constant, linear, and cross-product terms

• 'quadratic' includes interactions and squared terms

Alternatively, model can be a matrix of model terms as accepted by the x2fx
function. See x2fx for a description of this matrix and for a description of the
order in which terms appear.

rstool(x,y,model,alpha) plots 100(1 - alpha)% global confidence interval
for predictions as two red curves. For example, alpha = 0.01 gives 99%
confidence intervals.

rstool(x,y,model,alpha,'xname','yname') labels the X and Y axes using
the names contained in the character arrays 'xname' and 'yname'. 'xname'
and 'yname' can also be cell arrays of strings.

Drag the dashed blue reference line and watch the predicted values update
simultaneously. Alternatively, you can get a specific prediction by typing the
value of x into an editable text field. Use the pop-up menu to interactively

rstool

12-486

change the model. Click the Export button to move specified variables to the
base workspace.

Example See “Quadratic Response Surface Models” on page 4-42.

See Also nlintool, x2fx

schart

12-487

12schartPurpose Chart of standard deviation for Statistical Process Control

Syntax schart(DATA,conf)
schart(DATA,conf,specs)
schart(DATA,conf,specs)
[outliers,h] = schart(DATA,conf,specs)

Description schart(data) displays an S chart of the grouped responses in DATA. The rows
of DATA contain replicate observations taken at a given time. The rows must be
in time order. The graph contains the sample standard deviation s for each
group, a center line at the average s value, and upper and lower control limits.
The limits are placed at a three-sigma distance on either side of the center line,
where sigma is an estimate of the standard deviation of s. If the process is in
control, fewer than 3 out of 1000 observations would be expected to fall outside
the control limits by random chance. So, if you observe points outside the
limits, you can take this as evidence that the process is not in control.

schart(DATA,conf) allows control of the confidence level of the upper and
lower plotted control limits. The default conf = 0.9973 produces three-sigma
limits.

norminv(1 - (1-.9973)/2)
ans =
 3

To get k-sigma limits, use the expression 1-2*(1-normcdf(k)). For example,
the correct conf value for 2-sigma limits is 0.9545, as shown below.

k = 2;
1-2*(1-normcdf(k))
ans =
 0.9545

schart(DATA,conf,specs) plots the specification limits in the two element
vector specs.

[outliers,h] = schart(data,conf,specs) returns outliers, a vector of
indices to the rows where the mean of DATA is out of control, and h, a vector of
handles to the plotted lines.

schart

12-488

Example This example plots an S chart of measurements on newly machined parts,
taken at one hour intervals for 36 hours. Each row of the runout matrix
contains the measurements for 4 parts chosen at random. The values indicate,
in thousandths of an inch, the amount the part radius differs from the target
radius.

load parts
schart(runout)

All points are within the control limits, so the variability within subgroups is
consistent with what would be expected by random chance. There is no
evidence that the process is out of control.

Reference [1] Montgomery, D., Introduction to Statistical Quality Control, John Wiley
and Sons, 1991. p. 235.

See Also capaplot, ewmaplot, histfit, xbarplot

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

UCL

LCL

CL

S Chart

Sample Number

S
ta

nd
ar

d
D

ev
ia

tio
n

signrank

12-489

12signrankPurpose Wilcoxon signed rank test for zero median

Syntax p = signrank(x)
p = signrank(x,m)
p = signrank(x,y)
[p,h] = signrank(...)
[p,h] = signrank(...,'alpha',alpha)
[p,h] = signrank(...,'method', method)
[p,h,stats] = signrank(...)

Description p = signrank(x) performs a two-sided signed rank test of the hypothesis that
the data in the vector x come from a distribution whose median (and mean, if
it exists) is zero, and returns the p-value from the test. p is the probability of
observing the given result x, or one more extreme, by chance if the null
hypothesis is true, i.e., the median is zero. Small values of p cast doubt on the
validity of the null hypothesis. The data are assumed to come from a
continuous distribution, symmetric about its median.

p = signrank(x,m) performs a two-sided test of the hypothesis that the data
in the vector x come from a distribution whose median is m. m must be a scalar.

p = signrank(x,y) performs a paired, two-sided test of the hypothesis that
the difference between the matched samples in the vectors x and y comes from
a distribution whose median is zero. The differences x-y are assumed to come
from a continuous distribution, symmetric about its median. x and y must be
the same length.

Note A hypothesis of zero median for x-y is not equivalent to a hypothesis of
equal median for x and y. The signrank function tests the former, not the
latter.

[p,h] = signrank(...) returns the result of the hypothesis test, performed
at the 5% significance level, in h. If h = 0, then the null hypothesis, i.e., the
median is zero, cannot be rejected at the 5% level. If h = 1, then the null
hypothesis can be rejected at the 5% level.

signrank

12-490

[p,h] = signrank(...,'alpha', alpha) returns the result of the hypothesis
test performed at the significance level alpha.

[p,h] = signrank(...,'method', method) computes the p-value using an
exact algorithm, if you set method to 'exact' or a normal approximation, if you
set method to 'approximate'. If you omit this option, signrank uses an exact
method for small samples and the approximation for large samples.

[p,h,stats] = signrank(...) returns stats, a structure with one or two
fields. The field 'signedrank' contains the value of the signed rank statistic.
If the sample size is large, then p is calculated using a normal approximation
and the field 'zval' contains the value of the normal (Z) statistic.

Example This example tests the hypothesis of zero median for the difference between
two paired samples. The difference between the before and after samples has
a symmetric distribution with zero median.

before = lognrnd(2,.25,10,1);
after = before + trnd(2,10,1);
[p,h] = signrank(before,after,0.05)

p =
 0.5566

h =
 0

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker,
1985.

[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods, Wiley,
1973.

See Also ranksum, ttest, ztest

signtest

12-491

12signtestPurpose Sign test for zero median

Syntax p = signtest(x)
p = signtest(x,m)
p = signtest(x,y)
[p,h] = signtest(...)
[p,h] = signtest(...,'alpha', alpha)
[p,h] = signtest(...,'method', method)
[p,h,stats] = signtest(...)

Description p = signtest(x) performs a two-sided sign test of the hypothesis that the
data in the vector x come from a distribution whose median is zero, and returns
the p-value from the test. p is the probability of observing the given result x, or
a more extreme result, by chance if the null hypothesis is true, i.e., the median
is zero. Small values of p cast doubt on the validity of the null hypothesis. The
data are assumed to come from an arbitrary continuous distribution.

p = signtest(x,m) performs a two-sided test of the hypothesis that the data
in the vector x come from a distribution whose median is m. m must be a scalar.

p = signtest(x,y) performs a paired, two-sided test of the hypothesis that
the difference between the matched samples in the vectors x and y comes from
a distribution whose median is zero. The differences x-y are assumed to come
from an arbitrary continuous distribution. x and y must be the same length.

Note A hypothesis of zero median for x-y is not equivalent to a hypothesis of
equal median for x and y. The signtest function tests the former, not the
latter.

[p,h] = signtest(...) returns the result of the hypothesis test, performed
at the 5% significance level, in h. If h = 0, then the null hypothesis, i.e., the
median is zero, cannot be rejected at the 5% level. If h = 1, then the null
hypothesis can be rejected at the 5% level.

[p,h] = signtest(...,'alpha', alpha) returns the result of the hypothesis
test performed at the significance level alpha.

signtest

12-492

[p,h] = signtest(...,'method', method) computes the p-value using an
exact algorithm, if you set method to 'exact', or a normal approximation, if you
set method to 'approximate'. If you omit this option, signtest uses the exact
method for small samples and the approximation for large samples.

[p,h,stats] = signtest(...) returns stats, a structure with one or two
fields. The field 'sign' contains the value of the sign statistic. If the sample
size is large, then p is calculated using a normal approximation, and the field
'zval' contains the value of the normal (Z) statistic.

Example This example tests the hypothesis of zero median for the difference between
two paired samples. The difference between the before and after samples has
a distribution with zero median.

before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);
[p,h] = signtest(before,after,0.05)

p =
 0.3438

h =
 0

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker,
1985.

[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods, Wiley,
1973.

See Also ranksum, signrank, ttest, ztest

silhouette

12-493

12silhouettePurpose Silhouette plot for clustered data

Syntax silhouette(X,clust)
s = silhouette(X,clust)
[s,h] = silhouette(X,clust)
[...] = silhouette(X,clust,distance)
[...] = silhouette(X,clust,distfun,p1,p2,...)

Description silhouette(X,clust) plots cluster silhouettes for the n-by-p data matrix X,
with clusters defined by clust. Rows of X correspond to points, columns
correspond to coordinates. clust can be a numeric vector containing a cluster
index for each point, or a character matrix or cell array of strings containing a
cluster name for each point. silhouette treats NaNs or empty strings in clust
as missing values, and ignores the corresponding rows of X. By default,
silhouette uses the squared Euclidean distance between points in X.

s = silhouette(X,clust) returns the silhouette values in the n-by-1 vector s,
but does not plot the cluster silhouettes.

[s,h] = silhouette(X,clust) plots the silhouettes, and returns the
silhouette values in the n-by-1 vector s, and the figure handle in h.

[...] = silhouette(X,clust,distance) plots the silhouettes using the
inter-point distance measure specified in distance. Choices for distance are:

'Euclidean' Euclidean distance

'sqEuclidean' Squared Euclidean distance (default)

'cityblock' Sum of absolute differences, i.e., L1

'cosine' One minus the cosine of the included angle between
points (treated as vectors)

'correlation' One minus the sample correlation between points
(treated as sequences of values)

'Hamming' Percentage of coordinates that differ

silhouette

12-494

[...] = silhouette(X,clust,distfun,p1,p2, ...) accepts a distance
function of the form

d = distfun(X0,X,p1,p2,...)

where X0 is a 1-by-p point, X is an n-by-p matrix of points, and p1,p2,... are
optional additional arguments. The function distfun returns an n-by-1 vector
d of distances between X0 and each point (row) in X. The arguments p1, p2,...
are passed directly to the function distfun.

Remarks The silhouette value for each point is a measure of how similar that point is to
points in its own cluster compared to points in other clusters, and ranges from
-1 to +1. It is defined as

S(i) = (min(b(i,:),2) - a(i)) ./ max(a(i),min(b(i,:),2))

where a(i) is the average distance from the ith point to the other points in its
cluster, and b(i,k) is the average distance from the ith point to points in
another cluster k.

Examples X = [randn(10,2)+ones(10,2);
randn(10,2)-ones(10,2)];
cidx = kmeans(X,2,'distance','sqeuclid');
s = silhouette(X,cidx,'sqeuclid');

References [1] Kaufman L., and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, 1990.

See Also dendrogram, kmeans, linkage, pdist

'Jaccard' Percentage of non-zero coordinates that differ

Vector A numeric distance matrix in upper triangular vector
form, such as is created by pdist. X is not used in this
case, and can safely be set to [].

skewness

12-495

12skewnessPurpose Sample skewness

Syntax y = skewness(X)
y = skewness(X,flag)

Description y = skewness(X) returns the sample skewness of X. For vectors, skewness(x)
is the skewness of the elements of x. For matrices, skewness(X) is a row vector
containing the sample skewness of each column. For N-dimensional arrays,
skewness operates along the first nonsingleton dimension of X.

y = skewness(X,flag) specifies whether to correct for bias (flag = 0) or not
(flag = 1, the default). When X represents a sample from a population, the
skewness of X is biased; that is, it will tend to differ from the population
skewness by a systematic amount that depends on the size of the sample. You
can set flag = 0 to correct for this systematic bias.

skewness(X,flag,dim) takes the skewness along dimension dim of X.

skewness treats NaNs as missing values and removes them.

Remarks Skewness is a measure of the asymmetry of the data around the sample mean.
If skewness is negative, the data are spread out more to the left of the mean
than to the right. If skewness is positive, the data are spread out more to the
right. The skewness of the normal distribution (or any perfectly symmetric
distribution) is zero.

The skewness of a distribution is defined as

where µ is the mean of x, σ is the standard deviation of x, and E(t) represents
the expected value of the quantity t.

Example X = randn([5 4])

X =
 1.1650 1.6961 -1.4462 -0.3600
 0.6268 0.0591 -0.7012 -0.1356
 0.0751 1.7971 1.2460 -1.3493

y E x µ–()3

σ3
------------------------=

skewness

12-496

 0.3516 0.2641 -0.6390 -1.2704
 -0.6965 0.8717 0.5774 0.9846

y = skewness(X)

y =
 -0.2933 0.0482 0.2735 0.4641

See Also kurtosis, mean, moment, std, var

squareform

12-497

12squareform

Purpose Reformat a distance matrix between upper triangular and square form

Syntax Z = squareform(y)
y = squareform(Z)
Z = squareform(y, 'tovector')
Y = squareform(Z, 'tomatrix')

Description Z = squareform(y), where y is a vector as created by the pdist function,
converts y into a square, symmetric format Z, in which Z(i,j) denotes the
distance between the ith and jth objects in the original data.

y = squareform(Z), where Z is a square, symmetric matrix with zeros along
the diagonal, creates a vector y containing the Z elements below the diagonal.
y has the same format as the output from the pdist function.

Z = squareform(y, 'tovector') forces squareform to treat y as a vector.

Y = squareform(Z, 'tomatrix') forces squareform to treat Z as a matrix.

The last two formats are useful if the input has a single element, so that it is
ambiguous whether the input is a vector or square matrix.

Example y = 1:6

y =

 1 2 3 4 5 6

X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0]

X =

 0 1 2 3
 1 0 4 5
 2 4 0 6
 3 5 6 0,

Then squareform(y) = X and squareform(X) = y.

squareform

12-498

See Also pdist

statget

12-499

12statgetPurpose Get parameter values from a statistics options structure

Syntax val = statget(options,'param')
val = statget(options,'param',default)

Description val = statget(options,'param') returns the value of the specified
parameter in the statistics options structure options. If the parameter is not
defined in options, statget returns []. You need to type only enough leading
characters to define the parameter name uniquely. Case is ignored for
parameter names.

val = statget(options,'param',default) returns default if the specified
parameter is not defined in the optimization options structure options.

Examples This statement returns the value of the Display statistics options parameter
from the structure called my_options.

val = statget(my_options,'Display')

This statement returns the value of the Display statistics options parameter
from the structure called my_options (as in the previous example) except that
if the Display parameter is not defined, it returns the value 'final'.

optnew = statget(my_options,'Display','final');

See Also statset

statset

12-500

12statsetPurpose Create or edit a statistics options structure

Syntax options = statset('param1',value1,'param2',value2,...)
statset
options = statset
options = statset(statfun)
options = statset(oldopts,'param1',value1,...)
options = statset(oldopts,newopts)

Description options = statset('param1',value1,'param2',value2,...) creates an
options structure called options, which you can pass as an input argument to
other statistics functions, such as distribution fitting functions, that use
iterative algorithms to maximize or minimize a statistical fitting criterion. You
can use the options argument to override the default parameters for these
algorithms. You specify the value of a parameter using a name/value pair,
'param', value, where 'param' is the name of the parameter and value is its
value. Parameters that you do not specify are set to []. If you pass options as
an input to one of these functions, the function uses the parameter values you
specify and uses its default value for any parameter that you do not specify.
You only need to type only enough leading characters to define the parameter
name uniquely. Case is ignored for parameter names.

statset with no input or output arguments displays a complete list of
parameters with their valid values.

options = statset (with no input arguments) creates an options structure
options where all fields are set to [].

options = statset(statfun) creates an options structure options with all
parameter names and default values relevant to the statistics function
statfun. You can specify statfun either as a string, such as 'evfit', or as a
function handle, such as @evfit.

options = statset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = statset(oldopts,newopts) combines an existing options
structure, oldopts, with a new options structure, newopts. Any parameters in

statset

12-501

newopts with nonempty values overwrite the corresponding old parameters in
oldopts.

Parameters The following table lists the valid parameters for the options structure, their
meanings, and their allowed values. You can also view these parameters and
allowed values by typing statset at the command line.

Parameter Meaning Allowed Value

DerivStep Relative difference used in
finite difference derivative
calculations. May be a
scalar or the same size as
the parameter vector.

Positive scalar or vector

Display Amount of information
displayed by the algorithm

• 'off' — displays no
information

• 'final'— displays the
final output

• 'notify'— displays
output only if the algorithm
fails to converge

FunValCheck Check for invalid values,
such as NaN or Inf, from
the objective function

• 'off'

• 'on'

GradObject Objective function can
return a gradient vector as
a second output.

• 'off'
• 'on'

MaxFunEvals Maximum number of
objective function
evaluations allowed

Positive integer

MaxIter Maximum number of
iterations allowed

Positive integer

statset

12-502

Examples Suppose you want to change the default parameters for the function evfit,
which fits data to an extreme value distribution. To see the defaults for evfit,
enter

statset('evfit')

ans =

 Display: 'off'
 MaxFunEvals: []
 MaxIter: []
 TolBnd: []
 TolFun: []
 TolX: 1.0000e-006
 GradObj: []
 DerivStep: []
 FunValCheck: []

Note that the only parameters evfit uses are Display and TolX. To change the
value of TolX to 1e-8, enter

my_opts = statset('TolX',1e-8)

my_opts =

 Display: []
 MaxFunEvals: []
 MaxIter: []
 TolBnd: []
 TolFun: []
 TolX: 1.0000e-008
 GradObj: []

TolBnd Parameter bound tolerance Positive scalar

TolFun Termination tolerance for
the objective function value

Positive scalar

TolX Termination tolerance for
the parameters

Positive scalar

Parameter Meaning (Continued) Allowed Value (Continued)

statset

12-503

 DerivStep: []
 FunValCheck: []

When you pass my_opts into evfit with the command

evfit(data, [], [], [], my_opts)

evfit uses its default value 'notify' for Display and overrides the default
value of TolX with 1e-8.

See the reference page for evfit for more information about its syntax.

See Also evfit, factoran, gamfit, lognfit, nbinfit, normfit, statget

std

12-504

12stdPurpose Standard deviation of a sample

Syntax y = std(X)

Description y = std(X) computes the sample standard deviation of the data in X. For
vectors, std(x) is the standard deviation of the elements in x. For matrices,
std(X) is a row vector containing the standard deviation of each column of X.
For N-dimensional arrays, std operates along the first nonsingleton dimension
of X.

std normalizes by n-1 where n is the sample size. The result Y is the square root
of an unbiased estimator of the variance of the population from which X is
drawn, as long as X consists of independent, identically distributed samples.

The standard deviation is

where the sample average is .

The std function is part of the standard MATLAB language.

Y = std(X,1) normalizes Y by n. The result Y is the square root of the second
moment of the sample about its mean. std(X,0) is the same as std(X).

Y = std(X,flag,dim) takes the standard deviation along the dimension dim of
X. Set flag to 0 to normalize Y by n-1; set flag to 1 to normalize by n.

Examples In each column, the expected value of y is one.

x = normrnd(0,1,100,6);
y = std(x)

y =
 0.9536 1.0628 1.0860 0.9927 0.9605 1.0254

y = std(-1:2:1)

y =
 1.4142

y 1
n 1–
------------- xi x–()2

i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1
2

=

x 1
n
--- xi∑=

std

12-505

See Also cov, var

stepwise

12-506

12stepwisePurpose Interactive environment for stepwise regression

Syntax stepwise(X,y)
stepwise(X,y,inmodel,penter,premove)

Description stepwise(X,y) displays an interactive tool for creating a regression model to
predict the vector y, using a subset of the predictors given by columns of the
matrix X. Initially, no predictors are included in the model, but you can click
predictors to switch them into and out of the model.

For each predictor in the model, the interactive tool plots the predictor’s least
squares coefficient as a blue filled circle. For each predictor not in the model,
the interactive tool plots a filled red circle to indicate the coefficient the
predictor would have if you add it to the model. Horizontal bars in the plot
indicate 90% confidence intervals (colored) and 95% confidence intervals
(black).

stepwise(X,y,inmodel,penter,premove) specifies the initial state of the
model and the confidence levels to use. inmodel is either a logical vector, whose
length is the number of columns in X, or a vector of indices, whose values range
from 1 to the number of columns in X, specifying the predictors that are
included in the initial model. The default is to include no columns of X. penter
specifies the maximum p-value that a predictor can have for the interactive tool
to recommend adding it to the model. The default value of penter is 0.05.
premove specifies the minimum p-value that a predictor can have for the
interactive tool to recommend removing it from the model. The default value of
premove is 0.10.

The interactive tool treats a NaN in either X or y as a missing value. The tool
does not use rows containing missing values in the fit.

Examples See “Quadratic Response Surface Models” on page 4-42 and “Stepwise
Regression Demo” on page 4-45.

Reference [1] Draper, N., and H. Smith, Applied Regression Analysis, 2nd edition, John
Wiley and Sons, 1981, pp. 307–312.

See Also regress, rstool, stepwisefit

stepwisefit

12-507

12stepwisefitPurpose Fit regression model using stepwise regression

Syntax b = stepwisefit(X,y)
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...)
[...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...)

Description b = stepwisefit(X,y) uses stepwise regression to model the response
variable y as a function of the predictor variables represented by the columns
of the matrix X. The result is a vector b of estimated coefficient values for all
columns of X. The b value for a column not included in the final model is the
coefficient that you would obtain by adding that column to the model.

[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...)
returns the following additional results:

• se is a vector of standard errors for b.

• pval is a vector of p-values for testing whether b is 0.

• inmodel is a logical vector, whose length equals the number of columns in X,
specifying which predictors are in the final model. A 1 in position j indicates
that the jth predictor is in the final model; a 0 indicates that the
corresponding predictor in not in the final model.

• stats is a structure containing additional statistics.

• nextstep is the recommended next step — either the index of the next
predictor to move in or out, or 0 if no further steps are recommended.

• history is a structure containing information about the history of steps
taken.

[...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...)
specifies one or more of the name/value pairs described in the following table.

stepwisefit

12-508

Example load hald
stepwisefit(ingredients, heat, 'penter', .08)
Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-006
Step 3, added column 2, p=0.0516873
Step 4, removed column 4, p=0.205395
Final columns included: 1 2

Parameter Name Parameter Value

'inmodel' Logical vector specifying the predictors to include in
the initial fit. The default is a vector of all zeros,
specifying no predictors.

'penter' Maximum p-value for a predictor to be added. The
default is 0.05.

'premove' Minimum p-value for a predictor to be removed. The
default is 0.10.

'display' 'on' displays information about each step.

'off' omits the information.

'maxiter' Maximum number of steps to take (default is no
maximum)

'keep' Logical vector specifying the predictors to keep in
their initial state. The default is a vector of all zeros,
specifying no predictors.

'scale' 'on' scales each column of X by its standard
deviation before fitting.

'off' does not scale (the default).

stepwisefit

12-509

ans =

 'Coeff' 'Std.Err.' 'Status' 'P'
 [1.4683] [0.1213] 'In' [2.6922e-007]
 [0.6623] [0.0459] 'In' [5.0290e-008]
 [0.2500] [0.1847] 'Out' [0.2089]
 [-0.2365] [0.1733] 'Out' [0.2054]

ans =

 1.4683
 0.6623
 0.2500
 -0.2365

See Also addedvarplot, regress, rstool, stepwise

surfht

12-510

12surfhtPurpose Interactive contour plot

Syntax surfht(Z)
surfht(x,y,Z)

Description surfht(Z) is an interactive contour plot of the matrix Z treating the values in
Z as height above the plane. The x-values are the column indices of Z while the
y-values are the row indices of Z.

surfht(x,y,Z) where x and y are vectors specify the x and y-axes on the
contour plot. The length of x must match the number of columns in Z, and the
length of y must match the number of rows in Z.

There are vertical and horizontal reference lines on the plot whose intersection
defines the current x-value and y-value. You can drag these dotted white
reference lines and watch the interpolated z-value (at the top of the plot)
update simultaneously. Alternatively, you can get a specific interpolated
z-value by typing the x-value and y-value into editable text fields on the x-axis
and y-axis respectively.

tabulate

12-511

12tabulatePurpose Frequency table

Syntax TABLE = tabulate(x)
tabulate(x)

Description TABLE = tabulate(x) takes a vector x and returns a matrix, TABLE. The first
column of TABLE contains the unique values of x. The second contains the
number of instances of each value. The last column contains the percentage of
each value.

TABLE = tabulate(ARRAY), where ARRAY is a character array or a cell array of
strings, returns TABLE as a cell array. The first column contains the unique
string values in ARRAY. The other two columns contain the same information as
for a vector input.

tabulate with no output arguments displays a formatted table in the
command window.

Example tabulate([1 2 4 4 3 4])

Value Count Percent
 1 1 16.67%
 2 1 16.67%
 3 1 16.67%
 4 3 50.00%

See Also pareto

tblread

12-512

12tblreadPurpose Read tabular data from the file system

Syntax [data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread('filename')
[data,varnames,casenames] = tblread('filename','delimiter')

Description [data,varnames,casenames] = tblread displays the File Open dialog box for
interactive selection of the tabular data file. The file format has variable names
in the first row, case names in the first column and data starting in the (2,2)
position.

[data,varnames,casenames] = tblread(filename) allows command line
specification of the name of a file in the current directory, or the complete path
name of any file.

[data,varnames,casenames] = tblread(filename,'delimiter') reads
from the file using 'delimiter' as the delimiting character. The following
table lists the accepted character values for 'delimiter' and their equivalent
string values.

The default value of 'delimiter' is 'space'.

Character String

' ' 'space'

'\t' 'tab'

',' 'comma'

';' 'semi'

'|' 'bar'

tblread

12-513

tblread returns the data read in three values.

Example [data,varnames,casenames] = tblread('sat.dat')

data =

 470 530
 520 480

varnames =

Male
Female

casenames =

Verbal
Quantitative

See Also caseread, tblwrite, tdfread

Return Value Description

data Numeric matrix with a value for each variable-case pair.

varnames String matrix containing the variable names in the first
row.

casenames String matrix containing the names of each case in the
first column.

tblwrite

12-514

12tblwritePurpose Writes tabular data to the file system

Syntax tblwrite(data,'varnames','casenames')
tblwrite(data,'varnames','casenames','filename')
tblwrite(data,'varnames','casenames','filename','delimiter')

Description tblwrite(data,'varnames','casenames') displays the File Open dialog box
for interactive specification of the tabular data output file. The file format has
variable names in the first row, case names in the first column and data
starting in the (2,2) position.

'varnames' is a string matrix containing the variable names. 'casenames' is
a string matrix containing the names of each case in the first column. data is
a numeric matrix with a value for each variable-case pair.

tblwrite(data,'varnames','casenames','filename') specifies a file in the
current directory, or the complete path name of any file in the string
'filename'.

tblwrite(data,'varnames','casenames','filename','delimiter') writes
to the file using 'delimiter' as the delimiting character. The following table
lists the accepted character values for 'delimiter' and their equivalent string
values.

The default value of 'delimiter' is 'space'.

Character String

' ' 'space'

'\t' 'tab'

',' 'comma'

';' 'semi'

'|' 'bar'

tblwrite

12-515

Example Continuing the example from tblread:

tblwrite(data,varnames,casenames,'sattest.dat')
type sattest.dat

Male Female
Verbal 470 530
Quantitative 520 480

See Also casewrite, tblread

tcdf

12-516

12tcdfPurpose Student’s t cumulative distribution function (cdf)

Syntax P = tcdf(X,V)

Description P = tcdf(X,V) computes Student’s t cdf at each of the values in X using the
corresponding degrees of freedom in V. X and V can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other inputs.

The t cdf is

The result, p, is the probability that a single observation from the t distribution
with ν degrees of freedom will fall in the interval (-∞ x].

Examples Suppose 10 samples of Guinness beer have a mean alcohol content of 5.5% by
volume and the standard deviation of these samples is 0.5%. What is the
probability that the true alcohol content of Guinness beer is less than 5%?

t = (5.0 - 5.5) / 0.5;
probability = tcdf(t,10 - 1)

probability =

 0.1717

See Also cdf, tinv, tpdf, trnd, tstat

p F x ν()
Γ ν 1+

2
------------⎝ ⎠
⎛ ⎞

Γ ν
2
---⎝ ⎠
⎛ ⎞

---------------------- 1
νπ

---------- 1

1 t2

ν
-----+⎝ ⎠

⎛ ⎞

ν 1+
2

------------------------------- td

∞–

x

∫= =

tdfread

12-517

12tdfreadPurpose Read file containing tab-delimited numeric and text values

Syntax tdfread
tdfread('filename')
tdfread('filename','delimiter')

Description tdfread displays the File Open dialog box for interactive selection of the data
file. The file should consist of columns of values, separated by tabs, and with
column names in the first line of the file. Each column is read from the file and
assigned to a variable with the specified name. If all values for a column are
numeric, the variable is converted to numbers; otherwise the variable is a
string matrix. After all values are imported, tdfread displays information
about the imported values using the format of the whos command.

tdfread('filename') allows command line specification of the name of a file
in the current directory, or the complete pathname of any file.

tdfread('filename','delimiter') indicates that the character specified by
'delimiter' separates columns in the file. Accepted values are:

• ' ' or 'space'

• '\t' or 'tab'

• ',' or 'comma'

• ';' or 'semi'

• '|' or 'bar'

The default delimiter is 'tab'.

Example type sat2.dat

Test,Gender,Score
Verbal,Male,470
Verbal,Female,530
Quantitative,Male,520
Quantitative,Female,480
tdfread('sat2.dat',',')

 Name Size Bytes Class

tdfread

12-518

 Gender 4x6 48 char array
 Score 4x1 32 double array
 Test 4x12 96 char array

Grand total is 76 elements using 176 bytes

See Also tblread

tinv

12-519

12tinvPurpose Inverse of the Student’s t cumulative distribution function (cdf)

Syntax X = tinv(P,V)

Description X = tinv(P,V) computes the inverse of Student’s t cdf with parameter V for
the corresponding probabilities in P. P and V can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other inputs. The values
in P must lie on the interval [0 1].

The t inverse function in terms of the t cdf is

where

The result, x, is the solution of the cdf integral with parameter ν, where you
supply the desired probability p.

Examples What is the 99th percentile of the t distribution for one to six degrees of
freedom?

percentile = tinv(0.99,1:6)

percentile =

 31.8205 6.9646 4.5407 3.7469 3.3649 3.1427

See Also icdf, tcdf, tpdf, trnd, tstat

x F 1– p ν() x:F x ν() p={ }= =

p F x ν()
Γ ν 1+

2
------------⎝ ⎠
⎛ ⎞

Γ ν
2
---⎝ ⎠
⎛ ⎞

---------------------- 1
νπ

---------- 1

1 t2

ν
-----+⎝ ⎠

⎛ ⎞

ν 1+
2

------------------------------- td

∞–

x

∫= =

tpdf

12-520

12tpdfPurpose Student’s t probability density function (pdf)

Syntax Y = tpdf(X,V)

Description Y = tpdf(X,V) computes Student’s t pdf at each of the values in X using the
corresponding degrees of freedom in V. X and V can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other inputs.

Student’s t pdf is

Examples The mode of the t distribution is at x = 0. This example shows that the value of
the function at the mode is an increasing function of the degrees of freedom.

tpdf(0,1:6)

ans =

 0.3183 0.3536 0.3676 0.3750 0.3796 0.3827

The t distribution converges to the standard normal distribution as the degrees
of freedom approaches infinity. How good is the approximation for v = 30?

difference = tpdf(-2.5:2.5,30) - normpdf(-2.5:2.5)

difference =

 0.0035 -0.0006 -0.0042 -0.0042 -0.0006 0.0035

See Also pdf, tcdf, tinv, trnd, tstat

y f x ν()
Γ ν 1+

2
------------⎝ ⎠
⎛ ⎞

Γ ν
2
---⎝ ⎠
⎛ ⎞

---------------------- 1
νπ

---------- 1

1 x2

ν
-----+⎝ ⎠

⎛ ⎞

ν 1+
2

--------------------------------= =

treedisp

12-521

12treedispPurpose Show classification or regression tree graphically

Syntax treedisp(T)
treedisp(T,'param1',val1,'param2',val2,...)

Description treedisp(T) takes as input a decision tree T as computed by the treefit
function, and displays it in a figure window. Each branch in the tree is labeled
with its decision rule, and each terminal node is labeled with the predicted
value for that node.

For each branch node, the left child node corresponds to the points that satisfy
the condition, and the right child node corresponds to the points that do not
satisfy the condition.

The Click to display pop-up menu at the top of the figure enables you to
display more information about each node:

After you select the type of information you want, click on any node to display
the information for that node.

The Pruning level spin button displays the number of levels that have been
cut from the tree, and the number of levels in the unpruned tree. For example,
1 of 6 indicates that the unpruned tree has six levels, and that one level has
been cut from the tree. Use the spin button to change the pruning level.

treedisp(T,'param1',val1,'param2',val2,...) specifies optional
parameter name-value pairs. Valid parameters are:

Identity The node number, whether the node is a branch or a
leaf, and the rule that governs the node

Variable ranges The range of each of the predictor variables for that
node

Node statistics Descriptive statistics for the observations falling into
this node

'names' A cell array of names for the predictor variables, in the
order in which they appear in the X matrix from which the
tree was created (see treefit)

'prunelevel' Initial pruning level to display

treedisp

12-522

Examples Create and graph classification tree for Fisher's iris data. The names in this
example are abbreviations for the column contents (sepal length, sepal width,
petal length, and petal width).

 load fisheriris;
 t = treefit(meas,species);
 treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

See Also treefit, treeprune, treetest

treefit

12-523

12treefitPurpose Fit a tree-based model for classification or regression

Syntax T = treefit(X,y)
T = treefit(X,y,'param1',val1,'param2',val2,...)

Description T = treefit(X,y) creates a decision tree T for predicting response y as a
function of predictors X. X is an n-by-m matrix of predictor values. y is either a
vector of n response values (for regression), or a character array or cell array of
strings containing n class names (for classification). Either way, T is a binary
tree where each non-terminal node is split based on the values of a column of X.

T = treefit(X,y,'param1',val1,'param2',val2,...) specifies optional
parameter name-value pairs. Valid parameters are

For all trees:

For classification trees only:

'catidx' Vector of indices of the columns of X. treefit treats these
columns as unordered categorical values.

'method' Either 'classification' (default if y is text) or
'regression' (default if y is numeric)

'splitmin' A number n such that impure nodes must have n or more
observations to be split (default 10)

'prune' 'on' (default) to compute the full tree and a sequence of
pruned subtrees, or 'off' for the full tree without pruning

'cost' p-by-p matrix C, where p is the number of distinct
response values or class names in the input y. C(i,j) is
the cost of classifying a point into class i if its true class
is j (default has C(i,j)=1 if i~=j, and C(i,j)=0 if i=j).
C can also be a structure S with two fields: S.group
containing the group names, and S.cost containing a
matrix of cost values.

treefit

12-524

Examples Create a classification tree for Fisher's iris data.

 load fisheriris;
 t = treefit(meas,species);
 treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

References [1] Breiman, L., Classification and Regression Trees, Chapman & Hall, Boca
Raton, 1993.

See Also treedisp, treetest

'splitcriterion' Criterion for choosing a split: either 'gdi' (default) for
Gini's diversity index, 'twoing' for the twoing rule, or
'deviance' for maximum deviance reduction

'priorprob' Prior probabilities for each class, specified as a vector
(one value for each distinct group name) or as a
structure S with two fields: S.group containing the
group names, and S.prob containing a vector of
corresponding probabilities

treeprune

12-525

12treeprunePurpose Produce a sequence of subtrees by pruning

Syntax T2 = treeprune(T1,'level',level)
T2 = treeprune(T1,'nodes',nodes)
T2 = treeprune(T1)

Description T2 = treeprune(T1,'level',level) takes a decision tree T1 as created by the
treefit function, and a pruning level, and returns the decision tree T2 pruned
to that level. The value level = 0 means no pruning. Trees are pruned based
on an optimal pruning scheme that first prunes branches giving less
improvement in error cost.

T2 = treeprune(T1,'nodes',nodes) prunes the nodes listed in the nodes
vector from the tree. Any T1 branch nodes listed in nodes become leaf nodes in
T2, unless their parent nodes are also pruned. The treedisp function can
display the node numbers for any node you select.

T2 = treeprune(T1) returns the decision tree T2 that is the same as T1, but
with the optimal pruning information added. This is useful only if you created
T1 by pruning another tree, or by using the treefit function with pruning set
'off'. If you plan to prune a tree multiple times, it is more efficient to create
the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes into leaf
nodes, and removing the leaf nodes under the original branch.

Examples Display the full tree for Fisher's iris data, as well as the next largest tree from
the optimal pruning sequence.

 load fisheriris;
 t = treefit(meas,species,'splitmin',5);
 treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

treeprune

12-526

 t1 = treeprune(t,'level',1);
 treedisp(t1,'names',{'SL' 'SW' 'PL' 'PW'});

treeprune

12-527

See Also treefit, treetest, treedisp

treetest

12-528

12treetestPurpose Compute error rate for tree

Syntax cost = treetest(T,'resubstitution')
cost = treetest(T,'test',X,y)
cost = treetest(T,'crossvalidate',X,y)
[cost,secost,ntnodes,bestsize] = treetest(...)
[...] = treetest(...,'param1',val1,'param2',val2,...)

Description cost = treetest(T,'resubstitution') computes the cost of the tree T using
a resubstitution method. T is a decision tree as created by the treefit function.
The cost of the tree is the sum over all terminal nodes of the estimated
probability of that node times the node's cost. If T is a classification tree, the
cost of a node is the sum of the misclassification costs of the observations in
that node. If T is a regression tree, the cost of a node is the average squared
error over the observations in that node. cost is a vector of cost values for each
subtree in the optimal pruning sequence for T. The resubstitution cost is based
on the same sample that was used to create the original tree, so it
underestimates the likely cost of applying the tree to new data.

cost = treetest(T,'test',X,y) uses the predictor matrix X and response y
as a test sample, applies the decision tree T to that sample, and returns a vector
cost of cost values computed for the test sample. X and y should not be the
same as the learning sample, which is the sample that was used to fit the
tree T.

cost = treetest(T,'crossvalidate',X,y) uses 10-fold cross-validation to
compute the cost vector. X and y should be the learning sample, which is the
sample that was used to fit the tree T. The function partitions the sample into
10 subsamples, chosen randomly but with roughly equal size. For classification
trees, the subsamples also have roughly the same class proportions. For each
subsample, treetest fits a tree to the remaining data and uses it to predict the
subsample. It pools the information from all subsamples to compute the cost for
the whole sample.

[cost,secost,ntnodes,bestlevel] = treetest(...) also returns the vector
secost containing the standard error of each cost value, the vector ntnodes
containing number of terminal nodes for each subtree, and the scalar
bestlevel containing the estimated best level of pruning. bestlevel = 0

treetest

12-529

means no pruning, i.e., the full unpruned tree. The best level is the one that
produces the smallest tree that is within one standard error of the
minimum-cost subtree.

[...] = treetest(...,'param1',val1,'param2',val2,...) specifies
optional parameter name-value pairs chosen from the following:

Examples Find the best tree for Fisher's iris data using cross-validation. The solid line
shows the estimated cost for each tree size, the dashed line marks 1 standard
error above the minimum, and the square marks the smallest tree under the
dashed line.

% Start with a large tree.
load fisheriris;
t = treefit(meas,species','splitmin',5);

% Find the minimum-cost tree.
[c,s,n,best] = treetest(t,'cross',meas,species);
tmin = treeprune(t,'level',best);

% Plot smallest tree within 1 std. error of minimum cost tree.
[mincost,minloc] = min(c);
plot(n,c,'b-o', n,c+s,'r:', n(best+1),c(best+1),'bs',...
 n,(mincost+s(minloc))*ones(size(n)),'k--');
xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

'nsamples' The number of cross-validations samples (default 10).

'treesize' Either 'se' (default) to choose the smallest tree whose cost is
within one standard error of the minimum cost, or 'min' to
choose the minimal cost tree.

treetest

12-530

See Also treefit, treedisp

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tree size (number of terminal nodes)

C
os

t

treeval

12-531

12treevalPurpose Compute fitted value for decision tree applied to data

Syntax YFIT = treeval(T,X)
YFIT = treeval(T,X,subtrees)
[YFIT,NODE] = treeval(...)
[YFIT,NODE,CNAME] = treeval(...)

Description YFIT = treeval(T,X) takes a classification or regression tree T as produced by
the treefit function, and a matrix X of predictor values, and produces a vector
YFIT of predicted response values. For a regression tree, YFIT(j) is the fitted
response value for a point having the predictor values X(j,:). For a
classification tree, YFIT(j) is the class number into which the tree would
assign the point with data X(j,:). To convert the number into a class name,
use the third output argument, cname (below).

YFIT = treeval(T,X,subtrees) takes an additional vector subtrees of
pruning levels, with 0 representing the full, unpruned tree. T must include a
pruning sequence as created by the treefit or prunetree function. If subtree
has k elements and X has n rows, then the output YFIT is an n-by-k matrix, with
the jth column containing the fitted values produced by the subtrees(j)
subtree. subtrees must be sorted in ascending order.

[YFIT,NODE] = treeval(...) also returns an array NODE of the same size as
YFIT containing the node number assigned to each row of X. The treedisp
function can display the node numbers for any node you select.

[YFIT,NODE,CNAME] = treeval(...) is valid only for classification trees. It
returns a cell array CNAME containing the predicted class names.

Examples Find the predicted classifications for Fisher's iris data.

load fisheriris;
t = treefit(meas,species); % Create decision tree
sfit = treeval(t,meas); % Find assigned class numbers
sfit = t.classname(sfit); % Get class names
mean(strcmp(sfit,species)) % Compute proportion correctly
 % classified
ans =
 0.9800

treeval

12-532

See Also treefit, treeprune, treetest

trimmean

12-533

12trimmeanPurpose Mean of a sample of data excluding extreme values

Syntax m = trimmean(X,percent)
m = trimmean(X,percent,dim)

Description m = trimmean(X,percent) calculates the mean of a sample X excluding the
highest and lowest (percent/2)% of the observations. For a vector input, m is
the trimmed mean of X. For a matrix input, m is a row vector containing the
trimmed mean of each column of X. For N-dimensional arrays, trimmean
operates along the first nonsingleton dimension of X. percent is a scalar
between 0 and 100.

trimmean(X,percent,dim) takes the trimmed mean along dimension dim of X.

Remarks The trimmed mean is a robust estimate of the location of a sample. If there are
outliers in the data, the trimmed mean is a more representative estimate of the
center of the body of the data than the mean. However, if the data is all from
the same probability distribution, then the trimmed mean is less efficient than
the sample mean as an estimator of the location of the data.

Examples This example shows a Monte Carlo simulation of the efficiency of the 10%
trimmed mean relative to the sample mean for normal data.

x = normrnd(0,1,100,100);
m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2

efficiency =

 0.9702

See Also mean, median, geomean, harmmean

trnd

12-534

12trndPurpose Random numbers from Student’s t distribution

Syntax R = trnd(V)
R = trnd(V,m)
R = trnd(V,m,n)

Description R = trnd(V) generates random numbers from Student’s t distribution with V
degrees of freedom. V can be a vector, a matrix, or a multidimensional array.
The size of R is the size of V.

R = trnd(V,m) generates random numbers from Student’s t distribution with
V degrees of freedom, where v is a row vector. If v is a 1-by-2 vector, R is a matrix
with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = trnd(V,m,n) generates random numbers from Student’s t distribution
with V degrees of freedom, where scalars m and n are the row and column
dimensions of R.

Reproducing the Output of trnd
trnd uses the MATLAB functions rand and randn to generate random
numbers. When you call trnd, you change the current states of rand and randn,
and thereby alter the output of subsequent calls to trnd or any other functions
that depend on rand or randn. If you want to reproduce the output of trnd, reset
the states of rand and randn to the same fixed values each time you call trnd.
For an example of how to do this, and a list of the Statistics Toolbox functions
that depend on rand or randn, see “Reproducing the Output of Random
Number Functions” on page 2-46.

Note The results in the following examples depend on the current states of
rand and randn. If you run the code in these examples, your results may differ
from the answers shown here.

Examples noisy = trnd(ones(1,6))

noisy =

 19.7250 0.3488 0.2843 0.4034 0.4816 -2.4190

trnd

12-535

numbers = trnd(1:6,[1 6])

numbers =

 -1.9500 -0.9611 -0.9038 0.0754 0.9820 1.0115

numbers = trnd(3,2,6)

numbers =

 -0.3177 -0.0812 -0.6627 0.1905 -1.5585 -0.0433
 0.2536 0.5502 0.8646 0.8060 -0.5216 0.0891

See Also tcdf, tinv, tpdf, tstat

tstat

12-536

12tstatPurpose Mean and variance for the Student’s t distribution

Syntax [M,V] = tstat(NU)

Description [M,V] = tstat(NU) returns the mean and variance for Student’s t distribution
with parameters specified by NU. M and V are the same size as NU.

The mean of the Student’s t distribution with parameter ν is zero for values of ν
greater than 1. If ν is one, the mean does not exist. The variance for values of ν
greater than 2 is .

Examples Find the mean and variance for 1 to 30 degrees of freedom.

[m,v] = tstat(reshape(1:30,6,5))

m =
 NaN 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

v =
 NaN 1.4000 1.1818 1.1176 1.0870
 NaN 1.3333 1.1667 1.1111 1.0833
 3.0000 1.2857 1.1538 1.1053 1.0800
 2.0000 1.2500 1.1429 1.1000 1.0769
 1.6667 1.2222 1.1333 1.0952 1.0741
 1.5000 1.2000 1.1250 1.0909 1.0714

Note that the variance does not exist for one and two degrees of freedom.

See Also tcdf, tinv, tpdf, trnd

ν ν 2–()⁄

ttest

12-537

12ttestPurpose Hypothesis testing for a single sample mean

Syntax h = ttest(x)
h = ttest(x,m)
h = ttest(x,y)
h = ttest(x,m,alpha)
h = ttest(x,m,alpha,tail)
h = ttest(x,m,alpha,tail,dim)
[h,p,ci] = ttest(...)
[h,p,ci,stats] = ttest(...)

Description h = ttest(x) performs a t-test of the hypothesis that the data in the vector x
comes from a distribution with mean zero, and returns the result of the test in
h. h=0 indicates that the null hypothesis (mean is zero) cannot be rejected at
the 5% significance level. h=1 indicates that the null hypothesis can be rejected
at the 5% level. The data are assumed to come from a normal distribution with
unknown variance.

x can also be a matrix or an N-D array. For matrices, ttest performs separate
t-tests along each column of x and returns a vector of results. For N-D arrays,
ttest works along the first nonsingleton dimension of x.

h = ttest(x,m) performs a t-test of the hypothesis that the data in the vector
x comes from a distribution with mean m.

h = ttest(x,y) performs a paired t-test of the hypothesis that two matched
(or paired) samples in the vectors x and y come from distributions with equal
means. The difference x-y is assumed to come from a normal distribution with
unknown variance. x and y must be vectors of the same length, or arrays of the
same size.

h = ttest(...,alpha) performs the test at the significance level
(100*alpha)%. For example, if alpha = 0.01, and the result h is 1, you can reject
the null hypothesis at the significance level 0.01. If h is 0, you cannot reject the
null hypothesis at the alpha level of significance.

h = ttest(...,alpha,tail) performs the test against the alternative
hypothesis specified by tail. There are three options for tail:

ttest

12-538

• 'both' — Mean is not 0 (or m) (two-tailed test). This is the default.

• 'right' — Mean is greater than 0 (or m) (right-tailed test).

• 'left' — Mean is less than 0 (or m) (left-tailed test).

[h,p,ci,stats] = ttest(...) returns a structure with the following fields:

• 'tstat' — Value of the test statistic

• 'df'— Degrees of freedom of the test

• 'sd' — Estimated population standard deviation. For a paired test, this is
the standard deviation of x-y.

Output p is the p-value associated with the t-statistic

where is the sample standard deviation and is the number of observations
in the sample. p is the probability that the value of the t-statistic is equal to or
more extreme than the observed value by chance, under the null hypothesis
that the mean of x is equal to m.

ci is a 1-alpha confidence interval for the true mean.

h = ttest(...,alpha,tail,dim) performs the test along dimension dim of
the input x array. For a matrix x, dim=1 computes the t-test for each column
(along the first dimension), and dim=2 computes the t-test for each row. By
default, ttest works along the first nonsingleton dimension, so it treats a
single-row input as a row vector.

Example This example generates 100 normal random numbers with theoretical mean 0
and standard deviation 1. The observed mean and standard deviation are
different from their theoretical values, of course, so you test the hypothesis that
there is no true difference.

Here is a normal random number generator test:

x = normrnd(0,1,1,100);
[h,p,ci] = ttest(x,0)

h =
 0

T x m–

s n⁄
--------------=

s n

ttest

12-539

p =
 0.4474

ci =
 -0.1165 0.2620

The result h = 0 means that you cannot reject the null hypothesis. The
significance level is 0.4474, which means that by chance you would have
observed values of T more extreme than the one in this example in 45 of 100
similar experiments. A 95% confidence interval on the mean is
[-0.1165 0.2620], which includes the theoretical (and hypothesized) mean of
zero.

ttest2

12-540

12ttest2Purpose Hypothesis testing for the difference in means of two samples

Syntax [h,significance,ci] = ttest2(x,y)
[h,significance,ci] = ttest2(x,y,alpha)
[h,significance,ci,stats] = ttest2(x,y,alpha)
[...] = ttest2(x,y,alpha,tail)
[...] = ttest2(x,y,alpha,tail,'unequal')
[...] = ttest2(x,y,alpha,tail,'unequal',dim)

Description h = ttest2(x,y) performs a t-test to determine whether two samples from a
normal distribution (x and y) could have the same mean when the standard
deviations are unknown but assumed equal. The vectors x and y can have
different lengths.

x and y can also be matrices or N-D arrays. For matrices, ttest2 performs
separate t-tests along each column and returns a vector of results. x and y must
have the same number of columns. For N-D arrays, ttest2 works along the
first nonsingleton dimension. x and y must have the same size along all the
remaining dimensions.

The result, h, is 1 if you can reject the null hypothesis that the means are equal
at the 0.05 significance level and 0 otherwise.

significance is the p-value associated with the t-statistic

where s is the pooled sample standard deviation and n and m are the numbers
of observations in the x and y samples. significance is the probability that the
observed value of T could be as large or larger by chance under the null
hypothesis that the mean of x is equal to the mean of y.

ci is a 95% confidence interval for the true difference in means.

[h,significance,ci] = ttest2(x,y,alpha) gives control of the significance
level alpha. For example, if alpha = 0.01, and the result, h, is 1, you can reject
the null hypothesis at the significance level 0.01. ci in this case is a
100(1 - alpha)% confidence interval for the true difference in means.

T x y–

s 1
n
--- 1

m
-----+

-----------------------=

ttest2

12-541

[h,significance,ci,stats] = ttest2(x,y,alpha) returns a structure
stats with the following three fields:

• tstat — Value of the test statistic

• df — Degrees of freedom of the test

• 'sd' — Pooled estimate of the population standard deviation in the equal
variance case, or a vector containing the unpooled estimates of the
population standard deviations in the unequal variance case

[...] = ttest2(x,y,alpha,tail) allows specification of one- or two-tailed
tests, where tail is a flag that specifies one of three alternative hypotheses:

• tail = 'both' specifies the alternative (default).

• tail = 'right' specifies the alternative .

• tail = 'left' specifies the alternative .

[...] = ttest2(x,y,alpha,tail,'unequal') performs the test assuming
that the two samples come from normal distributions with unknown and
possibly unequal variances. This is known as the Behrens-Fisher problem.
ttest2 uses Satterthwaite's approximation for the effective degrees of
freedom.

[...] = ttest2(...,dim) performs the test along dimension dim of the input
x and y arrays. For matrix inputs, dim=1 computes the t-test for each column
(along the first dimension), and dim=2 computes the t-test for each row. By
default, ttest2 works along the first nonsingleton dimension, so it treats
single-row inputs as row vectors.

Examples This example generates 100 normal random numbers with theoretical mean 0
and standard deviation 1. You then generate 100 more normal random
numbers with theoretical mean 1/2 and standard deviation 1. The observed
means and standard deviations are different from their theoretical values, of
course. You test the hypothesis that there is no true difference between the two
means. Notice that the true difference is only one-half of the standard deviation
of the individual observations, so you are trying to detect a signal that is only
one-half the size of the inherent noise in the process.

x = normrnd(0,1,100,1);
y = normrnd(0.5,1,100,1);

µx µy≠
µx µy>

µx µy<

ttest2

12-542

[h,significance,ci] = ttest2(x,y)

h =
1

significance =

 0.0017

ci =
 -0.7352 -0.1720

The result h = 1 means that you can reject the null hypothesis. The
significance is 0.0017, which means that by chance you would have observed
values of t more extreme than the one in this example in only 17 of 10,000
similar experiments! A 95% confidence interval on the mean is
[-0.7352 -0.1720], which includes the theoretical (and hypothesized) difference
of -0.5.

unidcdf

12-543

12unidcdfPurpose Discrete uniform cumulative distribution (cdf) function

Syntax P = unidcdf(X,N)

Description P = unidcdf(X,N) computes the discrete uniform cdf at each of the values in X
using the corresponding parameters in N. X and N can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other inputs. The
maximum observable values in N must be positive integers.

The discrete uniform cdf is

The result, p, is the probability that a single observation from the discrete
uniform distribution with maximum N will be a positive integer less than or
equal to x. The values x do not need to be integers.

Examples What is the probability of drawing a number 20 or less from a hat with the
numbers from 1 to 50 inside?

probability = unidcdf(20,50)

probability =

 0.4000

See Also cdf, unidinv, unidpdf, unidrnd, unidstat

p F x N() floor x()
N

----------------------I 1 … N, ,() x()= =

unidinv

12-544

12unidinvPurpose Inverse of the discrete uniform cumulative distribution function

Syntax X = unidinv(P,N)

Description X = unidinv(P,N) returns the smallest positive integer X such that the
discrete uniform cdf evaluated at X is equal to or exceeds P. You can think of P
as the probability of drawing a number as large as X out of a hat with the
numbers 1 through N inside.

P and N can be vectors, matrices, or multidimensional arrays that have the
same size, which is also the size of X. A scalar input for N or P is expanded to a
constant array with the same dimensions as the other input. The values in P
must lie on the interval [0 1] and the values in N must be positive integers.

Examples x = unidinv(0.7,20)

x =
14

y = unidinv(0.7 + eps,20)

y =
15

A small change in the first parameter produces a large jump in output. The cdf
and its inverse are both step functions. The example shows what happens at a
step.

See Also icdf, unidcdf, unidpdf, unidrnd, unidstat

unidpdf

12-545

12unidpdfPurpose Discrete uniform probability density function (pdf)

Syntax Y = unidpdf(X,N)

Description unidpdf(X,N) computes the discrete uniform pdf at each of the values in X
using the corresponding parameters in N. X and N can be vectors, matrices, or
multidimensional arrays that have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other inputs. The
parameters in N must be positive integers.

The discrete uniform pdf is

You can think of y as the probability of observing any one number between 1
and n.

Examples For fixed n, the uniform discrete pdf is a constant.

y = unidpdf(1:6,10)

y =
 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Now fix x, and vary n.

likelihood = unidpdf(5,4:9)

likelihood =

 0 0.2000 0.1667 0.1429 0.1250 0.1111

See Also pdf, unidcdf, unidinv, unidrnd, unidstat

y f x N() 1
N
----I 1 … N, ,() x()= =

unidrnd

12-546

12unidrndPurpose Random numbers from the discrete uniform distribution

Syntax R = unidrnd(N)
R = unidrnd(N,v)
R = unidrnd(N,m,n)

Description The discrete uniform distribution arises from experiments equivalent to
drawing a number from one to N out of a hat.

R = unidrnd(N) generates discrete uniform random numbers with
maximum N. The parameters in N must be positive integers. N can be a vector,
a matrix, or a multidimensional array. The size of R is the size of N.

R = unidrnd(N,v) generates discrete uniform random numbers with
maximum N, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = unidrnd(N,m,n) generates discrete uniform random numbers with
maximum N, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of unidrnd
unidrnd uses the MATLAB function rand to generate random numbers. When
you call unidrnd, you change the current state of rand, and thereby alter the
output of subsequent calls to unidrnd or any other functions that depend on
rand. If you want to reproduce the output of unidrnd, reset the state of rand to
the same fixed value each time you call unidrnd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The result in the following example depends on the current state of
rand. If you run the code in this example, your results may differ from the
answer shown here.

Example In the Massachusetts lottery, a player chooses a four digit number. Generate
random numbers for Monday through Saturday.

numbers = unidrnd(10000,1,6) - 1

unidrnd

12-547

numbers =

 2189 470 6788 6792 9346

See Also unidcdf, unidinv, unidpdf, unidstat

unidstat

12-548

12unidstatPurpose Mean and variance for the discrete uniform distribution

Syntax [M,V] = unidstat(N)

Description [M,V] = unidstat(N) returns the mean and variance for the discrete uniform
distribution with parameter N.

The mean of the discrete uniform distribution with parameter N is .
The variance is .

Examples [m,v] = unidstat(1:6)

m =
 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

v =
 0 0.2500 0.6667 1.2500 2.0000 2.9167

See Also unidcdf, unidinv, unidpdf, unidrnd

N 1+() 2⁄
N2 1–() 12⁄

unifcdf

12-549

12unifcdfPurpose Continuous uniform cumulative distribution function (cdf)

Syntax P = unifcdf(X,A,B)

Description P = unifcdf(X,A,B) computes the uniform cdf at each of the values in X using
the corresponding parameters in A and B (the minimum and maximum values,
respectively). X, A, and B can be vectors, matrices, or multidimensional arrays
that all have the same size. A scalar input is expanded to a constant matrix
with the same dimensions as the other inputs.

The uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the probability that an observation from a standard uniform
distribution will be less than 0.75?

probability = unifcdf(0.75)

probability =

 0.7500

What is the probability that an observation from a uniform distribution with
a = -1 and b = 1 will be less than 0.75?

probability = unifcdf(0.75,-1,1)

probability =

 0.8750

See Also cdf, unifinv, unifit, unifpdf, unifrnd, unifstat

p F x a b,() x a–
b a–
------------I a b,[] x()= =

unifinv

12-550

12unifinvPurpose Inverse continuous uniform cumulative distribution function (cdf)

Syntax X = unifinv(P,A,B)

Description X = unifinv(P,A,B) computes the inverse of the uniform cdf with parameters
A and B (the minimum and maximum values, respectively) at the corresponding
probabilities in P. P, A, and B can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input is expanded to a constant
array with the same dimensions as the other inputs.

The inverse of the uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the median of the standard uniform distribution?

median_value = unifinv(0.5)

median_value =

 0.5000

What is the 99th percentile of the uniform distribution between -1 and 1?

percentile = unifinv(0.99,-1,1)

percentile =

 0.9800

See Also icdf, unifcdf, unifit, unifpdf, unifrnd, unifstat

x F 1– p a b,() a p a b–()I 0 1,[] p()+= =

unifit

12-551

12unifitPurpose Parameter estimates for uniformly distributed data

Syntax [ahat,bhat] = unifit(DATA)
[ahat,bhat,ACI,BCI] = unifit(DATA)
[ahat,bhat,ACI,BCI] = unifit(DATA,alpha)

Description [ahat,bhat] = unifit(DATA) returns the maximum likelihood estimates
(MLEs) of the parameters of the uniform distribution given the data in DATA.

[ahat,bhat,ACI,BCI] = unifit(DATA) also returns 95% confidence intervals,
ACI and BCI, which are matrices with two rows. The first row contains the
lower bound of the interval for each column of the matrix DATA. The second row
contains the upper bound of the interval.

[ahat,bhat,ACI,BCI] = unifit(DATA,alpha) enables you to control of the
confidence level alpha. For example, if alpha = 0.01 then ACI and BCI are 99%
confidence intervals.

Example r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)

ahat =

 10.0154 10.0060

bhat =

 11.9989 11.9743

aci =

 9.9551 9.9461
 10.0154 10.0060

bci =

 11.9989 11.9743
 12.0592 12.0341

See Also betafit, binofit, expfit, gamfit, normfit, poissfit, unifcdf, unifinv,
unifpdf, unifrnd, unifstat, wblfit

unifpdf

12-552

12unifpdfPurpose Continuous uniform probability density function (pdf)

Syntax Y = unifpdf(X,A,B)

Description Y = unifpdf(X,A,B) computes the continuous uniform pdf at each of the
values in X using the corresponding parameters in A and B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions as the
other inputs. The parameters in B must be greater than those in A.

The continuous uniform distribution pdf is

The standard uniform distribution has A = 0 and B = 1.

Examples For fixed a and b, the uniform pdf is constant.

x = 0.1:0.1:0.6;
y = unifpdf(x)

y =
 1 1 1 1 1 1

What if x is not between a and b?

y = unifpdf(-1,0,1)

y =
 0

See Also pdf, unifcdf, unifinv, unifrnd, unifstat

y f x a b,() 1
b a–
------------I a b,[] x()= =

unifrnd

12-553

12unifrndPurpose Random numbers from the continuous uniform distribution

Syntax R = unifrnd(A,B)
R = unifrnd(A,B,m)
R = unifrnd(A,B,m,n)

Description R = unifrnd(A,B) generates uniform random numbers with parameters A
and B. Vector or matrix inputs for A and B must have the same size, which is
also the size of R. A scalar input for A or B is expanded to a constant matrix with
the same dimensions as the other input.

R = unifrnd(A,B,m) generates uniform random numbers with parameters A
and B, where m is a 1-by-2 vector that contains the row and column dimensions
of R.

R = unifrnd(A,B,m,n) generates uniform random numbers with parameters
A and B, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of unifrnd
unifrnd uses the MATLAB function rand to generate random numbers. When
you call unifrnd, you change the current state of rand, and thereby alter the
output of subsequent calls to unifrnd or any other functions that depend on
rand. If you want to reproduce the output of unifrnd, reset the state of rand to
the same fixed value each time you call unifrnd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current state of
rand. If you run the code in these examples, your results may differ from the
answers shown here.

Examples random = unifrnd(0,1:6)

random =

 0.2190 0.0941 2.0366 2.7172 4.6735 2.3010

unifrnd

12-554

random = unifrnd(0,1:6,[1 6])

random =

 0.5194 1.6619 0.1037 0.2138 2.6485 4.0269

random = unifrnd(0,1,2,3)

random =

 0.0077 0.0668 0.6868
 0.3834 0.4175 0.5890

See Also unifcdf, unifinv, unifpdf, unifstat

unifstat

12-555

12unifstatPurpose Mean and variance for the continuous uniform distribution

Syntax [M,V] = unifstat(A,B)

Description [M,V] = unifstat(A,B) returns the mean and variance for the continuous
uniform distribution with parameters specified by A and B. Vector or matrix
inputs for A and B must have the same size, which is also the size of M and V. A
scalar input for A or B is expanded to a constant matrix with the same
dimensions as the other input.

The mean of the continuous uniform distribution with parameters a and b is
, and the variance is .

Examples a = 1:6;
b = 2.∗a;
[m,v] = unifstat(a,b)

m =
 1.5000 3.0000 4.5000 6.0000 7.5000 9.0000

v =
 0.0833 0.3333 0.7500 1.3333 2.0833 3.0000

See Also unifcdf, unifinv, unifpdf, unifrnd

a b+() 2⁄ b a–()2 12⁄

var

12-556

12varPurpose Variance of a sample

Syntax y = var(X)
y = var(X,1)
y = var(X,w)
var(X,w,dim)

Description y = var(X) computes the variance of the data in X. For vectors, var(x) is the
variance of the elements in x. For matrices, var(X) is a row vector containing
the variance of each column of X.

y = var(x) normalizes by n-1 where n is the sequence length. For normally
distributed data, this makes var(x) the minimum variance unbiased estimator
MVUE of σ 2(the second parameter).

y = var(x,1) normalizes by n and yields the second moment of the sample
data about its mean (moment of inertia).

y = var(X,w) computes the variance using the vector of positive weights w.
The number of elements in w must equal the number of rows in the matrix X.
For vector x, w and x must match in length.

var(X,w,dim) takes the variance along the dimension dim of X. Pass in 0 for w
to use the default normalization by N-1, or 1 to use N.

var supports both common definitions of variance. Let SS be the sum of the
squared deviations of the elements of a vector x from their mean. Then,
var(x) = SS/(n-1) is the MVUE, and var(x,1) = SS/n is the maximum
likelihood estimator (MLE) of σ 2.

Examples x = [-1 1];
w = [1 3];
v1 = var(x)

v1 =
 2

v2 = var(x,1)

v2 =
 1

var

12-557

v3 = var(x,w)

v3 =
 0.7500

See Also cov, std

wblcdf

12-558

12wblcdfPurpose Weibull cumulative distribution function (cdf)

Syntax P = wblbcdf(X, A, B)
[P, PLO, PUP] = wblcdf(X, A, B, PCOV, alpha)

Description P = wblbcdf(X, A, B) computes the cdf of the Weibull distribution with scale
parameter A and shape parameter B, at each of the values in X. X, A, and B can
be vectors, matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array of the same size as the other
inputs. The default values for A and B are both 1. The parameters A and B must
be positive.

[P, PLO, PUP] = wblcdf(X, A, B, PCOV, alpha) returns confidence bounds
for P when the input parameters A and B are estimates. PCOV is the 2-by-2
covariance matrix of the estimated parameters. alpha has a default value of
0.05, and specifies 100(1 - alpha)% confidence bounds. PLO and PUP are arrays
of the same size as P containing the lower and upper confidence bounds.

The function wblcdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforms those bounds to the scale of the output P. The computed
bounds give approximately the desired confidence level when you estimate MU,
SIGMA, and PCOV from large samples, but in smaller samples other methods of
computing the confidence bounds might be more accurate.

The Weibull cdf is

Examples What is the probability that a value from a Weibull distribution with
parameters a = 0.15 and b = 0.8 is less than 0.5?

probability = wblcdf(0.5, 0.15, 0.8)

probability =

b̂ xlog âlog–()

p F x a b,() ba b– t
b 1–

e

t
a
---⎝ ⎠
⎛ ⎞

b

–

td
0

x

∫ 1 e

x
a
---⎝ ⎠
⎛ ⎞

b

–

I 0 ∞,() x()–= = =

wblcdf

12-559

 0.9272

How sensitive is this result to small changes in the parameters?

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = wblcdf(0.5, A, B)
probability =

 0.7484 0.7198 0.6991
 0.7758 0.7411 0.7156
 0.8022 0.7619 0.7319

See Also cdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd, wblstat

wblfit

12-560

12wblfitPurpose Parameter estimates and confidence intervals for Weibull data

Syntax parmhat = wblfit(data)
[parmhat, parmci] = wblfit(data)
[parmhat, parmci] = wblfit(data, alpha)
[...] = wblfit(data, alpha, censoring)
[...] = wblfit(data, alpha, censoring, freq)
[...] = wblfit(data, alpha, censoring, freq, options)

Description parmhat = wblfit(data) returns the maximum likelihood estimates, parmhat,
of the parameters of the Weibull distribution given the values in the vector
data, which must be positive. parmhat is a two-element row vector: parmhat(1)
estimates the Weibull parameter a, and parmhat(2) estimates the Weibull
parameter b, in the pdf

[parmhat, parmci] = wblfit(data) returns 95% confidence intervals for the
estimates of a and b in the 2-by-2 matrix parmci. The first row contains the
lower bounds of the confidence intervals for the parameters, and the second
row contains the upper bounds of the confidence intervals.

[parmhat, parmci] = wblfit(data, alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates.

[...] = wblfit(data, alpha, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = wblfit(data, alpha, censoring, freq) accepts a frequency vector,
freq, of the same size as data. The vector freq typically contains integer
frequencies for the corresponding elements in data, but can contain any
non-negative values. Pass in [] for alpha, censoring, or freq to use their
default values.

[...] = wblfit(..., options) accepts a structure, options, that specifies
control parameters for the iterative algorithm the function uses to compute
maximum likelihood estimates. You can create options using the function
statset. Enter statset ('wblfit') to see the names and default values of the

y f x a b,() ba b– xb 1– e

x
a
---⎝ ⎠
⎛ ⎞

b

–

I 0 ∞,() x()= =

wblfit

12-561

parameters that lognfit accepts in the options structure. See the reference
page for statset for more information about these options.

Example data = wblrnd(0.5,0.8,100,1);
[parmhat, parmci] = wblfit(data)

parmhat =
 0.5861 0.8567

parmci =
 0.4606 0.7360
 0.7459 0.9973

See Also wblcdf, wblinv, wbllike, wblpdf, wblrnd, wblstat, mle, statset

wblinv

12-562

12wblinvPurpose Inverse of the Weibull cumulative distribution function

Syntax X = wblbinv(P, A, B)

[X, XLO, XUP] = wblinv(P, A, B, PCOV, alpha)

Description X = wblinv(P, A, B) returns the inverse cumulative distribution function (cdf)
for a Weibull distribution with scale parameter A and shape parameter B,
evaluated at the values in P. P, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other inputs. The default
values for A and B are both 1.

[X, XLO, XUP] = wblinv(P, A, B, PCOV, alpha) returns confidence bounds
for X when the input parameters A and B are estimates. PCOV is a 2-by-2 matrix
containing the covariance matrix of the estimated parameters. alpha has a
default value of 0.05, and specifies 100(1 - alpha)% confidence bounds. XLO and
XUP are arrays of the same size as X containing the lower and upper confidence
bounds.

The function wblinv computes confidence bounds for X using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a Weibull distribution with scale and shape
parameters both equal to 1. The computed bounds give approximately the
desired confidence level when you estimate MU, SIGMA, and PCOV from large
samples, but in smaller samples other methods of computing the confidence
bounds might be more accurate.

The inverse of the Weibull cdf is

Examples The lifetimes (in hours) of a batch of light bulbs has a Weibull distribution with
parameters a = 200 and b = 6. What is the median lifetime of the bulbs?

life = wblinv(0.5, 200, 6)

âlog qlog
b̂

------------–

x F 1– p a b,() a 1
1 p–
------------⎝ ⎠
⎛ ⎞ln

1
b

I 0 1,[] p()= =

wblinv

12-563

life =
 188.1486

What is the 90th percentile?

life = wblinv(0.9, 200, 6)

life =
 229.8261

See Also wblcdf, wblfit, wbllike, wblpdf, wblrnd, wblstat, icdf

wbllike

12-564

12wbllikePurpose Weibull negative log-likelihood function

Syntax nlogL = wbllike(params, data)
[nlogL, AVAR] = wbllike(params,data)
[...] = wbllike(params, data, censoring)

[...] = wbllike(params, data, censoring, freq)

Description nlogL = wbllike(params, data) returns the Weibull log-likelihood with
parameters params(1) = a and params(2) = b given the data xi.

[logL, AVAR] = wbllike(params, data) also returns AVAR, which is the
asymptotic variance-covariance matrix of the parameter estimates if the
values in params are the maximum likelihood estimates. AVAR is the inverse of
Fisher's information matrix. The diagonal elements of AVAR are the asymptotic
variances of their respective parameters.

[...] = wbllike(params, data, censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = wbllike(params, data, censoring, freq) accepts a frequency
vector, freq, of the same size as data. freq typically contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for censoring to use its default value.

The Weibull negative log-likelihood for uncensored data is

where f is the Weibull pdf.

wbllike is a utility function for maximum likelihood estimation.

Example This example continues the example from wblfit.

r = wblrnd(0.5,0.8,100,1);
[logL, AVAR] = wbllike(wblfit(r),r)

Llog–() f a b, xi()
i 1=
∏log– f a b, xi()log

i 1=

n

∑–= =

wbllike

12-565

logL =

 47.3349

AVAR =

 0.0048 0.0014
 0.0014 0.0040

Reference [1] Patel, J.K., C. H. Kapadia, and D. B. Owen, Handbook of Statistical
Distributions, Marcel-Dekker, 1976.

See Also betalike, gamlike, mle, normlike, wblcdf, wblfit, wblinv, wblpdf, wblrnd,
wblstat

wblpdf

12-566

12wblpdfPurpose Weibull probability density function (pdf)

Syntax Y = wblpdf(X,A,B)

Description Y = wblpdf(X,A,B) computes the Weibull pdf at each of the values in X using
the corresponding parameters in A and B. X, A, and B can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other inputs. The
parameters in A and B must be positive.

The Weibull pdf is

Some references refer to the Weibull distribution with a single parameter. This
corresponds to wblpdf with A = 1.

Examples The exponential distribution is a special case of the Weibull distribution.

lambda = 1:6;
y = wblpdf(0.1:0.1:0.6,lambda,1)

y =

 0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

y1 = exppdf(0.1:0.1:0.6, lambda)

y1 =

 0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

Reference [1] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag,
1986.

See Also pdf, wblcdf, wblfit, wblinv, wbllike, wblplot, wblrnd, wblstat

f x a b,() ba b– xb 1– e

x
a
---⎝ ⎠
⎛ ⎞

b

–

I 0 ∞,() x()= =

wblplot

12-567

12wblplotPurpose Weibull probability plot

Syntax wblplot(X)
h = wblplot(X)

Description wblplot(X) displays a Weibull probability plot of the data in X. If X is a matrix,
wblplot displays a plot for each column.

h = wblplot(X) returns handles to the plotted lines.

The purpose of a Weibull probability plot is to graphically assess whether the
data in X could come from a Weibull distribution. If the data are Weibull the
plot will be linear. Other distribution types might introduce curvature in the
plot.

Example r = wblrnd(1.2,1.5,50,1);
wblplot(r)

See Also normplot, wblcdf, wblfit, wblinv, wbllike, wblpdf, wblrnd, wblstat

10
−1

10
0

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90
0.96
0.99

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot

wblrnd

12-568

12wblrndPurpose Random numbers from the Weibull distribution

Syntax R = wblrnd(A,B)
R = wblrnd(A,B,v)
R = wblrnd(A,B,m,n)

Description R = wblrnd(A,B) generates Weibull random numbers with parameters A
and B. The input arguments A and B can be either scalars or matrices. A and B,
can be vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array of the same size as the other
input.

R = wblrnd(A,B,v) generates Weibull random numbers with parameters A
and B, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1)
rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = wblrnd(A,B,m,n) generates Weibull random numbers with parameters A
and B, where scalars m and n are the row and column dimensions of R.

Devroye [1] refers to the Weibull distribution with a single parameter; this is
wblrnd with A = 1.

Reproducing the Output of wblrnd
wblrnd uses the MATLAB function rand to generate random numbers. When
you call wblrnd, you change the current state of rand, and thereby alter the
output of subsequent calls to wblrnd or any other functions that depend on
rand. If you want to reproduce the output of wblrnd, reset the state of rand to
the same fixed value each time you call wblrnd. For an example of how to do
this, and a list of the Statistics Toolbox functions that depend on rand, see
“Reproducing the Output of Random Number Functions” on page 2-46.

Note The results in the following examples depend on the current state of
rand. If you run the code in these examples, your results might differ from the
answers shown here.

Examples n1 = wblrnd(0.5:0.5:2,0.5:0.5:2)

wblrnd

12-569

n1 =
 0.0178 0.0860 2.5216 0.9124

n2 = wblrnd(1/2,1/2,[1 6])

n2 =
 0.0046 1.7214 2.2108 0.0367 0.0531 0.0917

Reference [1] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag,
1986.

See Also wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblstat

wblstat

12-570

12wblstatPurpose Mean and variance for the Weibull distribution

Syntax [M,V] = wblstat(A,B)

Description [M,V] = wblstat(A,B) returns the mean and variance for the Weibull
distribution with parameters specified by A and B. Vector or matrix inputs for
A and B must have the same size, which is also the size of M and V. A scalar input
for A or B is expanded to a constant matrix with the same dimensions as the
other input.

The mean of the Weibull distribution with parameters a and b is

and the variance is

Examples [m,v] = wblstat(1:4,1:4)

m =

 1.0000 1.7725 2.6789 3.6256

v =

 1.0000 0.8584 0.9480 1.0346

wblstat(0.5,0.7)

ans =

 0.6329

See Also wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd

a Γ 1 b 1–
+()[]

a2 Γ 1 2b 1–
+() Γ 1 b 1–

+()
2

–

wishrnd

12-571

12wishrndPurpose Generate Wishart random matrix

Syntax W = wishrnd(SIGMA,df)
W = wishrnd(SIGMA,df,D)
[W,D] = wishrnd(SIGMA,df)

Description W = wishrnd(SIGMA,df) generates a random matrix W having the Wishart
distribution with covariance matrix SIGMA and with df degrees of freedom.

W = wishrnd(SIGMA,df,D) expects D to be the Cholesky factor of SIGMA. If you
call wishrnd multiple times using the same value of SIGMA, it's more efficient
to supply D instead of computing it each time.

[W,D] = wishrnd(SIGMA,df) returns D so you can provide it as input in future
calls to wishrnd.

Reproducing the Output of wishrnd
wishrnd uses the MATLAB functions rand and randn to generate random
numbers. When you call wishrnd, you change the current states of rand and
randn, and thereby alter the output of subsequent calls to wishrnd or any other
functions that depend on rand or randn. If you want to reproduce the output of
wishrnd, reset the states of rand and randn to the same fixed values each time
you call wishrnd. For an example of how to do this, and a list of the Statistics
Toolbox functions that depend on rand or randn, see “Reproducing the Output
of Random Number Functions” on page 2-46.

See Also iwishrnd

x2fx

12-572

12x2fxPurpose Transform a matrix of variable values to a design matrix of term values

Syntax D = x2fx(X)
D = x2fx(X,'model')

Description D = x2fx(X) takes a matrix X of variable values system inputs and computes
a matrix D of term values for a linear additive model with a constant term.
Often the X matrix represents settings of factors in an experimental design,
and these represent the inputs of a system being modeled. D is known as a
design matrix.

D = x2fx(X,'model') allows control of the regression model. 'model' can be
one of these strings:

Alternatively, model can be a matrix of terms. In this case, each row of model
represents one term. The value in a column is the exponent to which the same
column in X for that term is raised, D(i,j) = prod(x(i,:).^model(j,:)).
This allows for models with polynomial terms of arbitrary degree. A row of all
zeros represents the constant term, so you can omit the constant by not
including such a row.

The order of columns for a quadratic model is

1 Constant term

2 Linear terms (the input X columns 1,2,...,k)

3 Interaction terms formed by taking pairwise products of X columns (1,2),
(1,3), ..., (1,k), (2,3), ..., (k-1,k)

4 Squared terms in the order 1,2,...,k

Other string options for the 'model' parameter use a subset of these terms but
keep them in this order.

x2fx is a utility function for rstool, regstats, and cordexch.

'linear' Constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms

'quadratic' Includes interactions and squared terms

'purequadratic' Includes constant, linear, and squared terms

x2fx

12-573

Examples Example 1.

x = [1 2 3;4 5 6]';
model = 'quadratic';
D = x2fx(x,model)

D =

 1 1 4 4 1 16
 1 2 5 10 4 25
 1 3 6 18 9 36

This example specifies a model by name. Let x1 be the first column of x and x2
be the second. Then the first column of D is the constant term, the second
column is x1, the third column is x2, the fourth column is x1x2, the fifth column
is x1

2, and the last column is x2
2.

Example 2.

x = [1 10; 2 20; 3 10; 40 20; 5 15; 6 15];
model = [0 0; 1 0; 0 1; 1 1; 2 0];
D = x2fx(x, model)
D =
 1 1 10 10 1
 1 2 20 40 4
 1 3 10 30 9
 1 40 20 800 1600
 1 5 15 75 25
 1 6 15 90 36

This example specifies a model as a matrix. Let x1 be the first column of x and
x2 be the second. Then the columns of D are defined by the rows of model in the
following order: constant term, x1, x2, x1x2, and x1

2. The fourth row of model is
[1 1], so it defines the term x1x2 as the product of x1 to the first power and x2
to the first power. The fifth row of model is [2 0], so it defines x1

2 as the product
of x1 to the second power and x2 to the zeroth power.

See Also rstool, candexch, candgen, cordexch, rowexch

xbarplot

12-574

12xbarplotPurpose X-bar chart for Statistical Process Control

Syntax xbarplot(DATA)
xbarplot(DATA,conf)
xbarplot(DATA,conf,specs,'sigmaest')
[outlier,h] = xbarplot(...)

Description xbarplot(DATA) displays an x-bar chart of the grouped responses in DATA. The
rows of DATA contain replicate observations taken at a given time, and must be
in time order. The graph contains the sample mean for each group, a center
line at the average value, and upper and lower control limits. The limits are
placed at a three-sigma distance on either side of the center line, where sigma
is an estimate of the standard deviation of . If the process is in control, fewer
than 3 out of 1000 observations would be expected to fall outside the control
limits by random chance. So if you observe points outside the limits, you can
take this as evidence that the process is not in control.

xbarplot(DATA,conf) allows control of the confidence level of the upper and
lower plotted confidence limits. The default conf = 0.9973 produces
three-sigma limits.

norminv(1 - (1-.9973)/2)

ans =
 3

To get k-sigma limits, use the expression 1-2*(1-normcdf(k)). For example,
the correct conf value for 2-sigma limits is 0.9545, as shown below.

k = 2;
1-2*(1-normcdf(k))

ans =
 0.9545

xbarplot(DATA,conf,specs) plots the specification limits in the two element
vector specs.

xbarplot(DATA,conf,specs,'sigmaest') specifies how xbarplot should
estimate the standard deviation. Acceptable values are:

x
x

x

xbarplot

12-575

• 's' – use the average of the group standard deviations (default)

• 'v' – use the square root of a pooled variance estimate

• 'r' – use the average range with each group; requires 25 or fewer
observations per group

[outlier,h] = xbarplot(DATA,conf,specs) returns outlier, a vector of
indices to the rows where the mean of DATA is out of control, and h, a vector of
handles to the plotted lines.

Example Plot an x-bar chart of measurements on newly machined parts, taken at one
hour intervals for 36 hours. Each row of the runout matrix contains the
measurements for four parts chosen at random. The values indicate, in
thousandths of an inch, the amount the part radius differs from the target
radius.

load parts
xbarplot(runout,0.999,[-0.5 0.5])

The points in groups 21 and 25 are out of control, so the mean in those groups
was higher than would be expected by random chance alone. There is evidence
that the process was not in control when those measurements were collected.

See Also capaplot, histfit, ewmaplot, schart

0 5 10 15 20 25 30 35 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

21 25

UCL

LCL

CL

Xbar Chart
USL

LSL

Samples

M
ea

su
re

m
en

ts

zscore

12-576

12zscorePurpose Standardized Z score

Syntax Z = zscore(D)

Description Z = zscore(D) returns the deviation of each column of D from its mean,
normalized by its standard deviation. This is known as the Z score of D.

For column vector V, the Z score is Z = (V-mean(V))./std(V).

ztest

12-577

12ztestPurpose Hypothesis testing for the mean of one sample with known variance

Syntax h = ztest(x,m,sigma)
h = ztest(x,m,sigma,alpha)
h = ztest(x,m,sigma,alpha,tail)
h = ztest(x,m,sigma,alpha,tail,dim)
[h,sig,ci,zval] = ztest(...)

Description h = ztest(x,m,sigma) performs a Z test at significance level 0.05 to
determine whether a sample x from a normal distribution with standard
deviation sigma could have mean m.

x can also be a matrix or an N-D array. For matrices, ztest performs separate
Z tests along each column of x and returns a vector of results. For N-D arrays,
ztest works along the first nonsingleton dimension of x.

h = ttest(x,m) performs a Z test of the hypothesis that the data in the vector

h = ztest(x,m,sigma,alpha) gives control of the significance level alpha. For
example, if alpha = 0.01 and the result is h = 1, you can reject the null
hypothesis at the significance level 0.01. If h = 0, you cannot reject the null
hypothesis at the alpha level of significance.

[h,sig,ci] = ztest(x,m,sigma,alpha,tail) allows specification of one- or
two-tailed tests, where tail is a flag that specifies one of three alternative
hypotheses:

• tail = 'both' specifies the alternative (default).

• tail = 'right' specifies the alternative .

• tail = 'left' specifies the alternative .

zval is the value of the Z statistic

where is the number of observations in the sample.

sig is the probability that the observed value of Z could be as large or larger by
chance under the null hypothesis that the mean of x is equal to m.

x m≠
x m>

x m<

z x m–

σ n⁄
---------------=

n

ztest

12-578

ci is a 1-alpha confidence interval for the true mean.

h = ztest(...,alpha,tail,dim) performs the test along dimension dim of
the input x array. For a matrix x, dim=1 computes the Z test for each column
(along the first dimension), and dim=2 computes the Z test for each row. By
default, ztest works along the first nonsingleton dimension, so it treats a
single-row input as a row vector.

Example This example generates 100 normal random numbers with theoretical mean 0
and standard deviation 1. The observed mean and standard deviation are
different from their theoretical values, of course. You test the hypothesis that
there is no true difference.

x = normrnd(0,1,100,1);
m = mean(x)
m =
 0.0727

[h,sig,ci] = ztest(x,0,1)

h =
 0

sig =
 0.4669

ci =
 -0.1232 0.2687

The result, h = 0, means that you cannot reject the null hypothesis. The
significance level is 0.4669, which means that by chance you would have
observed values of Z more extreme than the one in this example in 47 of 100
similar experiments. A 95% confidence interval on the mean is
[-0.1232 0.2687], which includes the theoretical (and hypothesized) mean of
zero.

A

Selected Bibliography

A Selected Bibliography

A-2

Recommended Reading
[1] Atkinson, A. C., and A. N. Donev, Optimum Experimental Designs, Oxford
University Press, 1992.

[2] Bates, D. M., and D. G. Watts, Nonlinear Regression Analysis and Its
Applications, Wiley, 1988.

[3] Box, G. E. P., W. G. Hunter, and J. S. Hunter, Statistics for Experimenters.
Wiley-Interscience, 1978.

[4] Box, G. E. P., and N. R. Draper, Empirical Model-Building and Response
Surfaces, Wiley, 1987.

[5] Breiman, L., J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees, Wadsworth, 1984.

[6] Bulmer, M. G., Principles of Statistics, Dover, 1979.

[7] Bury, K., Statistical Distributions in Engineering, Cambridge University
Press, 1999.

[8] Collett, D., Modelling Binary Data, Chapman & Hall, 2002.

[9] Dobson, A. J., An Introduction to Generalized Linear Models, Chapman &
Hall, 1990.

[10] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag,
1986.

[11] Draper, N. R., and H. Smith, Applied Regression Analysis,
Wiley-Interscience, 1998.

[12] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis, Cambridge University Press, 1998.

[13] Efron, B., and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman
& Hall, 1993.

[14] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
Wiley-Interscience, 2000.

[15] Gibbons, J. D., Nonparametric Statistical Inference, Marcel Dekker, 1985.

[16] Gonick, L., and W. Smith, The Cartoon Guide to Statistics, Harper Collins,
1992.

[17] Hald, A., Statistical Theory with Engineering Applications, Wiley, 1960.

A-3

[18] Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, Springer, 2001.

[19] Hogg, R. V., and J. Ledolter, Engineering Statistics, MacMillan, 1987.

[20] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley,
1999.

[21] Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate
Distributions, Volume 1, Wiley-Interscience, 1993.

[22] Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate
Distributions, Volume 2, Wiley-Interscience, 1994.

[23] Johnson, N. L., S. Kotz, and N. Balakrishnan, Discrete Multivariate
Distributions, Wiley-Interscience, 1997.

[24] Johnson, N. L., N. Balakrishnan, and S. Kotz, Continuous Multivariate
Distributions, Volume 1, Wiley-Interscience, 2000.

[25] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete
Distributions, Wiley-Interscience, 1993.

[26] Krzanowski, W. J., Principles of Multivariate Analysis: A User's
Perspective, Oxford University Press, 1988.

[27] Lawless, J. F., Statistical Models and Methods for Lifetime Data,
Wiley-Interscience, 2002.

[28] Mardia, K. V., J. T. Kent, and J. M. Bibby, Multivariate Analysis,
Academic Press, 1980.

[29] Martinez, W. L., and A. R. Martinez, Computational Statistics with
MATLAB, Chapman & Hall/CRC, 2002.

[30] McCullagh, P., and J. A. Nelder, Generalized Linear Models, Chapman &
Hall, 1990.

[31] Meeker, W. Q., and Escobar, L. A., Statistical Methods for Reliability Data,
Wiley, 1998.

[32] Montgomery, D. C., Design and Analysis of Experiments, Wiley, 2001.

[33] Rice, J. A., Mathematical Statistics and Data Analysis, Duxbury Press,
1994.

[34] Seber, G. A. F., Linear Regression Analysis, Wiley-Interscience, 2003.

A Selected Bibliography

A-4

[35] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

[36] Seber, G. A. F., and C. J. Wild, Nonlinear Regression, Wiley-Interscience,
2003.

[37] Snedecor, G. W., and W. G. Cochran, Statistical Methods, Iowa State
Press, 1989.

[38] Vellemen, P. F., and D. C. Hoaglin, Application, Basics, and Computing of
Exploratory Data Analysis, Duxbury Press, 1981.

[39] Wild, C. J., and G. A. F. Seber, Chance Encounters: A First Course in Data
Analysis and Inference, Wiley, 1999.

Other References Cited
[40] Bernoulli, J., Ars Conjectandi, Thurnisius, Basel, 1713.

[41] Chatterjee, S., and A. S. Hadi, “Influential Observations, High Leverage
Points, and Outliers in Linear Regression,” Statistical Science, 1:379-416,
1986.

[42] Moore, J., Total Biochemical Oxygen Demand of Dairy Manures, Ph.D.
thesis, University of Minnesota, Department of Agricultural Engineering,
1975.

[43] Poisson, S. D., Recherches sur la Probabilité des Jugements en Matière
Criminelle et en Matière Civile, Précédées des Regles Générales du Calcul des
Probabilités, Bachelier, Imprimeur-Libraire pour les Mathematiques, Paris,
1837.

[44] “Student,” “On the Probable Error of the Mean,” Biometrika, 6:1-25, 1908.

[45] Weibull, W., “A Statistical Theory of the Strength of Materials,” Ingeniors
Vetenskaps Akademiens Handlingar, Stockholm: Royal Swedish Institute for
Engineering Research, No. 151, 1939.

Index-1

Index

A
absolute deviation 3-4
addedvarplot 12-23
additive effects 4-8
alternative hypothesis 6-3
analysis of variance 2-62

multivariate 7-24
N-way 4-11
one-way 4-3
two-way 4-8

andrewsplot 12-25
ANOVA 4-2
anova1 12-27
anova2 12-33
anovan 12-37
aoctool 12-46
aoctool demo 4-25
average linkage 12-288

B
bacteria counts 4-3
barttest 12-49
baseball odds 12-60, 12-63
bbdesign 12-50
Bera-Jarque. See Jarque-Bera
Bernoulli random variables 12-65
beta distribution 2-48
betacdf 12-51
betafit 12-52
betainv 12-54
betalike 12-55
betapdf 12-56
betarnd 12-57

betastat 12-59
binocdf 12-60
binofit 12-61
binoinv 12-63
binomial distribution 2-50

negative. See also negative binomial
distribuiton

binopdf 12-64
binornd 12-65
binostat 12-67
biplot 12-68
bootstrap 12-70
bootstrap sampling 3-17
box plots 8-3
Box-Behnken designs 10-9

generating 12-50
boxplot 12-74

C
candexch 12-79
candgen 12-81
canoncorr 12-82
capability studies 9-5
capable 12-85
capaplot 12-87
casenames

reading from file 12-89
writing to file 12-90

caseread 12-89
casewrite 12-90
ccdesign 12-91

Index

Index-2

cdf
definition 2-7
functions 12-4

cdf 12-93
cdfplot 12-94
central composite designs 10-8

generating 12-91
Central Limit Theorem 2-74
centroid linkage 12-289
Chatterjee and Hadi example 4-35
chi2cdf 12-96
chi2inv 12-97
chi2pdf 12-98
chi2rnd 12-99
chi2stat 12-101
chi-square distributions 2-52
circuit boards 12-64
City Block metric

in cluster analysis 12-412
classical multidimensional scaling 7-53

cmdscale function 12-110
overview 7-53
reconstructing a map 7-60
simple example 7-54

classification trees 5-8
functions 12-19
See also decision trees

classify 12-102
cluster 12-105
cluster analysis 7-30

functions 12-17
hierarchical clustering 7-30
K-means clustering 7-46

cluster tree creation 12-287
from data 12-107
from linkage output 12-105

cluster trees
inconsistency coefficient 12-255
plotting 12-130

clusterdata 12-107
cmdscale 12-110
coin 12-202
combnk 12-112
comparisons, multiple 4-5
complete linkage 12-288
confidence intervals

hypothesis tests 6-3
nonlinear regression 5-5

control charts 9-2
EWMA charts 9-4
S charts 9-3
Xbar charts 9-2

cophenet 12-113
cophenetic correlation coefficient 12-113

defined 7-37
cordexch 12-115
corr 12-117
corrcoef 12-119
correlation coefficients 12-119
cov 12-122
Cp index 9-5, 12-85
Cpk index 9-5, 12-85
crosstab 12-123
cumulative distribution function (cdf) 2-7

empirical 3-15
functions 12-4
graphing an estimate 8-8

curve fitting
polynomials

demo 4-36

Index

Index-3

D
data partitioning

K-means clustering 7-46
data sets

statistical examples 12-21
daugment 12-125
dcovary 12-127
decision trees 5-8

computing error rate 12-528
computing response values 12-531
creating 12-523
creating subtrees 12-525
displaying 12-521
example 5-8
fitting 12-523
functions 12-19
pruning 12-525

demos
design of experiments 10-10
list of 12-20

dendrogram 12-130, 12-310
density estimation

ksdensity function 12-269
descriptive statistics 3-1

functions 12-10
design of experiments 10-1

Box-Behnken designs 10-9
central composite designs 10-8
D-optimal designs 10-18
fractional factorial designs 10-6
full factorial designs 10-4
functions 12-15
response surface designs 10-8

dimension reduction
common factor analysis 12-161
PCA from covariance matrix 12-405
PCA from raw data matrix 12-429

PCA residuals 12-407
discrete uniform distribution 2-55
dissimilarity matrix

creating 7-31
distance matrix

creating 7-31
distribution fitting tool 2-13
distribution testing

functions 12-19
distributions

probability 2-1
supported 2-45
visualizing 2-3

disttool 12-133
disttool demo 2-3
DOE. See design of experiments
D-optimal designs 10-18

creating from candidate set 12-79
generating candidate set 12-81

dummyvar 12-134

E
ecdf 12-135
ecdfhist 12-137
efinv 12-143
empirical cumulative distribution function 3-15

ecdf function 12-135
erf 2-74
error function 2-74
errorbar 12-139
Euclidean distance

in cluster analysis 12-411
evcdf 12-140
evfit 12-141
evlike 12-144
evpdf 12-145

Index

Index-4

evrnd 12-146
evstat 12-147
EWMA charts 9-4
ewmaplot 12-148
expcdf 12-150
expfit 12-152
expinv 12-154
explike 12-156
exponential distribution 2-56
exppdf 12-157
exprnd 12-158
expstat 12-160
extrapolated 12-434
extreme value distribution 2-58

F
F distributions 2-61
F statistic 4-36
factor analysis

maximum likelihood 12-161
factoran 12-161
factorial designs

fractional 10-6
full 10-4
generating fractional 12-176
generating full 12-189

fcdf 12-172
ff2n 12-173
file I/O functions 12-20
finv 12-174
floppy disks 12-248
fpdf 12-175
fracfact 12-176
fractional factorial designs 10-6

generating 12-176
friedman 12-180

Friedman’s test 4-60
frnd 12-184
fstat 12-186
fsurfht 12-187
full factorial designs 10-4

generating 12-189
fullfact 12-189
furthest neighbor linkage 12-288

G
gamcdf 12-190
gamfit 12-192
gaminv 12-194
gamlike 12-196
gamma distribution 2-64
gampdf 12-198
gamrnd 12-199
gamstat 12-201
Gaussian 12-231
geocdf 12-202
geoinv 12-203
geomean 12-204
geometric distribution 2-66
geopdf 12-205
geornd 12-206
geostat 12-208
gline 12-209
glmdemo 12-210
glmdemo demo 4-54
glmfit 12-211
glmval 12-216
glyphplot 12-218
gname 12-222
gplotmatrix 12-224
group mean clusters, plot 7-29
grouped plot matrix 7-24

Index

Index-5

grpstats 12-227
gscatter 12-228
Guinness beer 2-79, 12-516

H
harmmean 12-230
hat matrix 4-34
hidden Markov models 11-1

example 11-4
functions 12-20

hierarchical clustering 7-30
basic procedure 7-31
computing inconsistency coefficient 12-255
creating cluster tree 12-287
creating clusters 7-42
creating clusters from data 12-107
creating clusters from linkage output 12-105
depth of comparison 7-38
determining proximity 12-410
evaluating cluster formation 12-113
finding dissimilarities betwen objects 7-38
finding similarities beween objects 7-31
grouping objects 7-34
inconsistency coefficient 12-255
plotting cluster trees 12-130

hierarchiical clustering
cophenetic correlation coefficient 12-113

hist 12-231
hist3 12-232
histfit 12-235
hmmdecode 12-236
hmmestimate 12-238
hmmgenerate 12-240
hmmtrain 12-242
hmmviterbi 12-245
Hotelling’s T squared 7-11

hougen 12-247
Hougen-Watson model 5-2
hygecdf 12-248
hygeinv 12-249
hygepdf 12-250
hygernd 12-251
hygestat 12-253
hypergeometric distribution 2-67
hypotheses 2-62
hypothesis tests 6-1

functions 12-19

I
icdf 12-254
incomplete beta function 2-48
incomplete gamma function 2-64
inconsistency coefficient 12-255
inconsistent 12-255
inspector 12-415
interaction 4-8
interpolated 12-510
interquartile range (iqr) 3-4
inverse cdf 2-7
inverse cumulative distribution

functions 12-7
iqr 12-257
iwishrnd 12-258

J
Jarque-Bera test 12-259
jbtest 12-259

Index

Index-6

K
Kaplan-Meier cumulative distribution function

12-135
kernel bandwidth 3-12
kernel smoothing function 3-14
K-means clustering 7-46

cluster separation 7-47
creating clusters 12-261
example 7-47
local minima 7-51
number of clusters 7-49
overview 7-46
silhouette plot 12-493

kmeansdata partitioning
K-means clustering 12-261

kruskalwallis 12-265
Kruskal-Wallis test 4-59
ksdensity 12-269
kstest 12-272
kstest2 12-277
kurtosis 12-280

L
latin hypercube sample 12-283

normal distribution 12-284
leverage 12-282
lhsdesign 12-283
lhsnorm 12-284
light bulbs, life of 12-154
likelihood function 12-56
Lilliefors test 6-5
lillietest 12-285
linear models 4-1

functions 12-14
generalized 4-50

linear transformation

Procrustes 12-432
linkage 12-287
logncdf 12-291
lognfit 12-293
logninv 12-295
lognlike 12-297
lognormal distribution 2-69
lognpdf 12-298
lognrnd 12-299
lognstat 12-301
lottery 12-546
lsline 12-302
LU factorizations 12-423

M
mad 12-303
mahal 12-305
Mahalanobis distance 12-305

in cluster analysis 12-412
MANOVA 7-24
manova1 12-306
manovacluster 12-310
Markov chains 11-6
maximum likelihood

factor analysis 12-161
MDS

See also multidimensional scaling
mdscale 12-312
mean 2-11

of probability distribution 2-11
mean 12-315
Mean Squares (MS) 12-27
measures of

central tendency 3-2
dispersion 3-4

median 12-316

Index

Index-7

metric multidimensional scaling
See also classical multidimensional scaling

Minkowski metric
in cluster analysis 12-412

mle 12-317
mlecov 12-323
models

linear 4-1
nonlinear 5-1

moment 12-326
moments of distribution

functions 12-10
Monte Carlo simulation 12-257
multcompare 12-327
multidimensional arrays

classical (metric) scaling 12-110
multidimensional scaling (MDS)

classical (metric) 7-53
multiple linear regression 4-33
multivariate analysis of variance 7-24

example 7-24
multivariate statistics 7-1

analysis of variance 7-24
cluster analysis 7-30
functions 12-17
hierarchical clustering 7-30
K-means clustering 7-46
Principal Components Analysis 7-2

mvnpdf 12-336
mvnrnd 12-337
mvtrnd 12-339

N
nancov 12-341
nanmax 12-343
nanmean 12-344

nanmedian 12-345
nanmin 12-346
NaNs 3-6
nanstd 12-347
nansum 12-349
nanvar 12-350
nbincdf 12-351
nbinfit 12-353
nbininv 12-354
nbinpdf 12-355
nbinrnd 12-357
nbinstat 12-359
ncfcdf 12-361
ncfinv 12-363
ncfpdf 12-365
ncfrnd 12-366
ncfstat 12-368
nctcdf 12-369
nctinv 12-370
nctpdf 12-371
nctrnd 12-372
nctstat 12-374
ncx2cdf 12-375
ncx2inv 12-377
ncx2pdf 12-378
ncx2rnd 12-379
ncx2stat 12-381
nearest neighbor linkage 12-288
negative binomial distribution 2-70

confidence intervals 12-353
cumulative distribution function (cdf) 12-351
definition 2-71
inverse cumulative distribution function (cdf)

12-354
mean and variance 12-359
modeling number of auto accidents 2-71
nbincdf function 12-351

Index

Index-8

nbininv function 12-354
nbinpdf function 12-355
parameter estimates 12-353
probability density function (pdf) 12-355
random matrices 12-357

Newton’s method 12-194
nlinfit 12-382
nlintool 12-384
nlintool demo 5-6
nlparci 12-385
nlpredci 12-386
noncentral F distribution 2-63
nonlinear regression

functions 12-15
nonlinear regression models 5-1
nonparametric testing

functions 12-19
normal distribution 2-73
normal probability plots 8-2, 8-4
normalizing a dataset 7-32

using zscore 12-576
normcdf 12-388
normdemo 12-400
normfit 12-390
norminv 12-392
normlike 12-394
normpdf 12-395
normplot 12-396
normrnd 12-398
normstat 12-401
notation, mathematical conventions 1-6
null 6-3
null hypothesis 6-3

O
one-way analysis of variance (ANOVA) 4-2

options parameters
possible values 12-501

outliers 3-2

P
parallelcoords 12-402
parameter estimation

functions 12-4
pareto 12-404
Pascal, Blaise 2-50
PCA. See Principal Components Analysis
pcacov 12-405
pcares 12-407
pdf

definition 2-6
functions 12-6

pdf 12-409
pdist 12-410
percentiles 3-10
perms 12-414
plots 3-10
plotting

statistical functions 12-12
poisscdf 12-415
poissfit 12-417
poissinv 12-418
Poisson distribution 2-76
poisspdf 12-419
poissrnd 12-420
poisstat 12-422
polyconf 12-423
polyfit 12-424
polynomials

curve fitting demo 4-36
polytool 12-426
polytool demo 4-36

Index

Index-9

polyval 12-427
popcorn 12-35, 12-182
prctile 12-428
Principal Components Analysis (PCA) 7-2

component scores 7-6
component variances 7-10
Hotelling’s T squared 7-11
principal components 7-6
quality of life example 7-3
Scree plot 7-10

princomp 12-429
probability density estimation 3-12

comparing estimates 3-15
function 12-269
kernel bandwidth 3-12
kernel smoothing functioon 3-14

probability density function (pdf)
definition 2-6
functions 12-6

probability distribution
mean and variance 2-11

probability distributions 2-1
demo 2-3
functions 12-2

probplot 12-431
process control

statistical 9-1
procrustes 12-432
Procrustes Analysis 12-432
p-value 4-10, 6-3

Q
qqplot 12-434
QR decomposition 4-33
quality assurance 12-64
quantile-quantile plots 8-2, 8-6

R
random 12-439
random number generation 2-9

direct 2-9
functions 12-7
inverted 2-9
rejection 2-10

random numbers 2-9
random sample generation

demo 2-4
random samples

inverse Wishart 12-258
latin hypercube 12-283
latin hypercube with normal distribution

12-284
Wishart 12-571

randsample 12-440
randtool 12-441
randtool demo 2-4
range 12-442
ranksum 12-443
raylcdf 12-445
raylfit 12-446
raylinv 12-447
raylpdf 12-448
raylrnd 12-449
raylstat 12-451
rcoplot 12-452
reconstruction

map from inter-city distances 7-60
refcurve 12-453
references A-1
refline 12-454
regress 12-455

Index

Index-10

regression 2-62
nonlinear 5-1
robust 4-55
stepwise 4-45

regression trees 5-8
functions 12-19
See also decision trees

regstats 12-458
relative efficiency 12-257
residuals 4-36
response surface designs 10-8
Response Surface Methodology (RSM) 4-42
respoonse surface designs

Box-Behnken 10-9
central composite 10-8

ridge 12-471
robust 3-2
robust linear fit 12-434
robustdemo demo 4-57
robustdemo function 12-473
robustfit 12-474
rotatefactors 12-479
rowexch 12-482
rsmdemo 12-484
rsmdemo demo 10-10
R-square 4-36
rstool 12-485
rstool demo 4-42

S
S charts 9-3
scaling arrays

classical multidimensional 12-110
scatter plots 8-10

grouped 7-24
schart 12-487

Scree plot 7-10
segmentation analysis 7-30
significance level 6-3
signrank 12-489
signtest 12-491
silhouette 12-493
similarity matrix

creating 7-31
simulation 12-257
single linkage 12-288
skewness 8-3
skewness 12-495
squareform 12-497
standard normal 12-395
Standardized Euclidean distance

in cluster analysis 12-411
statget 12-499
statistical plots 8-1
Statistical Process Control 9-1

capability studies 9-5
control charts 9-2
functions 12-12

statistical references A-1
statistically significant 12-27, 12-265, 12-306
statset 12-500
stepwise 4-45, 12-506
stepwise regression 4-45
stepwisefit 12-507
Sum of Squares (SS) 12-27
surfht 12-510
symmetric 12-190

T
t distributions 2-79

noncentral 2-80

Index

Index-11

tab-delimited data
reading from file 12-517

tabular data
reading from file 12-512

tabulate 12-511
taxonomy analysis 7-30
tblread 12-512
tblwrite 12-514
tcdf 12-516
tdfread 12-517
tinv 12-519
tpdf 12-520
treefit 12-523
treeprune 12-525
trees

See also decision trees
See also decision trees

treeshow 12-521
treetest 12-528
treeval 12-531
trimmean 12-533
trnd 12-534
tstat 12-536
ttest 12-537
ttest2 12-540
two-way ANOVA 4-8

U
unbiased 12-556
unidcdf 12-543
unidinv 12-544
unidpdf 12-545
unidrnd 12-546
unidstat 12-548
unifcdf 12-549
unifinv 12-550

unifit 12-551
uniform distribution 2-82
unifpdf 12-552
unifrnd 12-553
unifstat 12-555

V
var 12-556
variance 2-11

of probability distribution 2-11

W
ward linkage 12-289
wblcdf 12-558
wblfit 12-560
wblinv 12-562
wbllike 12-564
wblpdf 12-566
wblplot 12-567
wblrnd 12-568
wblstat 12-570
Weibull distribution 2-83
Weibull probability plots 8-7
Weibull, Waloddi 2-83
whiskers 8-3
Wishart random matrix 12-571

inverse 12-258
wishrnd 12-571

X
x2fx 12-572
Xbar charts 9-2
xbarplot 12-574

Index

Index-12

Z
zscore 12-576
ztest 12-577

	Introduction
	What Is the Statistics Toolbox?
	Primary Topic Areas
	Random Number Generators in the Statistics Toolbox
	Mathematical Notation

	Probability Distributions
	Introduction
	Displaying Probability Distributions and Random Samples
	Probability Distributions Demo
	Random Sample Generation Demo

	Overview of the Functions
	Probability Density Function (pdf)
	Cumulative Distribution Function (cdf)
	Inverse Cumulative Distribution Function
	Random Number Generator
	Mean and Variance as a Function of Parameters

	Distribution Fitting Tool
	Main Window of the Distribution Fitting Tool
	Example: Fitting a Distribution
	Creating and Managing Data Sets
	Creating a New Fit
	Displaying Results
	Managing Fits
	Evaluating Fits
	Excluding Data
	Saving and Loading Sessions
	Generating an M-File to Fit and Plot Distributions
	Using Custom Distributions
	Additional Distributions Available in the Distribution Fitting Tool

	Overview of the Distributions
	Reproducing the Output of Random Number Functions
	Beta Distribution
	Binomial Distribution
	Chi-Square Distribution
	Noncentral Chi-Square Distribution
	Discrete Uniform Distribution
	Exponential Distribution
	Extreme Value Distribution
	F Distribution
	Noncentral F Distribution
	Gamma Distribution
	Geometric Distribution
	Hypergeometric Distribution
	Lognormal Distribution
	Negative Binomial Distribution
	Normal Distribution
	Poisson Distribution
	Rayleigh Distribution
	Student’s t Distribution
	Noncentral t Distribution
	Uniform (Continuous) Distribution
	Weibull Distribution

	Descriptive Statistics
	Measures of Central Tendency (Location)
	Measures of Dispersion
	Functions for Data with Missing Values (NaNs)
	Function for Grouped Data
	Percentiles and Graphical Descriptions
	Percentiles
	Probability Density Estimation
	Empirical Cumulative Distribution Function

	The Bootstrap

	Linear Models
	Introduction
	One-Way Analysis of Variance (ANOVA)
	Example: One-Way ANOVA
	Multiple Comparisons
	Example: Multiple Comparisons

	Two-Way Analysis of Variance (ANOVA)
	Example: Two-Way ANOVA

	N-Way Analysis of Variance
	Example: N-Way ANOVA with Small Data Set
	Example: N-Way ANOVA with Large Data Set

	ANOVA with Random Effects
	Setting Up the Model
	Fitting a Random Effects Model
	F Statistics for Models with Random Effects
	Variance Components

	Analysis of Covariance
	The aoctool Demo

	Multiple Linear Regression
	Mathematical Foundations of Multiple Linear Regression
	Example: Multiple Linear Regression
	Polynomial Curve Fitting Demo

	Quadratic Response Surface Models
	Exploring Graphs of Multidimensional Polynomials

	Stepwise Regression
	Stepwise Regression Demo

	Generalized Linear Models
	Example: Generalized Linear Models
	Generalized Linear Model Demo

	Robust and Nonparametric Methods
	Robust Regression
	Kruskal-Wallis Test
	Friedman’s Test

	Nonlinear Regression Models
	Nonlinear Least Squares
	Example: Nonlinear Modeling
	An Interactive GUI for Nonlinear Fitting and Prediction

	Regression and Classification Trees

	Multivariate Statistics
	Principal Components Analysis
	Example: Principal Components Analysis
	The Principal Component Coefficients (First Output)
	The Component Scores (Second Output)
	The Component Variances (Third Output)
	Hotelling’s T2 (Fourth Output)
	Visualizing the Results of a Principal Components Analysis — The Biplot

	Factor Analysis
	Example: Finding Common Factors Affecting Stock Prices
	Factor Rotation
	Predicting Factor Scores
	Visualizing the Results of a Factor Analysis — The Biplot
	Comparison of Factor Analysis and Principal Components Analysis

	Multivariate Analysis of Variance (MANOVA)
	Example: Multivariate Analysis of Variance

	Cluster Analysis
	Hierarchical Clustering
	K-Means Clustering

	Multidimensional Scaling
	Overview
	Classical Multidimensional Scaling
	Nonclassical Metric Multidimensional Scaling
	Nonmetric Multidimensional Scaling
	Example — Reconstructing a Map from Intercity Distances

	Hypothesis Tests
	Introduction
	Hypothesis Test Terminology
	Hypothesis Test Assumptions
	Example: Hypothesis Testing
	Available Hypothesis Tests

	Statistical Plots
	Introduction
	Box Plots
	Distribution Plots
	Normal Probability Plots
	Quantile-Quantile Plots
	Weibull Probability Plots
	Empirical Cumulative Distribution Function (CDF)

	Scatter Plots

	Statistical Process Control
	Control Charts
	Xbar Charts
	S Charts
	EWMA Charts

	Capability Studies

	Design of Experiments
	Introduction
	Full Factorial Designs
	Fractional Factorial Designs
	Response Surface Designs
	Central Composite Designs
	Box-Behnken Designs
	Design of Experiments Demo

	D-Optimal Designs
	Generating D-Optimal Designs
	Augmenting D-Optimal Designs
	Designing Experiments with Uncontrolled Inputs
	Controlling Candidate Points
	Including Categorical Factors

	Hidden Markov Models
	Introduction
	Example of a Hidden Markov Model
	Markov Chains
	How the Toolbox Generates Random Sequences

	Analyzing a Hidden Markov Model
	Setting Up the Model and Generating Data
	Computing the Most Likely Sequence of States
	Estimating the Transition and Emission Matrices
	Calculating Posterior State Probabilities
	Changing the Probabilities of the Initial States
	Example: Changing the Initial Probabilities
	References

	Reference
	Functions — By Category
	Probability Distributions
	Descriptive Statistics
	Statistical Plotting
	Statistical Process Control
	Linear Models
	Nonlinear Regression
	Design of Experiments
	Multivariate Statistics
	Decision Tree Techniques
	Hypothesis Tests
	Distribution Testing
	Nonparametric Testing
	Hidden Markov Models
	File I/O
	Demonstrations
	Data
	Utility

	Functions — Alphabetical List
	addedvarplot
	andrewsplot
	anova1
	anova2
	anovan
	aoctool
	barttest
	bbdesign
	betacdf
	betafit
	betainv
	betalike
	betapdf
	betarnd
	betastat
	binocdf
	binofit
	binoinv
	binopdf
	binornd
	binostat
	biplot
	bootstrp
	boxplot
	candexch
	candgen
	canoncorr
	capable
	capaplot
	caseread
	casewrite
	ccdesign
	cdf
	cdfplot
	chi2cdf
	chi2inv
	chi2pdf
	chi2rnd
	chi2stat
	classify
	cluster
	clusterdata
	cmdscale
	combnk
	cophenet
	cordexch
	corr
	corrcoef
	cov
	crosstab
	daugment
	dcovary
	dendrogram
	disttool
	dummyvar
	ecdf
	ecdfhist
	errorbar
	evcdf
	evfit
	evinv
	evlike
	evpdf
	evrnd
	evstat
	ewmaplot
	expcdf
	expfit
	expinv
	explike
	exppdf
	exprnd
	expstat
	factoran
	fcdf
	ff2n
	finv
	fpdf
	fracfact
	friedman
	frnd
	fstat
	fsurfht
	fullfact
	gamcdf
	gamfit
	gaminv
	gamlike
	gampdf
	gamrnd
	gamstat
	geocdf
	geoinv
	geomean
	geopdf
	geornd
	geostat
	gline
	glmdemo
	glmfit
	glmval
	glyphplot
	gname
	gplotmatrix
	grpstats
	gscatter
	harmmean
	hist
	hist3
	histfit
	hmmdecode
	hmmestimate
	hmmgenerate
	hmmtrain
	hmmviterbi
	hougen
	hygecdf
	hygeinv
	hygepdf
	hygernd
	hygestat
	icdf
	inconsistent
	iqr
	iwishrnd
	jbtest
	kmeans
	kruskalwallis
	ksdensity
	kstest
	kstest2
	kurtosis
	leverage
	lhsdesign
	lhsnorm
	lillietest
	linkage
	logncdf
	lognfit
	logninv
	lognlike
	lognpdf
	lognrnd
	lognstat
	lsline
	mad
	mahal
	manova1
	manovacluster
	mdscale
	mean
	median
	mle
	mlecov
	moment
	multcompare
	mvnpdf
	mvnrnd
	mvtrnd
	nancov
	nanmax
	nanmean
	nanmedian
	nanmin
	nanstd
	nansum
	nanvar
	nbincdf
	nbinfit
	nbininv
	nbinpdf
	nbinrnd
	nbinstat
	ncfcdf
	ncfinv
	ncfpdf
	ncfrnd
	ncfstat
	nctcdf
	nctinv
	nctpdf
	nctrnd
	nctstat
	ncx2cdf
	ncx2inv
	ncx2pdf
	ncx2rnd
	ncx2stat
	nlinfit
	nlintool
	nlparci
	nlpredci
	normcdf
	normfit
	norminv
	normlike
	normpdf
	normplot
	normrnd
	normspec
	normstat
	parallelcoords
	pareto
	pcacov
	pcares
	pdf
	pdist
	perms
	poisscdf
	poissfit
	poissinv
	poisspdf
	poissrnd
	poisstat
	polyconf
	polyfit
	polytool
	polyval
	prctile
	princomp
	probplot
	procrustes
	qqplot
	quantile
	randg
	random
	randsample
	randtool
	range
	ranksum
	raylcdf
	raylfit
	raylinv
	raylpdf
	raylrnd
	raylstat
	rcoplot
	refcurve
	refline
	regress
	regstats
	ridge
	robustdemo
	robustfit
	rotatefactors
	rowexch
	rsmdemo
	rstool
	schart
	signrank
	signtest
	silhouette
	skewness
	squareform
	statget
	statset
	std
	stepwise
	stepwisefit
	surfht
	tabulate
	tblread
	tblwrite
	tcdf
	tdfread
	tinv
	tpdf
	treedisp
	treefit
	treeprune
	treetest
	treeval
	trimmean
	trnd
	tstat
	ttest
	ttest2
	unidcdf
	unidinv
	unidpdf
	unidrnd
	unidstat
	unifcdf
	unifinv
	unifit
	unifpdf
	unifrnd
	unifstat
	var
	wblcdf
	wblfit
	wblinv
	wbllike
	wblpdf
	wblplot
	wblrnd
	wblstat
	wishrnd
	x2fx
	xbarplot
	zscore
	ztest

	Selected Bibliography
	Recommended Reading
	Other References Cited

	Index

