Statistics Toolbox
 For Use with MATLAB ${ }^{\circledR}$

Computation

Visualization

Programming

User's Guide
The MathWorks
Version 5

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000

508-647-7001
The MathWorks, Inc.
Phone
Fax

3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Statistics Toolbox User's Guide

© COPYRIGHT 1993 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Revision History:

September 1993 First printing Version 1.0
March 1996 Second printing Version 2.0
January 1997 Third printing Version 2.11
November 2000 Fourth printing Revised for Version 3.0 (Release 12)
May 2001
July 2002
February 2003
June 2004
October $2004 \quad$ Online only Revised for Version 5.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 5.0.2 (Release 14SP2)

Fifth printing Minor revisions

Sixth printing Revised for Version 4.0 (Release 13)
Online only \quad Revised for Version 4.1 (Release 13.0.1)

Introduction

1

What Is the Statistics Toolbox? 1-2
Primary Topic Areas 1-3
Random Number Generators in the Statistics Toolbox $1-5$
Mathematical Notation 1-6
Probability Distributions
2
Introduction 2-2
Displaying Probability Distributions and Random Samples 2-3
Probability Distributions Demo 2-3
Random Sample Generation Demo 2-4
Overview of the Functions 2-6
Probability Density Function (pdf) 2-6
Cumulative Distribution Function (cdf) 2-7
Inverse Cumulative Distribution Function 2-7
Random Number Generator 2-9
Mean and Variance as a Function of Parameters 2-11
Distribution Fitting Tool 2-13
Main Window of the Distribution Fitting Tool 2-13
Example: Fitting a Distribution 2-16
Creating and Managing Data Sets 2-20
Creating a New Fit 2-24
Displaying Results 2-28
Managing Fits 2-30
Evaluating Fits 2-31
Excluding Data 2-34
Saving and Loading Sessions $2-39$
Generating an M-File to Fit and Plot Distributions 2-39
Using Custom Distributions 2-41
Additional Distributions Available in the Distribution Fitting Tool 2-41
Overview of the Distributions 2-45
Reproducing the Output of Random Number Functions 2-46
Beta Distribution 2-48
Binomial Distribution 2-50
Chi-Square Distribution 2-52
Noncentral Chi-Square Distribution 2-53
Discrete Uniform Distribution 2-55
Exponential Distribution 2-56
Extreme Value Distribution 2-58
F Distribution 2-61
Noncentral F Distribution 2-63
Gamma Distribution 2-64
Geometric Distribution 2-66
Hypergeometric Distribution 2-67
Lognormal Distribution 2-69
Negative Binomial Distribution 2-70
Normal Distribution 2-73
Poisson Distribution 2-76
Rayleigh Distribution 2-78
Student's t Distribution 2-79
Noncentral t Distribution 2-80
Uniform (Continuous) Distribution 2-82
Weibull Distribution 2-83

Descriptive Statistics

3

Measures of Central Tendency (Location) 3-2
Measures of Dispersion 3-4
Functions for Data with Missing Values (NaNs) 3-6
Function for Grouped Data 3-8
Percentiles and Graphical Descriptions 3-10
Percentiles 3-10
Probability Density Estimation 3-12
Empirical Cumulative Distribution Function 3-15
The Bootstrap 3-17
Linear Models
4
Introduction 4-2
One-Way Analysis of Variance (ANOVA) 4-3
Example: One-Way ANOVA 4-3
Multiple Comparisons 4-5
Example: Multiple Comparisons 4-6
Two-Way Analysis of Variance (ANOVA) 4-8
Example: Two-Way ANOVA 4-9
N-Way Analysis of Variance 4-11
Example: N-Way ANOVA with Small Data Set 4-11
Example: N-Way ANOVA with Large Data Set 4-13
ANOVA with Random Effects 4-18
Setting Up the Model 4-18
Fitting a Random Effects Model 4-19
F Statistics for Models with Random Effects 4-20
Variance Components 4-22
Analysis of Covariance 4-25
The aoctool Demo 4-25
Multiple Linear Regression 4-33
Mathematical Foundations of Multiple Linear Regression 4-33
Example: Multiple Linear Regression 4-35
Polynomial Curve Fitting Demo 4-36
Quadratic Response Surface Models 4-42
Exploring Graphs of Multidimensional Polynomials 4-42
Stepwise Regression 4-45
Stepwise Regression Demo 4-45
Generalized Linear Models 4-50
Example: Generalized Linear Models 4-50
Generalized Linear Model Demo 4-54
Robust and Nonparametric Methods 4-55
Robust Regression 4-55
Kruskal-Wallis Test 4-59
Friedman's Test 4-60
Nonlinear Regression Models
5
Nonlinear Least Squares 5-2
Example: Nonlinear Modeling 5-2
An Interactive GUI for Nonlinear Fitting and Prediction 5-6
Regression and Classification Trees 5-8
Principal Components Analysis 7-2
Example: Principal Components Analysis 7-3
The Principal Component Coefficients (First Output) 7-6
The Component Scores (Second Output) 7-6
The Component Variances (Third Output) 7-10
Hotelling's T^{2} (Fourth Output) 7-11
Visualizing the Results of a Principal Components Analysis - The Biplot 7-12
Factor Analysis 7-15
Example: Finding Common Factors Affecting Stock Prices 7-16
Factor Rotation 7-18
Predicting Factor Scores 7-19
Visualizing the Results of a Factor Analysis - The Biplot 7-21
Comparison of Factor Analysis and Principal Components Analysis 7-23
Multivariate Analysis of Variance (MANOVA) 7-24
Example: Multivariate Analysis of Variance 7-24
Cluster Analysis 7-30
Hierarchical Clustering 7-30
K-Means Clustering 7-46
Multidimensional Scaling 7-53
Overview 7-53
Classical Multidimensional Scaling 7-53
Nonclassical Metric Multidimensional Scaling 7-56
Nonmetric Multidimensional Scaling 7-58
Example - Reconstructing a Map from Intercity Distances 7-60

Hypothesis Tests

7

Introduction 6-2
Hypothesis Test Terminology 6-3
Hypothesis Test Assumptions 6-4
Example: Hypothesis Testing 6-5
Available Hypothesis Tests 6-9
Statistical Plots
8
Introduction 8-2
Box Plots 8-3
Distribution Plots 8-4
Normal Probability Plots 8-4
Quantile-Quantile Plots 8-6
Weibull Probability Plots 8-7
Empirical Cumulative Distribution Function (CDF) 8-8
Scatter Plots 8-10
Control Charts 9-2
Xbar Charts 9-2
S Charts 9-3
EWMA Charts 9-4
Capability Studies 9-5
Design of Experiments
10
Introduction 10-2
Full Factorial Designs 10-4
Fractional Factorial Designs 10-6
Response Surface Designs 10-8
Central Composite Designs 10-8
Box-Behnken Designs 10-9
Design of Experiments Demo 10-10
D-Optimal Designs 10-18
Generating D-Optimal Designs 10-18
Augmenting D-Optimal Designs 10-21
Designing Experiments with Uncontrolled Inputs 10-23
Controlling Candidate Points 10-24
Including Categorical Factors 10-24
Introduction 11-2
Example of a Hidden Markov Model 11-4
Markov Chains 11-6
How the Toolbox Generates Random Sequences 11-7
Analyzing a Hidden Markov Model 11-8
Setting Up the Model and Generating Data 11-8
Computing the Most Likely Sequence of States $11-9$
Estimating the Transition and Emission Matrices 11-9
Calculating Posterior State Probabilities 11-12
Changing the Probabilities of the Initial States 11-13
Example: Changing the Initial Probabilities 11-14
References 11-16
Reference
12
Functions - By Category 12-2
Probability Distributions 12-2
Descriptive Statistics 12-10
Statistical Plotting 12-12
Statistical Process Control 12-12
Linear Models 12-14
Nonlinear Regression 12-15
Design of Experiments 12-15
Multivariate Statistics 12-17
Decision Tree Techniques 12-19
Hypothesis Tests 12-19
Distribution Testing 12-19
Nonparametric Testing 12-19
Hidden Markov Models 12-20
File I/O 12-20
Demonstrations 12-20
Data 12-21
Utility 12-21
Functions - Alphabetical List 12-22
Selected Bibliography
A
\square
Recommended Reading A-2
Other References Cited A-4
Index

Introduction

What Is the Statistics Toolbox? (p. 1-2) Lists statistical tasks supported by the toolbox, and explains the role of functions and graphical tools.
Primary Topic Areas (p. 1-3)
Lists the statistical topics addressed in the toolbox and covered in this book.
Random Number Generators in the Statistics Toolbox (p. 1-5)
Mathematical Notation (p. 1-6)
Tells you how to duplicate the results shown in examples that generate data using random numbers.
Describes mathematical notation used in this guide.

What Is the Statistics Toolbox?

The Statistics Toolbox, for use with MATLAB ${ }^{\circledR}$, is a collection of statistical tools built on the MATLAB numeric computing environment. The toolbox supports a wide range of common statistical tasks, from random number generation, to curve fitting, to design of experiments and statistical process control. The toolbox provides two categories of tools:

- Building-block probability and statistics functions
- Graphical, interactive tools

The first category of tools is made up of functions that you can call from the command line or from your own applications. Many of these functions are MATLAB M-files, series of MATLAB statements that implement specialized statistics algorithms. You can view the MATLAB code for these functions using the statement
type function_name
You can change the way any toolbox function works by copying and renaming the M-file, then modifying your copy. You can also extend the toolbox by adding your own M-files.
Secondly, the toolbox provides a number of interactive tools that let you access many of the functions through a graphical user interface (GUI). Together, the GUI-based tools provide an environment for polynomial fitting and prediction, as well as probability function exploration.

Primary Topic Areas

The Statistics Toolbox has more than 200 M-files, supporting work in these topical areas:

Probability Distributions

The Statistics Toolbox supports 20 probability distributions. For each distribution there are five associated functions. They are

- Probability density function (pdf)
- Cumulative distribution function (cdf)
- Inverse of the cumulative distribution function
- Random number generator
- Mean and variance as a function of the parameters

For most distributions, the Statistics Toolbox also provides functions for computing parameter estimates and confidence intervals.

Descriptive Statistics

The Statistics Toolbox provides functions for describing the features of a data sample. These descriptive statistics include measures of location and spread, percentile estimates and functions for dealing with data having missing values.

Linear Models

In the area of linear models, the Statistics Toolbox supports one-way, two-way, and higher-way analysis of variance (ANOVA), analysis of covariance (ANOCOVA), multiple linear regression, stepwise regression, response surface prediction, ridge regression, and one-way multivariate analysis of variance (MANOVA). It supports nonparametric versions of one- and two-way ANOVA. It also supports multiple comparisons of the estimates produced by ANOVA and ANOCOVA functions.

Nonlinear Models

For nonlinear models, the Statistics Toolbox provides functions for parameter estimation, interactive prediction and visualization of multidimensional nonlinear fits, and confidence intervals for parameters and predicted values. It
provides functions for using classification and regression trees to approximate regression relationships.

Hypothesis Tests

The Statistics Toolbox also provides functions that do the most common tests of hypothesis - t-tests, Z-tests, nonparametric tests, and distribution tests.

Multivariate Statistics

The Statistics Toolbox supports methods in multivariate statistics, including principal components analysis, factor analysis, one-way multivariate analysis of variance, cluster analysis, and classical multidimensional scaling.

Statistical Plots

The Statistics Toolbox adds box plots, normal probability plots, Weibull probability plots, control charts, and quantile-quantile plots to the arsenal of graphs in MATLAB. There is also extended support for polynomial curve fitting and prediction. There are functions to create scatter plots or matrices of scatter plots for grouped data, and to identify points interactively on such plots. There is a function to interactively explore a fitted regression model.

Statistical Process Control (SPC)

For SPC, the Statistics Toolbox provides functions for plotting common control charts and performing process capability studies.

Design of Experiments (DOE)

The Statistics Toolbox supports full and fractional factorial designs, response surface designs, and D-optimal designs. There are functions for generating designs, augmenting designs, and optimally assigning units with fixed covariates.

Hidden Markov Models

The Statistics Toolbox provides functions for analyzing hidden Markov models - models in which you do not know all the state information. These include functions for generating random data, calculating the most probable state sequence for an observed sequence, estimating model parameters, calculating posterior state probabilities, and calculating maximum likelihood estimates for parameters.

Random Number Generators in the Statistics Toolbox

The Statistics Toolbox contains a number of functions, such as random number generators, that return random output. These functions use the MATLAB functions rand and randn to generate their output. If you want to make the output for any of these functions reproducible, you must set the states for rand and randn each time you call the function. See "Reproducing the Output of Random Number Functions" on page 2-46 for more information.

Note Prior to Version 5, MATLAB employed a different random number generator, which used the syntax 'seed' instead of 'state'. Although use of the 'seed' syntax is backward compatible in MATLAB Version 7, you should use the 'state' syntax instead.

Mathematical Notation

This manual and the Statistics Toolbox functions use the following mathematical notation conventions.

β	Parameters in a linear model.
$E(x)$	Expected value of $x . \quad E(x)=\int t f(t) d t$
$f(x \mid a, b)$	Probability density function. x is the independent variable; a and b are fixed parameters.
$F(x \mid a, b)$	Cumulative distribution function.
$I([a, b])$ or $I_{[a, b]}$	Indicator function. In this example the function takes the value 1 on the closed interval from a to b and is 0 elsewhere.
p and q	p is the probability of some event. q is the probability of $\sim p$, so $q=1-p$.

Probability Distributions

Introduction (p. 2-2)

Displaying Probability Distributions and Random Samples (p. 2-3)

Overview of the Functions (p. 2-6)

Distribution Fitting Tool (p. 2-13)

Overview of the Distributions (p. 2-45)

Introduces the concept of a probability distribution and discusses the difference between continuous and discrete distributions.

Describes tools for displaying probability distributions and creating histograms of random samples.

Discusses the five functions that the Statistics Toolbox provides for each distribution: probability density function (pdf), cumulative distribution function (cdf), inverse cumulative distribution function, random number generator, and mean and variance as a function of the distribution parameters.

Describes the Distribution Fitting Tool, a GUI for fitting distributions to data.

Lists and discusses the probability distributions that the Statistics Toolbox supports.

Introduction

Probability distributions arise from experiments where the outcome is subject to chance. The nature of the experiment dictates which probability distributions may be appropriate for modeling the resulting random outcomes. There are two types of probability distributions - continuous and discrete.

Continuous (data)	Continuous (statistics)	Discrete
Beta	Chi-square	Binomial
Exponential	Noncentral Chi-square	Discrete Uniform
Extreme Value		
Gamma	F	Geometric
Lognormal	Noncentral F	Hypergeometric
Normal	t	Negative Binomial
Rayleigh	Noncentral t	Poisson
Uniform		
Weibull		

Suppose you are studying a machine that produces videotape. One measure of the quality of the tape is the number of visual defects per hundred feet of tape. The result of this experiment is an integer, since you cannot observe 1.5 defects. To model this experiment you should use a discrete probability distribution.

A measure affecting the cost and quality of videotape is its thickness. Thick tape is more expensive to produce, while variation in the thickness of the tape on the reel increases the likelihood of breakage. Suppose you measure the thickness of the tape every 1000 feet. The resulting numbers can take a continuum of possible values, which suggests using a continuous probability distribution to model the results.

Using a probability model does not allow you to predict the result of any individual experiment but you can determine the probability that a given outcome will fall inside a specific range of values.

Displaying Probability Distributions and Random Samples

The Statistics Toolbox provides two demos for visualizing probability distributions and graphing random data:

- The probability distribution demo enables you to create interactive plots of probability distributions.
- The random sample generation demo enables you to generate random samples from specified distributions and create histograms of the data.

Probability Distributions Demo

The probability distributions demo creates interactive plots of probability distributions. It provides a graphic environment for developing an intuitive understanding of probability distributions.

You can run this tool by typing disttool at the command line. You can also run it from the Demos tab in the Help browser.

Start by selecting a distribution. Then choose the function type: probability density function (pdf) or cumulative distribution function (cdf).

Once the plot displays, you can

- Calculate a new function value by typing a new x value in the text box on the x-axis, dragging the vertical reference line, or clicking in the figure where you want the line to be. The new function value displays in the text box to the left of the plot.
- For cdf plots, find critical values corresponding to a specific probability by typing the desired probability in the text box on the y-axis or by dragging the horizontal reference line.
- Use the controls at the bottom of the window to set parameter values for the distribution and to change their upper and lower bounds.

Random Sample Generation Demo

The random sample generation demo is a graphical environment that generates random samples from specified probability distributions and displays the samples as histograms. You can use randtool to explore the effects of changing parameters and sample size on the samples.

You can run this tool by typing randtool at the command line. You can also run it from the Demos tab in the Help browser.

Start by selecting a distribution. Then enter the desired sample size.

You can also

- Use the controls at the bottom of the window to set parameter values for the distribution and to change their upper and lower bounds.
- Draw another sample from the same distribution, with the same size and parameters.
- Export the current sample to your workspace. A dialog box enables you to provide a name for the sample.

Overview of the Functions

The Statistics Toolbox provides five functions for each distribution. They are discussed in the following sections:

- "Probability Density Function (pdf)" on page 2-6
- "Cumulative Distribution Function (cdf)" on page 2-7
- "Inverse Cumulative Distribution Function" on page 2-7
- "Random Number Generator" on page 2-9
- "Mean and Variance as a Function of Parameters" on page 2-11

Probability Density Function (pdf)

The probability density function (pdf) has a different meaning depending on whether the distribution is discrete or continuous.

For discrete distributions, the pdf is the probability of observing a particular outcome. In the videotape example, the probability that there is exactly one defect in a given hundred feet of tape is the value of the pdf at 1 .
Unlike discrete distributions, the pdf of a continuous distribution at a value is not the probability of observing that value. For continuous distributions the probability of observing any particular value is zero. To get probabilities you must integrate the pdf over an interval of interest. For example the probability of the thickness of a videotape being between one and two millimeters is the integral of the appropriate pdf from one to two.

A pdf has two theoretical properties:

- The pdf is zero or positive for every possible outcome.
- The integral of a pdf over its entire range of values is one.

A pdf is not a single function. Rather a pdf is a family of functions characterized by one or more parameters. Once you choose (or estimate) the parameters of a pdf, you have uniquely specified the function.

The pdf function call has the same general format for every distribution in the Statistics Toolbox. The following commands illustrate how to call the pdf for the normal distribution.

```
x = [-3:0.1:3];
f = normpdf(x,0,1);
```

The variable f contains the density of the normal pdf with parameters $\mu=0$ and $\sigma=1$ at the values in x. The first input argument of every pdf is the set of values for which you want to evaluate the density. Other arguments contain as many parameters as are necessary to define the distribution uniquely. The normal distribution requires two parameters; a location parameter (the mean, μ) and a scale parameter (the standard deviation, σ).

Cumulative Distribution Function (cdf)

If f is a probability density function for random variable X, the associated cumulative distribution function (cdf) F is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

The cdf of a value $x, F(x)$, is the probability of observing any outcome less than or equal to x.

A cdf has two theoretical properties:

- The cdf ranges from 0 to 1 .
- If $y>x$, then the cdf of y is greater than or equal to the cdf of x.

The cdf function call has the same general format for every distribution in the Statistics Toolbox. The following commands illustrate how to call the cdf for the normal distribution.

$$
\begin{aligned}
& x=[-3: 0.1: 3] ; \\
& p=\operatorname{normcdf}(x, 0,1) ;
\end{aligned}
$$

The variable p contains the probabilities associated with the normal cdf with parameters $\mu=0$ and $\sigma=1$ at the values in x . The first input argument of every cdf is the set of values for which you want to evaluate the probability. Other arguments contain as many parameters as are necessary to define the distribution uniquely.

Inverse Cumulative Distribution Function

The inverse cumulative distribution function returns critical values for hypothesis testing given significance probabilities. To understand the
relationship between a continuous cdf and its inverse function, try the following.

```
x = [-3:0.1:3];
xnew = norminv(normcdf(x,0,1),0,1);
```

How does xnew compare with x ? Conversely, try this.

```
p = [0.1:0.1:0.9];
pnew = normcdf(norminv(p,0,1),0,1);
```

How does pnew compare with p?
Calculating the cdf of values in the domain of a continuous distribution returns probabilities between zero and one. Applying the inverse cdf to these probabilities yields the original values.

For discrete distributions, the relationship between a cdf and its inverse function is more complicated. It is likely that there is no x value such that the cdf of x yields p. In these cases the inverse function returns the first value x such that the cdf of x equals or exceeds p. Try this.

```
x = [0:10];
y = binoinv(binocdf(x,10,0.5),10,0.5);
```

How does x compare with y ?
The commands below illustrate the problem with reconstructing the probability p from the value x for discrete distributions.

```
p = [0.1:0.2:0.9];
pnew = binocdf(binoinv(p,10,0.5),10,0.5)
pnew =
    0.1719 0.3770 0.6230}00.8281 0.9453 
```

The inverse function is useful in hypothesis testing and production of confidence intervals. Here is the way to get a 99% confidence interval for a normally distributed sample.

```
p = [0.005 0.995];
x = norminv(p,0,1)
```

This returns

$$
\begin{array}{ll}
x= \\
& \\
-2.5758 & 2.5758
\end{array}
$$

The variable x contains the values associated with the normal inverse function with parameters $\mu=0$ and $\sigma=1$ at the probabilities in p. The difference $p(2)-p(1)$ is 0.99 . Thus, the values in x define an interval that contains 99% of the standard normal probability.

The inverse function call has the same general format for every distribution in the Statistics Toolbox. The first input argument of every inverse function is the set of probabilities for which you want to evaluate the critical values. Other arguments contain as many parameters as are necessary to define the distribution uniquely.

Random Number Generator

The methods for generating random numbers from any distribution all start with uniform random numbers. Once you have a uniform random number generator, you can produce random numbers from other distributions either directly or by using inversion or rejection methods, described below. See "Syntax for Random Number Functions" on page 2-10 for details on using generator functions.

Direct

Direct methods flow from the definition of the distribution.
As an example, consider generating binomial random numbers. You can think of binomial random numbers as the number of heads in n tosses of a coin with probability p of a heads on any toss. If you generate n uniform random numbers and count the number that are less than p, the result is binomial with parameters n and p.

Inversion

The inversion method works due to a fundamental theorem that relates the uniform distribution to other continuous distributions.

If F is a continuous distribution with inverse F^{-1}, and U is a uniform random number, then $F^{-1}(\mathrm{U})$ has distribution F.

So, you can generate a random number from a distribution by applying the inverse function for that distribution to a uniform random number. Unfortunately, this approach is usually not the most efficient.

Rejection

The functional form of some distributions makes it difficult or time consuming to generate random numbers using direct or inversion methods. Rejection methods can sometimes provide an elegant solution in these cases.

Suppose you want to generate random numbers from a distribution with $\operatorname{pdf} f$. To use rejection methods you must first find another density, g, and a constant, c, so that the inequality below holds

$$
f(x) \leq c g(x)
$$

for all x.
You then generate the random numbers you want using the following steps:
1 Generate a random number x from distribution G with density g.
2 Form the ratio $r=\frac{\operatorname{cg}(x)}{f(x)}$.
3 Generate a uniform random number u.
4 If the product of u and r is less than one, return x.
5 Otherwise repeat steps one to three.
For efficiency you need a cheap method for generating random numbers from G, and the scalar c should be small. The expected number of iterations is c.

Syntax for Random Number Functions

You can generate random numbers from each distribution. This function provides a single random number or a matrix of random numbers, depending on the arguments you specify in the function call.

For example, here is the way to generate random numbers from the beta distribution. Four statements obtain random numbers: the first returns a
single number, the second returns a 2-by-2 matrix of random numbers, and the third and fourth return 2-by-3 matrices of random numbers.

```
a = 1;
b = 2;
c = [.1 .5; 1 2];
d = [.25 .75; 5 10];
m = [2 3];
nrow = 2;
ncol = 3;
r1 = betarnd(a,b)
r1 =
    0.4469
r2 = betarnd(c,d)
r2 =
    0.8931 0.4832
    0.1316 0.2403
r3 = betarnd(a,b,m)
r3 =
\begin{tabular}{lll}
0.4196 & 0.6078 & 0.1392 \\
0.0410 & 0.0723 & 0.0782
\end{tabular}
r4 = betarnd(a,b,nrow,ncol)
r4 =
\(0.0520 \quad 0.3975 \quad 0.1284\)
```


Mean and Variance as a Function of Parameters

The mean and variance of a probability distribution are generally simple functions of the parameters of the distribution. The Statistics Toolbox functions ending in 'stat' all produce the mean and variance of the desired distribution for the given parameters.

The example below shows a contour plot of the mean of the Weibull distribution as a function of the parameters.

```
x = (0.5:0.1:5);
y = (1:0.04:2);
[X,Y] = meshgrid(x,y);
Z = wblstat(X,Y);
[c,h] = contour(x,y,z,[0.4 0.6 1.0 1.8]);
clabel(c);
```


Distribution Fitting Tool

The Distribution Fitting Tool is a graphical user interface (GUI) for fitting univariate distributions to data. This section describes how to use the Distribution Fitting Tool and covers the following topics:

- "Main Window of the Distribution Fitting Tool" on page 2-13
- "Example: Fitting a Distribution" on page 2-16
- "Creating and Managing Data Sets" on page 2-20
- "Creating a New Fit" on page 2-24
- "Displaying Results" on page 2-28
- "Managing Fits" on page 2-30
- "Evaluating Fits" on page 2-31
- "Excluding Data" on page 2-34
- "Saving and Loading Sessions" on page 2-39
- "Generating an M-File to Fit and Plot Distributions" on page 2-39
- "Using Custom Distributions" on page 2-41
- "Additional Distributions Available in the Distribution Fitting Tool" on page 2-41

Main Window of the Distribution Fitting Tool

To open the Distribution Fitting Tool, enter the command

```
dfittool
```

The following figure shows the main window of the Distribution Fitting Tool.

Display Type

The Display Type field specifies the type of plot displayed in the main window. Each type corresponds to a probability function, for example, a probability density function. The following display types are available:

- Density (PDF) — Displays a probability density function (PDF) plot for the fitted distribution.
- Cumulative probability (CDF) — Displays a cumulative probability plot of the data.
- Quantile (inverse CDF) - Displays a quantile (inverse CDF) plot.
- Probability plot - Displays a probability plot.
- Survivor function - Displays a survivor function plot of the data.
- Cumulative hazard - Displays a cumulative hazard plot of the data.
"Display Type" on page 2-28 provides more information about the available display types.

Task Buttons

The task buttons enable you to perform the tasks necessary to fit distributions to data. Each button opens a new window in which you perform the task. The buttons include

- Data - Import and manage data sets. See "Creating and Managing Data Sets" on page 2-20.
- New Fit - Create new fits. See "Creating a New Fit" on page 2-24.
- Manage Fits - Manage existing fits. See "Managing Fits" on page 2-30.
- Evaluate - Evaluate fits at any points you choose. See "Evaluating Fits" on page 2-31.
- Exclude - Create rules specifying which values to exclude when fitting a distribution. See "Excluding Data" on page 2-34.

Display Pane

The display pane displays plots of the data sets and fits you create. Whenever you make changes in one of the task windows, the results are updated in the display pane.

Menu Options

The Distribution Fitting Tool menus contain items that enable you to do the following:

- Save and load sessions - see "Saving and Loading Sessions" on page 2-39.
- Generate an M-file with which you can fit distributions to data and plot the results independently of the Distribution Fitting Tool. See "Generating an M-File to Fit and Plot Distributions" on page 2-39.
- Define and import custom distributions - see "Using Custom Distributions" on page 2-41.

Example: Fitting a Distribution

This section presents an example that illustrates how to use the Distribution Fitting Tool. The example involves the following steps:

- "Create Random Data for the Example" on page 2-16
- "Import Data into the Distribution Fitting Tool" on page 2-16
- "Create a New Fit" on page 2-18

Create Random Data for the Example

To try the example, first generate some random data to which you will fit a distribution. The following command generates a vector data, of length 100 , whose entries are random numbers from a normal distribution with mean. 36 and standard deviation 1.4.

```
data = normrnd(.36, 1.4, 100, 1);
```


Import Data into the Distribution Fitting Tool

To import the vector data into the Distribution Fitting Tool, click the Data button in main window. This opens the window shown in the following figure.

The Data field displays all numeric arrays in the MATLAB workspace. Select data from the drop-down list, as shown in the following figure.

This displays a histogram of the data in the Data preview pane.
In the Data set name field, type a name for the data set, such as My data, and click Create Data Set to create the data set. The main window of the
Distribution Fitting Tool now displays a larger version of the histogram in the Data preview pane, as shown in the following figure.

Histogram of the Data

Note Because the example uses random data, you might see a slightly different histogram if you try this example for yourself.

Create a New Fit

To fit a distribution to the data, click New Fit in the main window of the Distribution Fitting Tool. This opens the window shown in the following figure.

To fit a normal distribution, the default entry of the Distribution field, to My data,

- Enter a name for the fit, such as My fit, in the Fit name field.
- Select My data from the drop-down list in the Data field.
- Click Apply.

The Results pane displays the mean and standard deviation of the normal distribution that best fits My data, as shown in the following figure.

The main window of the Distribution Fitting Tool displays a plot of the normal distribution with this mean and standard deviation, as shown in the following figure.

Plot of the Distribution and Data

Creating and Managing Data Sets

This section describes how create and manage data sets. To begin, click the Data button in the main window of the Distribution Fitting Tool to open the Data window shown in the following figure.

Importing Data

The Import workspace vectors pane enables you to create a data set by importing a vector from the MATLAB workspace. The following sections describe the fields of the Import workspace vectors pane.

Data. The drop-down list in the Data field contains the names of all matrices and vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace. Select the array containing the data you want to fit. The actual data you import must be a vector. If you select a matrix in the Data field, the first column of the matrix is imported by default. To select a different column or row of the matrix, click Select Column or Row. This displays the matrix in the Array Editor, where you can select a row or column by highlighting it with the mouse.

Alternatively, you can enter any valid MATLAB expression in the Data field.

When you select a vector in the Data field, a histogram of the data is displayed in the Data preview pane.

Censoring. If some of the points in the data set are censored, enter a Boolean vector, of the same size as the data vector, specifying the censored entries of the data. A 1 in the censoring vector specifies that the corresponding entry of the data vector is censored, while a 0 specifies that the entry is not censored. If you enter a matrix, you can select a column or row by clicking Select Column or Row. If you do not want to censor any data, leave the Censoring field blank.

Frequency. Enter a vector of positive integers of the same size as the data vector to specify the frequency of the corresponding entries of the data vector. For example, a value of 7 in the 15 th entry of frequency vector specifies that there are 7 data points corresponding to the value in the 15 th entry of the data vector. If all entries of the data vector have frequency 1, leave the Frequency field blank.

Data name. Enter a name for the data set you import from the workspace, such as My_data.

As an example, if you create the vector data described in "Example: Fitting a Distribution" on page 2-16, and select it in the Data field, the upper half of the Data window appears as in the following figure.

After you have entered the information in the preceding fields, click Create Data Set to create the data set My data.

Managing Data Sets

The Manage data sets pane enables you to view and manage the data sets you create. When you create a data set, its name appears in the Data sets list. The
following figure shows the Manage data sets pane after creating the data set My data.

For each data set in the Data sets list, you can

- Select the Plot check box to display a plot of the data in the main Distribution Fitting Tool window. See "Histogram of the Data" on page 2-17 for an example. When you create a new data set, Plot is selected by default. Clearing the Plot check box removes the data from the plot in the main window. You can specify the type of plot displayed in the Display Type field in the main window. See "Display Type" on page 2-28.
- If Plot is selected, you can also select Bounds to display confidence interval bounds for the plot in the main window. These bounds are pointwise confidence bounds around the empirical estimates of these functions. The bounds are only displayed when you set Display Type in the main window to one of the following:
- Cumulative probability (CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density (PDF), quantile (inverse CDF), or probability plots. Clearing the Bounds check box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, the following buttons are enabled:

- View - Displays the data in a table in a new window.
- Set Bin Rules - Defines the histogram bins used in a density (PDF) plot. See "Setting Bin Rules" on page 2-23.
- Rename - Renames the data set.
- Delete - Deletes the data set.

Setting Bin Rules

To set bin rules for the histogram of a data set, click Set Bin Rules. This opens the dialog box shown in the following figure.

You can select from the following rules:

- Freedom-Diaconis rule - Algorithm that chooses bin widths and locations automatically, based on the sample size and the spread of the data. This rule, which is the default, is suitable for many kinds of data
- Scott rule - Algorithm intended for data that are approximately normal. The algorithm chooses bin widths and locations and locations automatically
- Number of bins - Enter the number of bins. All bins have equal widths.
- Bins centered on integers - Specifies bins centered on integers.
- Bin width - Enter the width of each bin. If you select this option, you can make the following choices:
- Automatic bin placement - Places the edges of the bins at integer multiples of the Bid width.
- Bin boundary at - Enter a scalar to specify the boundaries of the bins. The boundary of each bin is equal to this scalar plus an integer multiple of the Bin width.

The Set Bin Width Rules dialog box also provides the following options:

- Apply to all existing data sets - When selected, the rule is applied to all data sets. Otherwise, the rule is only applied to the data set currently selected in the Data window.
- Save as default - When selected, the current rule is applied to any new data sets that you create. You can also set default bin width rules by selecting Set Default Bin Rules from the Tools menu in the main window.

Creating a New Fit

This section describes how to create a new fit. To begin, click the New Fit button at the top of the main window to open a New Fit window. If you created the data set My data, as described in "Example: Fitting a Distribution" on page $2-16$, My data appears in the Data field, as shown in the following figure.

Fit Name

Enter a name for the fit in the Fit name field.

Data

The Data field contains a drop-down list of the data sets you have created. Select the data set to which you want to fit a distribution.

Distribution

Select the type of distribution you want to fit in the Distribution drop-down list. "Available Distributions" on page 2-26 lists the available distributions.

Note Only the distributions that apply to the values of the selected data set are displayed in the Distribution field. For example, positive distributions are not displayed when the data include values that are zero or negative.

You can specify either a parametric or a nonparametric distribution. When you select a parametric distribution from the drop-down list, a description of its parameters is displayed in the pane below Exclusion Rule. The Distribution Fitting Tool estimates these parameters to fit the distribution to the data set. When you select Nonparametric fit, options for the fit appear in the pane, as described in "Options for Nonparametric Fits" on page 2-27.

Exclusion Rule

You can specify a rule to exclude some the data in the Exclusion rule field. You can create an exclusion rule by clicking Exclude in the main window of the Distribution Fitting Tool. "Excluding Data" on page 2-34.

Apply the New Fit

Click Apply to fit the distribution. For a parametric fit, the Results pane displays the values of the estimated parameters. For a nonparametric fit, the the Results pane displays information about the fit.

When you click Apply, the main window of Distribution Fitting Tool displays a plot of the distribution, along with the corresponding data. "Plot of the Distribution and Data" on page 2-19 shows the main window when you fit a normal distribution to My data.

Note When you click Apply, the title of the window changes to Edit Fit. You can now make changes to the fit you just created and click Apply again to save them. After closing the Edit Fit window, you can reopen it from the Fit Manager window at any time to edit the fit.

Available Distributions

This section lists the distributions available in the Distribution Fitting Tool. Most of these distributions are supported by Statistics Toolbox functions. You can use these to fit distributions at the command line. For these distributions, the corresponding command-line functions are also listed. Distributions that do not have corresponding command-line functions are described in "Additional Distributions Available in the Distribution Fitting Tool" on page 2-41. You can fit these distributions from the command line using the functions mle, cdf, icdf, and pdf.

Nonparametric. Fits a nonparametric model using kernel smoothing with the function ksdensity. "Options for Nonparametric Fits" on page 2-27 describes the available options.

Beta. Fits a beta distribution using the function betafit. See "Beta Distribution" on page 2-48.

Birnbaum-Saunders. Fits a Birnbaum-Saunders distribution. See "Birnbaum-Saunders Distribution" on page 2-42.

Exponential. Fits an exponential distribution using the function expfit. See "Exponential Distribution" on page 2-56.

Extreme Value. Fits an extreme value distribution using the function evfit. See "Extreme Value Distribution" on page 2-58.

Gamma. Fits a gamma distribution using the function gamfit. See "Gamma Distribution" on page 2-64.

Inverse Gaussian. Fits an inverse Gaussian distribution. See "Inverse Gaussian Distribution" on page 2-42.

Log-Logistic. Fits a log-logistic distribution. See "Log-Logistic Distribution" on page 2-42.

Logistic. Fits a logistic distribution. See "Logistic Distribution" on page 2-42.
Lognormal. Fits a lognormal distribution using the function lognfit. See "Lognormal Distribution" on page 2-69.

Nakagami. Fits a Nakagami distribution. See "Nakagami Distribution" on page 2-42.

Normal. Fits a normal distribution using the function normfit. See "Normal Distribution" on page 2-73.

Rayleigh. Fits a Rayleigh distribution using the function raylfit. See "Rayleigh Distribution" on page 2-78.

Rician. Fits a Rician distribution. See "Rician Distribution" on page 2-43.
† Location-scale. Fits a t location-scale distribution. See "t Location-Scale Distribution" on page 2-43.

Weibull. Fits a Weibull distribution using the function wblfit. See "Weibull Distribution" on page 2-83.

Options for Nonparametric Fits

When you select Non-parametric in the Distribution field, a set of options appears in the pane below Exclusion rule, as shown in the following picture.

The options for nonparametric distributions are

- Kernel - Type of kernel function to use. The options are
- Normal
- Box
- Triangle
- Epanechnikov
- Bandwidth - The bandwidth of the kernel smoothing window. Select auto for a default value that is optimal for estimating normal densities. This value is displayed in the Fit results pane after you click Apply. Select specify and enter a smaller value to reveal features such as multiple modes or a larger value to make the fit smoother.
- Domain - The allowed x-values for the density. The options are
- unbounded - The density extends over the whole real line.
- positive - The density is restricted to positive values.
- specify - Enter lower and upper bounds for the domain of the density.

When you select positive or specify, the nonparametric fit has zero probability outside the specified domain.

Displaying Results

This section explains the different ways to display results in the main window of the Distribution Fitting Tool. The main window displays plots of

- The data sets for which you select Plot in the Data window.
- The fits for which you select Plot in the Fit Manager window.
- Confidence bounds for
- Data sets for which you select Bounds in the Data window.
- Fits for which you select Bounds in the Fit Manager

Display Type

The Display Type field in the main window specifies the type of plot displayed. Each type corresponds to a probability function, for example, a probability density function. The following display types are available:

- Density (PDF) - Displays a probability density function (PDF) plot for the fitted distribution. The main window displays data sets using a probability histogram, in which the height of each rectangle is the fraction of data points
that lie in the bin divided by the width of the bin. This makes the sum of the areas of the rectangles equal to 1 .
- Cumulative probability (CDF) - Displays a cumulative probability plot of the data. The main window displays data sets using a cumulative probability step function. The height of each step is the cumulative sum of the heights of the rectangles in the probability histogram.
- Quantile (inverse CDF) - Displays a quantile (inverse CDF) plot.
- Probability plot - Displays a probability plot of the data. You can specify the type of distribution used to construct the probability plot in the Distribution field, which is only available when you select Probability plot. The choices for the distribution are
- Exponential
- Extreme value
- Logistic
- Log-Logistic
- Lognormal
- Normal
- Rayleigh
- Weibull

In addition to these choices, you can create a probability plot against a parametric fit that you create in the New Fit panel. These fits are added at the bottom of the Distribution drop-down list when you create them.

- Survivor function - Displays a survivor function plot of the data.
- Cumulative hazard - Displays a cumulative hazard plot of the data.

Note Some of these distributions are not available if the plotted data includes 0 or negative values.

Confidence Bounds

You can display confidence bounds for data sets and fits, provided that you set Display Type to Cumulative probability (CDF), Survivor function, Cumulative hazard, or Quantile for fits only.

- To display bounds for a data set, select Bounds next to the data set in the Data sets pane of the Data window.
- To display bounds for a fit, select Bounds next to the fit in the Fit Manager window. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the View menu in the main window and choose from the options.

Managing Fits

This section describes how to manage fits that you have created. To begin, click the Manage Fits button in the main window of the Distribution Fitting Tool. This opens the Fit Manager window as shown in the following figure.

The Table of fits displays a list of the fits you create.

Plot

Select Plot to display a plot of the fit in the main window of the Distribution Fitting Tool. When you create a new fit, Plot is selected by default. Clearing the Plot check box removes the fit from the plot in the main window.

Bounds

If Plot is selected, you can also select Bounds to display confidence bounds in the plot. The bounds are displayed when you set Display Type in the main window to one of the following:

- Cumulative probability (CDF)
- Quantile (inverse CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density (PDF) or probability plots. In addition, bounds are not supported for nonparametric fits and some parametric fits.

Clearing the Bounds check box removes the confidence intervals from the plot in the main window.

When you select a fit in the Table of fits, the following buttons are enabled below the table:

- New Fit - Opens a New Fit window.
- Copy - Creates a copy of the selected fit.
- Edit - Opens an Edit Fit window, where you can edit the fit.

Note You can only edit the currently selected fit in the Edit Fit window. To edit a different fit, select it in the Table of fits and click Edit to open another Edit Fit window.

- Delete - Deletes the selected fit.

Evaluating Fits

The Evaluate window enables you to evaluate any fit at whatever points you choose. To open the window, click the Evaluate button in the main window of the Distribution Fitting Tool. The following figure shows the Evaluate window.

The Evaluate window contains the following items:

- Fit pane - Displays the names of existing fits. Select one or more fits that you want to evaluate. You can select multiple fits by pressing the Ctrl button and clicking the names of the fits with the mouse.
- Function - Select the type of probability function you want to evaluate for the fit. The available functions are
- Density (PDF) - Computes a probability density function.
- Cumulative probability (CDF) - Computes a cumulative probability function.
- Quartile (inverse CDF) - Computes a quantile (inverse CDF) function.
- Survivor function - Computes a survivor function.
- Cumulative hazard - Computes a cumulative hazard function.
- Hazard rate - Computes the hazard rate.
- At $\mathbf{x}=-$ Enter a vector of points at which you want to evaluate the distribution function. If you Function to Quantile (inverse CDF), the field name changes to $\operatorname{At} \mathbf{p}=$ and you enter a vector of probability values.
- Compute confidence bounds - Select this box to compute confidence bounds for the selected fits. The check box is only enabled if you set Function to one of the following:
- Cumulative probability (CDF)
- Quantile (inverse CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot compute confidence bounds for nonparametric fits and for some parametric fits. In these cases, the tool returns NaN for the bounds.

- Level - Set the level for the confidence bounds.
- Plot function - Select this box to display a plot of the distribution function, evaluated at the points you enter in the $\mathbf{A t} \mathbf{x}=$ field, in a new window.

Note The settings for Compute confidence bounds, Level, and Plot function do not affect the plots that are displayed in the main window of the Distribution Fitting Tool. The settings only apply to plots you create by clicking Plot function in the Evaluate window.

Click Apply to apply these settings to the selected fit. The following figure shows the results of evaluating the cumulative density function for the fit My fit, created in "Example: Fitting a Distribution" on page 2-16, at the points in the vector -3: 0.5: 3.

The window displays the following values in the columns of the table to the right of the Fit pane:

- \mathbf{X} - The entries of the vector you enter in $\mathbf{A t} \mathbf{x}=$ field
- Y - The corresponding values of the CDF at the entries of X
- LB - The lower bounds for the confidence interval, if you select Compute confidence bounds
- UB - The upper bounds for the confidence interval, if you select Compute confidence bounds

To save the data displayed in the Evaluate window, click Export to Workspace. This saves the values in the table to a matrix in the MATLAB workspace.

Excluding Data

To exclude values from fit, click the Exclude button in the main window of the Distribution Fitting Tool. This opens the Exclude window, in which you can create rules for excluding specified values. You can use these rules to exclude
data when you create a new fit in the New Fit window. The following figure shows the Exclude window.

The following sections describe how to create an exclusion rule.

Exclusion Rule Name

Enter a name for the exclusion rule in the Exclusion rule name field.

Exclude Sections

In the Exclude sections pane, you can specify bounds for the excluded data:

- In the Lower limit: exclude \mathbf{Y} drop-down list, select <= or < from the drop-down list and enter a scalar in the field to the right. This excludes values that are either less than or equal to or less than that scalar, respectively.
- In the Upper limit: exclude \mathbf{Y} drop-down list, select >= or > from the drop-down list and enter a scalar in the field to the right to exclude values that are either greater than or equal to or greater than the scalar, respectively.

The following diagram illustrates the values that are excluded by lower and upper limits.

Exclude Graphically

The Exclude Graphically button enables you to define the exclusion rule by displaying a plot of the values in a data set and selecting the bounds for the excluded data with the mouse. For example, if you created the data set My data, described in "Creating and Managing Data Sets" on page 2-20, select it from the drop-down list next to Exclude graphically and then click the Exclude graphically button. This displays the values in My data in a new window as shown in the following figure.

To set a lower limit for the boundary of the excluded region, click Add Lower Limit. This displays a vertical line on the left side of the plot window. Move the line with the mouse to the point you where you want the lower limit, as shown in the following figure.

Moving the vertical line changes the value displayed in the Lower limit: exclude data field in the Exclude window, as shown in the following figure.

The value displayed corresponds to the x-coordinate of the vertical line.
Similarly, you can set the upper limit for the boundary of the excluded region by clicking Add Upper Limit and moving the vertical line that appears at the right side of the plot window. After setting the lower and upper limits, click Close and return to the Exclude window.

Create Exclusion Rule

Once you have set the lower and upper limits for the boundary of the excluded data, click Create Exclusion Rule to create the new rule. The name of the new rule now appears in the Existing exclusion rules pane.

When you select an exclusion rule in the Existing exclusion rules pane, the following buttons are enabled:

- Copy - Creates a copy of the rule, which you can then modify. To save the modified rule under a different name, click Create Exclusion Rule.
- View - Opens a new window in which you can see which data points are excluded by the rule. The following figure shows a typical example.

The shaded areas in the plot graphically display which data points are excluded. The table to the right lists all data points. The shaded rows indicate excluded points:

- Rename - Renames the rule
- Delete - Deletes the rule

Once you define an exclusion rule, you can use it when you fit a distribution to your data. The rule does not exclude points from the display of the data set.

Saving and Loading Sessions

This section explains how to save your work in the current Distribution Fitting Tool session and then load it in a subsequent session, so that you can continue working where you left off.

Saving a Session

To save the current session, select Save Session from the File menu in the main window. This opens a dialog box that prompts you to enter a filename, such as my_session.dfit, for the session. Clicking Save saves the following items created in the current session:

- Data sets
- Fits
- Exclusion rules
- Plot settings
- Bin width rules

Loading a Session

To load a previously saved session, select Load Session from the File menu in the main window and enter the name of a previously saved session. Clicking Open restores the information from the saved session to the current session of the Distribution Fitting Tool.

Generating an M-File to Fit and Plot Distributions

The Generate M-file option in the File menu enables you to create an M-file that

- Fits the distributions used in the current session to any data vector in the MATLAB workspace.
- Plots the data and the fits.

After you end the current session, you can use the M-file to create plots in a standard MATLAB figure window, without having to reopen the Distribution Fitting Tool.

As an example, assuming you created the fit described in "Creating a New Fit" on page 2-24, do the following steps:

1 Select Generate M-file from the File menu
2 Save the M-file as normal_fit.m in a directory on the MATLAB path.
You can then apply the function normal_fit to any vector of data in the MATLAB workspace. For example, the following commands

```
new_data = normrnd(4.1, 12.5, 100, 1);
normal_fit(new_data)
legend('New Data', 'My fit')
```

fit a normal distribution to a data set and generate a plot of the data and the fit.

Note By default, the M-file labels the data in the legend using the same name as the data set in the Distribution Fitting Tool. You can change the label using the legend command, as illustrated by the preceding example.

Using Custom Distributions

This section explains how to use custom distributions with the Distribution Fitting Tool.

Defining Custom Distributions

To define a custom distribution, select Define Custom Distribution from the File menu. This opens an M-file template in the MATLAB editor. You then edit this M-file so that it computes the distribution you want.

The template includes example code that computes the Laplace distribution, beginning at the lines

```
%---------------------------------------------------------
% ---- Remove the following return statement to define the
% ---- Laplace distributon
%
return
```

To use this example, simply delete the command return and save the M-file. If you save the template in a directory on the MATLAB path, under its default name dfittooldists.m, the Distribution Fitting Tool reads it in automatically when you start the tool. You can also save the template under a different name, such as laplace.m, and then import the custom distribution as described in the following section.

Importing Custom Distributions

To import a custom distribution, select Import Custom Distributions from the File menu. This opens a dialog box in which you can select the M-file that defines the distribution. For example, if you created the file laplace.m, as described in the preceding section, you can enter laplace.m and select Open in the dialog box. The Distribution field of the New Fit window now contains the option Laplace.

Additional Distributions Available in the Distribution Fitting Tool

This section describes the distributions that are available in the Distribution Fitting Tool, but which have no corresponding command-line functions. For a complete list of the distributions you can use with the Distribution Fitting Tool, see "Available Distributions" on page 2-26.

Birnbaum-Saunders Distribution

The Birnbaum-Saunders distribution has the density function

$$
\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{(\sqrt{x / \beta}-\sqrt{\beta / x})^{2}}{2 \gamma^{2}}\right\}\left(\frac{(\sqrt{x / \beta}+\sqrt{\beta / x})}{2 \gamma x}\right)
$$

with scale parameter $\beta>0$ and shape parameter $\gamma>0$, for $x>0$.
If x has a Birnbaum-Saunders distribution with parameters β and γ, then

$$
\frac{1}{\gamma}(\sqrt{x / \beta}+\sqrt{\beta / x})
$$

has a standard normal distribution.

Inverse Gaussian Distribution

The inverse Gaussian distribution has the density function

$$
\sqrt{\frac{\lambda}{2 \pi x^{3}}} \exp \left\{-\frac{\lambda}{2 \mu^{2} x}(x-\mu)^{2}\right\}
$$

Log-Logistic Distribution

The variable x has a log logistic distribution with location parameter μ and scale parameter $\sigma>0$ if $\ln x$ has a logistic distribution with parameters μ and σ.

Logistic Distribution

The logistic distribution has the density function

$$
\frac{e^{\frac{x-\mu}{\sigma}}}{\sigma\left(1+e^{\frac{x-\mu}{\sigma}}\right)^{2}}
$$

with location parameter μ and scale parameter $\sigma>0$, for all real x.

Nakagami Distribution

The Nakagami distribution has the density function

$$
2\left(\frac{\mu}{\omega}\right)^{\mu} \frac{1}{\Gamma(\mu)} x^{(2 \mu-1)} e^{-\frac{\mu}{\omega} x^{2}}
$$

with shape parameter μ and scale parameter $\omega>0$, for $x>0$. If x has a Nakagami distribution with parameters μ and ω, then x^{2} has a gamma distribution with shape parameter μ and scale parameter ω / μ.

Rician Distribution

The Rician distribution has the density function

$$
I_{0}\left(\frac{x s}{\sigma^{2}}\right) \frac{x}{\sigma^{2}} e^{-\left(\frac{x^{2}+s^{2}}{2 \sigma^{2}}\right)}
$$

with noncentrality parameter $s \geq 0$ and scale parameter $\sigma>0$, for $x>0 . I_{0}$ is the zero-order modified Bessel function of the first kind. If x has a Rician distribution with parameters s and σ, then $(x / \sigma)^{2}$ has a noncentral chi-square distribution with two degrees of freedom and noncentrality parameter $(s / \sigma)^{2}$.

t Location-Scale Distribution

The t location-scale distribution has the density function

$$
\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sigma \sqrt{v \pi} \Gamma\left(\frac{v}{2}\right)}\left[\frac{v+\left(\frac{x-\mu}{\sigma}\right)^{2}}{v}\right]^{-\left(\frac{v+1}{2}\right)}
$$

with location parameter μ, scale parameter $\sigma>0$, and shape parameter $v>0$. If x has a t location-scale distribution, with parameters μ, σ, and v, then $\frac{x-\mu}{\sigma}$ has a Student's t distribution with v degrees of freedom.

Using the Distributions with Command-Line Functions

You can specify the distributions described in this section when using the functions mle, cdf, icdf, and pdf. To do so, set the first argument of the function to one of the following distribution names:

- 'birnbaumsaunders'
- 'inversegaussian'
- 'loglogistic'
- 'nakagami'
- 'rician'
- 'tlocationscale'

Overview of the Distributions

The following sections describe the probability distributions that are available using functions at the command line. For additional distributions that are only available through the Distribution Fitting Tool, see "Additional Distributions Available in the Distribution Fitting Tool" on page 2-41:

- "Reproducing the Output of Random Number Functions" on page 2-46
- "Beta Distribution" on page 2-48
- "Binomial Distribution" on page 2-50
- "Chi-Square Distribution" on page 2-52
- "Noncentral Chi-Square Distribution" on page 2-53
- "Discrete Uniform Distribution" on page 2-55
- "Exponential Distribution" on page 2-56
- "Extreme Value Distribution" on page 2-58
- "F Distribution" on page 2-61
- "Noncentral F Distribution" on page 2-63
- "Gamma Distribution" on page 2-64
- "Geometric Distribution" on page 2-66
- "Hypergeometric Distribution" on page 2-67
- "Lognormal Distribution" on page 2-69
- "Negative Binomial Distribution" on page 2-70
- "Normal Distribution" on page 2-73
- "Poisson Distribution" on page 2-76
- "Rayleigh Distribution" on page 2-78
- "Student's t Distribution" on page 2-79
- "Noncentral t Distribution" on page 2-80
- "Uniform (Continuous) Distribution" on page 2-82
- "Weibull Distribution" on page 2-83

Reproducing the Output of Random Number Functions

The Statistics Toolbox contains functions that generate random samples from the distributions described in this section. These functions use the MATLAB functions rand and/or randn to generate their output. If you want to reproduce the exact output for any of these functions, you must set the state for rand and/or randn each time you call the function. For example, the following code sets the states for rand and randn:

```
state = 137;
rand('state', state);
randn('state', state);
```

If you execute this code with any fixed value for state, before calling one of the random number functions, the function always returns the same output. You might want to save these commands in an M-file script called initstate.m. Then, instead of three separate commands, you need only enter initstate.

The following table lists the random number functions and indicates their dependencies on rand and randn. To reproduce the output of a function in the left-hand column, set the states of the functions listed in the right-hand column

Random Number Functions	Dependencies on rand, randn
betarnd	rand, randn
binornd	rand
chi2rnd	rand, randn
exprnd	rand
evrnd	rand, randn
frnd	rand
gamrnd	rand
geornd	
hygernd	

Random Number Functions	Dependencies on rand, randn
iwishrnd	rand, randn
lognrnd	randn
mvnrnd	rand, randn
mvtrnd	rand, randn
nbinrnd	rand, randn randn
ncfrnd	randn
nctrnd	rand, randn
ncx2rnd	randn
normrnd	rand, randn
poissrnd	rand
raylrnd	rand
trnd	rand
unidrnd	rand
unifrnd	wblrnd
wblrnd	
wishrnd	

Beta Distribution

The following sections provide an overview of the beta distribution.

Background on the Beta Distribution

The beta distribution describes a family of curves that are unique in that they are nonzero only on the interval (01). A more general version of the function assigns parameters to the end-points of the interval.
The beta cdf is the same as the incomplete beta function.
The beta distribution has a functional relationship with the t distribution. If Y is an observation from Student's t distribution with v degrees of freedom, then the following transformation generates X, which is beta distributed.

$$
X=\frac{1}{2}+\frac{1}{2} \frac{Y}{\sqrt{v+Y^{2}}}
$$

If $Y \sim t(v) \quad$, then $\quad X \sim \beta\left(\frac{v}{2}, \frac{v}{2}\right)$.
The Statistics Toolbox uses this relationship to compute values of the t cdf and inverse function as well as generating t distributed random numbers.

Definition of the Beta Distribution

The beta pdf is

$$
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} I_{(0,1)}(x)
$$

where $B(\cdot)$ is the Beta function. The indicator function $I_{(0,1)}(x)$ ensures that only values of x in the range (01) have nonzero probability.

Parameter Estimation for the Beta Distribution

Suppose you are collecting data that has hard lower and upper bounds of zero and one respectively. Parameter estimation is the process of determining the parameters of the beta distribution that fit this data best in some sense.
One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the beta pdf. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x 's) are already observed. So they are the fixed constants. The variables are the unknown parameters.

Maximum likelihood estimation (MLE) involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the parameters of the beta distribution. Here is an example using random numbers from the beta distribution with $a=5$ and $b=0.2$.

```
r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)
phat =
    4.5330 0.2301
pci =
    2.8051 0.1771
    6.2610 0.2832
```

The MLE for parameter a is 4.5330, compared to the true value of 5 . The 95% confidence interval for a goes from 2.8051 to 6.2610 , which includes the true value.

Similarly the MLE for parameter b is 0.2301 , compared to the true value of 0.2 . The 95% confidence interval for b goes from 0.1771 to 0.2832 , which also includes the true value. In this made-up example you know the "true value." In experimentation you do not.

Example and Plot of the Beta Distribution

The shape of the beta distribution is quite variable depending on the values of the parameters, as illustrated by the plot below.

The constant pdf(the flat line) shows that the standard uniform distribution is a special case of the beta distribution.

Binomial Distribution

The following sections provide an overview of the binomial distribution.

Background of the Binomial Distribution

The binomial distribution models the total number of successes in repeated trials from an infinite population under the following conditions:

- Only two outcomes are possible on each of n trials.
- The probability of success for each trial is constant.
- All trials are independent of each other.

James Bernoulli [40] derived the binomial distribution in 1713. Earlier, Blaise Pascal had considered the special case where $p=1 / 2$.

Definition of the Binomial Distribution

The binomial pdf is

$$
y=f(x \mid n, p)=\binom{n}{x} p^{x} q^{(1-x)} I_{(0,1, \ldots, n)}(x)
$$

where $\binom{n}{x}=\frac{n!}{x!(n-x)!}$ and $q=1-p$.
The binomial distribution is discrete. For zero and for positive integers less than n, the pdf is nonzero.

Parameter Estimation for the Binomial Distribution

Suppose you are collecting data from a widget manufacturing process, and you record the number of widgets within specification in each batch of 100 . You might be interested in the probability that an individual widget is within specification. Parameter estimation is the process of determining the parameter, p, of the binomial distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the binomial pdf above. But for the pdf, the parameters (n and p) are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x 's)
are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the value of p that give the highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the parameters of the binomial distribution. Here is an example using random numbers from the binomial distribution with $n=100$ and $p=0.9$.

```
r = binornd(100,0.9)
r =
    88
[phat, pci] = binofit(r,100)
phat =
    0.8800
pci =
    0.7998
    0.9364
```

The MLE for parameter p is 0.8800 , compared to the true value of 0.9 . The 95% confidence interval for p goes from 0.7998 to 0.9364 , which includes the true value. In this made-up example you know the "true value" of p. In experimentation you do not.

Example and Plot of the Binomial Distribution

The following commands generate a plot of the binomial pdf for $n=10$ and $p=1 / 2$.

```
x = 0:10;
y = binopdf(x,10,0.5);
plot(x,y,'+')
```


Chi-Square Distribution

The following sections provide an overview of the χ^{2} distribution.

Background of the Chi-Square Distribution

The χ^{2} distribution is a special case of the gamma distribution where $b=2$ in the equation for gamma distribution below.

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

The χ^{2} distribution gets special attention because of its importance in normal sampling theory. If a set of n observations is normally distributed with variance σ^{2}, and s^{2} is the sample standard deviation, then

$$
\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

The Statistics Toolbox uses the above relationship to calculate confidence intervals for the estimate of the normal parameter σ^{2} in the function normfit.

Definition of the Chi-Square Distribution

The $\chi^{2} \mathrm{pdf}$ is

$$
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{\frac{v}{2}} \Gamma(v / 2)}
$$

where $\Gamma(\cdot)$ is the Gamma function, and v is the degrees of freedom.

Example and Plot of the Chi-Square Distribution

The χ^{2} distribution is skewed to the right especially for few degrees of freedom (v). The plot shows the χ^{2} distribution with four degrees of freedom.

```
x = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)
```


Noncentral Chi-Square Distribution

The following sections provide an overview of the noncentral χ^{2} distribution.

Background of the Noncentral Chi-Square Distribution

The χ^{2} distribution is actually a simple special case of the noncentral chi-square distribution. One way to generate random numbers with a χ^{2} distribution (with v degrees of freedom) is to sum the squares of v standard normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The sum of squares of these numbers yields the noncentral chi-square distribution.

The noncentral chi-square distribution requires two parameters; the degrees of freedom and the noncentrality parameter. The noncentrality parameter is the sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and signal processing. The literature in these areas may refer to it as the Ricean or generalized Rayleigh distribution.

Definition of the Noncentral Chi-Square Distribution

There are many equivalent formulas for the noncentral chi-square distribution function. One formulation uses a modified Bessel function of the first kind. Another uses the generalized Laguerre polynomials. The Statistics Toolbox computes the cumulative distribution function values using a weighted sum of χ^{2} probabilities with the weights equal to the probabilities of a Poisson distribution. The Poisson parameter is one-half of the noncentrality parameter of the noncentral chi-square.

$$
F(x \mid v, \delta)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
$$

where δ is the noncentrality parameter.

Example of the Noncentral Chi-Square Distribution

The following commands generate a plot of the noncentral chi-square pdf.

```
x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'--',x,p1,'-')
```


Discrete Uniform Distribution

The following sections provide an overview of the discrete uniform distribution.

Background of the Discrete Uniform Distribution

The discrete uniform distribution is a simple distribution that puts equal weight on the integers from one to N.

Definition of the Discrete Uniform Distribution

The discrete uniform pdf is

$$
y=f(x \mid N)=\frac{1}{N} I_{(1, \ldots, N)}(x)
$$

Example and Plot of the Discrete Uniform Distribution

As for all discrete distributions, the cdf is a step function. The plot shows the discrete uniform cdf for $N=10$.

```
x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])
```


To pick a random sample of 10 from a list of 553 items:

```
numbers = unidrnd(553,1,10)
numbers =
\begin{tabular}{llllllllll}
293 & 372 & 5 & 213 & 37 & 231 & 380 & 326 & 515 & 468
\end{tabular}
```


Exponential Distribution

The following sections provide an overview of the exponential distribution.

Background of the Exponential Distribution

Like the chi-square distribution, the exponential distribution is a special case of the gamma distribution (obtained by setting $a=1$)

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

where $\Gamma(\cdot)$ is the Gamma function.
The exponential distribution is special because of its utility in modeling events that occur randomly over time. The main application area is in studies of lifetimes.

Definition of the Exponential Distribution

The exponential pdf is

$$
y=f(x \mid \mu)=\frac{1}{\mu} e^{-\frac{x}{\mu}}
$$

Parameter Estimation for the Exponential Distribution

Suppose you are stress testing light bulbs and collecting data on their lifetimes. You assume that these lifetimes follow an exponential distribution. You want to know how long you can expect the average light bulb to last. Parameter estimation is the process of determining the parameters of the exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the exponential pdf above. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x 's) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function expfit returns the MLEs and confidence intervals for the parameters of the exponential distribution. Here is an example using random numbers from the exponential distribution with $\mu=700$.

```
lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)
muhat =
    672.8207
muci =
```

 547.4338
 810.9437
 The MLE for parameter μ is 672 , compared to the true value of 700 . The 95% confidence interval for μ goes from 547 to 811 , which includes the true value.

In the life tests you do not know the true value of μ so it is nice to have a confidence interval on the parameter to give a range of likely values.

Example and Plot of the Exponential Distribution

For exponentially distributed lifetimes, the probability that an item will survive an extra unit of time is independent of the current age of the item. The example shows a specific case of this special property.

```
l = 10:10:60;
lpd = l+0.1;
deltap = (expcdf(lpd,50)-\operatorname{expcdf(l,50))./(1-\operatorname{expcdf(l,50))}}\mathbf{(1,5})
deltap =
    0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
```

The following commands generate a plot of the exponential pdf with its parameter (and mean), μ, set to 2 .

```
x = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)
```


Extreme Value Distribution

The following sections provide an overview of the extreme value distribution.

Background of the Extreme Value Distribution

Extreme value distributions are often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. The extreme value distribution used in the Statistics Toolbox is appropriate for modeling the smallest value from a distribution whose tails decay exponentially fast, for example, the normal distribution. It can also model the largest value from a distribution, such as the normal or exponential distributions, by using the negative of the original values.

For example, the values generated by the following code have approximately an extreme value distribution.

```
xmin = min(randn(1000,5), [], 1);
negxmax = -max(randn(1000,5), [], 1);
```

Although the extreme value distribution is most often used as a model for extreme values, you can also use it as a model for other types of continuous data. For example, extreme value distributions are closely related to the Weibull distribution. If T has a Weibull distribution, then $\log (T)$ has a type 1 extreme value distribution.

Definition of the Extreme Value Distribution

The probability density function for the extreme value distribution with location parameter μ and scale parameter σ is

$$
y=f(x \mid \mu, \sigma)=\sigma^{-1} \exp \left(\frac{x-\mu}{\sigma}\right) \exp \left(-\exp \left(\frac{x-\mu}{\sigma}\right)\right)
$$

If T has a Weibull distribution with parameters a and b , as described in "Weibull Distribution" on page 2-83, then $\log T$ has an extreme value distribution with parameters $\mu=\log a$ and $\sigma=1 / b$.

Parameter Estimation for the Extreme Value Distribution

The function evfit returns the maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the extreme value distribution. The following example shows how to fit some sample data using evfit, including estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch of 1000 from a manufacturing process. If you believe that the sizes are independent within and between each batch, you can fit an extreme value distribution to measurements of the minimum diameter from a series of eight experimental batches. The following code returns the MLEs of the distribution parameters as parmhat and the confidence intervals as the columns of parmci.

```
x = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83];
[parmhat, parmci] = evfit(x)
parmhat =
    20.2506 0.8223
```

```
parmci =
    19.644 0.49861
    20.857 1.3562
```

You can find mean and variance of the extreme value distribution with these parameters using the function evstat.

```
[meanfit, varfit] = evstat(parmhat(1),parmhat(2))
meanfit =
    19.776
varfit =
    1.1123
```


Plot of the Extreme Value Distribution

The following code generates a plot of the pdf for the extreme value distribution.

```
t = [-5:.01:2];
y = evpdf(t);
plot(t, y)
```


The extreme value distribution is skewed to the left, and its general shape remains the same for all parameter values. The location parameter, mu, shifts the distribution along the real line, and the scale parameter, sigma, expands or contracts the distribution. This example plots the probability function for different combinations of mu and sigma.

```
x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', x,evpdf(x,0,2),':',
x,evpdf(x,-2,4),'-.');
legend({'mu = 2, sigma = 1' 'mu = 0, sigma = 2' 'mu = -2,'....
'sigma = 4'},2)
xlabel('x')
ylabel('f(x|mu,sigma')
```


F Distribution

The following sections provide an overview of the F distribution.

Background of the F distribution

The F distribution has a natural relationship with the chi-square distribution. If χ_{1} and χ_{2} are both chi-square with v_{1} and v_{2} degrees of freedom respectively, then the statistic F below is F distributed.

$$
F\left(v_{1}, v_{2}\right)=\frac{\frac{\chi_{1}}{v_{1}}}{\frac{\chi_{2}}{v_{2}}}
$$

The two parameters, v_{1} and v_{2}, are the numerator and denominator degrees of freedom. That is, v_{1} and v_{2} are the number of independent pieces of information used to calculate χ_{1} and χ_{2}, respectively.

Definition of the F distribution

The pdf for the F distribution is

$$
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x\right]^{\frac{v_{1}+v_{2}}{2}}}
$$

where $\Gamma(\cdot)$ is the Gamma function.

Example and Plot of the F distribution

The most common application of the F distribution is in standard tests of hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers and is skewed to the right.

```
x = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)
```


Noncentral F Distribution

The following sections provide an overview of the noncentral F distribution.

Background of the Noncentral F Distribution

As with the χ^{2} distribution, the F distribution is a special case of the noncentral F distribution. The F distribution is the result of taking the ratio of two χ^{2} random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable divided by its degrees of freedom, the resulting distribution is the noncentral F distribution.

The main application of the noncentral F distribution is to calculate the power of a hypothesis test relative to a particular alternative.

Definition of the Noncentral F Distribution

Similar to the noncentral χ^{2} distribution, the toolbox calculates noncentral F distribution probabilities as a weighted sum of incomplete beta functions using Poisson probabilities as the weights.

$$
F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) I\left(\left.\frac{v_{1} \cdot x}{v_{2}+v_{1} \cdot x} \right\rvert\, \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
$$

$I(x \mid a, b)$ is the incomplete beta function with parameters a and b, and δ is the noncentrality parameter.

Example and Plot of the Noncentral F Distribution

The following commands generate a plot of the noncentral F pdf.

```
x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'--',x,p1,'-')
```


Gamma Distribution

The following sections provide an overview of the gamma distribution.

Background of the Gamma Distribution

The gamma distribution is a family of curves based on two parameters. The chi-square and exponential distributions, which are children of the gamma distribution, are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete Gamma function.

$$
\Gamma(x \mid a, b)=\operatorname{gammainc}\left(\frac{x}{b}, a\right)
$$

For $b=1$ the functions are identical.
When a is large, the gamma distribution closely approximates a normal distribution with the advantage that the gamma distribution has density only for positive real numbers.

Definition of the Gamma Distribution

The gamma pdf is

$$
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
$$

where $\Gamma(\cdot)$ is the Gamma function.

Parameter Estimation for the Gamma Distribution

Suppose you are stress testing computer memory chips and collecting data on their lifetimes. You assume that these lifetimes follow a gamma distribution. You want to know how long you can expect the average computer memory chip to last. Parameter estimation is the process of determining the parameters of the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the gamma pdf above. But for the pdf, the parameters are known constants and the variable is x. The likelihood function reverses the roles of the variables. Here, the sample values (the x 's) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the parameters of the gamma distribution. Here is an example using random numbers from the gamma distribution with $a=10$ and $b=5$.

```
lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)
phat =
    10.9821 4.7258
pci =
    7.4001 3.1543
    14.5640 6.2974
```

Note phat(1) $=\hat{a}$ and phat(2) $=b$. The MLE for parameter a is 10.98, compared to the true value of 10 . The 95% confidence interval for a goes from 7.4 to 14.6 , which includes the true value.

Similarly the MLE for parameter b is 4.7 , compared to the true value of 5 . The 95% confidence interval for b goes from 3.2 to 6.3 , which also includes the true value.

In the life tests you do not know the true value of a and b so it is nice to have a confidence interval on the parameters to give a range of likely values.

Example and Plot of the Gamma Distribution

In the example the gamma pdf is plotted with the solid line. The normal pdf has a dashed line type.

```
x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'-',x,y1,' -.')
```


Geometric Distribution

The following sections provide an overview of the geometric distribution.

Background of the Geometric Distribution

The geometric distribution is discrete, existing only on the nonnegative integers. It is useful for modeling the runs of consecutive successes (or failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure in an independent succession of tests where each test results in success or failure.

Definition of the Geometric Distribution

The geometric pdf is

$$
y=f(x \mid p)=p q^{x} I_{(0,1, \ldots)}(x)
$$

where $q=1-p$.

Example and Plot of the Geometric Distribution

Suppose the probability of a five-year-old battery failing in cold weather is 0.03 . What is the probability of starting 25 consecutive days during a long cold snap?

```
1 - geocdf(25,0.03)
ans =
    0.4530
```

The plot shows the cdf for this scenario.

```
x = 0:25;
\(y=\operatorname{geocdf}(x, 0.03)\);
stairs( \(x, y\) )
```


Hypergeometric Distribution

The following sections provide an overview of the hypergeometric distribution.

Background of the Hypergeometric Distribution

The hypergeometric distribution models the total number of successes in a fixed size sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the number of samples or the number of possible successes, whichever is greater. The hypergeometric distribution differs from the binomial only in that the population is finite and the sampling from the population is without replacement.

The hypergeometric distribution has three parameters that have direct physical interpretations. M is the size of the population. K is the number of items with the desired characteristic in the population. n is the number of samples drawn. Sampling "without replacement" means that once a particular sample is chosen, it is removed from the relevant population for all subsequent selections.

Definition of the Hypergeometric Distribution

The hypergeometric pdf is

$$
y=f(x \mid M, K, n)=\frac{\binom{K}{x}\binom{M-K}{n-x}}{\binom{M}{n}}
$$

Example and Plot of the Hypergeometric Distribution

The plot shows the cdf of an experiment taking 20 samples from a group of 1000 where there are 50 items of the desired type.

```
x = 0:10;
\(y=\) hygecdf( \(x, 1000,50,20)\);
stairs(x,y)
```


Lognormal Distribution

The following sections provide an overview of the lognormal distribution.

Background of the Lognormal Distribution

The normal and lognormal distributions are closely related. If X is distributed lognormal with parameters μ and σ^{2}, then $\ln X$ is distributed normal with parameters μ and σ^{2}.
The lognormal distribution is applicable when the quantity of interest must be positive, since $\ln X$ exists only when the random variable X is positive.
Economists often model the distribution of income using a lognormal distribution.

Definition of the Lognormal Distribution

The lognormal pdf is

$$
y=f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Example and Plot of the Lognormal Distribution

Suppose the income of a family of four in the United States follows a lognormal distribution with $\mu=\log (20,000)$ and $\sigma^{2}=1.0$. Plot the income density.

```
x = (10:1000:125010)';
y = lognpdf(x,log(20000),1.0);
plot(x,y)
set(gca,'xtick',[0 30000 60000 90000 120000])
set(gca,'xticklabel',str2mat('0','$30,000','$60,000',...
    '$90,000','$120,000'))
```


Negative Binomial Distribution

The following sections provide an overview of the negative binomial distribution.

- "Background of the Negative Binomial Distribution" on page 2-70
- "Definition of the Negative Binomial Distribution" on page 2-71
- "Parameter Estimation for the Negative Binomial Distribution" on page 2-71
- "Example and Plot of the Negative Binomial Distribution" on page 2-73

Background of the Negative Binomial Distribution

In its simplest form, the negative binomial distribution models the number of successes before a specified number of failures is reached in an independent series of repeated identical trials. It can also be thought of as modeling the total number of trials required before a specified number of successes, thus motivating its name as the inverse of the binomial distribution. Its parameters are the probability of success in a single trial, p, and the number of failures, r. A special case of the negative binomial distribution, when $r=1$, is the geometric distribution (also known as the Pascal distribution), which models the number of successes before the first failure.

More generally, the r parameter can take on noninteger values. This form of the negative binomial has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. It is, however, more general than the Poisson, because the negative binomial has a variance that is greater than its mean, often making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as the
parameter r increases to infinity, the negative binomial distribution approaches the Poisson distribution.

Definition of the Negative Binomial Distribution

When the r parameter is an integer, the negative binomial pdf is

$$
y=f(x \mid r, p)=\binom{r+x-1}{x} p^{r} q^{x} I_{(0,1, \ldots)}(x)
$$

where $q=1-p$. When r is not an integer, the binomial coefficient in the definition of the pdf is replaced by the equivalent expression

$$
\frac{\Gamma(r+x)}{\Gamma(r) \Gamma(x+1)}
$$

Parameter Estimation for the Negative Binomial Distribution

Suppose you are collecting data on the number of auto accidents on a busy highway, and would like to be able to model the number of accidents per day. Because these are count data, and because there are a very large number of cars and a small probability of an accident for any specific car, you might think to use the Poisson distribution. However, the probability of having an accident is likely to vary from day to day as the weather and amount of traffic change, and so the assumptions needed for the Poisson distribution are not met. In particular, the variance of this type of count data sometimes exceeds the mean by a large amount. The data below exhibit this effect: most days have few or no accidents, and a few days have a large number.

```
accident = [2 [14 4 2 2 3 1 1 12 8 8 14 
mean(accident)
ans =
    8.0667
var(accident)
ans =
    79.352
```

The negative binomial distribution is more general than the Poisson, and is often suitable for count data when the Poisson is not. The function nbinfit returns the maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the negative binomial distribution. Here are the results from fitting the accident data:

```
[phat,pci] = nbinfit(accident)
phat =
    1.006 0.11088
pci =
    0.015286 0.00037634
        1.9967 0.22138
```

It is difficult to give a physical interpretation in this case to the individual parameters. However, the estimated parameters can be used in a model for the number of daily accidents. For example, a plot of the estimated cumulative probability function shows that while there is an estimated 10% chance of no accidents on a given day, there is also about a 10% chance that there will be 20 or more accidents.

```
plot(0:50,nbincdf(0:50,phat(1),phat(2)),'. -');
xlabel('Accidents per Day')
ylabel('Cumulative Probability')
```


Example and Plot of the Negative Binomial Distribution

The negative binomial distribution can take on a variety of shapes ranging from very skewed to nearly symmetric. This example plots the probability function for different values of r, the desired number of successes: .1, 1, 3, 6 .

```
x = 0:10;
plot(x,nbinpdf(x,.1,.5),'s-', ...
    x,nbinpdf(x,1,.5),'o-', ...
    x,nbinpdf(x,3,.5),'d-', ...
    x,nbinpdf(x,6,.5),'^-');
legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})
xlabel('x')
ylabel('f(x|r,p')
```


Normal Distribution

The following sections provide an overview of the normal distribution.

Background of the Normal Distribution

The normal distribution is a two parameter family of curves. The first parameter, μ, is the mean. The second, σ, is the standard deviation. The standard normal distribution (written $\Phi(x)$) sets μ to 0 and σ to 1 .
$\Phi(x)$ is functionally related to the error function, erf.

$$
\operatorname{erf}(x)=2 \Phi(x \sqrt{2})-1
$$

The first use of the normal distribution was as a continuous approximation to the binomial.

The usual justification for using the normal distribution for modeling is the Central Limit Theorem, which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

Definition of the Normal Distribution

The normal pdf is

$$
y=f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Parameter Estimation for the Normal Distribution

To use statistical parameters such as mean and standard deviation reliably, you need to have a good estimator for them. The maximum likelihood estimates (MLEs) provide one such estimator. However, an MLE might be biased, which means that its expected value of the parameter might not equal the parameter being estimated. For example, an MLE is biased for estimating the variance of a normal distribution. An unbiased estimator that is commonly used to estimate the parameters of the normal distribution is the minimum variance unbiased estimator (MVUE). The MVUE has the minimum variance of all unbiased estimators of a parameter.

The MVUEs of parameters μ and σ^{2} for the normal distribution are the sample average and variance. The sample average is also the MLE for μ. The following are two common formulas for the variance.

1) $s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
2) $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
where

$$
\bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n}
$$

Equation 1 is the maximum likelihood estimator for σ^{2}, and equation 2 is the MVUE.

As an example, suppose you want to estimate the mean, μ, and the variance, σ^{2}, of the heights of all 4th grade children in the United States.The function normfit returns the MVUE for μ, the square root of the MVUE for σ^{2}, and confidence intervals for μ and σ^{2}. Here is a playful example modeling the heights in inches of a randomly chosen 4th grade class.

```
height = normrnd(50,2,30,1);
% Simulate heights.
[mu,s,muci,sci] = normfit(height)
mu =
    50.2025
s =
    1.7946
muci =
    4 9 . 5 2 1 0
    50.8841
SCi =
    1.4292
    2.4125
```

Note that $\mathrm{s}^{\wedge} 2$ is the MVUE of the variance.
$\mathrm{s}^{\wedge} 2$
ans $=$
3.2206

Example and Plot of the Normal Distribution

The plot shows the bell curve of the standard normal pdf, with $\mu=0$ and $\sigma=1$.

Poisson Distribution

The following sections provide an overview of the Poisson distribution.

Background of the Poisson Distribution

The Poisson distribution is appropriate for applications that involve counting the number of times a random event occurs in a given amount of time, distance, area, etc. Sample applications that involve Poisson distributions include the number of Geiger counter clicks per second, the number of people walking into a store in an hour, and the number of flaws per 1000 feet of video tape.

The Poisson distribution is a one parameter discrete distribution that takes nonnegative integer values. The parameter, λ, is both the mean and the variance of the distribution. Thus, as the size of the numbers in a particular sample of Poisson random numbers gets larger, so does the variability of the numbers.

As Poisson [43] showed, the Poisson distribution is the limiting case of a binomial distribution where N approaches infinity and p goes to zero while $N p=\lambda$.

The Poisson and exponential distributions are related. If the number of counts follows the Poisson distribution, then the interval between individual counts follows the exponential distribution.

Definition of the Poisson Distribution

The Poisson pdf is

$$
y=f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda} I_{(0,1, \ldots)}(x)
$$

Parameter Estimation for the Poisson Distribution

The MLE and the MVUE of the Poisson parameter, λ, is the sample mean. The sum of independent Poisson random variables is also Poisson distributed with the parameter equal to the sum of the individual parameters. The Statistics Toolbox makes use of this fact to calculate confidence intervals on λ. As λ gets large the Poisson distribution can be approximated by a normal distribution with $\mu=\lambda$ and $\sigma^{2}=\lambda$. The Statistics Toolbox uses this approximation for calculating confidence intervals for values of λ greater than 100 .

Example and Plot of the Poisson Distribution

The plot shows the probability for each nonnegative integer when $\lambda=5$.

Rayleigh Distribution

The following sections provide an overview of the Rayleigh distribution.

Background of the Rayleigh Distribution

The Rayleigh distribution is a special case of the Weibull distribution. If A and B are the parameters of the Weibull distribution, then the Rayleigh distribution with parameter b is equivalent to the Weibull distribution with parameters $A=1 /\left(2 b^{2}\right)$ and $B=2$.
If the component velocities of a particle in the x and y directions are two independent normal random variables with zero means and equal variances, then the distance the particle travels per unit time is distributed Rayleigh.

Definition of the Rayleigh Distribution

The Rayleigh pdf is

$$
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
$$

Parameter Estimation for the Rayleigh Distribution

The raylfit function returns the MLE of the Rayleigh parameter. This estimate is

$$
b=\sqrt{\frac{1}{2 n} \sum_{i=1}^{n} x_{i}^{2}}
$$

Example and Plot of the Rayleigh Distribution

The following commands generate a plot of the Rayleigh pdf.

```
x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)
```


Student's † Distribution

The following sections provide an overview of Student's t distribution.

Background of Student's \dagger Distribution

The t distribution is a family of curves depending on a single parameter v (the degrees of freedom). As v goes to infinity, the t distribution converges to the standard normal distribution.
W. S. Gossett [44] discovered the distribution through his work at the Guinness brewery. At that time, Guinness did not allow its staff to publish, so Gossett used the pseudonym Student.

If x and s are the mean and standard deviation of an independent random sample of size n from a normal distribution with mean μ and $\sigma^{2}=n$, then

$$
\begin{aligned}
& t(v)=\frac{x-\mu}{s} \\
& v=n-1
\end{aligned}
$$

Definition of Student's † Distribution

Student's t pdf is

$$
y=f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
$$

where $\Gamma(\cdot)$ is the Gamma function.

Example and Plot of Student's \dagger Distribution

The plot compares the t distribution with $v=5$ (solid line) to the shorter tailed, standard normal distribution (dashed line).

```
x = -5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
plot(x,y,'-',x,z,' -.')
```


Noncentral † Distribution

The following sections provide an overview of the noncentral t distribution.

Background of the Noncentral t Distribution

The noncentral t distribution is a generalization of the familiar Student's t distribution. Recall that the ordinary Student's t distribution is defined as follows. If \bar{x} and s are the sample mean and standard deviation of an independent random sample of size n from a normal distribution with mean μ_{0} and standard deviation σ, then

$$
t(v)=\frac{\bar{x}-\mu_{0}}{s /(\sqrt{n})}
$$

where $v=n-1$, has the ordinary Student's t distribution with v degrees of freedom.

Now, suppose that the true mean of the distribution of x is μ, rather than the hypothesized value μ_{0}. Then the ratio on the right-hand side of the preceding equation has a noncentral t distribution with a noncentrality parameter δ equal to

$$
\delta=\frac{\mu-\mu_{0}}{\sigma /(\sqrt{n})}
$$

δ is the normalized difference between the true mean and the hypothesized mean.

The noncentral t distribution enables you to determine the probability of detecting a difference between μ and μ_{0} in a t test. This probability is the power of the test. The power increases as the difference μ - μ_{0} increases, and also as the sample size increases.

Definition of the Noncentral \dagger Distribution

The most general representation of the noncentral t distribution is quite complicated. Johnson and Kotz [22] give a formula for the probability that a noncentral t variate falls in the range $[-\mathrm{t}, \mathrm{t}]$.

$$
\operatorname{Pr}((-t)<x<t \mid(v, \delta))=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta^{2}\right)^{j}}{j!} e^{-\frac{\delta^{2}}{2}}\right) I\left(\left.\frac{x^{2}}{v+x^{2}} \right\rvert\, \frac{1}{2}+j, \frac{v}{2}\right)
$$

$I(x \mid a, b)$ is the incomplete beta function with parameters a and b, δ is the noncentrality parameter, and v is the degrees of freedom.

Example and Plot of the Noncentral \dagger Distribution

The following commands generate a plot of the noncentral t pdf.

```
x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'--',x,p1,'-')
```


Uniform (Continuous) Distribution

The following sections provide an overview of the uniform distribution.

Background of the Uniform Distribution

The uniform distribution (also called rectangular) has a constant pdf between its two parameters a (the minimum) and b (the maximum). The standard uniform distribution ($a=0$ and $b=1$) is a special case of the beta distribution, obtained by setting both of its parameters to 1 .

The uniform distribution is appropriate for representing the distribution of round-off errors in values tabulated to a particular number of decimal places.

Definition of the Uniform Distribution

The uniform cdf is

$$
p=F(x \mid a, b)=\frac{x-a}{b-a} I_{[a, b]}(x)
$$

Parameter Estimation for the Uniform Distribution

The sample minimum and maximum are the MLEs of a and b respectively.

Example and Plot of the Uniform Distribution

The example illustrates the inversion method for generating normal random numbers using rand and norminv. Note that the MATLAB function, randn, does not use inversion since it is not efficient for this case.

```
u = rand(1000,1);
x = norminv(u,0,1);
hist(x)
```


Weibull Distribution

The following sections provide an overview of the Weibull distribution.

Background of the Weibull Distribution

Waloddi Weibull [45] offered the distribution that bears his name as an appropriate analytical tool for modeling the breaking strength of materials. Current usage also includes reliability and lifetime modeling. The Weibull distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If $f(t)$ and $F(t)$ are the pdf and cdf of a distribution, then the hazard rate is

$$
h(t)=\frac{f(t)}{1-F(t)}
$$

Substituting the pdf and cdf of the exponential distribution for $f(t)$ and $F(t)$ above yields a constant. The example below shows that the hazard rate for the Weibull distribution can vary.

Definition of the Weibull Distribution

The Weibull pdf is

$$
y=f(x \mid a, b)=b a^{-b} x^{b-1} e^{-\left(\frac{x}{a}\right)^{b}} I_{(0, \infty)}(x)
$$

Parameter Estimation for the Weibull Distribution

Suppose you want to model the tensile strength of a thin filament using the Weibull distribution. The function wblfit gives maximum likelihood estimates and confidence intervals for the Weibull parameters.

```
strength = wblrnd(0.5,2,100,1); % Simulated strengths.
[p,ci] = wblfit(strength)
p =
0.4715 1.9811
Ci =
    0.4248 1.7067
    0.5233 2.2996
```

The default 95% confidence interval for each parameter contains the true value.

Example and Plot of the Weibull Distribution

The exponential distribution has a constant hazard function, which is not generally the case for the Weibull distribution.
The plot shows the hazard functions for exponential (dashed line) and Weibull (solid line) distributions having the same mean life. The Weibull hazard rate here increases with age (a reasonable assumption).

```
t = 0:0.1:4.5;
h1 = exppdf(t,0.6267) ./ (1-expcdf(t,0.6267));
h2 = wblpdf(t,2,2) ./ (1-wblcdf(t,2,2));
plot(t,h1,'--',t,h2,'-')
```


Descriptive Statistics

Measures of Central Tendency (Location) (p. 3-2)

Measures of Dispersion (p. 3-4)

Functions for Data with Missing Values (NaNs) (p. 3-6)

Function for Grouped Data (p. 3-8)

Describes how to calculate measures of central tendency, such as mean and median.

Describes how to calculate measures of dispersion, such as variance and standard deviation.

Describes tools for analyzing data that has missing values

Explains how to use the grpstats function to group subsets of data in order to analyze them.

Percentiles and Graphical Descriptions (p. 3-10)

The Bootstrap (p. 3-17)

Describes how to analyze and estimate data distributions empirically.

Describes how to implement the bootstrap procedure.

Measures of Central Tendency (Location)

The purpose of measures of central tendency is to locate the data values on the number line. Another term for these statistics is measures of location.

The table gives the function names and descriptions.

Measures of Location	
geomean	Geometric mean
harmmean	Harmonic mean
mean	Arithmetic average (in MATLAB)
median	50th percentile (in MATLAB)
trimmean	Trimmed mean

The average is a simple and popular estimate of location. If the data sample comes from a normal distribution, then the sample average is also optimal (MVUE of μ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The sample average is sensitive to these problems. One bad data value can move the average away from the center of the rest of the data by an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to outliers. The median is the 50th percentile of the sample, which will only change slightly if you add a large perturbation to any value. The idea behind the trimmed mean is to ignore a small percentage of the highest and lowest values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers. They are useful when the sample is distributed lognormal or heavily skewed.

The following example shows the behavior of the measures of location for a sample with one outlier.

```
x = [ones(1,6) 100]
x =
    1
locate = [geomean(x) harmmean(x) mean(x) median(x)...
    trimmean(x,25)]
locate =
    1.9307 1.1647 15.1429 1.0000 1.0000
```

You can see that the mean is far from any data value because of the influence of the outlier. The median and trimmed mean ignore the outlying value and describe the location of the rest of the data values.

Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data values are on the number line. Another term for these statistics is measures of spread.

The table gives the function names and descriptions.

Measures of Dispersion	
iqr	Interquartile Range
mad	Mean Absolute Deviation
range	Range
std	Standard deviation (in MATLAB)
var	Variance (in MATLAB)

The range (the difference between the maximum and minimum values) is the simplest measure of spread. But if there is an outlier in the data, it will be the minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that are optimal for normally distributed samples. The sample variance is the MVUE of the normal parameter σ^{2}. The standard deviation is the square root of the variance and has the desirable property of being in the same units as the data. That is, if the data is in meters, the standard deviation is in meters as well. The variance is in meters ${ }^{2}$, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value that is separate from the body of the data can increase the value of the statistics by an arbitrarily large amount.

The Mean Absolute Deviation (MAD) is also sensitive to outliers. But the MAD does not move quite as much as the standard deviation or variance in response to bad data.

The Interquartile Range (IQR) is the difference between the 75th and 25th percentile of the data. Since only the middle 50% of the data affects this measure, it is robust to outliers.

The following example shows the behavior of the measures of dispersion for a sample with one outlier.

```
x = [ones (1,6) 100]
x =
```



```
stats = [iqr(x) mad(x) range(x) std(x)]
stats =
    0 24.2449 99.0000 37.4185
```


Functions for Data with Missing Values (NaNs)

Most real-world data sets have one or more missing elements. It is convenient to code missing entries in a matrix as NaN (Not a Number).

Here is a simple example.

```
m = magic(3);
m([1 5]) = [NaN NaN]
m =
    NaN 1 6
        3 NaN 7
        4 9 2
```

Any arithmetic operation that involves the missing values in this matrix yields NaN , as below.

```
sum(m)
ans =
    NaN NaN 15
```

Removing cells with NaN would destroy the matrix structure. Removing whole rows that contain NaN would discard real data. Instead, the Statistics Toolbox has a variety of functions that are similar to other MATLAB functions, but that treat NaN values as missing and therefore ignore them in the calculations.

nansum (m) $\begin{array}{cc} \text { ans }= & \\ 7 & 10 \end{array}$	13
NaN Functions	
nanmax	Maximum ignoring NaNs
nanmean	Mean ignoring NaNs
nanmedian	Median ignoring NaNs
nanmin	Minimum ignoring NaNs

NaN Functions

nanstd	Standard deviation ignoring NaNs
nansum	Sum ignoring NaNs

In addition, other Statistics Toolbox functions operate only on the numeric values, ignoring NaNs. These include iqr, kurtosis, mad, prctile, range, skewness, and trimmean.

Function for Grouped Data

As you saw in the previous section, the descriptive statistics functions can compute statistics on each column in a matrix. Sometimes, however, you may have your data arranged differently so that measurements appear in one column or variable, and a grouping code appears in a second column or variable. Although the MATLAB syntax makes it simple to apply functions to a subset of an array, in this case it is simpler to use the grpstats function.

The grpstats function can compute the mean, standard error of the mean, and count (number of observations) for each group defined by one or more grouping variables. If you supply a significance level, it also creates a graph of the group means with confidence intervals.

As an example, load the larger car data set. You can look at the average value of MPG (miles per gallon) for cars grouped by org (location of the origin of the car).

```
load carbig
grpstats(MPG,org,0.05)
ans =
```

20.084
27.891
30.451

You can also get the complete set of statistics for MPG grouped by three variables: org, cyl4 (the engine has four cylinders or not), and when (when the car was made).

```
[m,s,c,n] = grpstats(MPG,{org cyl4 when});
[n num2cell([m s c])]
ans =
    'USA' 'Other' 'Early' [14.896] [0.33306] [77]
    USA' Other' 'Mid' [17.479] [0.30225] [75]
    USA' Other' Late' [21.536] [0.97961] [25]
    'USA' 'Four' 'Mid' [27.027] [0.75456] [22]
    'USA' 'Four' 'Late' [29.734] [0.71126] [38]
    'Europe' 'Other' 'Mid' [ 17.5] [ 0.9478] [ 4]
    'Europe' 'Other' 'Late' [30.833] [ 3.1761] [ 3]
    'Europe' 'Four' 'Early' [24.714] [0.73076] [21]
    'Europe' 'Four' 'Mid' [26.912] [ 1.0116] [26]
    'Europe' 'Four' 'Late' [ 35.7] [ 1.4265] [16]
    'Japan' 'Other' 'Early' [ 19] [0.57735] [ 3]
    'Japan' 'Other' 'Mid' [20.833] [0.92796] [ 3]
    'Japan' 'Other' 'Late' [ 26.5] [ 2.0972] [ 4]
    'Japan' 'Four' 'Early' [26.083] [ 1.1772] [12]
    'Japan' 'Four' 'Mid' [ 29.5] [0.86547] [25]
    'Japan' 'Four' 'Late' [ 35.3] [0.68346] [32]
```


Percentiles and Graphical Descriptions

Trying to describe a data sample with two numbers, a measure of location and a measure of spread, is frugal but may be misleading. Here are some other approaches:

- "Percentiles" on page 3-10
- "Probability Density Estimation" on page 3-12
- "Empirical Cumulative Distribution Function" on page 3-15

Percentiles

Another option is to compute a reasonable number of the sample percentiles. This provides information about the shape of the data as well as its location and spread.

The example shows the result of looking at every quartile of a sample containing a mixture of two distributions.

```
x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p;y]
z =
\begin{tabular}{rrrrr}
0 & 25.0000 & 50.0000 & 75.0000 & 100.0000 \\
1.5172 & 4.6842 & 5.6706 & 6.1804 & 7.6035
\end{tabular}
```

Compare the first two quantiles to the rest.
The box plot is a graph for descriptive statistics. The following graph is a box plot of the preceding data.

```
boxplot(x)
```


The long lower tail and plus signs show the lack of symmetry in the sample values. For more information on box plots, see "Statistical Plots" on page 8-1. The histogram is a complementary graph.
hist(x)

Probability Density Estimation

You can also describe a data sample by estimating its density in a nonparametric way. The ksdensity function does this by using a kernel smoothing function and an associated bandwidth to estimate the density.
This example uses the carsmall data set to estimate the probability density of the MPG (miles per gallon) measurements for 94 cars. It uses the default kernel function, a normal distribution, and its default bandwidth.

```
cars = load('carsmall','MPG','Origin');
MPG = cars.MPG;
Origin = cars.Origin;
[f,x] = ksdensity(MPG);
plot(x,f);
title('Density estimate for MPG')
```


Kernel Bandwidth

The choice of kernel bandwidth controls the smoothness of the probability density curve. The following graph shows the density estimate for the same mileage data using different bandwidths. The default bandwidth is in blue and looks like the preceding graph. Estimates for smaller and larger bandwidths are in red and green.

The first call to ksdensity returns the default bandwidth, u, of the kernel smoothing function. Subsequent calls modify this bandwidth.

```
[f,x,u] = ksdensity(MPG);
plot(x,f)
title('Density estimate for MPG')
hold on
[f,x] = ksdensity(MPG,'width',u/3);
plot(x,f,'r');
[f,x] = ksdensity(MPG,'width',u*3);
plot(x,f,'g');
legend('default width','1/3 default','3*default')
hold off
```


The default bandwidth seems to be doing a good job - reasonably smooth, but not so smooth as to obscure features of the data. This bandwidth is the one that is theoretically optimal for estimating densities for the normal distribution.

The green curve shows a density with the kernel bandwidth set too high. This curve smooths out the data so much that the end result looks just like the kernel function. The red curve has a smaller bandwidth and is rougher-looking than the blue curve. It may be too rough, but it does provide an indication that there might be two major peaks rather than the single peak of the blue curve.

A reasonable choice of width might lead to a curve that is intermediate between the red and blue curves.

Kernel Smoothing Function

You can also specify a kernel function by supplying either the function name or a function handle. The four preselected functions, 'normal', 'epanechnikov', 'box', and 'triangle', are all scaled to have standard deviation equal to 1 , so they perform a comparable degree of smoothing.

Using default bandwidths, you can now plot the same mileage data, using each of the available kernel functions.

```
hname = {'normal' 'epanechnikov' 'box' 'triangle'};
hold on;
colors = {'r' 'b' 'g' 'm'};
for j=1:4
    [f,x] = ksdensity(MPG,'kernel',hname{j});
    plot(x,f,colors{j});
end
legend(hname{:});
hold off
```


The density estimates are roughly comparable, but the box kernel produces a density that is rougher than the others.

Usefulness of Smooth Density Estimates

In addition to the aesthetic appeal of the smooth density estimate, there are other appeals as well. While it is difficult to overlay two histograms to compare them, you can easily overlay smooth density estimates. For example, the following graph shows the MPG distributions for cars from different countries of origin.

Empirical Cumulative Distribution Function

The ksdensity function described in the last section produces an empirical version of a probability density function (pdf). That is, instead of selecting a density with a particular parametric form and estimating the parameters, it produces a nonparametric density estimate that tries to adapt itself to the data.

Similarly, it is possible to produce an empirical version of the cumulative distribution function (cdf). The ecdf function computes this empirical cdf. It returns the values of a function F such that $F(x)$ represents the proportion of observations in a sample less than or equal to x.

The idea behind the empirical cdf is simple. It is a function that assigns probability $1 / n$ to each of n observations in a sample. Its graph has a stair-step appearance. If a sample comes from a distribution in a parametric family (such as a normal distribution), its empirical cdf is likely to resemble the
parametric distribution. If not, its empirical distribution still gives an estimate of the cdf for the distribution that generated the data.

The following example generates 20 observations from a normal distribution with mean 10 and standard deviation 2 . You can use ecdf to calculate the empirical cdf and stairs to plot it. Then you overlay the normal distribution curve on the empirical function.

```
x = normrnd(10,2,20,1);[f,xf] = ecdf(x);
stairs(xf,f)
xx=linspace(5,15,100);
yy = normcdf(xx,10,2);
hold on; plot(xx,yy,'r:'); hold off
legend('Empirical cdf','Normal cdf',2)
```


The empirical cdf is especially useful in survival analysis applications. In such applications the data may be censored, that is, not observed exactly. Some individuals may fail during a study, and you can observe their failure time exactly. Other individuals may drop out of the study, or may not fail until after the study is complete. The ecdf function has arguments for dealing with censored data.

The Bootstrap

In recent years the statistical literature has examined the properties of resampling as a means to acquire information about the uncertainty of statistical estimators.

The bootstrap is a procedure that involves choosing random samples with replacement from a data set and analyzing each sample the same way. Sampling with replacement means that every sample is returned to the data set after sampling. So a particular data point from the original data set could appear multiple times in a given bootstrap sample. The number of elements in each bootstrap sample equals the number of elements in the original data set. The range of sample estimates you obtain enables you to establish the uncertainty of the quantity you are estimating.

Here is an example taken from Efron and Tibshirani [13] comparing Law School Admission Test (LSAT) scores and subsequent law school grade point average (GPA) for a sample of 15 law schools.

```
load lawdata
plot(lsat,gpa,'+')
lsline
```


The least squares fit line indicates that higher LSAT scores go with higher law school GPAs. But how certain is this conclusion? The plot provides some intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the corrcoef function.

```
rhohat = corrcoef(lsat,gpa)
rhohat =
    1.0000 0.7764
    0.7764 1.0000
```

Now you have a number, 0.7764 , describing the positive connection between LSAT and GPA, but though 0.7764 may seem large, you still do not know if it is statistically significant.

Using the bootstrp function you can resample the lsat and gpa vectors as many times as you like and consider the variation in the resulting correlation coefficients.

Here is an example.

```
rhos1000 = bootstrp(1000,'corrcoef',lsat,gpa);
```

This command resamples the lsat and gpa vectors 1000 times and computes the corrcoef function on each sample. Here is a histogram of the result.

```
hist(rhos1000(:,2),30)
```


Nearly all the estimates lie on the interval [0.4 1.0].
This is strong quantitative evidence that LSAT and subsequent GPA are positively correlated. Moreover, this evidence does not require any strong assumptions about the probability distribution of the correlation coefficient.

Linear Models

Introduction (p. 4-2)
One-Way Analysis of Variance (ANOVA) (p. 4-3)

Two-Way Analysis of Variance (ANOVA) (p. 4-8)

N-Way Analysis of Variance (p. 4-11)

ANOVA with Random Effects (p. 4-18)

Analysis of Covariance (p. 4-25)
Multiple Linear Regression (p. 4-33)
Quadratic Response Surface Models (p. 4-42)

Stepwise Regression (p. 4-45)

Generalized Linear Models (p. 4-50)
Robust and Nonparametric Methods (p. 4-55)

Introduces the concept of a linear model.
Describes how to perform one-way analysis of variance.

Describes how to perform two-way analysis of variance.

Describes how to perform analysis of variance with more than two factors.

Describes how to perform analysis of variance with random effects.

Describes how to perform analysis of covariance.
Describes how to perform multiple linear regression.
Describes how to analyze quadratic response surface models.

Describes an interactive tool for performing stepwise regression.

Describes how to analyze generalized linear models.
Describes robust and nonparametric methods.

Introduction

Linear models represent the relationship between a continuous response variable and one or more predictor variables (either continuous or categorical) in the form

$$
y=X \beta+\varepsilon
$$

where:

- y is an n-by- 1 vector of observations of the response variable.
- X is the n-by- p design matrix determined by the predictors.
- β is a p-by- 1 vector of parameters.
- ε is an n-by- 1 vector of random disturbances, independent of each other and usually having a normal distribution.

MATLAB uses this general form of the linear model to solve a variety of specific regression and analysis of variance (ANOVA) problems. For example, for polynomial and multiple regression problems, the columns of X are predictor variable values or powers of such values. For one-way, two-way, and higher-way ANOVA models, the columns of X are dummy (or indicator) variables that encode the predictor categories. For analysis of covariance (ANOCOVA) models, X contains values of a continuous predictor and codes for a categorical predictor.

Note See Chapter 5, "Nonlinear Regression Models" for information on fitting nonlinear models.

One-Way Analysis of Variance (ANOVA)

The purpose of one-way ANOVA is to find out whether data from several groups have a common mean. That is, to determine whether the groups are actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way ANOVA form of the model is

$$
y_{i j}=\alpha_{. j}+\varepsilon_{i j}
$$

where:

- y_{ij} is a matrix of observations in which each column represents a different group.
- α_{j} is a matrix whose columns are the group means. (The "dot j " notation means that α applies to all rows of the j th column. That is, the value $\alpha_{i j}$ is the same for all i.)
- $\varepsilon_{\mathrm{ij}}$ is a matrix of random disturbances.

The model assumes that the columns of y are a constant plus a random disturbance. You want to know if the constants are all the same.

The following sections explore one-way ANOVA in greater detail:

- "Example: One-Way ANOVA" on page 4-3
- "Multiple Comparisons" on page 4-5

Example: One-Way ANOVA

The data below comes from a study by Hogg and Ledolter [19] of bacteria counts in shipments of milk. The columns of the matrix hogg represent different shipments. The rows are bacteria counts from cartons of milk chosen randomly from each shipment. Do some shipments have higher counts than others?

```
load hogg
hogg
hogg =
    24
```

```
        15
        21
        27
```



```
        23 16 18 18 18 20
[p,tbl,stats] = anova1(hogg);
p
p =
    1.1971e-04
```

The standard ANOVA table has columns for the sums of squares, degrees of freedom, mean squares (SS/df), F statistic, and p-value.

AFigure No. 1: One-way ANOVA				- - ${ }^{\text {a }}$	
File Edit Iools Window Help					
ANOVA Table					
Source	55	df	MS	F	Prob>F \triangle
Columns Error	803 557.17 1360.17	4 25 29	$\begin{gathered} 200.75 \\ 22.287 \end{gathered}$	9.01	0.0001

You can use the F statistic to do a hypothesis test to find out if the bacteria counts are the same. anova1 returns the p-value from this hypothesis test.

In this case the p-value is about 0.0001 , a very small value. This is a strong indication that the bacteria counts from the different tankers are not the same. An F statistic as extreme as the observed F would occur by chance only once in 10,000 times if the counts were truly equal.

The p-value returned by anova1 depends on assumptions about the random disturbances $\varepsilon_{i j}$ in the model equation. For the p-value to be correct, these disturbances need to be independent, normally distributed, and have constant variance. See "Robust and Nonparametric Methods" on page 4-55 for a nonparametric function that does not require a normal assumption.

You can get some graphical assurance that the means are different by looking at the box plots in the second figure window displayed by anova1. Note however
that the notches are used for a comparison of medians, not a comparison of means. For more information on this display, see "Box Plots" in Chapter 8.

Multiple Comparisons

Sometimes you need to determine not just whether there are any differences among the means, but specifically which pairs of means are significantly different. It is tempting to perform a series of t tests, one for each pair of means, but this procedure has a pitfall.

In a t test, you compute a t statistic and compare it to a critical value. The critical value is chosen so that when the means are really the same (any apparent difference is due to random chance), the probability that the t statistic will exceed the critical value is small, say 5%. When the means are different, the probability that the statistic will exceed the critical value is larger.
In this example there are five means, so there are 10 pairs of means to compare. It stands to reason that if all the means are the same, and if there is a 5% chance of incorrectly concluding that there is a difference in one pair, then the probability of making at least one incorrect conclusion among all 10 pairs is much larger than 5%.

Fortunately, there are procedures known as multiple comparison procedures that are designed to compensate for multiple tests.

Example: Multiple Comparisons

You can perform a multiple comparison test using the multcompare function and supplying it with the stats output from anova1.
[c,m] multcompare(stats)

c =				
1.0000	2.0000	2.4953	10.5000	18.5047
1.0000	3.0000	4.1619	12.1667	20.1714
1.0000	4.0000	6.6619	14.6667	22.6714
1.0000	5.0000	-2.0047	6.0000	14.0047
2.0000	3.0000	-6.3381	1.6667	9.6714
2.0000	4.0000	-3.8381	4.1667	12.1714
2.0000	5.0000	-12.5047	-4.5000	3.5047
3.0000	4.0000	-5.5047	2.5000	10.5047
3.0000	5.0000	-14.1714	-6.1667	1.8381
4.0000	5.0000	-16.6714	-8.6667	-0.6619
$m=$				
23.8333	1.9273			
13.3333	1.9273			
11.6667	1.9273			
9.1667	1.9273			
17.8333	1.9273			

The first output from multcompare has one row for each pair of groups, with an estimate of the difference in group means and a confidence interval for that group. For example, the second row has the values

$$
\begin{array}{lllll}
1.0000 & 3.0000 & 4.1619 & 12.1667 & 20.1714
\end{array}
$$

indicating that the mean of group 1 minus the mean of group 3 is estimated to be 12.1667 , and a 95% confidence interval for this difference is [4.1619, 20.1714]. This interval does not contain 0 , so you can conclude that the means of groups 1 and 3 are different.

The second output contains the mean and its standard error for each group.
It is easier to visualize the difference between group means by looking at the graph that multcompare produces.

The graph shows that group 1 is significantly different from groups 2,3 , and 4 . By using the mouse to select group 4, you can determine that it is also significantly different from group 5 . Other pairs are not significantly different.

Two-Way Analysis of Variance (ANOVA)

The purpose of two-way ANOVA is to find out whether data from several groups have a common mean. One-way ANOVA and two-way ANOVA differ in that the groups in two-way ANOVA have two categories of defining characteristics instead of one.

Suppose an automobile company has two factories, and each factory makes the same three models of car. It is reasonable to ask if the gas mileage in the cars varies from factory to factory as well as from model to model. There are two predictors, factory and model, to explain differences in mileage.

There could be an overall difference in mileage due to a difference in the production methods between factories. There is probably a difference in the mileage of the different models (irrespective of the factory) due to differences in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps because of a superior production line), but not be different from the other factory for other models. This effect is called an interaction. It is impossible to detect an interaction unless there are duplicate observations for some combination of factory and car model.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA form of the model is

$$
y_{i j k}=\mu+\alpha_{. j}+\beta_{i .}+\gamma_{i j}+\varepsilon_{i j k}
$$

where, with respect to the automobile example above:

- $y_{i j k}$ is a matrix of gas mileage observations (with row index i, column index j, and repetition index k).
- μ is a constant matrix of the overall mean gas mileage.
- $\alpha_{. j}$ is a matrix whose columns are the deviations of each car's gas mileage (from the mean gas mileage μ) that are attributable to the car's model. All values in a given column of $\alpha_{. j}$ are identical, and the values in each row of $\alpha_{. j}$ sum to 0 .
- β_{i}. is a matrix whose rows are the deviations of each car's gas mileage (from the mean gas mileage μ) that are attributable to the car's factory. All values in a given row of β_{i}, are identical, and the values in each column of β_{i}. sum to 0 .
- $\gamma_{i j}$ is a matrix of interactions. The values in each row of $\gamma_{i j}$ sum to 0 , and the values in each column of $\gamma_{i j}$ sum to 0 .
- $\varepsilon_{i j k}$ is a matrix of random disturbances.

The next section provides an example of a two-way analysis.

Example: Two-Way ANOVA

The purpose of the example is to determine the effect of car model and factory on the mileage rating of cars.

```
load mileage
mileage
mileage =
    33.3000 34.5000 37.4000
    33.4000 34.8000 36.8000
    32.9000 33.8000 37.6000
    32.6000 33.4000 36.6000
    32.5000 33.7000 37.0000
    33.0000 33.9000 36.7000
cars = 3;
[p,tbl,stats] = anova2(mileage,cars);
p
p =
    0.0000 0.0039 0.8411
```

There are three models of cars (columns) and two factories (rows). The reason there are six rows in mileage instead of two is that each factory provides three cars of each model for the study. The data from the first factory is in the first three rows, and the data from the second factory is in the last three rows.

The standard ANOVA table has columns for the sums of squares, degrees-of-freedom, mean squares (SS/df), F statistics, and p-values.

2Figure No. 1: Two-way ANOVA					-
File Edit Iools Window Help					
ANOVA Table					
Source	55	df	MS	F	Prob>F \triangle
Columns	53.3511	2	26.6756	234.22	0
Rows	1.445	1	1.445	12.69	0.0039
Interaction	0.04	2	0.02	0.18	0.8411
Error	1.3667	12	0.1139		
Total	56.2028	17			\square

You can use the F statistics to do hypotheses tests to find out if the mileage is the same across models, factories, and model-factory pairs (after adjusting for the additive effects). anova2 returns the p-value from these tests.

The p-value for the model effect is zero to four decimal places. This is a strong indication that the mileage varies from one model to another. An F statistic as extreme as the observed F would occur by chance less than once in 10,000 times if the gas mileage were truly equal from model to model. If you used the multcompare function to perform a multiple comparison test, you would find that each pair of the three models is significantly different.

The p-value for the factory effect is 0.0039 , which is also highly significant. This indicates that one factory is out-performing the other in the gas mileage of the cars it produces. The observed p-value indicates that an F statistic as extreme as the observed F would occur by chance about four out of 1000 times if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models. The p-value, 0.8411 , means that the observed result is quite likely (84 out 100 times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random disturbances $\varepsilon_{\mathrm{ijk}}$ in the model equation. For the p-values to be correct these disturbances need to be independent, normally distributed, and have constant variance. See "Robust and Nonparametric Methods" on page 4-55 for nonparametric methods that do not require a normal distribution.

In addition, anova2 requires that data be balanced, which in this case means there must be the same number of cars for each combination of model and factory. The next section discusses a function that supports unbalanced data with any number of predictors.

N-Way Analysis of Variance

You can use N-way ANOVA to determine if the means in a set of data differ when grouped by multiple factors. If they do differ, you can determine which factors or combinations of factors are associated with the difference.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, the model can be written

$$
y_{i j k l}=\mu+\alpha_{. j .}+\beta_{i . .}+\gamma_{. . k}+(\alpha \beta)_{i j .}+(\alpha \gamma)_{i . k}+(\beta \gamma)_{. j k}+(\alpha \beta \gamma)_{i j k}+\varepsilon_{i j k l}
$$

In this notation parameters with two subscripts, such as $(\alpha \beta)_{i j}$, represent the interaction effect of two factors. The parameter $(\alpha \beta \gamma)_{i j k}$ represents the three-way interaction. An ANOVA model can have the full set of parameters or any subset, but conventionally it does not include complex interaction terms unless it also includes all simpler terms for those factors. For example, one would generally not include the three-way interaction without also including all two-way interactions.

The anovan function performs N-way ANOVA. Unlike the anova1 and anova2 functions, anovan does not expect data in a tabular form. Instead, it expects a vector of response measurements and a separate vector (or text array) containing the values corresponding to each factor. This input data format is more convenient than matrices when there are more than two factors or when the number of measurements per factor combination is not constant.

The following examples explore anovan in greater detail:

- "Example: N-Way ANOVA with Small Data Set" on page 4-11
- "Example: N-Way ANOVA with Large Data Set" on page 4-13

Example: N-Way ANOVA with Small Data Set
Consider the following two-way example using anova2.

```
m = [23 15 20;27 17 63;43 3 55;41 9 90]
m =
    23 15 20
    27 17 63
    43 3 55
    41 9 90
```

```
anova2(m,2)
ans =
    0.0197 0.2234 0.2663
```

The factor information is implied by the shape of the matrix m and the number of measurements at each factor combination (2). Although anova2 does not actually require arrays of factor values, for illustrative purposes you could create them as follows.

```
cfactor = repmat(1:3,4,1)
cfactor =
\(\left.\begin{array}{rll}1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3\end{array}\right]\)\begin{tabular}{l} 
rfactor \(=\) [ones \((2,3) ; 2 * \operatorname{ones}(2,3)\) ] \\
rfactor \(=\)
\end{tabular}
\begin{tabular}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{tabular}
```

The cfactor matrix shows that each column of m represents a different level of the column factor. The rfactor matrix shows that the top two rows of m represent one level of the row factor, and bottom two rows of m represent a second level of the row factor. In other words, each value $m(i, j)$ represents an observation at column factor level cfactor (i, j) and row factor level rfactor(i,j).

To solve the above problem with anovan, you need to reshape the matrices m, cfactor, and rfactor to be vectors.

```
m = m(:);
cfactor = cfactor(:);
rfactor = rfactor(:);
[m cfactor rfactor]
```

```
ans =
    23 1 1
    27 1 1
    43 1 2
    41 1 2
    15 2 1
    17 2 1
    3 2 2
    9 2
    20 3 1
    63 3 1
    55 3 2
    90 3 2
anovan(m,{cfactor rfactor},2)
ans =
    0.0197
    0.2234
    0.2663
```


Example: N-Way ANOVA with Large Data Set

The previous example used anova2 to study a small data set measuring car mileage. This example illustrates how to analyze a larger set of car data with mileage and other information on 406 cars made between 1970 and 1982. First, load the data set and look at the variable names.
load carbig
whos

Name	Size	Bytes	Class
Acceleration	406×1	3248	double array
Cylinders	406×1	3248	double array
Displacement	406×1	3248	double array
Horsepower	406×1	3248	double array
MPG	406×1	3248	double array
Model	406×36	29232	char array
Model_Year	406×1	3248	double array
Origin	406×7	5684	char array

Weight	406×1	3248	double array
cyl4	406×5	4060	char array
org	406×7	5684	char array
when	406×5	4060	char array

The example focusses on four variables. MPG is the number of miles per gallon for each of 406 cars (though some have missing values coded as NaN). The other three variables are factors: cyl4 (four-cylinder car or not), org (car originated in Europe, Japan, or the USA), and when (car was built early in the period, in the middle of the period, or late in the period).

First, fit the full model, requesting up to three-way interactions and Type 3 sums-of-squares.

```
varnames = {'Origin';'4Cyl';'MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames)
ans =
    0.0000
            NaN
            0
    0.7032
    0.0001
    0.2072
    0.6990
```

- Figure No. 1: N-Way ANOVA ——日
File Edit View Insert Iools Window Help

Note that many terms are marked by a "\#" symbol as not having full rank, and one of them has zero degrees of freedom and is missing a p-value. This can happen when there are missing factor combinations and the model has higher-order terms. In this case, the cross-tabulation below shows that there
are no cars made in Europe during the early part of the period with other than four cylinders, as indicated by the 0 in table $(2,1,1)$.

```
[table, chi2, p, factorvals] = crosstab(org,when,cyl4)
table(:,:,1) =
    82 75 25
    0 4 3
    3 3 4
table(:,:,2) =
    12 22 38
    23 26 17
    12 25 32
chi2 =
    207.7689
p =
    0
factorvals =
\begin{tabular}{llr} 
'USA' & 'Early' & 'Other' \\
'Europe' & 'Mid' & 'Four' \\
'Japan' & 'Late' & {[]}
\end{tabular}
```

Consequently it is impossible to estimate the three-way interaction effects, and including the three-way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, you can see that the three-way interaction has a p-value of 0.699 , so it is not significant. So this time you examine only two-way interactions.

```
[p,tbl,stats,termvec] = anovan(MPG,{org cyl4 when},2,3,varnames);
termvec
termvec =
    1 0}
    0 1 0
    0 0
```


Now all terms are estimable. The p-values for interaction term 4 (Origin*4Cyl) and interaction term 6 (4Cyl*MfgDate) are much larger than a typical cutoff value of 0.05 , indicating these terms are not significant. You could choose to omit these terms and pool their effects into the error term. The output termvec variable returns a vector of codes, each of which is a bit pattern representing a term. You can omit terms from the model by deleting their entries from termvec and running anovan again, this time supplying the resulting vector as the model argument.

```
termvec([4 6],:) = []
termvec =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{tabular}
anovan(MPG,{org cyl4 when},termvec,3,varnames)
ans =
    1.0e-003 *
```

0.0000
0
0
0.1140

7 Figure No. 2: N-Way ANOVA						-
File Edit View Insert Iools Window Help Analysis of Variance						
Source	Sum Sq.	d.f	Mean Sq.	F	Prob>F	\triangle
Origin	686.7	2	343.36	24.34	0	
4 Cyl	4206.2	1	4206.17	298.19	0	
Mf gDate	3590.7	2	1795.34	127.28	0	
Origin*MfgDate	336.8	4	84.19	5.97	0.0001	
Error	5473	388	14.11			
Total	24252.6	397				
Constrained (Type III) sums of squares.						

Now you have a more parsimonious model indicating that the mileage of these cars seems to be related to all three factors, and that the effect of the manufacturing date depends on where the car was made.

ANOVA with Random Effects

In an ordinary ANOVA model, each grouping variable represents a fixed factor. The levels of that factor are a fixed set of values. Your goal is to determine whether different factor levels lead to different response values. This section presents an example that shows how to use anovan to fit models where a factor's levels represent a random selection from a larger (infinite) set of possible levels.

This section covers the following topics:

- "Setting Up the Model" on page 4-18
- "Fitting a Random Effects Model" on page 4-19
- "F Statistics for Models with Random Effects" on page 4-20
- "Variance Components" on page 4-22

Setting Up the Model

To set up the example, first load the data, which is stored in a 6-by-3 matrix, mileage.
load mileage
The anova2 function works only with balanced data, and it infers the values of the grouping variables from the row and column numbers of the input matrix. The anovan function, on the other hand, requires you to explicitly create vectors of grouping variable values. To create these vectors, do the following steps:

1 Create an array indicating the factory for each value in mileage. This array is 1 for the first column, 2 for the second, and 3 for the third.

```
factory = repmat(1:3,6,1);
```

2 Create an array indicating the car model for each mileage value. This array is 1 for the first three rows of mileage, and 2 for the remaining three rows.

```
carmod = [ones(3,3); 2*ones(3,3)];
```

3 Turn these matrices into vectors and display them.

```
mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);
[mileage factory carmod]
ans =
\begin{tabular}{lll}
33.3000 & 1.0000 & 1.0000 \\
33.4000 & 1.0000 & 1.0000 \\
32.9000 & 1.0000 & 1.0000 \\
32.6000 & 1.0000 & 2.0000 \\
32.5000 & 1.0000 & 2.0000 \\
33.0000 & 1.0000 & 2.0000 \\
34.5000 & 2.0000 & 1.0000 \\
34.8000 & 2.0000 & 1.0000 \\
33.8000 & 2.0000 & 1.0000 \\
33.4000 & 2.0000 & 2.0000 \\
33.7000 & 2.0000 & 2.0000 \\
33.9000 & 2.0000 & 2.0000 \\
37.4000 & 3.0000 & 1.0000 \\
36.8000 & 3.0000 & 1.0000 \\
37.6000 & 3.0000 & 1.0000 \\
36.6000 & 3.0000 & 2.0000 \\
37.0000 & 3.0000 & 2.0000 \\
36.7000 & 3.0000 & 2.0000
\end{tabular}
```


Fitting a Random Effects Model

Continuing the example from the preceding section, suppose you are studying a few factories but you want information about what would happen if you build these same car models in a different factory - either one that you already have or another that you might construct. To get this information, fit the analysis of variance model, specifying a model that includes an interaction term and that the factory factor is random.

```
[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...
'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});
```

Analysis of Variance						
Source	Sum Sq.	d.f	Mean Sq	F	Prob>F	Δ
Factory	53.3511	2	26.6756	1333.78	0.0007	
Car Model	1.445	1	1.445	72.25	0.0136	
Factory*Car Model	0.04	2	0.02	0.18	0.8411	
Error	1.3667	12	0.1139			
Total	56.2028	17				
Constrained (Type III) sums of squares.						

In the fixed effects version of this fit, which you get by omitting the inputs 'random' , 1 in the preceding code, the effect of car model is significant, with a p-value of 0.0039 . But in this example, which takes into account the random variation of the effect of the variable 'Car Model' from one factory to another, the effect is still significant, but with a higher p-value of 0.0136 .

F Statistics for Models with Random Effects

The F statistic in a model having random effects is defined differently than in a model having all fixed effects. In the fixed effects model, you compute the F statistic for any term by taking the ratio of the mean square for that term with the mean square for error. In a random effects model, however, some F statistics use a different mean square in the denominator.
In the example described in "Setting Up the Model" on page 4-18, the effect of the variable 'Factory ' could vary across car models. In this case, the interaction mean square takes the place of the error mean square in the F statistic. The F statistic for factory is

```
F = 1.445 / 0.02
F =
```

72.2500

The degrees of freedom for the statistic are the degrees of freedom for the numerator (1) and denominator (2) mean squares. Therefore the p-value for the statistic is

```
pval = 1 - fcdf(F,1,2)
pval =
    0.0136
```

With random effects, the expected value of each mean square depends not only on the variance of the error term, but also on the variances contributed by the random effects. You can see these dependencies by writing the expected values as linear combinations of contributions from the various model terms. To find the coefficients of these linear combinations, enter stats.ems, which returns the ems field of the stats structure.

```
stats.ems
ans =
\begin{tabular}{rrrr}
6.0000 & 0.0000 & 3.0000 & 1.0000 \\
0.0000 & 9.0000 & 3.0000 & 1.0000 \\
0.0000 & 0.0000 & 3.0000 & 1.0000 \\
0 & 0 & 0 & 1.0000
\end{tabular}
```

To see text representations of the linear combinations, enter

```
stats.txtems
ans =
    '6*V(Factory)+3*V(Factory*Car Model)+V(Error)'
    '9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'
    '3*V(Factory*Car Model)+V(Error)'
    'V(Error)'
```

The expected value for the mean square due to car model (second term) includes contributions from a quadratic function of the car model effects, plus three times the variance of the interaction term's effect, plus the variance of the error term. Notice that if the car model effects were all zero, the expression would reduce to the expected mean square for the third term (the interaction term). That is why the F statistic for the car model effect uses the interaction mean square in the denominator.

In some cases there is no single term whose expected value matches the one required for the denominator of the F statistic. In that case, the denominator is a linear combination of mean squares. The stats structure contains fields giving the definitions of the denominators for each F statistic. The txtdenom field, stats.txtdenom, gives a text representation, and the denom field gives a matrix that defines a linear combination of the variances of terms in the model. For balanced models like this one, the denom matrix, stats.denom, contains zeros and ones, because the denominator is just a single term's mean square.

```
stats.txtdenom
ans =
    'MS(Factory*Car Model)'
    'MS(Factory*Car Model)'
    'MS(Error)'
stats.denom
ans =
\begin{tabular}{rrr}
-0.0000 & 1.0000 & 0.0000 \\
0.0000 & 1.0000 & -0.0000 \\
0.0000 & 0 & 1.0000
\end{tabular}
```


Variance Components

For the model described in "Setting Up the Model" on page 4-18, consider the mileage for a particular car of a particular model made at a random factory. The variance of that car is the sum of components, or contributions, one from each of the random terms.

```
stats.rtnames
ans =
    'Factory'
    'Factory*Car Model'
    'Error'
```

You do not know those variances, but you can estimate them from the data. Recall that the ems field of the stats structure expresses the expected value of each term's mean square as a linear combination of unknown variances for random terms, and unknown quadratic forms for fixed terms. If you take the
expected mean square expressions for the random terms, and equate those expected values to the computed mean squares, you get a system of equations that you can solve for the unknown variances. These solutions are the variance component estimates. The varest field contains a variance component estimate for each term. The rtnames field contains the names of the random terms.

```
stats.varest
ans =
    4.4426
    -0.0313
    0.1139
```

Under some conditions, the variability attributed to a term is unusually low, and that term's variance component estimate is negative. In those cases it is common to set the estimate to zero, which you might do, for example, to create a bar graph of the components.

```
bar(max(0,stats.varest))
set(gca,'xtick',1:3,'xticklabel',stats.rtnames)
bar(max(0,stats.varest))
```


You can also compute confidence bounds for the variance estimate. The anovan function does this by computing confidence bounds for the variance expected mean squares, and finding lower and upper limits on each variance component containing all of these bounds. This procedure leads to a set of bounds that is conservative for balanced data. (That is, 95% confidence bounds will have a probability of at least 95% of containing the true variances if the number of observations for each combination of grouping variables is the same.) For unbalanced data, these are approximations that are not guaranteed to be conservative.

```
[{'Term' 'Estimate' 'Lower' 'Upper'};
    stats.rtnames, num2cell([stats.varest stats.varci])]
ans =
\begin{tabular}{|c|c|c|c|}
\hline 'Term' & 'Estimate \({ }^{\text {' }}\) & 'Lower' & 'Upper' \\
\hline 'Factory' & [ 4.4426] & [1.0736] & [175.6038] \\
\hline 'Factory*Car Model' & [ -0.0313] & [ NaN] & \(\mathrm{NaN}]\) \\
\hline 'Error' & [ 0.1139] & [0.0586] & [ 0.3103] \\
\hline
\end{tabular}
```


Analysis of Covariance

Analysis of covariance is a technique for analyzing grouped data having a response (y, the variable to be predicted) and a predictor (x, the variable used to do the prediction). Using analysis of covariance, you can model y as a linear function of x, with the coefficients of the line possibly varying from group to group.

The aoctool Demo

The aoctool demo is an interactive graphical environment for fitting and prediction with analysis of covariance (anocova) models. It is similar to the polytool demo. The aoctool function fits the following models for the i th group:

Same mean	$y=\alpha+\varepsilon$
Separate means	$y=\left(\alpha+\alpha_{i}\right)+\varepsilon$
Same line	$y=\alpha+\beta x+\varepsilon$
Parallel lines	$y=\left(\alpha+\alpha_{i}\right)+\beta x+\varepsilon$
Separate lines	$y=\left(\alpha+\alpha_{i}\right)+\left(\beta+\beta_{i}\right) x+\varepsilon$

In the parallel lines model, for example, the intercept varies from one group to the next, but the slope is the same for each group. In the same mean model, there is a common intercept and no slope. In order to make the group coefficients well determined, the demo imposes the constraints

$$
\sum \alpha_{j}=\sum \beta_{j}=0
$$

The following sections provide an illustrative example.

- "Exploring the aoctool Interface" on page 4-26
- "Confidence Bounds" on page 4-29
- "Multiple Comparisons" on page 4-31

Exploring the aoctool Interface

1 Load the data. The Statistics Toolbox has a small data set with information about cars from the years 1970, 1976, and 1982. This example studies the relationship between the weight of a car and its mileage, and whether this relationship has changed over the years. To start the demonstration, load the data set.

```
load carsmall
```

The Workspace browser shows the variables in the data set.

You can also use aoctool with your own data.
2 Start the tool. The following command calls aoctool to fit a separate line to the column vectors Weight and MPG for each of the three model group defined in Model_Year. The initial fit models the y variable, MPG, as a linear function of the x variable, Weight.
[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year); Note: 6 observations with missing values have been removed.

See the aoctool function reference page for detailed information about calling aoctool.

3 Examine the output. The graphical output consists of a main window with a plot, a table of coefficient estimates, and an analysis of variance table. In the plot, each Model_Year group has a separate line. The data points for each group are coded with the same color and symbol, and the fit for each group has the same color as the data points.

The coefficients of the three lines appear in the figure titled ANOCOVA Coefficients. You can see that the slopes are roughly -0.0078 , with a small deviation for each group:

Model year 1970:

$$
y=(45.9798-8.5805)+(-0.0078+0.002) x+\varepsilon
$$

Model year 1976: $\quad y=(45.9798-3.8902)+(-0.0078+0.0011) x+\varepsilon$
Model year 1982: $\quad y=(45.9798+12.4707)+(-0.0078-0.0031) x+\varepsilon$

-) Figure No. 3: ANOCOYA Coefficients				- - 미 x		
File Edit Yiew Insert Iools Window Help						
Coefficient Estimates						
Term	Estimate	Std. Err.	T	Prob>\|T		\triangle
Intercept	45.9798	1.52085	30.23	0		
70	-8.5805	1. 96186	-4.37			
76	-3.8902	1.86864	-2.08	0.0403		
82	12.4707	2.5568	4.88	0		
Slope	-0.0078	0.00056	-14	0		
70	0.002	0.00066	2.96	0.0039		
76	0.0011	0.00065	1.74	0.0849		
82	-0.0031	0.001	-3.1	0.0026	\checkmark	

Because the three fitted lines have slopes that are roughly similar, you may wonder if they really are the same. The Model_Year*Weight interaction expresses the difference in slopes, and the ANOVA table shows a test for the significance of this term. With an F statistic of 5.23 and a p-value of 0.0072 , the slopes are significantly different.

-) Figure No. 2: ANOCOVA Test Results				- \square 미		
File Edit Yiew Insert Iools Window Help						
ANOVA Table						
Source	d.f	Sum Sq	Mean Sq	F	Prob>F	-
Model_Year	2	807.69	403.84	51.98	0	
Weight	1	2050.2	2050.2	263.87	0	
Model_Year*Weight	2	81.22	40.61	5.23	0.0072	
Error	88	683.74	7.77			-1

4 Constrain the slopes to be the same. To examine the fits when the slopes are constrained to be the same, return to the ANOCOVA Prediction Plot window and use the Model pop-up menu to select a Parallel Lines model. The window updates to show the following graph.

Though this fit looks reasonable, it is significantly worse than the Separate Lines model. Use the Model pop-up menu again to return to the original model.

Confidence Bounds

The example in "Exploring the aoctool Interface" on page $4-26$ provides estimates of the relationship between MPG and Weight for each Model_Year, but how accurate are these estimates? To find out, you can superimpose confidence bounds on the fits by examining them one group at a time.

1 In the Model_Year menu at the lower right of the figure, change the setting from All Groups to 82. The data and fits for the other groups are dimmed, and confidence bounds appear around the 82 fit.

The dashed lines form an envelope around the fitted line for model year 82 . Under the assumption that the true relationship is linear, these bounds provide a 95% confidence region for the true line. Note that the fits for the other model years are well outside these confidence bounds for Weight values between 2000 and 3000 .

2 Sometimes it is more valuable to be able to predict the response value for a new observation, not just estimate the average response value. Use the aoctool function Bounds menu to change the definition of the confidence bounds from Line to Observation. The resulting wider intervals reflect the uncertainty in the parameter estimates as well as the randomness of a new observation.

Like the polytool function, the aoctool function has crosshairs that you can use to manipulate the Weight and watch the estimate and confidence bounds along the y-axis update. These values appear only when a single group is selected, not when All Groups is selected.

Multiple Comparisons

You can perform a multiple comparison test by using the stats output structure from aoctool as input to the multcompare function. The multcompare function can test either slopes, intercepts, or population marginal means (the predicted MPG of the mean weight for each group). The example "Exploring the aoctool Interface" on page 4-26, shows that the slopes are not all the same, but could it be that two are the same and only the other one is different? You can test that hypothesis.

```
multcompare(stats,0.05,'on','','s')
ans =
\begin{tabular}{rrrrr}
1.0000 & 2.0000 & -0.0012 & 0.0008 & 0.0029 \\
1.0000 & 3.0000 & 0.0013 & 0.0051 & 0.0088 \\
2.0000 & 3.0000 & 0.0005 & 0.0042 & 0.0079
\end{tabular}
```

This matrix shows that the estimated difference between the intercepts of groups 1 and 2 (1970 and 1976) is 0.0008 , and a confidence interval for the difference is $[-0.0012,0.0029]$. There is no significant difference between the two. There are significant differences, however, between the intercept for 1982 and each of the other two. The graph shows the same information.

Note that the stats structure was created in the initial call to the aoctool function, so it is based on the initial model fit (typically a separate-lines model). If you change the model interactively and want to base your multiple comparisons on the new model, you need to run aoctool again to get another stats structure, this time specifying your new model as the initial model.

Multiple Linear Regression

The purpose of multiple linear regression is to establish a quantitative relationship between a group of predictor variables (the columns of X) and a response, y. This relationship is useful for:

- Understanding which predictors have the greatest effect.
- Knowing the direction of the effect (i.e., increasing x increases/decreases y).
- Using the model to predict future values of the response when only the predictors are currently known.

The following sections explain multiple linear regression in greater detail:

- "Mathematical Foundations of Multiple Linear Regression" on page 4-33
- "Example: Multiple Linear Regression" on page 4-35
- "Polynomial Curve Fitting Demo" on page 4-36

Mathematical Foundations of Multiple Linear Regression

The linear model takes its common form

$$
y=X \beta+\varepsilon
$$

where:

- y is an n-by- 1 vector of observations.
- X is an n-by- p matrix of regressors.
- β is a p-by- 1 vector of parameters.
- ε is an n-by- 1 vector of random disturbances.

The solution to the problem is a vector, b, which estimates the unknown vector of parameters, β. The least squares solution is

$$
b=\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

This equation is useful for developing later statistical formulas, but has poor numeric properties. regress uses QR decomposition of X followed by the backslash operator to compute b. The QR decomposition is not necessary for computing b, but the matrix R is useful for computing confidence intervals.

You can plug b back into the model formula to get the predicted y values at the data points.

$$
\begin{aligned}
& \tilde{y}=X b=H y \\
& H=X\left(X^{T} X\right)^{-1} X^{T}
\end{aligned}
$$

Note Statisticians use a hat (circumflex) over a letter to denote an estimate of a parameter or a prediction from a model. The projection matrix H is called the hat matrix, because it puts the "hat" on y.

The residuals are the difference between the observed and predicted y values.

$$
r=y-\ddot{y}=(I-H) y
$$

The residuals are useful for detecting failures in the model assumptions, since they correspond to the errors, ε, in the model equation. By assumption, these errors each have independent normal distributions with mean zero and a constant variance.

The residuals, however, are correlated and have variances that depend on the locations of the data points. It is a common practice to scale ("Studentize") the residuals so they all have the same variance.

In the equation below, the scaled residual, t_{i}, has a Student's t distribution with ($n-p-1$) degrees of freedom

$$
t_{i}=\frac{r_{i}}{\hat{\sigma}_{(i)} \sqrt{1-h_{i}}}
$$

where

$$
\hat{\sigma}^{2}{ }_{(i)}=\frac{\|r\|^{2}}{n-p-1}-\frac{r_{i}^{2}}{(n-p-1)\left(1-h_{i}\right)}
$$

and:

- t_{i} is the scaled residual for the i th data point.
- r_{i} is the raw residual for the i th data point.
- n is the sample size.
- p is the number of parameters in the model.
- h_{i} is the i th diagonal element of H.

The left-hand side of the second equation is the estimate of the variance of the errors excluding the i th data point from the calculation.
A hypothesis test for outliers involves comparing t_{i} with the critical values of the t distribution. If t_{i} is large, this casts doubt on the assumption that this residual has the same variance as the others.

A confidence interval for the mean of each error is

$$
c_{i}=r_{i} \pm t_{\left(1-\frac{\alpha}{2}, v\right)} \hat{\sigma}_{(i)} \sqrt{1-h_{i}}
$$

Confidence intervals that do not include zero are equivalent to rejecting the hypothesis (at a significance probability of α) that the residual mean is zero. Such confidence intervals are good evidence that the observation is an outlier for the given model.

Example: Multiple Linear Regression

The example comes from Chatterjee and Hadi [41] in a paper on regression diagnostics. The data set (originally from Moore [42]) has five predictor variables and one response.

```
load moore
X = [ones(size(moore,1),1) moore(:,1:5)];
```

Matrix X has a column of ones, and then one column of values for each of the five predictor variables. The column of ones is necessary for estimating the y-intercept of the linear model.

```
y = moore(:,6);
[b,bint,r,rint,stats] = regress(y,X);
```

The y-intercept is $\mathrm{b}(1)$, which corresponds to the column index of the column of ones.

```
stats
stats =
    0.8107 11.9886 0.0001
```

The elements of the vector stats are the regression R^{2} statistic, the F statistic (for the hypothesis test that all the regression coefficients are zero), and the p-value associated with this F statistic.
R^{2} is 0.8107 indicating the model accounts for over 80% of the variability in the observations. The F statistic of about 12 and its p-value of 0.0001 indicate that it is highly unlikely that all of the regression coefficients are zero.

```
rcoplot(r,rint)
```


The plot shows the residuals plotted in case order (by row). The 95% confidence intervals about these residuals are plotted as error bars. The first observation is an outlier since its error bar does not cross the zero reference line.

In problems with just a single predictor, it is simpler to use the polytool function (see "Polynomial Curve Fitting Demo" on page 4-36). This function can form an X matrix with predictor values, their squares, their cubes, and so on.

Polynomial Curve Fitting Demo

The polytool demo is an interactive graphic environment for polynomial curve fitting and prediction. You can use polytool to do curve fitting and prediction for any set of $x-y$ data, but, for the sake of demonstration, the Statistics Toolbox provides a data set (polydata.mat) to illustrate some basic concepts.

With the polytool demo you can

- Plot the data, the fitted polynomial, and global confidence bounds on a new predicted value.
- Change the degree of the polynomial fit.
- Evaluate the polynomial at a specific x-value, or drag the vertical reference line to evaluate the polynomial at varying x-values.
- Display the predicted y-value and its uncertainty at the current x-value.
- Control the confidence bounds and choose between least squares or robust fitting.
- Export fit results to the workspace.

Note From the command line, you can call polytool and specify the data set, the order of the polynomial, and the confidence intervals, as well as labels to replace \mathbf{X} Values and \mathbf{Y} Values. See the polytool function reference page for details.

The following sections explore the use of polytool:

- "Fitting a Polynomial" on page 4-37
- "Confidence Bounds" on page 4-40

Fitting a Polynomial

1 Load the data. Before you start the demonstration, you must first load a data set. This example uses polydata.mat. For this data set, the variables x and y are observations made with error from a cubic polynomial. The variables $x 1$ and $y 1$ are data points from the "true" function without error. load polydata

Your variables appear in the Workspace browser.

2 Try a linear fit. Run polytool and provide it with the data to which the polynomial is fit. Because this code does not specify the degree of the polynomial, polytool does a linear fit to the data.
polytool(x,y)

The linear fit is not very good. The bulk of the data with x-values between 0 and 2 has a steeper slope than the fitted line. The two points to the right are dragging down the estimate of the slope.

3 Try a cubic fit. In the Degree text box at the top, type 3 for a cubic model. Then, drag the vertical reference line to the x-value of 2 (or type 2 in the \mathbf{X} Values text box).

This graph shows a much better fit to the data. The confidence bounds are closer together indicating that there is less uncertainty in prediction. The data at both ends of the plot track the fitted curve.

4 Finally, overfit the data. If the cubic polynomial is a good fit, it is tempting to try a higher order polynomial to see if even more precise predictions are possible. Since the true function is cubic, this amounts to overfitting the data. Use the data entry box for degree and type 5 for a quintic model.

As measured by the confidence bounds, the fit is precise near the data points. But, in the region between the data groups, the uncertainty of prediction rises dramatically.

This bulge in the confidence bounds happens because the data really does not contain enough information to estimate the higher order polynomial terms precisely, so even interpolation using polynomials can be risky in some cases.

Confidence Bounds

By default, the confidence bounds are nonsimultaneous bounds for a new observation. What does this mean? Let $p(x)$ be the true but unknown function you want to estimate. The graph contains the following three curves:

- $f(x)$, the fitted function
- $l(x)$, the lower confidence bounds
- $u(x)$, the upper confidence bounds

Suppose you plan to take a new observation at the value x_{n+1}. Call it $y_{n+1}\left(x_{n+1}\right)$. This new observation has its own error ε_{n+1}, so it satisfies the equation

$$
y_{n+1}\left(x_{n+1}\right)=p\left(x_{n+1}\right)+\varepsilon_{n+1}
$$

What are the likely values for this new observation? The confidence bounds provide the answer. The interval $\left[l_{n+1}, u_{n+1}\right]$ is a 95% confidence bound for $y_{n+1}\left(x_{n+1}\right)$.
These are the default bounds, but the Bounds menu on the polytool figure window provides options for changing the meaning of these bounds. This menu has options that enable you to specify whether the bounds should be simultaneous or not, and whether the bounds are to apply to the estimated function, i.e., curve, or to a new observation. Using these options you can produce any of the following types of confidence bounds.

Simultaneous?	For Quantity	Yields Confidence Bounds for
Nonsimultaneous	Observation	$y_{n+1}\left(x_{n+1}\right)$ (default)
Nonsimultaneous	Curve	$p\left(x_{n+1}\right)$
Simultaneous	Observation	$y_{n+1}(x)$, globally for any x
Simultaneous	Curve	$p(x)$, simultaneously for all x

Quadratic Response Surface Models

Response Surface Methodology (RSM) is a tool for understanding the quantitative relationship between multiple input variables and one output variable.

Consider one output, z, as a polynomial function of two inputs, x and y. The function $z=f(x, y)$ describes a two-dimensional surface in the space (x, y, z). In general, you can have as many input variables as you want and the resulting surface becomes a hypersurface. Also, you can have multiple output variables with a separate hypersurface for each one.
For three inputs (x_{1}, x_{2}, x_{3}), the equation of a quadratic response surface is

$$
\begin{aligned}
y=b_{0} & +b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots & & \text { (linear terms) } \\
& +b_{12} x_{1} x_{2}+b_{13} x_{1} x_{3}+b_{23} x_{2} x_{3}+\ldots & & \text { (interaction terms) } \\
& +b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2} & & \text { (quadratic terms) }
\end{aligned}
$$

It is difficult to visualize a k-dimensional surface in $k+1$ dimensional space for $k>2$. The function rstool is a graphical user interface (GUI) designed to make this visualization more intuitive, as is discussed in the next section.

Exploring Graphs of Multidimensional Polynomials

The function rstool performs an interactive fit and plot of a multidimensional response surface (RSM). Note that, in general, this GUI provides an environment for exploration of the graph of a multidimensional polynomial.
You can learn about rstool by trying the commands below. The chemistry behind the data in reaction.mat deals with reaction kinetics as a function of the partial pressure of three chemical reactants: hydrogen, n-pentane, and isopentane.

```
load reaction
rstool(reactants,rate,'quadratic',0.01,xn,yn)
```

rstool displays a "vector" of three plots. The dependent variable of all three plots is the reaction rate. The first plot has hydrogen as the independent
variable. The second and third plots have n-pentane and isopentane respectively.

Each plot shows the fitted relationship of the reaction rate to the independent variable at a fixed value of the other two independent variables. The fixed value of each independent variable is in an editable text box below each axis, and is marked by a vertical dashed blue line. You can change the fixed value of any independent variable by either typing a new value in the box or by dragging any of the three vertical lines to a new position.

When you change the value of an independent variable, all the plots update to show the current picture at the new point in the space of the independent variables.

Note that while this example only uses three inputs (reactants) and one output (rate), rstool can accommodate an arbitrary number of inputs and outputs. Interpretability may be limited by the size of your monitor for large numbers of inputs or outputs.

Exporting Variables to the Workspace

Click Export to save variables in the GUI to the base workspace.

Fitted parameters, i.e., coefficients, appear in the following order. Some polynomial models use a subset of these terms but keep them in this order.
1 Constant term
2 Linear terms
3 Interaction terms formed by taking pairwise products of the columns of the input matrix
4 Squared terms

Changing the Order of the Polynomial

Below the Export button, there is a pop-up menu that enables you to change the polynomial model. If you use the commands above, this menu has the string Full Quadratic already selected. The choices are:

- Linear - includes constant and linear terms.
- Pure Quadratic - includes constant, linear and squared terms.
- Interactions - includes constant, linear, and cross product terms.
- Full Quadratic - includes interactions and squared terms.
- User Specified - available only if you provide a matrix of model terms as the third argument to rstool. See the rstool and x2fx function reference pages for details.)

The rstool GUI is used by the rsmdemo function to visualize the results of a designed experiment for studying a chemical reaction. See "Design of Experiments Demo" on page 10-10.

Stepwise Regression

Stepwise regression is a technique for choosing the variables, i.e., terms, to include in a multiple regression model. Forward stepwise regression starts with no model terms. At each step it adds the most statistically significant term (the one with the highest F statistic or lowest p-value) until there are none left. Backward stepwise regression starts with all the terms in the model and removes the least significant terms until all the remaining terms are statistically significant. It is also possible to start with a subset of all the terms and then add significant terms or remove insignificant terms.

An important assumption behind the method is that some input variables in a multiple regression do not have an important explanatory effect on the response. If this assumption is true, then it is a convenient simplification to keep only the statistically significant terms in the model.

One common problem in multiple regression analysis is multicollinearity of the input variables. The input variables may be as correlated with each other as they are with the response. If this is the case, the presence of one input variable in the model may mask the effect of another input. Stepwise regression might include different variables depending on the choice of starting model and inclusion strategy.

The Statistics includes two functions for performing stepwise regression:

- stepwise - an interactive graphical tool that enables you to explore stepwise regression. See "Stepwise Regression Demo" on page 4-45 for an example of how to use this tool.
- stepwisefit - a command-line tool for performing stepwise regression. You can use stepwisefit to return the results of a stepwise regression to the MATLAB workspace.

Stepwise Regression Demo

The stepwise function provides an interactive graphical interface that you can use to compare competing models.

This example uses the Hald ([17], p. 167) data set. The Hald data come from a study of the heat of reaction of various cement mixtures. There are four components in each mixture, and the amount of heat produced depends on the amount of each ingredient in the mixture.

Here are the commands to get started.

```
load hald
stepwise(ingredients,heat)
```


For each term on the y-axis, the plot shows the regression (least squares) coefficient as a dot with horizontal bars indicating confidence intervals. Blue dots represent terms that are in the model, while red dots indicate terms that are not currently in the model. The horizontal bars indicate 90% (colored) and 95% (grey) confidence intervals.

To the right of each bar, a table lists the value of the regression coefficient for that term, along with its t-statistic and p-value. The coefficient for a term that is not in the model is the coefficient that would result from adding that term to the current model.

From the Stepwise menu, select Scale Inputs to center and normalize the columns of the input matrix to have a standard deviation of 1 .

Note When you call the stepwise function, you can also specify the initial state of the model and the confidence levels to use. See the stepwise function reference page for details.

Additional Diagnostic Statistics

Several diagnostic statistics appear below the plot.

- Intercept - the estimated value of the constant term
- RMSE - the root mean squared error of the current model
- R-square - the amount of response variability explained by the model
- Adjusted R-square - the R-square statistic adjusted for the residual degrees of freedom
- F - the overall F statistic for the regression
- P - the associated significance probability

Moving Terms In and Out of the Model

There are two ways you can move terms in and out of the model:

- Click on a line in the plot or in the table to toggle the state of the corresponding term. The resulting change to the model depends on the color of the line:
- Clicking a blue line, corresponding to a term currently in the model, removes the term from the model and changes the line to red.
- Clicking a red line, corresponding to a term currently not in the model, adds the term to the model and changes the line to blue.
- Select the recommended step shown under Next Step to the right of the table. The recommended step is either to add the most statistically significant term, or to remove the least significant term. Click Next Step to perform the recommended step. After you do so, the stepwise GUI displays the next term to add or remove. When there are no more recommended steps, the GUI displays "Move no terms."

Alternatively, you can perform all the recommended steps at once by clicking All Steps.

Assessing the Effect of Adding a Term

The demo can produce a partial regression leverage plot for the term you choose. If the term is not in the model, the plot shows the effect of adding it by plotting the residuals of the terms that are in the model against the residuals of the chosen term. If the term is in the model, the plot shows the effect of adding it if it were not already in the model. That is, the demo plots the residuals of all other terms in the model against the residuals of the chosen term.

From the Stepwise menu, select Added Variable Plot to display a list of terms. Select the term for which you want a plot, and click OK. This example selects X 4 , the recommended term in the figure above.

Model History

The Model History plot shows the RMSE for every model generated during the current session. Click one of the dots to return to the model at that point in the analysis.

Exporting Variables

The Export pop-up menu enables you to export variables from the stepwise function to the base workspace. Check the variables you want to export and, optionally, change the variable name in the corresponding edit box. Click OK.

Generalized Linear Models

So far, the functions in this section have dealt with models that have a linear relationship between the response and one or more predictors. Sometimes you may have a nonlinear relationship instead. To fit nonlinear models you can use the functions described in "Nonlinear Regression Models" on page 5-1. However, there are some nonlinear models, known as generalized linear models, that you can fit using simpler linear methods. To understand generalized linear models, first review the linear models you have seen so far. Each of these models has the following three characteristics:

- The response has a normal distribution with mean μ.
- A coefficient vector b defines a linear combination $X^{*} b$ of the predictors X.
- The model equates the two as $\mu=X^{*} b$.

In generalized linear models, these characteristics are generalized as follows:

- The response has a distribution that may be normal, binomial, Poisson, gamma, or inverse Gaussian, with parameters including a mean μ.
- A coefficient vector b defines a linear combination $X^{*} b$ of the predictors X.
- A link function $f(\cdot)$ defines the link between the two as $f(\mu)=X^{*} b$.

The following sections explore these models in greater detail.

- "Example: Generalized Linear Models" on page 4-50
- "Generalized Linear Model Demo" on page 4-54

Example: Generalized Linear Models

For example, consider the following data derived from the carbig data set, in which the cars have various weights. You record the total number of cars of each weight and the number qualifying as poor-mileage cars because their miles per gallon value is below some target. Assume that you don't know the miles per gallon for each car, only the number passing the test. It might be reasonable to assume that the value of the variable poor follows a binomial distribution with parameter $N=$ total and with a p parameter that depends on the car weight. A plot shows that the proportion of poor-mileage cars follows a nonlinear S-shape.

```
w = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';
[w poor total]
ans =
    2100 1 48
    2300 2 42
    2500 0 31
    2700 3 34
    2900 8 31
    3100 8 21
    3300 14 23
    3500 17 23
    3700 19 21
    3900 15 16
    4100 17 17
    4300 21 21
plot(w,poor./total,'x')
```


This shape is typical of graphs of proportions, as they have natural boundaries at 0.0 and 1.0.

A linear regression model would not produce a satisfactory fit to this graph. Not only would the fitted line not follow the data points, it would produce invalid proportions less than 0 for light cars, and higher than 1 for heavy cars.

There is a class of regression models for dealing with proportion data. The logistic model is one such model. It defines the relationship between proportion p and weight w to be

$$
\log \left(\frac{p}{1-p}\right)=b_{1}+b_{2} w
$$

Is this a good model for the data? It would be helpful to graph the data on this scale, to see if the relationship appears linear. However, some of the proportions are 0 and 1 , so you cannot explicitly evaluate the left-hand-side of the equation. A useful trick is to compute adjusted proportions by adding small increments to the poor and total values - say a half observation to poor and a full observation to total. This keeps the proportions within range. A graph now shows a more nearly linear relationship.

```
padj = (poor+.5) ./ (total+1);
plot(w,log(padj./(1-padj)), 'x')
```


You can use the glmfit function to fit this logistic model.

```
b = glmfit(w,[poor total],'binomial')
b =
    -13.3801
    0.0042
```

To use these coefficients to compute a fitted proportion, you have to invert the logistic relationship. Some simple algebra shows that the logistic equation can also be written as

$$
p=\frac{1}{1+\exp \left(-b_{1}-b_{2} w\right)}
$$

Fortunately, the function glmval can decode this link function to compute the fitted values. Using this function, you can graph fitted proportions for a range of car weights, and superimpose this curve on the original scatter plot.

```
x = 2100:100:4500;
y = glmval(b,x,'logit');
plot(w,poor./total,'x',x,y,'r-')
```


Generalized linear models can fit a variety of distributions with a variety of relationships between the distribution parameters and the predictors. A full description is beyond the scope of this document. For more information see

Dobson [9], or McCullagh and Nelder [30]. Also see the reference material for glmfit.

Generalized Linear Model Demo

The glmdemo function begins a slide show describing generalized linear models. It presents examples of what functions and distributions are available with generalized linear models. It then presents an example where traditional linear least squares fitting is not appropriate, and shows how to use the glmfit function to fit a logistic regression model and the glmval function to compute predictions from that model. (See the glmfit and glmval function reference pages for details.)

To run glmdemo from the command line, type playshow glmdemo.

Robust and Nonparametric Methods

As mentioned in the previous sections, regression and analysis of variance procedures depend on certain assumptions, such as a normal distribution for the error term. Sometimes such an assumption is not warranted. For example, if the distribution of the errors is asymmetric or prone to extreme outliers, that is a violation of the assumption of normal errors.

The Statistics Toolbox has a robust regression function that is useful when there may be outliers. Robust methods are designed to be relatively insensitive to large changes in a small part of the data.

The Statistics Toolbox also has nonparametric versions of the one-way and two-way analysis of variance functions. Unlike classical tests, nonparametric tests make only mild assumptions about the data, and are appropriate when the distribution of the data is not normal. On the other hand, they are less powerful than classical methods for normally distributed data.

The following sections describe the robust regression and nonparametric functions in greater detail:

- "Robust Regression" on page 4-55
- "Kruskal-Wallis Test" on page 4-59
- "Friedman's Test" on page 4-60

Both of the nonparametric functions described here can return a stats structure that you can use as input to the multcompare function to perform multiple comparisons.

Note See "Regression and Classification Trees" on page 5-8 for information on another type of nonparametric regression.

Robust Regression

"Example: Multiple Linear Regression" on page 4-35 shows that there is an outlier when you use ordinary least squares regression to model a response as a function of five predictors. How does that outlier affect the results?

There is a type of regression known as "robust" regression that can be used to limit the effect of outliers. The idea is to assign a weight to each point so that outliers are given reduced weight. This makes the results less sensitive to the presence of outliers. The weighting is done automatically and iteratively as follows. In the first iteration, the fit is an ordinary least squares fit with each point having the same weight. Then new weights are computed to give lower weight to points that are far from their predicted values, and the fit is repeated using these weights. The process continues until it converges.

So, to determine how the outlier affects the results in this example, first estimate the coefficients using the robustfit function.

```
load moore
x = moore(:,1:5);
y = moore(:,6);
[br,statsr] = robustfit(x,y);
br
br =
    -1.7742
        0.0000
        0.0009
        0.0002
        0.0062
        0.0001
```

Compare these estimates to those you obtain from the regress function.

```
b
b =
    -2.1561
    -0.0000
    0.0013
    0.0001
    0.0079
    0.0001
```

To understand why the two differ, it is helpful to look at the weight variable from the robust fit. It measures how much weight was given to each point during the final iteration of the fit. In this case, the first point had a very low weight so it was effectively ignored.

```
statsr.w'
```

```
ans =
    Columns 1 through 7
        0.0577 0.9977 0.9776 0.9455 0.9687 0.8734 0.9177
    Columns 8 through 14
        0.9990 0.9653 0.9679 0.9768 0.9882 0.9998
    Columns 15 through 20
        0.8185 0.9757 0.9875 0.9991 0.9021 0.6953
```


Robust Fitting Demo

The robustdemo function presents a simple comparison of least squares and robust fits for a response and a single predictor. You can use data provided by the demo or supply your own. See the robustdemo function reference page for information about using your own data:

1 Start the demo. To begin using robustdemo with the built-in sample data, simply type the function name.

robustdemo

The resulting figure presents a scatter plot with two fitted lines. One line is the fit from an ordinary least squares regression. The other is from a robust regression. Along the bottom of the figure are the equations for the fitted line and the estimated error standard deviation for each fit.

The effect of any point on the least squares fit depends on the residual and leverage for that point. The residual is the vertical distance from the point to the line. The leverage is a measure of how far the point is from the center of the x data.

The effect of any point on the robust fit also depends on the weight assigned to the point. Points far from the line get lower weight.

2 Compare effects of leverage and weight. Use the right mouse button to click on any point and see its least squares leverage and robust weight.

In this example, the rightmost point has a leverage value of 0.35 . It is also far from the line, so it exerts a large influence on the least squares fit. It has a small weight, though, so it is effectively excluded from the robust fit.

3 See how changes in data affect the two fits. Using the left mouse button, select any point, and drag it to a new location while holding the left button down. When you release the point, both fits update.

Bringing the rightmost point closer to the line makes the two fitted lines nearly identical. Now, the point has nearly full weight in the robust fit.

Kruskal-Wallis Test

The example "One-Way Analysis of Variance (ANOVA)" on page 4-3 uses one-way analysis of variance to determine if the bacteria counts of milk varied from shipment to shipment. The one-way analysis rests on the assumption that the measurements are independent, and that each has a normal distribution with a common variance and with a mean that was constant in each column. You can conclude that the column means were not all the same. The following example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of variance. The assumption behind this test is that the measurements come from a continuous distribution, but not necessarily a normal distribution. The test is based on an analysis of variance using the ranks of the data values, not the data values themselves. Output includes a table similar to an anova table, and a box plot.

You can run this test as follows.

```
p = kruskalwallis(hogg)
p =
    0.0020
```

The low p-value means the Kruskal-Wallis test results agree with the one-way analysis of variance results.

Friedman's Test

The example "Two-Way Analysis of Variance (ANOVA)" on page 4-8 uses two-way analysis of variance to study the effect of car model and factory on car mileage. The example tests whether either of these factors has a significant effect on mileage, and whether there is an interaction between these factors. The conclusion of the example is there is no interaction, but that each individual factor has a significant effect. The next example examines whether a nonparametric analysis leads to the same conclusion.

Friedman's test is a nonparametric test for data having a two-way layout (data grouped by two categorical factors). Unlike two-way analysis of variance, Friedman's test does not treat the two factors symmetrically and it does not test for an interaction between them. Instead, it is a test for whether the columns are different after adjusting for possible row differences. The test is based on an analysis of variance using the ranks of the data across categories of the row factor. Output includes a table similar to an anova table.

You can run Friedman's test as follows.

```
p = friedman(mileage, 3)
ans =
    7.4659e-004
```

Recall the classical analysis of variance gave a p-value to test column effects, row effects, and interaction effects. This p-value is for column effects. Using either this p-value or the p-value from ANOVA ($p<0.0001$), you conclude that there are significant column effects.

In order to test for row effects, you need to rearrange the data to swap the roles of the rows in columns. For a data matrix x with no replications, you could simply transpose the data and type

$$
p=\text { friedman }\left(x^{\prime}\right)
$$

With replicated data it is slightly more complicated. A simple way is to transform the matrix into a three-dimensional array with the first dimension representing the replicates, swapping the other two dimensions, and restoring the two-dimensional shape.

```
x = reshape(mileage, [3 2 3]);
x = permute(x, [1 3 2]);
x = reshape(x, [9 2])
x =
    33.3000 32.6000
    33.4000 32.5000
    32.9000 33.0000
    34.5000 33.4000
    34.8000 33.7000
    33.8000 33.9000
    37.4000 36.6000
    36.8000 37.0000
    37.6000 36.7000
friedman(x, 3)
ans =
    0.0082
```

Again, the conclusion is similar to that of the classical analysis of variance. Both this p-value and the one from ANOVA ($p=0.0039$) lead you to conclude that there are significant row effects.

You cannot use Friedman's test to test for interactions between the row and column factors.

Nonlinear Regression Models

Nonlinear Least Squares (p. 5-2)

Regression and Classification Trees (p. 5-8)

Fits a model that has a known parametric form but unknown parameter values.

Approximates a regression relationship using a decision tree. Such a tree partitions the data set into regions, using values of the predictor variables, so that the response variables are roughly constant in each region.

Nonlinear Least Squares

Response Surface Methodology (RSM) is an empirical modeling approach using polynomials as local approximations to the true input/output relationship. This empirical approach is often adequate for process improvement in an industrial setting.

In scientific applications there is usually relevant theory for constructing a mechanistic model. Often such models are nonlinear in the unknown parameters. Nonlinear models are more difficult to fit, requiring iterative methods that start with an initial guess of the unknown parameters. Each iteration alters the current guess until the algorithm converges.
The Statistics Toolbox has functions for fitting nonlinear models of the form

$$
y=f(X, \beta)+\varepsilon
$$

where:

- y is an- n by- 1 vector of observations.
- f is any function of X and β.
- X is an n-by- p matrix of input variables.
- β is a p-by- 1 vector of unknown parameters to be estimated.
- ε is an n-by- 1 vector of random disturbances.

This is explored further in the following sections:

- "Example: Nonlinear Modeling" on page 5-2
- "An Interactive GUI for Nonlinear Fitting and Prediction" on page 5-6

Example: Nonlinear Modeling

The Hougen-Watson model (Bates and Watts, [2], pp. 271-272) for reaction kinetics is one specific example of this type. The form of the model is

$$
\text { rate }=\frac{\beta_{1} \cdot x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} \cdot x_{1}+\beta_{3} \cdot x_{2}+\beta_{4} \cdot x_{3}}
$$

where $\beta_{1}, \beta_{2}, \ldots, \beta_{5}$ are the unknown parameters, and x_{1}, x_{2}, and x_{3} are the three input variables. The three inputs are hydrogen, n-pentane, and
isopentane. It is easy to see that the parameters do not enter the model linearly.

The file reaction.mat contains simulated data from this reaction.

```
load reaction
who
Your variables are:
beta rate xn
model reactants yn
```

The variables are as follows:

- rate is a $13-$ by- 1 vector of observed reaction rates.
- reactants is a 13 -by- 3 matrix of reactants.
- beta is 5 -by- 1 vector of initial parameter estimates.
- model is a string containing the nonlinear function name.
- $x n$ is a string matrix of the names of the reactants.
- yn is a string containing the name of the response.

The data and model are explored further in the following sections:

- "Fitting the Hougen-Watson Model" on page 5-3
- "Confidence Intervals on the Parameter Estimates" on page 5-5
- "Confidence Intervals on the Predicted Responses" on page 5-5
- "An Interactive GUI for Nonlinear Fitting and Prediction" on page 5-6

Fitting the Hougen-Watson Model

The Statistics Toolbox provides the function nlinfit for finding parameter estimates in nonlinear modeling. nlinfit returns the least squares parameter estimates. That is, it finds the parameters that minimize the sum of the squared differences between the observed responses and their fitted values. It uses the Gauss-Newton algorithm with Levenberg-Marquardt modifications for global convergence.
nlinfit requires the input data, the responses, and an initial guess of the unknown parameters. You must also supply the name of a function that takes the input data and the current parameter estimate and returns the predicted responses. In MATLAB terminology, nlinfit is called a "function" function.

Here is the hougen function.

```
function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have five elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)
b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);
x1 = x(:, 1);
x2 = x(:,2);
x3 = x(:,3);
yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);
```

To fit the reaction data, call the function nlinfit.

```
load reaction
betahat = nlinfit(reactants,rate,'hougen',beta)
betahat =
```

 1.2526
 0.0628
 0.0400
 0.1124
 1.1914
 nlinfit has two optional outputs. They are the residuals and Jacobian matrix at the solution. The residuals are the differences between the observed and fitted responses. The Jacobian matrix is the direct analog of the matrix X in the standard linear regression model.

These outputs are useful for obtaining confidence intervals on the parameter estimates and predicted responses.

Confidence Intervals on the Parameter Estimates

Using nlparci, form 95% confidence intervals on the parameter estimates, betahat, from the reaction kinetics example.

```
[betahat,resid,J] = nlinfit(reactants,rate,'hougen',beta);
betaci = nlparci(betahat,resid,J)
betaci =
\begin{tabular}{ll}
-0.7467 & 3.2519 \\
-0.0377 & 0.1632 \\
-0.0312 & 0.1113 \\
-0.0609 & 0.2857 \\
-0.7381 & 3.1208
\end{tabular}
```


Confidence Intervals on the Predicted Responses

Using nlpredci, form 95% confidence intervals on the predicted responses from the reaction kinetics example.

```
[yhat,delta] = nlpredci('hougen',reactants,betahat,resid,J);
opd = [rate yhat delta]
opd =
\begin{tabular}{rrr}
8.5500 & 8.2937 & 0.9178 \\
3.7900 & 3.8584 & 0.7244 \\
4.8200 & 4.7950 & 0.8267 \\
0.0200 & -0.0725 & 0.4775 \\
2.7500 & 2.5687 & 0.4987 \\
14.3900 & 14.2227 & 0.9666 \\
2.5400 & 2.4393 & 0.9247 \\
4.3500 & 3.9360 & 0.7327 \\
13.0000 & 12.9440 & 0.7210 \\
8.5000 & 8.2670 & 0.9459 \\
0.0500 & -0.1437 & 0.9537 \\
11.3200 & 11.3484 & 0.9228 \\
3.1300 & 3.3145 & 0.8418
\end{tabular}
```

Matrix opd has the observed rates in column 1 and the predictions in column 2. The 95% confidence interval is column $2 \pm$ column 3 . These are simultaneous confidence intervals for the estimated function at each input value. They are not intervals for new response observations at those inputs, even though most of the confidence intervals do contain the original observations.

An Interactive GUI for Nonlinear Fitting and Prediction

The function nlintool for nonlinear models is a direct analog of rstool for polynomial models. nlintool calls nlinfit and requires the same inputs.

The purpose of nlintool is larger than just fitting and prediction for nonlinear models. This GUI provides an environment for exploring the graph of a multidimensional nonlinear function.
Start by loading the data set reaction.mat and starting nlintool. The chemistry behind the data in reaction.mat deals with reaction kinetics as a function of the partial pressure of three chemical reactants: hydrogen, n-pentane, and isopentane.
load reaction
nlintool(reactants, rate, 'hougen', beta, 0.01, xn, yn)
You will see a "vector" of three plots. The dependent variable of all three plots is the reaction rate. The first plot has hydrogen as the independent variable. The second and third plots have n-pentane and isopentane respectively.

Each plot shows the fitted relationship of the reaction rate to the independent variable at a fixed value of the other two independent variables. The fixed value of each independent variable is in an editable text box below each axis. You can change the fixed value of any independent variable by either typing a new value in the box or by dragging any of the three vertical lines to a new position.

When you change the value of an independent variable, all the plots update to show the current picture at the new point in the space of the independent variables.

Note that while this example only uses three reactants, nlintool can accommodate an arbitrary number of independent variables. Interpretability may be limited by the size of your monitor for large numbers of inputs.

Regression and Classification Trees

In nonlinear least squares you suppose that you know the form of the relationship between the response and predictor. Suppose instead that you do not know that relationship, and also that you are unwilling to assume that the relationship can be well approximated by a linear model. You need a more nonparametric type of regression fitting approach. One such approach is based on "trees."

A regression tree is a sequence of questions that can be answered as yes or no, plus a set of fitted response values. Each question asks whether a predictor satisfies a given condition. Predictors can be continuous or discrete. Depending on the answers to one question, you either proceed to another question or arrive at a fitted response value.

This example fits a regression tree to variables from the carsmall data set. The example uses the same variables as in the Analysis of Covariance example (see "The aoctool Demo" on page 4-25), so there is one continuous predictor (car weight) and one discrete predictor (model year).
The object of the example is to model mileage (MPG) as a function of car weight and model year. First load the data and create a matrix x of predictor values and a vector y of response variables. Then fit a regression tree, specifying the model year column as a categorical variable. In this data set there are cars from the three different model years 1970, 1976, and 1982.

```
load carsmall
x = [Weight,Model_Year];
y = MPG;
t = treefit(x,y,'catidx',2);
treedisp(t,'name',{'Wt' 'Yr'});
```


Now you want to use this model to determine the predicted mileage for a car weighing 3000 pounds from model year 1982. Start at the top node. The weight is less than the cutoff value of 3085.5 , so you take the left branch. The model year is not 1970 or 1976, so you take the right branch. Continue moving down the tree until you arrive at a terminal node that gives the predicted value. In this case, the predicted value is 38 miles per gallon. You can use the treeval function to find the fitted value for any set of predictor values.

```
treeval(t,[3000 82])
```

ans =

38
With a tree like this one, having many branches, there is a danger that it fits the current data set well but would not do a good job at predicting new values. Some of its lower branches might be strongly affected by outliers and other artifacts of the current data set. If possible you would prefer to find a simpler tree that avoids this problem of overfitting.

You can estimate the best tree size by cross validation. First, compute a resubstitution estimate of the error variance for this tree and a sequence of simpler trees and plot it as the lower (blue) line in the figure. This estimate probably under-estimates the true error variance. Then compute a cross-validation estimate of the same quantity and plot it as the upper (red) line. The cross-validation procedure also provides an estimate of the pruning level, best, needed to achieve the best tree size.

```
[c,s,ntn] = treetest(t,'resub');
[c2,s2,n2,best] = treetest(t,'cross',x,y);
plot(ntn,c,'b-', n2,c2,'r-', n2(best+1),c2(best+1),'mo');
xlabel('Number of terminal nodes')
ylabel('Residual variance')
legend('Resubstitution error','Cross-validation
error','Estimated best tree size')
best
best =
    1 0
```


The best tree is the one that has a residual variance that is no more than one standard error above the minimum value along the cross-validation line. In this case the variance is just over 14. The output best takes on values starting
with 0 (representing no pruning), so you need to add 1 to use it as an index into the other output arguments.

```
c2(best+1)
ans =
    14.3440
```

Use the output best to create a smaller tree that is pruned to the estimated best size.

```
t0 = treeprune(t,'level',best);
treedisp(t0,'name',{'Wt' 'Yr'})
```


Now plot the original data and overlay the fitted values that you get using this tree. Notice that this tree does not distinguish between cars from 1970 or 1976, so create a vector yold containing fitted values for 1976 and another ynew for year 1982. Cars from 1970 have the same fitted values as those from 1976.

```
xx = (1500:20:5000)';
ynew = treeval(t0,[xx 82*ones(size(xx))]);
yold = treeval(t0,[xx 76*ones(size(xx))]);
gscatter(Weight,MPG,Model_Year, 'rgb', 'osx');
hold on; plot(xx,yold,'b:', xx,ynew,'r--'); hold off
```


The tree functions (treedisp, treefit, treeprune, treetest, and treeval) can also accept a categorical response variable. In that case, the fitted value from the tree is the category with the highest predicted probability for the range of predictor values falling in a given node. The demo Classification, in the Multivariate Analysis section of the Statistics Toolbox demos, shows how to use decision trees for classification.

Multivariate Statistics

Principal Components Analysis (p. 6-2) Describes how to perform principal components analysis.

Factor Analysis (p. 6-15)
Multivariate Analysis of Variance (MANOVA) (p. 6-24)

Cluster Analysis (p. 6-30)
Multidimensional Scaling (p. 6-53)

Describes how to perform factor analysis.
Describes how to perform multivariate analysis of variance.

Describes how to perform cluster analysis.
Describes how to perform multidimensional scaling.

Principal Components Analysis

One of the difficulties inherent in multivariate statistics is the problem of visualizing data that has many variables. In MATLAB, the plot command displays a graph of the relationship between two variables. The plot3 and surf commands display different three-dimensional views. But when there are more than three variables, it is more difficult to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move together. One reason for this is that more than one variable might be measuring the same driving principle governing the behavior of the system. In many systems there are only a few such driving forces. But an abundance of instrumentation enables you to measure dozens of system variables. When this happens, you can take advantage of this redundancy of information. You can simplify the problem by replacing a group of variables with a single new variable.

Principal components analysis is a quantitatively rigorous method for achieving this simplification. The method generates a new set of variables, called principal components. Each principal component is a linear combination of the original variables. All the principal components are orthogonal to each other, so there is no redundant information. The principal components as a whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for several columns of data. What is so special about the principal component basis?

The first principal component is a single axis in space. When you project each observation on that axis, the resulting values form a new variable. And the variance of this variable is the maximum among all possible choices of the first axis.

The second principal component is another axis in space, perpendicular to the first. Projecting the observations on this axis generates another new variable. The variance of this variable is the maximum among all possible choices of this second axis.

The full set of principal components is as large as the original set of variables. But it is commonplace for the sum of the variances of the first few principal components to exceed 80% of the total variance of the original data. By
examining plots of these few new variables, researchers often develop a deeper understanding of the driving forces that generated the original data.

You can use the function princomp to find the principal components. The following sections provide an example and explain the four outputs of princomp:

- "Example: Principal Components Analysis" on page 6-3
- "The Principal Component Coefficients (First Output)" on page 6-6
- "The Component Scores (Second Output)" on page 6-6
- "The Component Variances (Third Output)" on page 6-10
- "Hotelling's T2 (Fourth Output)" on page 6-11
- "Visualizing the Results of a Principal Components Analysis - The Biplot" on page 6-12

To use princomp, you need to have the actual measured data you want to analyze. However, if you lack the actual data, but have the sample covariance or correlation matrix for the data, you can still use the function pcacov to perform a principal components analysis. See the reference page for pcacov for a description of its inputs and outputs.

Example: Principal Components Analysis

Consider a sample application that uses nine different indices of the quality of life in 329 U.S. cities. These are climate, housing, health, crime, transportation, education, arts, recreation, and economics. For each index, higher is better. For example, a higher index for crime means a lower crime rate.

Start by loading the data in cities.mat.

load cities whos			
Name	Size	Bytes	Class
		252	char array
categories	9×14	28294	char array
names	329×43	23688	double array
ratings	329×9		

The whos command generates a table of information about all the variables in the workspace.

The cities data set contains three variables:

- categories, a string matrix containing the names of the indices
- names, a string matrix containing the 329 city names
- ratings, the data matrix with 329 rows and 9 columns

The categories variable has the following values:

```
categories
categories =
    climate
    housing
    health
    crime
    transportation
    education
    arts
    recreation
    economics
```

The first five rows of names are

```
first5 = names(1:5,:)
first5 =
    Abilene, TX
    Akron, OH
    Albany, GA
    Albany-Troy, NY
    Albuquerque, NM
```

To get a quick impression of the ratings data, make a box plot.

```
boxplot(ratings,'orientation','horizontal','labels',categories)
```

This command generates the plot below. Note that there is substantially more variability in the ratings of the arts and housing than in the ratings of crime and climate.

Ordinarily you might also graph pairs of the original variables, but there are 36 two-variable plots. Perhaps principal components analysis can reduce the number of variables you need to consider.

Sometimes it makes sense to compute principal components for raw data. This is appropriate when all the variables are in the same units. Standardizing the data is often preferable when the variables are in different units or when the variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard deviation.

```
stdr = std(ratings);
sr = ratings./repmat(stdr,329,1);
```

Now you are ready to find the principal components.

```
[coefs,scores,variances,t2] = princomp(sr);
```

The following sections explain the four outputs from princomp.

The Principal Component Coefficients (First Output)

The first output of the princomp function, coefs, contains the coefficients for nine principal components. These are the linear combinations of the original variables that generate the new variables.

The first three principal component coefficient vectors are

0.2064	0.2178	-0.6900
0.3565	0.2506	-0.2082
0.4602	-0.2995	-0.0073
0.2813	0.3553	0.1851
0.3512	-0.1796	0.1464
0.2753	-0.4834	0.2297
0.4631	-0.1948	-0.0265
0.3279	0.3845	-0.0509
0.1354	0.4713	0.6073

The largest coefficients in the first column (first principal component) are the third and seventh elements, corresponding to the variables health and arts. All the coefficients of the first principal component have the same sign, making it a weighted average of all the original variables.

Because the principal components are unit length and orthogonal, premultiplying the matrix c3 by its transpose yields the identity matrix.

```
I = c3'*c3
I =
\begin{tabular}{rrr}
1.0000 & -0.0000 & -0.0000 \\
-0.0000 & 1.0000 & -0.0000 \\
-0.0000 & -0.0000 & 1.0000
\end{tabular}
```


The Component Scores (Second Output)

The second output, scores, is the original data mapped into the new coordinate system defined by the principal components. This output is the same size as the input data matrix.

A plot of the first two columns of scores shows the ratings data projected onto the first two principal components. princomp computes the scores to have mean zero.

```
plot(scores(:, 1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');
```


Note the outlying points in the right half of the plot.
While it is possible to create a three-dimensional plot using three columns of scores, the examples in this section create two-dimensional plots, which are easier to describe.

The function gname is useful for graphically identifying a few points in a plot like this. You can call gname with a string matrix containing as many case labels as points in the plot. The string matrix names works for labeling points with the city names.

```
gname(names)
```

Move your cursor over the plot and click once near each point in the right half. As you click each point, MATLAB labels it with the proper row from the names string matrix. When you are finished labeling points, press the Return key.

Here is the resulting plot.

The labeled cities are some of the biggest population centers in the United States. They are definitely different from the remainder of the data, so perhaps they should be considered separately. To remove the labeled cities from the data, first identify their corresponding row numbers as follows:

1 Close the plot window.
2 Redraw the plot by entering

```
plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');
```

3 Enter gname without any arguments.
4 Click near the points you labeled in the preceding figure. This labels the points by their row numbers, as shown in the following figure.

Then you can create an index variable containing the row numbers of all the metropolitan areas you choose.

```
metro = [43 65 179 213 234 270 314];
names(metro,:)
ans =
    Boston, MA
    Chicago, IL
    Los Angeles, Long Beach, CA
    New York, NY
    Philadelphia, PA-NJ
    San Francisco, CA
    Washington, DC-MD-VA
```

To remove these rows from the ratings matrix, enter the following.

```
rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];
```

```
size(rsubset)
ans =
    322 9
```


The Component Variances (Third Output)

The third output, variances, is a vector containing the variance explained by the corresponding principal component. Each column of scores has a sample variance equal to the corresponding element of variances.

```
variances
variances =
    3.4083
    1.2140
    1.1415
    0.9209
    0.7533
    0.6306
    0.4930
    0.3180
    0.1204
```

You can easily calculate the percent of the total variability explained by each principal component.

```
percent_explained = 100*variances/sum(variances)
percent_explained =
    37.8699
    13.4886
    12.6831
    10.2324
    8.3698
    7.0062
    5.4783
    3.5338
    1.3378
```

Use the pareto function to make a scree plot of the percent variability explained by each principal component.

```
pareto(percent_explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')
```


The preceding figure shows that the only clear break in the amount of variance accounted for by each component is between the first and second components. However, that component by itself explains less than 40% of the variance, so more components are probably needed. You can see that the first three principal components explain roughly two thirds of the total variability in the standardized ratings, so that might be a reasonable way to reduce the dimensions in order to visualize the data.

Hotelling's $\mathbf{T}^{\mathbf{2}}$ (Fourth Output)

The last output of the princomp function, t2, is Hotelling's T^{2}, a statistical measure of the multivariate distance of each observation from the center of the data set. This is an analytical way to find the most extreme points in the data.

```
[st2, index] = sort(t2,'descend'); % Sort in descending order.
extreme = index(1)
extreme =
    213
names(extreme,:)
```

ans =
New York, NY
It is not surprising that the ratings for New York are the furthest from the average U.S. town.

Visualizing the Results of a Principal Components Analysis - The Biplot

You can use the biplot function to help visualize both the principal component coefficients for each variable and the principal component scores for each observation in a single plot. For example, the following command plots the results from the principal components analysis on the cities and labels each of the variables.

```
biplot(coefs(:,1:2), 'scores',scores(:,1:2),...
'varlabels',categories);
axis([-. 26 1 -. 51 .51]);
```


Each of the nine variables is represented in this plot by a vector, and the direction and length of the vector indicates how each variable contributes to the two principal components in the plot. For example, you have seen that the first principal component, represented in this biplot by the horizontal axis, has positive coefficients for all nine variables. That corresponds to the nine vectors directed into the right half of the plot. You have also seen that the second principal component, represented by the vertical axis, has positive coefficients for the variables education, health, arts, and education, and negative coefficients for the remaining five variables. That corresponds to vectors directed into the top and bottom halves of the plot, respectively. This indicates that this component distinguishes between cities that have high values for the first set of variables and low for the second, and cities that have the opposite.

The variable labels in this figure are somewhat crowded. You could either leave out the 'VarLabels' parameter when making the plot, or simply select and drag some of the labels to better positions using the Edit Plot tool from the figure window toolbar.

Each of the 329 observations is represented in this plot by a point, and their locations indicate the score of each observation for the two principal components in the plot. For example, points near the left edge of this plot have the lowest scores for the first principal component. The points are scaled to fit within the unit square, so only their relative locations may be determined from the plot.

You can use the Data Cursor, in the Tools menu in the figure window, to identify the items in this plot. By clicking on a variable (vector), you can read off that variable's coefficients for each principal component. By clicking on an observation (point), you can read off that observation's scores for each principal component.
You can also make a biplot in three dimensions. This can be useful if the first two principal coordinates do not explain enough of the variance in your data. Selecting Rotate 3D in the Tools menu enables you to rotate the figure to see it from different angles.

```
biplot(coefs(:,1:3), 'scores',scores(:,1:3),...
'obslabels',names);
axis([[-. 26 1 -. 51 . .51 -. 61 . 81]);
view([30 40]);
```


Factor Analysis

Multivariate data often includes a large number of measured variables, and sometimes those variables overlap, in the sense that groups of them might be dependent. For example, in a decathlon, each athlete competes in 10 events, but several of them can be thought of as speed events, while others can be thought of as strength events, etc. Thus, you can think of a competitor's 10 event scores as largely dependent on a smaller set of three or four types of athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this sort of interdependence. In a factor analysis model, the measured variables depend on a smaller number of unobserved (latent) factors. Because each factor might affect several variables in common, they are known as common factors. Each variable is assumed to be dependent on a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data is of the form

$$
\Sigma_{x}=\Lambda \Lambda^{T}+\Psi
$$

where Λ is the matrix of loadings, and the elements of the diagonal matrix Ψ are the specific variances. The function factoran fits the Factor Analysis model using maximum likelihood.

This section includes these topics:

- "Example: Finding Common Factors Affecting Stock Prices" on page 6-16
- "Factor Rotation" on page 6-18
- "Predicting Factor Scores" on page 6-19
- "Visualizing the Results of a Factor Analysis - The Biplot" on page 6-21
- "Comparison of Factor Analysis and Principal Components Analysis" on page 6-23

Example: Finding Common Factors Affecting Stock Prices

Over the course of 100 weeks, the percent change in stock prices for ten companies has been recorded. Of the ten companies, the first four can be classified as primarily technology, the next three as financial, and the last three as retail. It seems reasonable that the stock prices for companies that are in the same sector might vary together as economic conditions change. Factor Analysis can provide quantitative evidence that companies within each sector do experience similar week-to-week changes in stock price.

In this example, you first load the data, and then call factoran, specifying a model fit with three common factors. By default, factoran computes rotated estimates of the loadings to try and make their interpretation simpler. But in this example, you specify an unrotated solution.

```
load stockreturns
[Loadings,specificVar,T,stats] = factoran(stocks,3,...
    'rotate','none');
```

The first two factoran return arguments are the estimated loadings and the estimated specific variances. Each row of the loadings matrix represents one of the ten stocks, and each column corresponds to a common factor. With unrotated estimates, interpretation of the factors in this fit is difficult because most of the stocks contain fairly large coefficients for two or more factors.

```
Loadings
Loadings =
\begin{tabular}{rrr}
0.8885 & 0.2367 & -0.2354 \\
0.7126 & 0.3862 & 0.0034 \\
0.3351 & 0.2784 & -0.0211 \\
0.3088 & 0.1113 & -0.1905 \\
0.6277 & -0.6643 & 0.1478 \\
0.4726 & -0.6383 & 0.0133 \\
0.1133 & -0.5416 & 0.0322 \\
0.6403 & 0.1669 & 0.4960 \\
0.2363 & 0.5293 & 0.5770 \\
0.1105 & 0.1680 & 0.5524
\end{tabular}
```

Note "Factor Rotation" on page 6-18 helps to simplify the structure in the Loadings matrix, to make it easier to assign meaningful interpretations to the factors.

From the estimated specific variances, you can see that the model indicates that a particular stock price varies quite a lot beyond the variation due to the common factors.

```
specificVar
specificVar =
    0.0991
    0.3431
    0.8097
    0.8559
    0.1429
    0 . 3 6 9 1
    0.6928
    0.3162
    0 . 3 3 1 1
    0.6544
```

A specific variance of 1 would indicate that there is no common factor component in that variable, while a specific variance of 0 would indicate that the variable is entirely determined by common factors. These data seem to fall somewhere in between.

The p-value returned in the stats structure fails to reject the null hypothesis of three common factors, suggesting that this model provides a satisfactory explanation of the covariation in these data.

```
stats.p
ans =
    0.8144
```

To determine whether fewer than three factors can provide an acceptable fit, you can try a model with two common factors. The p-value for this second fit is highly significant, and rejects the hypothesis of two factors, indicating that the simpler model is not sufficient to explain the pattern in these data.

```
[Loadings2,specificVar2,T2,stats2] = factoran(stocks, 2,...
```

```
'rotate','none');
```

stats2.p
ans =
3.5610e-006

Factor Rotation

As the results in "Example: Finding Common Factors Affecting Stock Prices" on page 6-16 illustrate, the estimated loadings from an unrotated factor analysis fit can have a complicated structure. The goal of factor rotation is to find a parameterization in which each variable has only a small number of large loadings. That is, each variable is affected by a small number of factors, preferably only one. This can often make it easier to interpret what the factors represent.

If you think of each row of the loadings matrix as coordinates of a point in M-dimensional space, then each factor corresponds to a coordinate axis. Factor rotation is equivalent to rotating those axes and computing new loadings in the rotated coordinate system. There are various ways to do this. Some methods leave the axes orthogonal, while others are oblique methods that change the angles between them. For this example, you can rotate the estimated loadings by using the promax criterion, a common oblique method.

```
[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');
LoadingsPM
LoadingsPM =
\begin{tabular}{rrr}
0.9452 & 0.1214 & -0.0617 \\
0.7064 & -0.0178 & 0.2058 \\
0.3885 & -0.0994 & 0.0975 \\
0.4162 & -0.0148 & -0.1298 \\
0.1021 & 0.9019 & 0.0768 \\
0.0873 & 0.7709 & -0.0821 \\
-0.1616 & 0.5320 & -0.0888 \\
0.2169 & 0.2844 & 0.6635 \\
0.0016 & -0.1881 & 0.7849 \\
-0.2289 & 0.0636 & 0.6475
\end{tabular}
```

Promax rotation creates a simpler structure in the loadings, one in which most of the stocks have a large loading on only one factor. To see this structure more clearly, you can use the biplot function to plot each stock using its factor loadings as coordinates.

```
biplot(LoadingsPM, 'varlabels',num2str((1:10)'));
axis square
view(155,27);
```


This plot shows that promax has rotated the factor loadings to a simpler structure. Each stock depends primarily on only one factor, and it is possible to describe each factor in terms of the stocks that it affects. Based on which companies are near which axes, you could reasonably conclude that the first factor axis represents the financial sector, the second retail, and the third technology. The original conjecture, that stocks vary primarily within sector, is apparently supported by the data.

Predicting Factor Scores

Sometimes, it is useful to be able to classify an observation based on its factor scores. For example, if you accepted the three-factor model and the interpretation of the rotated factors, you might want to categorize each week
in terms of how favorable it was for each of the three stock sectors, based on the data from the ten observed stocks.

Because the data in this example are the raw stock price changes, and not just their correlation matrix, you can have factoran return estimates of the value of each of the three rotated common factors for each week. You can then plot the estimated scores to see how the different stock sectors were affected during each week.

```
[LoadingsPM,specVarPM,TPM,stats,F] = factoran(stocks, 3,...
    'rotate','promax');
subplot(1,1,1);
plot3(F(:, 1),F(:, 2),F(:, 3), 'b.');
line([-4 4 NaN O O NaN O 0], [O O NaN -4 4 NaN O 0],...
    [0 O NaN O O NaN -4 4], 'Color','black');
xlabel('Financial Sector');
ylabel('Retail Sector');
zlabel('Technology Sector');
grid on;
axis square;
view(-22.5, 8);
```


Oblique rotation often creates factors that are correlated. This plot shows some evidence of correlation between the first and third factors, and you can investigate further by computing the estimated factor correlation matrix.

```
inv(TPM'*TPM)
ans =
\begin{tabular}{rrr}
1.0000 & 0.1559 & 0.4082 \\
0.1559 & 1.0000 & -0.0559 \\
0.4082 & -0.0559 & 1.0000
\end{tabular}
```


Visualizing the Results of a Factor Analysis - The Biplot

You can use the biplot function to help visualize both the factor loadings for each variable and the factor scores for each observation in a single plot. For example, the following command plots the results from the factor analysis on the stock data and labels each of the 10 stocks.

```
biplot(LoadingsPM, 'scores',F, 'varlabels',num2str((1:10)'));
xlabel('Financial Sector'); ylabel('Retail Sector');
zlabel('Technology Sector');
axis square
view(155,27);
```


In this case, the factor analysis includes three factors, and so the biplot is three-dimensional. Each of the 10 stocks is represented in this plot by a vector, and the direction and length of the vector indicates how each stock depends on the underlying factors. For example, you have seen that after promax rotation, the first four stocks have positive loadings on the first factor, and unimportant loadings on the other two factors. That first factor, interpreted as a financial sector effect, is represented in this biplot as one of the horizontal axes. The dependence of those four stocks on that factor corresponds to the four vectors directed approximately along that axis. Similarly, the dependence of stocks 5 , 6 , and 7 primarily on the second factor, interpreted as a retail sector effect, is represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their locations indicate the score of each observation for the three factors. For example, points near the top of this plot have the highest scores for the technology sector factor. The points are scaled to fit within the unit square, so only their relative locations can be determined from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window to identify the items in this plot. By clicking a stock (vector), you can read off that stock's loadings for each factor. By clicking an observation (point), you can read off that observation's scores for each factor.

Comparison of Factor Analysis and Principal Components Analysis

There is a good deal of overlap in terminology and goals between principal components analysis (PCA) and factor analysis (FA). Much of the literature on the two methods does not distinguish between them, and some algorithms for fitting the FA model involve PCA. Both are dimension-reduction techniques, in the sense that they can be used to replace a large set of observed variables with a smaller set of new variables. However, the two methods are different in their goals and in their underlying models. Roughly speaking, you should use PCA when you simply need to summarize or approximate your data using fewer dimensions (to visualize it, for example), and you should use FA when you need an explanatory model for the correlations among your data.

Multivariate Analysis of Variance (MANOVA)

The analysis of variance technique in "One-Way Analysis of Variance (ANOVA)" on page $4-3$ takes a set of grouped data and determine whether the mean of a variable differs significantly between groups. Often there are multiple variables, and you are interested in determining whether the entire set of means is different from one group to the next. There is a multivariate version of analysis of variance that can address that problem, as illustrated in the following example.

Example: Multivariate Analysis of Variance

The carsmall data set has measurements on a variety of car models from the years 1970, 1976, and 1982. Suppose you are interested in whether the characteristics of the cars have changed over time.
First, load the data.

load carsmall whos			
Name	Size	Bytes	Class
Acceleration	100×1	800	double array
Cylinders	100×1	800	double array
Displacement	100×1	800	double array
Horsepower	100×1	800	double array
MPG	100×1	800	double array
Model	100×36	7200	char array
Model_Year	100×1	800	double array
Origin	100×7	1400	char array
Weight	100×1	800	double array

Four of these variables (Acceleration, Displacement, Horsepower, and MPG) are continuous measurements on individual car models. The variable Model_Year indicates the year in which the car was made. You can create a grouped plot matrix of these variables using the gplotmatrix function.

```
x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+xo')
```


(When the second argument of gplotmatrix is empty, the function graphs the columns of the x argument against each other, and places histograms along the diagonals. The empty fourth argument produces a graph with the default colors. The fifth argument controls the symbols used to distinguish between groups.)

It appears the cars do differ from year to year. The upper right plot, for example, is a graph of MPG versus Weight. The 1982 cars appear to have higher mileage than the older cars, and they appear to weigh less on average. But as a group, are the three years significantly different from one another? The manova1 function can answer that question.

```
[d,p,stats] = manova1(x,Model_Year)
d =
    2
p =
    1.0e-006 *
            O
    0.1141
stats =
    W: [4x4 double]
```

```
                    [4x4 double]
                    : [4\times4 double]
            dfW: 90
            dfB: 2
            dfT: 92
    lambda: [2x1 double]
        chisq: [2x1 double]
    chisqdf: [2x1 double]
eigenval: [4x1 double]
eigenvec: [4x4 double]
    canon: [100x4 double]
    mdist: [100x1 double]
    gmdist: [3\times3 double]
```

The manova1 function produces three outputs:

- The first output, d, is an estimate of the dimension of the group means. If the means were all the same, the dimension would be 0 , indicating that the means are at the same point. If the means differed but fell along a line, the dimension would be 1 . In the example the dimension is 2 , indicating that the group means fall in a plane but not along a line. This is the largest possible dimension for the means of three groups.
- The second output, p, is a vector of p-values for a sequence of tests. The first p-value tests whether the dimension is 0 , the next whether the dimension is 1 , and so on. In this case both p-values are small. That's why the estimated dimension is 2 .
- The third output, stats, is a structure containing several fields, described in the following section.

The Fields of the stats Structure

The W, B, and T fields are matrix analogs to the within, between, and total sums of squares in ordinary one-way analysis of variance. The next three fields are the degrees of freedom for these matrices. Fields lambda, chisq, and chisqdf are the ingredients of the test for the dimensionality of the group means. (The p -values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in principal components analysis ("Principal Components Analysis" on page 6-2) you look for the combination of the original variables that has the largest possible variation. In multivariate analysis of variance, you instead look for the
linear combination of the original variables that has the largest separation between groups. It is the single variable that would give the most significant result in a univariate one-way analysis of variance. Having found that combination, you next look for the combination with the second highest separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear combinations of the original variables. The eigenval field is a vector measuring the ratio of the between-group variance to the within-group variance for the corresponding linear combination. The canon field is a matrix of the canonical variable values. Each column is a linear combination of the mean-centered original variables, using coefficients from the eigenvec matrix.

A grouped scatter plot of the first two canonical variables shows more separation between groups then a grouped scatter plot of any pair of original variables. In this example it shows three clouds of points, overlapping but with distinct centers. One point in the bottom right sits apart from the others. By using the gname function, you can see that this is the 20th point.

```
c1 = stats.canon(:,1);
c2 = stats.canon(:,2);
gscatter(c2,c1,Model_Year,[],'oxs')
gname
```


Roughly speaking, the first canonical variable, c1, separates the 1982 cars (which have high values of c1) from the older cars. The second canonical variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The mdist field measures the distance from each point to its group mean. Points with large values may be outliers. In this data set, the largest outlier is the one in the scatter plot, the Buick Estate station wagon. (Note that you could have supplied the model name to the gname function above if you wanted to label the point with its model name rather than its row number.)

```
max(stats.mdist)
ans =
    31.5273
find(stats.mdist == ans)
ans =
    20
Model(20,:)
ans =
buick_estate_wagon_(sw)
```

The gmdist field measures the distances between each pair of group means. The following commands examine the group means and their distances:

```
grpstats(x, Model_Year)
ans =
    1.0e+003 *
        0.0177 0.1489 0.2869 3.4413
        0.0216 0.1011 0.1978
        0.0317 0.0815 0.1289 2.4535
stats.gmdist
ans =
\begin{tabular}{rrr}
0 & 3.8277 & 11.1106 \\
3.8277 & 0 & 6.1374 \\
11.1106 & 6.1374 & 0
\end{tabular}
```

As might be expected, the multivariate distance between the extreme years 1970 and 1982 (11.1) is larger than the difference between more closely spaced years (3.8 and 6.1). This is consistent with the scatter plots, where the points seem to follow a progression as the year changes from 1970 through 1976 to 1982. If you had more groups, you might find it instructive to use the manovacluster function to draw a diagram that presents clusters of the groups, formed using the distances between their means.

Cluster Analysis

Cluster analysis, also called segmentation analysis or taxonomy analysis, is a way to create groups of objects, or clusters, in such a way that the profiles of objects in the same cluster are very similar and the profiles of objects in different clusters are quite distinct.

Cluster analysis can be performed on many different types of data sets. For example, a data set might contain a number of observations of subjects in a study where each observation contains a set of variables.

Many different fields of study, such as engineering, zoology, medicine, linguistics, anthropology, psychology, and marketing, have contributed to the development of clustering techniques and the application of such techniques. For example, cluster analysis can help in creating "balanced" treatment and control groups for a designed study. If you find that each cluster contains roughly equal numbers of treatment and control subjects, then statistical differences found between the groups can be attributed to the experiment and not to any initial difference between the groups.
This section explores two kinds of clustering:

- "Hierarchical Clustering" on page 6-30
- "K-Means Clustering" on page 6-46

Hierarchical Clustering

Hierarchical clustering is a way to investigate grouping in your data, simultaneously over a variety of scales, by creating a cluster tree. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next higher level. This allows you to decide what level or scale of clustering is most appropriate in your application.

The following sections explore the hierarchical clustering features in the Statistics Toolbox:

- "Terminology and Basic Procedure" on page 6-31
- "Finding the Similarities Between Objects" on page 6-31
- "Defining the Links Between Objects" on page 6-34
- "Evaluating Cluster Formation" on page 6-36
- "Creating Clusters" on page 6-42

Terminology and Basic Procedure

To perform hierarchical cluster analysis on a data set using the Statistics Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the data set. In this step, you calculate the distance between objects using the pdist function. The pdist function supports many different ways to compute this measurement. See "Finding the Similarities Between Objects" on page 6-31 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step, you link pairs of objects that are in close proximity using the linkage function. The linkage function uses the distance information generated in step 1 to determine the proximity of objects to each other. As objects are paired into binary clusters, the newly formed clusters are grouped into larger clusters until a hierarchical tree is formed. See "Defining the Links Between Objects" on page 6-34 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this step, you use the cluster function to prune branches off the bottom of the hierarchical tree, and assign all the objects below each cut to a single cluster. This creates a partition of the data. The cluster function can create these clusters by detecting natural groupings in the hierarchical tree or by cutting off the hierarchical tree at an arbitrary point. See "Creating Clusters" on page 6-42 for more information.

The following sections provide more information about each of these steps.

Note The Statistics Toolbox includes a convenience function, clusterdata, which performs all these steps for you. You do not need to execute the pdist, linkage, or cluster functions separately.

Finding the Similarities Between Objects

You use the pdist function to calculate the distance between every pair of objects in a data set. For a data set made up of m objects, there are $m \cdot(m-1) / 2$ pairs in the data set. The result of this computation is commonly known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the pdist function calculates the Euclidean distance between objects; however, you can specify one of several other options. See pdist for more information.

Note You can optionally normalize the values in the data set before calculating the distance information. In a real world data set, variables can be measured against different scales. For example, one variable can measure Intelligence Quotient (IQ) test scores and another variable can measure head circumference. These discrepancies can distort the proximity calculations. Using the zscore function, you can convert all the values in the data set to use the same proportional scale. See zscore for more information.

For example, consider a data set, X , made up of five objects where each object is a set of x, y coordinates.

- Object 1: 1, 2
- Object 2: 2.5, 4.5
- Object 3: 2, 2
- Object 4: 4, 1.5
- Object 5: 4, 2.5

You can define this data set as a matrix
X = [1 2;2.5 4.5;2 2;4 1.5;4 2.5]
and pass it to pdist. The pdist function calculates the distance between object 1 and object 2, object 1 and object 3 , and so on until the distances between all the pairs have been calculated. The following figure plots these objects in a graph. The Euclidean distance between object 2 and object 3 is shown to illustrate one interpretation of distance.

Returning Distance Information. The pdist function returns this distance information in a vector, Y, where each element contains the distance between a pair of objects.

```
Y = pdist(X)
Y =
    Columns 1 through 7
        2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000
    Columns 8 through 10
        2.0616 2.0616 1.0000
```

To make it easier to see the relationship between the distance information generated by pdist and the objects in the original data set, you can reformat the distance vector into a matrix using the squareform function. In this matrix, element i, j corresponds to the distance between object i and object j in the original data set. In the following example, element 1,1 represents the distance between object 1 and itself (which is zero). Element 1,2 represents the distance between object 1 and object 2 , and so on.

```
squareform(Y)
ans =
\begin{tabular}{rrrrr}
0 & 2.9155 & 1.0000 & 3.0414 & 3.0414 \\
2.9155 & 0 & 2.5495 & 3.3541 & 2.5000 \\
1.0000 & 2.5495 & 0 & 2.0616 & 2.0616
\end{tabular}
```

3.0414	3.3541	2.0616	0	1.0000
3.0414	2.5000	2.0616	1.0000	0

Defining the Links Between Objects

Once the proximity between objects in the data set has been computed, you can determine how objects in the data set should be grouped into clusters, using the linkage function. The linkage function takes the distance information generated by pdist and links pairs of objects that are close together into binary clusters (clusters made up of two objects). The linkage function then links these newly formed clusters to each other and to other objects to create bigger clusters until all the objects in the original data set are linked together in a hierarchical tree.

For example, given the distance vector Y generated by pdist from the sample data set of x - and y-coordinates, the linkage function generates a hierarchical cluster tree, returning the linkage information in a matrix, z .

```
Z = linkage(Y)
Z =
\begin{tabular}{lll}
4.0000 & 5.0000 & 1.0000 \\
1.0000 & 3.0000 & 1.0000 \\
6.0000 & 7.0000 & 2.0616 \\
2.0000 & 8.0000 & 2.5000
\end{tabular}
```

In this output, each row identifies a link between objects or clusters. The first two columns identify the objects that have been linked, that is, object 1 , object 2 , and so on. The third column contains the distance between these objects. For the sample data set of x - and y-coordinates, the linkage function begins by grouping objects 1 and 3 , which have the closest proximity (distance value $=1.0000$). The linkage function continues by grouping objects 4 and 5 , which also have a distance value of 1.0000 .

The third row indicates that the linkage function grouped objects 6 and 7. If the original sample data set contained only five objects, what are objects 6 and 7 ? Object 6 is the newly formed binary cluster created by the grouping of objects 1 and 3 . When the linkage function groups two objects into a new cluster, it must assign the cluster a unique index value, starting with the value $m+1$, where m is the number of objects in the original data set. (Values 1 through m are already used by the original data set.) Similarly, object 7 is the cluster formed by grouping objects 4 and 5 .
linkage uses distances to determine the order in which it clusters objects. The distance vector Y contains the distances between the original objects 1 through 5. But linkage must also be able to determine distances involving clusters that it creates, such as objects 6 and 7. By default, linkage uses a method known as single linkage. However, there are a number of different methods available. See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed cluster made up of objects 6 and 7 , with object 2 from the original data set. The following figure graphically illustrates the way linkage groups the objects into a hierarchy of clusters.

Plotting the Cluster Tree

The hierarchical, binary cluster tree created by the linkage function is most easily understood when viewed graphically. The Statistics Toolbox includes the dendrogram function that plots this hierarchical tree information as a graph, as in the following example.

```
dendrogram(Z)
```


In the figure, the numbers along the horizontal axis represent the indices of the objects in the original data set. The links between objects are represented as upside-down U-shaped lines. The height of the U indicates the distance between the objects. For example, the link representing the cluster containing objects 1 and 3 has a height of 1 . The link representing the cluster that groups object 2 together with objects $1,3,4$, and 5 , (which are already clustered as object 8) has a height of 2.5 . The height represents the distance linkage computes between objects 2 and 8 . For more information about creating a dendrogram diagram, see the dendrogram reference page.

Evaluating Cluster Formation

After linking the objects in a data set into a hierarchical cluster tree, you might want to verify that the distances (that is, heights) in the tree reflect the original distances accurately. In addition, you might want to investigate natural divisions that exist among links between objects. The Statistics Toolbox provides functions to perform both these tasks, as described in the following sections:

- "Verifying the Cluster Tree" on page 6-37
- "Getting More Information About Cluster Links" on page 6-38

Verifying the Cluster Tree. In a hierarchical cluster tree, any two objects in the original data set are eventually linked together at some level. The height of the link represents the distance between the two clusters that contain those two objects. This height is known as the cophenetic distance between the two objects. One way to measure how well the cluster tree generated by the linkage function reflects your data is to compare the cophenetic distances with the original distance data generated by the pdist function. If the clustering is valid, the linking of objects in the cluster tree should have a strong correlation with the distances between objects in the distance vector. The cophenet function compares these two sets of values and computes their correlation, returning a value called the cophenetic correlation coefficient. The closer the value of the cophenetic correlation coefficient is to 1 , the more accurately the clustering solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of clustering the same data set using different distance calculation methods or clustering algorithms. For example, you can use the cophenet function to evaluate the clusters created for the sample data set

```
c = cophenet(Z,Y)
c =
    0.8615
```

where Z is the matrix output by the linkage function and Y is the distance vector output by the pdist function.

Execute pdist again on the same data set, this time specifying the city block metric. After running the linkage function on this new pdist output using the average linkage method, call cophenet to evaluate the clustering solution.

```
Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)
c =
```

The cophenetic correlation coefficient shows that using a different distance and linkage method creates a tree that represents the original distances slightly better.

Getting More Information About Cluster Links. One way to determine the natural cluster divisions in a data set is to compare the height of each link in a cluster tree with the heights of neighboring links below it in the tree.
A link that is approximately the same height as the links below it indicates that there are no distinct divisions between the objects joined at this level of the hierarchy. These links are said to exhibit a high level of consistency, because the distance between the objects being joined is approximately the same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of the links below it indicates that the objects joined at this level in the cluster tree are much farther apart from each other than their components were when they were joined. This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural division in a data set. The cluster function uses a quantitative measure of inconsistency to determine where to partition your data set into clusters. (See "Creating Clusters" on page 6-42 for more information.)

The following dendrogram, created using a data set of random numbers, illustrates inconsistent links. Note how the objects in the dendrogram fall into three groups that are connected by links at a much higher level in the tree. These links are inconsistent when compared with the links below them in the hierarchy.

These links show inconsistency when compared to links below them

These links show consistency

The relative consistency of each link in a hierarchical cluster tree can be quantified and expressed as the inconsistency coefficient. This value compares the height of a link in a cluster hierarchy with the average height of links below it. Links that join distinct clusters have a low inconsistency coefficient; links that join indistinct clusters have a high inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster tree, use the inconsistent function. By default, the inconsistent function compares each link in the cluster hierarchy with adjacent links that are less than two levels below it in the cluster hierarchy. This is called the depth of the comparison. You can also specify other depths. The objects at the bottom of the cluster tree, called leaf nodes, that have no further objects below them, have an inconsistency coefficient of zero. Clusters that join two leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the inconsistency values for the links created by the linkage function in "Defining the Links Between Objects" on page 6-34.

```
I = inconsistent(Z)
I =
\begin{tabular}{rrrr}
1.0000 & 0 & 1.0000 & 0 \\
1.0000 & 0 & 1.0000 & 0 \\
1.3539 & 0.6129 & 3.0000 & 1.1547 \\
2.2808 & 0.3100 & 2.0000 & 0.7071
\end{tabular}
```

The inconsistent function returns data about the links in an ($m-1$)-by-4 matrix, whose columns are described in the following table.

Column	Description
1	Mean of the heights of all the links included in the calculation
2	Standard deviation of all the links included in the calculation
3	Number of links included in the calculation
4	Inconsistency coefficient

In the sample output, the first row represents the link between objects 4 and 5. This cluster is assigned the index 6 by the linkage function. Because both 4 and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero. The second row represents the link between objects 1 and 3 , both of which are also leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6 and 7. (This new cluster is assigned index 8 in the linkage output). Column 3 indicates that three links are considered in the calculation: the link itself and the two links directly below it in the hierarchy. Column 1 represents the mean of the heights of these links. The inconsistent function uses the height information output by the linkage function to calculate the mean. Column 2 represents the standard deviation between the links. The last column contains the inconsistency value for these links, 1.1547. It is the difference between the current link height and the mean, normalized by the standard deviation:

```
>> (2.0616 - 1.3539) / .6129
```

ans =
1.1547

The following figure illustrates the links and heights included in this calculation.

Note In the preceding figure, the lower limit on the y-axis is set to 0 to show the heights of the links. To set the lower limit to 0, select Axes Properties from the Edit menu, click the \mathbf{Y} Axis tab, and enter 0 in the field immediately to the right of \mathbf{Y} Limits.

Row 4 in the output matrix describes the link between object 8 and object 2 . Column 3 indicates that two links are included in this calculation: the link
itself and the link directly below it in the hierarchy. The inconsistency coefficient for this link is 0.7071 .

The following figure illustrates the links and heights included in this calculation.

Creating Clusters

After you create the hierarchical tree of binary clusters, you can prune the tree to partition your data into clusters using the cluster function. The cluster function lets you create clusters in two ways, as discussed in the following sections:

- "Finding Natural Divisions in Data" on page 6-43
- "Specifying Arbitrary Clusters" on page 6-44

Finding Natural Divisions in Data. The hierarchical cluster tree may naturally divide the data into distinct, well-separated clusters. This can be particularly evident in a dendrogram diagram created from data where groups of objects are densely packed in certain areas and not in others. The inconsistency coefficient of the links in the cluster tree can identify these divisions where the similarities between objects change abruptly. (See "Evaluating Cluster Formation" on page 6-36 for more information about the inconsistency coefficient.) You can use this value to determine where the cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into clusters, specifying an inconsistency coefficient threshold of 1.2 as the value of the cutoff argument, the cluster function groups all the objects in the sample data set into one cluster. In this case, none of the links in the cluster hierarchy had an inconsistency coefficient greater than 1.2.

```
T = cluster(Z,'cutoff',1.2)
T =
    1
    1
    1
    1
    1
```

The cluster function outputs a vector, T, that is the same size as the original data set. Each element in this vector contains the number of the cluster into which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8 , the cluster function divides the sample data set into three separate clusters.

```
T = cluster(Z,'cutoff',0.8)
T =
    1
    3
    1
    2
    2
```

This output indicates that objects 1 and 3 were placed in cluster 1, objects 4 and 5 were placed in cluster 2 , and object 2 was placed in cluster 3.

When clusters are formed in this way, the cutoff value is applied to the inconsistency coefficient. These clusters may, but do not necessarily, correspond to a horizontal slice across the dendrogram at a certain height. If you want clusters corresponding to a horizontal slice of the dendrogram, you can either use the 'criterion' option to specify that the cutoff should be based on distance rather than inconsistency, or you can specify the number of clusters directly as described in the following section.

Specifying Arbitrary Clusters. Instead of letting the cluster function create clusters determined by the natural divisions in the data set, you can specify the number of clusters you want created.

For example, you can specify that you want the cluster function to partition the sample data set into two clusters. In this case, the cluster function creates one cluster containing objects $1,3,4$, and 5 and another cluster containing object 2 .

```
T = cluster(Z,'maxclust',2)
T =
2
1
2
2
2
```

To help you visualize how the cluster function determines these clusters, the following figure shows the dendrogram of the hierarchical cluster tree. The horizontal dashed line intersects two lines of the dendrogram, corresponding to setting 'maxclust ' to 2 . These two lines partition the objects into two clusters: the objects below the left-hand line, namely $1,3,4$, and 5 , belong to one cluster, while the object below the right-hand line, namely 2 , belongs to the other cluster.

On the other hand, if you set 'maxclust' to 3 , the cluster function groups objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2 in a third cluster. The following command illustrates this.

```
T = cluster(Z,'maxclust',3)
T =
    1
    3
    1
    2
    2
```

This time, the cluster function cuts off the hierarchy at a lower point, corresponding to the horizontal line that intersects three lines of the dendrogram in the following figure.

K-Means Clustering

This section gives a description and an example of using the MATLAB function for K-means clustering, kmeans.

- "Overview of K-Means Clustering" on page 6-46
- "Example: Clustering Data in Four Dimensions" on page 6-47

Overview of K-Means Clustering

K-means clustering can best be described as a partitioning method. That is, the function kmeans partitions the observations in your data into K mutually exclusive clusters, and returns a vector of indices indicating to which of the k clusters it has assigned each observation. Unlike the hierarchical clustering methods used in linkage (see "Hierarchical Clustering" on page 6-30), kmeans does not create a tree structure to describe the groupings in your data, but rather creates a single level of clusters. Another difference is that K-means
clustering uses the actual observations of objects or individuals in your data, and not just their proximities. These differences often mean that kmeans is more suitable for clustering large amounts of data.
kmeans treats each observation in your data as an object having a location in space. It finds a partition in which objects within each cluster are as close to each other as possible, and as far from objects in other clusters as possible. You can choose from five different distance measures, depending on the kind of data you are clustering.

Each cluster in the partition is defined by its member objects and by its centroid, or center. The centroid for each cluster is the point to which the sum of distances from all objects in that cluster is minimized. kmeans computes cluster centroids differently for each distance measure, to minimize the sum with respect to the measure that you specify.
kmeans uses an iterative algorithm that minimizes the sum of distances from each object to its cluster centroid, over all clusters. This algorithm moves objects between clusters until the sum cannot be decreased further. The result is a set of clusters that are as compact and well-separated as possible. You can control the details of the minimization using several optional input parameters to kmeans, including ones for the initial values of the cluster centroids, and for the maximum number of iterations.

Example: Clustering Data in Four Dimensions

This example explores possible clustering in four-dimensional data by analyzing the results of partitioning the points into three, four, and five clusters.

Note Because each part of this example generates random numbers sequentially, i.e., without setting a new state, you must perform all steps in sequence to duplicate the results shown. If you perform the steps out of sequence, the answers will be essentially the same, but the intermediate results, number of iterations, or ordering of the silhouette plots may differ. See "Random Number Generators in the Statistics Toolbox" on page 1-5 to set the correct seed.

Creating Clusters and Determining Separation. First, load some data.

```
load kmeansdata;
size(X)
ans =
    560 4
```

Even though these data are four-dimensional, and cannot be easily visualized, kmeans enables you to investigate whether a group structure exists in them. Call kmeans with k, the desired number of clusters, equal to 3 . For this example, specify the city block distance measure, and use the default starting method of initializing centroids from randomly selected data points.

```
idx3 = kmeans(X,3,'distance','city');
```

To get an idea of how well-separated the resulting clusters are, you can make a silhouette plot using the cluster indices output from kmeans. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters. This measure ranges from +1 , indicating points that are very distant from neighboring clusters, through 0 , indicating points that are not distinctly in one cluster or another, to -1 , indicating points that are probably assigned to the wrong cluster. silhouette returns these values in its first output.

```
[silh3,h] = silhouette(X,idx3,'city');
xlabel('Silhouette Value')
ylabel('Cluster')
```


From the silhouette plot, you can see that most points in the third cluster have a large silhouette value, greater than 0.6 , indicating that the cluster is somewhat separated from neighboring clusters. However, the second cluster contains many points with low silhouette values, and the first contains a few points with negative values, indicating that those two clusters are not well separated.

Determining the Correct Number of Clusters. Increase the number of clusters to see if kmeans can find a better grouping of the data. This time, use the optional 'display ' parameter to print information about each iteration.

Notice that the total sum of distances decreases at each iteration as kmeans reassigns points between clusters and recomputes cluster centroids. In this case, the second phase of the algorithm did not make any reassignments,
indicating that the first phase reached a minimum after five iterations. In some problems, the first phase might not reach a minimum, but the second phase always will.

A silhouette plot for this solution indicates that these four clusters are better separated than the three in the previous solution.

```
[silh4,h] = silhouette(X,idx4,'city');
xlabel('Silhouette Value')
ylabel('Cluster')
```


A more quantitative way to compare the two solutions is to look at the average silhouette values for the two cases.

```
mean(silh3)
ans =
    0.52594
mean(silh4)
ans =
    0.63997
```

Finally, try clustering the data using five clusters.

```
idx5 = kmeans(X,5,'dist','city','replicates',5);
[silh5,h] = silhouette(X,idx5,'city');
```

```
xlabel('Silhouette Value')
ylabel('Cluster')
mean(silh5)
ans =
0.52657
```


This silhouette plot indicates that this is probably not the right number of clusters, since two of the clusters contain points with mostly low silhouette values. Without some knowledge of how many clusters are really in the data, it is a good idea to experiment with a range of values for k.

Avoiding Local Minima. Like many other types of numerical minimizations, the solution that kmeans reaches often depends on the starting points. It is possible for kmeans to reach a local minimum, where reassigning any one point to a new cluster would increase the total sum of point-to-centroid distances, but where a better solution does exist. However, you can use the optional 'replicates ' parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display ' parameter to print out the final sum of distances for each of the solutions.

```
[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
    'display','final','replicates',5);
17 iterations, total sum of distances = 2303.36
    5 iterations, total sum of distances = 1771.1
```

```
6 \text { iterations, total sum of distances = 1771.1}
5 iterations, total sum of distances = 1771.1
8 iterations, total sum of distances = 2303.36
```

The output shows that, even for this relatively simple problem, nonglobal minima do exist. Each of these five replicates began from a different randomly selected set of initial centroids, and kmeans found two different local minima. However, the final solution that kmeans returns is the one with the lowest total sum of distances, over all replicates.

```
sum(sumdist)
ans =
    1771.1
```


Multidimensional Scaling

The following sections explain how to perform multidimensional scaling, using the functions cmdscale and mdscale:

- "Overview" on page 6-53
- "Classical Multidimensional Scaling" on page 6-53
- "Nonclassical Metric Multidimensional Scaling" on page 6-56
- "Nonmetric Multidimensional Scaling" on page 6-58
- "Example - Reconstructing a Map from Intercity Distances" on page 6-60

Overview

One of the most important goals in visualizing data is to get a sense of how near or far points are from each other. Often, you can do this with a scatter plot. However, for some analyses, the data that you have might not be in the form of points at all, but rather in the form of pairwise similarities or dissimilarities between cases, observations, or subjects. Without any points, you cannot make a scatter plot.

Even if your data are in the form of points rather than pairwise distances, a scatter plot of those data might not be useful. For some kinds of data, the relevant way to measure how "near" two points are might not be their Euclidean distance. While scatter plots of the raw data make it easy to compare Euclidean distances, they are not always useful when comparing other kinds of interpoint distances, city block distance for example, or even more general dissimilarities. Also, with a large number of variables, it is very difficult to visualize distances unless the data can be represented in a small number of dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these problems. MDS allows you to visualize how near points are to each other for many kinds of distance or dissimilarity measures and can produce a representation of your data in a small number of dimensions. MDS does not require raw data, but only a matrix of pairwise distances or dissimilarities.

Classical Multidimensional Scaling

The function cmdscale performs classical (metric) multidimensional scaling, also known as principal coordinates analysis. cmdscale takes as an input a
matrix of interpoint distances and creates a configuration of points. Ideally, those points are in two or three dimensions, and the Euclidean distances between them reproduce the original distance matrix. Thus, a scatter plot of the points created by cmdscale provides a visual representation of the original distances.

A Simple Example

As a very simple example, you can reconstruct a set of points from only their interpoint distances. First, create some four dimensional points with a small component in their fourth coordinate, and reduce them to distances.

```
X = [ normrnd(0,1,10,3), normrnd(0,.1,10,1) ];
D = pdist(X,'euclidean');
```

Next, use cmdscale to find a configuration with those interpoint distances. cmdscale accepts distances as either a square matrix, or, as in this example, in the vector upper-triangular form produced by pdist.

```
[Y,eigvals] = cmdscale(D);
```

cmdscale produces two outputs. The first output, Y , is a matrix containing the reconstructed points. The second output, eigvals, is a vector containing the sorted eigenvalues of what is often referred to as the "scalar product matrix," which, in the simplest case, is equal to $Y^{*} Y^{\prime}$. The relative magnitudes of those eigenvalues indicate the relative contribution of the corresponding columns of Y in reproducing the original distance matrix D with the reconstructed points.

```
format short g
[eigvals eigvals/max(abs(eigvals))]
ans =
    12.623 1
        4.3699 0.34618
        1.9307 0.15295
        0.025884 0.0020505
    1.7192e-015 1.3619e-016
    6.8727e-016 5.4445e-017
    4.4367e-017 3.5147e-018
    -9.2731e-016 -7.3461e-017
    -1.327e-015 -1.0513e-016
    -1.9232e-015 -1.5236e-016
```

If eigvals contains only positive and zero (within roundoff error) eigenvalues, the columns of Y corresponding to the positive eigenvalues provide an exact reconstruction of D , in the sense that their interpoint Euclidean distances, computed using pdist, for example, are identical (within roundoff) to the values in D.

```
maxerr4 = max(abs(D - pdist(Y))) % exact reconstruction
maxerr4 =
    2.6645e-015
```

If two or three of the eigenvalues in eigvals are much larger than the rest, then the distance matrix based on the corresponding columns of Y nearly reproduces the original distance matrix D. In this sense, those columns form a lower-dimensional representation that adequately describes the data. However it is not always possible to find a good low-dimensional reconstruction.

```
% good reconstruction in 3D
maxerr3 = max(abs(D - pdist(Y(:,1:3))))
maxerr3 =
    0.029728
% poor reconstruction in 2D
maxerr2 = max(abs(D - pdist(Y(:,1:2))))
maxerr2 =
        0.91641
```

The reconstruction in three dimensions reproduces D very well, but the reconstruction in two dimensions has errors that are of the same order of magnitude as the largest values in D.

```
max(max(D))
ans =
```

 3.4686
 Often, eigvals contains some negative eigenvalues, indicating that the distances in D cannot be reproduced exactly. That is, there might not be any configuration of points whose interpoint Euclidean distances are given by D. If the largest negative eigenvalue is small in magnitude relative to the largest positive eigenvalues, then the configuration returned by cmdscale might still reproduce D well. "Example - Reconstructing a Map from Intercity Distances" on page 6-60 demonstrates this.

Nonclassical Metric Multidimensional Scaling

The function cmdscale performs classical multidimensional scaling (MDS). The Statistics Toolbox also includes the function mdscale to perform non-classical MDS. As with cmdcale, you can use mdscale either to visualize dissimilarity data for which no "locations" exist, or to visualize high-dimensional data by reducing its dimensionality. Both functions take a matrix of dissimilarities as an input and produce a configuration of points. However, mdscale offers a choice of different criteria to construct the configuration, and allows missing data and weights.

For example, the cereal data include measurements on 10 variables describing breakfast cereals. You can use mdscale to visualize these data in two dimensions. First, load the data. For clarity, this example code selects a subset of 22 of the observations.

```
load cereal.mat
X = [Calories Protein Fat Sodium Fiber Carbo Sugars Shelf...
Potass Vitamins];
X = X(strmatch('G',Mfg),:); % take a subset from a single
    % manufacturer
size(X)
ans =
    2 2 1 0
```

Then use pdist to transform the 10 -dimensional data into dissimilarities. The output from pdist is a symmetric dissimilarity matrix, stored as a vector containing only the ($23 * 22 / 2$) elements in its upper triangle.

```
dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =
    1 231
```

This example code first standardizes the cereal data, and then uses city block distance as a dissimilarity. The choice of transformation to dissimilarities is application-dependent, and the choice here is only for simplicity. In some applications, the original data are already in the form of dissimilarities.
Next, use mdscale to perform metric MDS. Unlike cmdscale, you must specify the desired number of dimensions, and the method to use to construct the output configuration. For this example, use two dimensions. The metric STRESS criterion is a common method for computing the output; for other
choices, see the mdscale reference page in the online documentation. The second output from mdscale is the value of that criterion evaluated for the output configuration. It measures the how well the interpoint distances of the output configuration approximate the original input dissimilarities.

```
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','metricstress');
stress
stress =
```

 0.1856
 A scatterplot of the output from mdscale represents the original 10 -dimensional data in two dimensions, and you can use the gname function to label selected points.

```
plot(Y(:,1),Y(:,2),'o');
gname(Name(strmatch('G',Mfg)))
```


Nonmetric Multidimensional Scaling

Metric multidimensional scaling creates a configuration of points whose interpoint distances approximate the given dissimilarities. This is sometimes too strict a requirement, and non-metric scaling is designed to relax it a bit. Instead of trying to approximate the dissimilarities themselves, non-metric scaling approximates a nonlinear, but monotonic, transformation of them. Because of the monotonicity, larger or smaller distances on a plot of the output will correspond to larger or smaller dissimilarities, respectively. However, the nonlinearity implies that mdscale only attempts to preserve the ordering of dissimilarities. Thus, there may be contractions or expansions of distances at different scales.

You use mdscale to perform nonmetric MDS in much the same way as for metric scaling. The nonmetric STRESS criterion is a common method for computing the output; for more choices, see the mdscale reference page in the online documentation. As with metric scaling, the second output from mdscale is the value of that criterion evaluated for the output configuration. For nonmetric scaling, however, it measures the how well the interpoint distances of the output configuration approximate the disparities. The disparities are returned in the third output. They are the transformed values of the original dissimilarities.

```
[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =
    0.1562
```

To check the fit of the output configuration to the dissimilarities, and to understand the disparities, it helps to make a Shepard plot.

```
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
    dissimilarities(ord),disparities(ord),'r.-', ...
    [0 25],[0 25],'k-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...
'Location','NorthWest');
```


This plot shows that mdscale has found a configuration of points in two dimensions whose interpoint distances approximates the disparities, which in turn are a nonlinear transformation of the original dissimilarities. The concave shape of the disparities as a function of the dissimilarities indicates that fit tends to contract small distances relative to the corresponding dissimilarities. This may be perfectly acceptable in practice.
mdscale uses an iterative algorithm to find the output configuration, and the results can often depend on the starting point. By default, mdscale uses cmdscale to construct an initial configuration, and this choice often leads to a globally best solution. However, it is possible for mdscale to stop at a configuration that is a local minimum of the criterion. Such cases can be diagnosed and often overcome by running mdscale multiple times with different starting points. You can do this using the 'start' and 'replicates' parameters. The following code runs 5 replicates of MDS, each starting at a different randomly-chosen initial configuration. The criterion value is printed out for each replication; mdscale returns the configuration with the best fit.

```
opts = statset('Display','final');
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);
90 iterations, Final stress criterion = 0.156209
1 0 0 ~ i t e r a t i o n s , ~ F i n a l ~ s t r e s s ~ c r i t e r i o n ~ = ~ 0 . 1 9 5 5 4 6 ~
116 iterations, Final stress criterion = 0.156209
85 iterations, Final stress criterion = 0.156209
106 iterations, Final stress criterion = 0.17121
```

Notice that mdscale finds several different local solutions, some of which do not have as low a stress value as the solution found with the cmdscale starting point.

Example - Reconstructing a Map from Intercity Distances

Given only the distances between 10 US cities, cmdscale can construct a map of those cities. First, create the distance matrix and pass it to cmdscale. In this example, D is a full distance matrix: it is square and symmetric, has positive entries off the diagonal, and has zeros on the diagonal.

\{'Atl','Chi', 'Den', 'Hou','LA','Mia', 'NYC', 'SF', 'Sea', 'WDC'\}									
D $=$ [0	587	1212	701	1936	604	748	2139	2182	543;
587	0	920	940	1745	1188	713	1858	1737	597;
1212	920	0	879	831	1726	1631	949	1021	1494;
701	940	879	0	1374	968	1420	1645	1891	1220;
1936	1745	831	1374	0	2339	2451	347	959	2300;
604	1188	1726	968	2339	0	1092	2594	2734	923;
748	713	1631	1420	2451	1092	0	2571	2408	205;
2139	1858	949	1645	347	2594	2571	0	678	2442;
2182	1737	1021	1891	959	2734	2408	678	0	2329;
543	597	1494	1220	2300	923	205	2442	2329	0];
[Y,eigvals]	= cm	mdscal	(D)						

Next, look at the eigenvalues returned by cmdscale. Some of these are negative, indicating that the original distances are not Euclidean. This is because of the curvature of the earth.

[^0]```
[eigvals eigvals/max(abs(eigvals))]
ans =
 9.5821e+006 1
 1.6868e+006 0.17604
 8157.3 0.0008513
 1432.9 0.00014954
 508.67 5.3085e-005
 25.143 2.624e-006
 5.3394e-010 5.5722e-017
 -897.7 -9.3685e-005
 -5467.6 -0.0005706
 -35479 -0.0037026
```

However, in this case, the two largest positive eigenvalues are much larger in magnitude than the remaining eigenvalues. So, despite the negative eigenvalues, the first two coordinates of $Y$ are sufficient for a reasonable reproduction of $D$.

```
Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu - pdist(Y(:,1:2)))) ./ max(Dtriu)
maxrelerr =
 0.0075371
```

Here is a plot of the reconstructed city locations as a map. The orientation of the reconstruction is arbitrary: in this case, it happens to be close to, although not exactly, the correct orientation.

```
plot(Y(:,1),Y(:,2),'.');
text(Y(:,1)+25,Y(:,2),cities);
xlabel('Miles'); ylabel('Miles');
```



## Hypothesis Tests

Introduction (p. 7-2)
Hypothesis Test Terminology (p. 7-3)
Hypothesis Test Assumptions (p. 7-4)
Example: Hypothesis Testing (p. 7-5)
Available Hypothesis Tests (p. 7-9)

Introduces the concept of hypothesis tests.
Explains some basic terminology of hypothesis tests.
Explains some assumptions underlying hypothesis tests.
Provides an example of hypothesis testing.
Describes the available hypothesis tests.

## Introduction

A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable.

For example, suppose that someone says that the average price of a gallon of regular unleaded gas in Massachusetts is $\$ 1.15$. How would you decide whether this statement is true? You could try to find out what every gas station in the state was charging and how many gallons they were selling at that price. That approach might be definitive, but it could end up costing more than the information is worth.

A simpler approach is to find out the price of gas at a small number of randomly chosen stations around the state and compare the average price to $\$ 1.15$.

Of course, the average price you get will probably not be exactly $\$ 1.15$ due to variability in price from one station to the next. Suppose your average price was $\$ 1.18$. Is this three cent difference a result of chance variability, or is the original assertion incorrect? A hypothesis test can provide an answer.
The following sections provide an overview of hypothesis testing with the Statistics Toolbox:

- "Hypothesis Test Terminology" on page 7-3
- "Hypothesis Test Assumptions" on page 7-4
- "Example: Hypothesis Testing" on page 7-5
- "Available Hypothesis Tests" on page 7-9


## Hypothesis Test Terminology

To get started, there are some terms to define and assumptions to make:

- The null hypothesis is the original assertion. In this case the null hypothesis is that the average price of a gallon of gas is $\$ 1.15$. The notation is $\mathrm{H}_{0}: \mu=1.15$.
- There are three possibilities for the alternative hypothesis. You might only be interested in the result if gas prices were actually higher. In this case, the alternative hypothesis is $\mathrm{H}_{1}: \mu>1.15$. The other possibilities are $\mathrm{H}_{1}: \mu<1.15$ and $\mathrm{H}_{1}: \mu \neq 1.15$.
- The significance level is related to the degree of certainty you require in order to reject the null hypothesis in favor of the alternative. By taking a small sample you cannot be certain about your conclusion. So you decide in advance to reject the null hypothesis if the probability of observing your sampled result is less than the significance level. For a typical significance level of $5 \%$, the notation is $\alpha=0.05$. For this significance level, the probability of incorrectly rejecting the null hypothesis when it is actually true is $5 \%$. If you need more protection from this error, then choose a lower value of $\alpha$.
- The $p$-value is the probability of observing the given sample result under the assumption that the null hypothesis is true. If the $p$-value is less than $\alpha$, then you reject the null hypothesis. For example, if $\alpha=0.05$ and the $p$-value is 0.03 , then you reject the null hypothesis.

The converse is not true. If the p-value is greater than $\alpha$, you have insufficient evidence to reject the null hypothesis.

- The outputs for many hypothesis test functions also include confidence intervals. Loosely speaking, a confidence interval is a range of values that have a chosen probability of containing the true hypothesized quantity. Suppose, in the example, 1.15 is inside a $95 \%$ confidence interval for the mean, $\mu$. That is equivalent to being unable to reject the null hypothesis at a significance level of 0.05 . Conversely if the $100(1-\alpha)$ confidence interval does not contain 1.15 , then you reject the null hypothesis at the $\alpha$ level of significance.


## Hypothesis Test Assumptions

The difference between hypothesis test procedures often arises from differences in the assumptions that the researcher is willing to make about the data sample. For example, the Z-test assumes that the data represents independent samples from the same normal distribution and that you know the standard deviation, $\sigma$. The t-test has the same assumptions except that you estimate the standard deviation using the data instead of specifying it as a known quantity.

Both tests have an associated signal-to-noise ratio

$$
\begin{aligned}
& Z=\frac{\bar{x}-\mu}{\sigma} \quad \text { or } \quad T=\frac{\bar{x}-\mu}{s} \\
& \text { where } \bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n}
\end{aligned}
$$

The signal is the difference between the average and the hypothesized mean. The noise is the standard deviation posited or estimated.

If the null hypothesis is true, then $Z$ has a standard normal distribution, $\mathrm{N}(0,1)$. $T$ has a Student's $t$ distribution with the degrees of freedom, $v$, equal to one less than the number of data values.

Given the observed result for $Z$ or $T$, and knowing the distribution of $Z$ and $T$ assuming the null hypothesis is true, it is possible to compute the probability ( $p$-value) of observing this result. A very small p-value casts doubt on the truth of the null hypothesis. For example, suppose that the p-value was 0.001 , meaning that the probability of observing the given $Z$ or $T$ was one in a thousand. That should make you skeptical enough about the null hypothesis that you reject it rather than believe that your result was just a lucky 999 to 1 shot.

There are also nonparametric tests that do not even require the assumption that the data come from a normal distribution. In addition, there are functions for testing whether the normal assumption is reasonable.

## Example: Hypothesis Testing

This example uses the gasoline price data in gas.mat. There are two samples of 20 observed gas prices for the months of January and February, 1993.

```
load gas
prices = [price1 price2];
```

As a first step, you may want to test whether the samples from each month follow a normal distribution. As each sample is relatively small, you might choose to perform a Lilliefors test (rather than a Jarque-Bera test).

```
lillietest(price1)
ans =
 0
lillietest(price2)
ans =
 0
```

The result of the hypothesis test is a Boolean value that is 0 when you do not reject the null hypothesis, and 1 when you do reject that hypothesis. In each case, there is no need to reject the null hypothesis that the samples have a normal distribution.

Suppose it is historically true that the standard deviation of gas prices at gas stations around Massachusetts is four cents a gallon. The Z-test is a procedure for testing the null hypothesis that the average price of a gallon of gas in January (price1) is $\$ 1.15$.

```
[h,pvalue,ci] = ztest(price1/100,1.15,0.04)
h =
 0
pvalue =
 0.8668
ci =
 1.1340 1.1690
```

The Boolean output is $\mathrm{h}=0$, so you do not reject the null hypothesis.
The result suggests that $\$ 1.15$ is reasonable. The $95 \%$ confidence interval [1.1340 1.1690] neatly brackets $\$ 1.15$.
What about February? Try a t-test with price2. Now you are not assuming that you know the standard deviation in price.

```
[h,pvalue,ci] = ttest(price2/100,1.15)
h =
 1
pvalue =
 4.9517e-04
Ci =
 1.1675 1.2025
```

With the Boolean result $\mathrm{h}=1$, you can reject the null hypothesis at the default significance level, 0.05.

It looks like $\$ 1.15$ is not a reasonable estimate of the gasoline price in February. The low end of the $95 \%$ confidence interval is greater than 1.15.

The function ttest2 allows you to compare the means of the two data samples.

```
[h,sig,ci] = ttest2(price1,price2)
h =
 1
sig =
 0.0083
ci =
 -5.7845 -0.9155
```

The confidence interval (ci above) indicates that gasoline prices were between one and six cents lower in January than February.

If the two samples were not normally distributed but had similar shape, it would have been more appropriate to use the nonparametric rank sum test in
place of the $t$-test. You can still use the rank sum test with normally distributed data, but it is less powerful than the t-test.

```
[p,h,stats] = ranksum(price1, price2)
p =
 0.0092
h =
 1
stats =
 zval: -2.6064
 ranksum: 314
```

As might be expected, the rank sum test leads to the same conclusion but is less sensitive to the difference between samples (higher p-value).

The box plot below gives less conclusive results. On a notched box plot, two groups have overlapping notches if their medians are not significantly different. Here the notches just barely overlap, indicating that the difference in medians is of borderline significance. (The results for a box plot are not always the same as for a t-test, which is based on means rather than medians.) Refer to the "Statistical Plots" chapter for more information about box plots.

```
boxplot(prices,1)
set(gca,'XtickLabel',str2mat('January','February'))
xlabel('Month')
ylabel('Prices ($0.01)')
```



## Available Hypothesis Tests

The Statistics Toolbox has functions for performing the following tests.

| Function | What it Tests |
| :--- | :--- |
| jbtest | Normal distribution for one sample |
| kstest | Any specified distribution for one sample |
| kstest2 | Equal distributions for two samples |
| lillietest | Normal distribution for one sample |
| ranksum | Median of two unpaired samples |
| signrank | Median of two paired samples |
| signtest | Median of two paired samples |
| ttest | Mean of one normal sample |
| ttest2 | Mean of two normal samples |
| ztest | Mean of normal sample with known standard deviation |

## Statistical Plots

Introduction (p. 8-2)
Box Plots (p. 8-3)
Distribution Plots (p. 8-4)
Scatter Plots (p. 8-10)

Introduces the tools for creating statistical plots.
Explains how to create box plots.
Explains how to create distribution plots.
Explains how to create scatter plots.

## Introduction

The Statistics Toolbox adds specialized plots to the extensive graphics capabilities of MATLAB:

- Box plots are graphs for describing data samples. They are also useful for graphic comparisons of the means of many samples (see "One-Way Analysis of Variance (ANOVA)" on page 4-3).
- Distribution plots are graphs for visualizing the distribution of one or more samples. They include normal and Weibull probability plots, quantile-quantile plots, and empirical cumulative distribution plots.
- Scatter plots are graphs for visualizing the relationship between a pair of variables or several such pairs. Grouped versions of these plots use different plotting symbols to indicate group membership. The gname function can label points on these plots with a text label or an observation number.

The plot types are described further in the following sections:

- "Box Plots" on page 8-3
- "Distribution Plots" on page 8-4
- "Scatter Plots" on page 8-10


## Box Plots

The graph shows an example of a notched box plot.


This plot has several graphic elements:

- The lower and upper lines of the "box" are the 25 th and 75 th percentiles of the sample. The distance between the top and bottom of the box is the interquartile range.
- The line in the middle of the box is the sample median. If the median is not centered in the box, that is an indication of skewness.
- The "whiskers" are lines extending above and below the box. They show the extent of the rest of the sample (unless there are outliers). Assuming no outliers, the maximum of the sample is the top of the upper whisker. The minimum of the sample is the bottom of the lower whisker. By default, an outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box.
- The plus sign at the top of the plot is an indication of an outlier in the data. This point might be the result of a data entry error, a poor measurement, or a change in the system that generated the data.
- The notches in the box are a graphic confidence interval about the median of a sample. Box plots do not have notches by default.

A side-by-side comparison of two notched box plots provides a graphical way to determine which groups have significantly different medians. This is similar to a one-way analysis of variance, except that the latter compares means.
Analysis of variance is described in Chapter 4, "Linear Models."

## Distribution Plots

There are several types of plots for examining the distribution of one or more samples, as described in the following sections:

- "Normal Probability Plots" on page 8-4
- "Quantile-Quantile Plots" on page 8-6
- "Weibull Probability Plots" on page 8-7
- "Empirical Cumulative Distribution Function (CDF)" on page 8-8


## Normal Probability Plots

A normal probability plot is a useful graph for assessing whether data comes from a normal distribution. Many statistical procedures make the assumption that the underlying distribution of the data is normal, so this plot can provide some assurance that the assumption of normality is not being violated, or provide an early warning of a problem with your assumptions.

This example shows a typical normal probability plot.

```
x = normrnd(10,1,25,1);
normplot(x)
```



The plot has three graphical elements. The plus signs show the empirical probability versus the data value for each point in the sample. The solid line connects the 25 th and 75 th percentiles of the data and represents a robust linear fit (i.e., insensitive to the extremes of the sample). The dashed line extends the solid line to the ends of the sample.

The scale of the $y$-axis is not uniform. The $y$-axis values are probabilities and, as such, go from zero to one. The distance between the tick marks on the $y$-axis matches the distance between the quantiles of a normal distribution. The quantiles are close together near the median (probability $=0.5$ ) and stretch out symmetrically moving away from the median. Compare the vertical distance from the bottom of the plot to the probability 0.25 with the distance from 0.25 to 0.50 . Similarly, compare the distance from the top of the plot to the probability 0.75 with the distance from 0.75 to 0.50 .

If all the data points fall near the line, the assumption of normality is reasonable. But, if the data is nonnormal, the plus signs may follow a curve, as in the example using exponential data below.

```
x = exprnd(10,100,1);
normplot(x)
```



This plot is clear evidence that the underlying distribution is not normal.

## Quantile-Quantile Plots

A quantile-quantile plot is useful for determining whether two samples come from the same distribution (whether normally distributed or not).

The example shows a quantile-quantile plot of two samples from a Poisson distribution.

```
x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);
```



Even though the parameters and sample sizes are different, the straight line relationship shows that the two samples come from the same distribution.

Like the normal probability plot, the quantile-quantile plot has three graphical elements. The pluses are the quantiles of each sample. By default the number of pluses is the number of data values in the smaller sample. The solid line joins the 25 th and 75 th percentiles of the samples. The dashed line extends the solid line to the extent of the sample.

The example below shows what happens when the underlying distributions are not the same.

```
x = normrnd(5,1,100,1);
y = weibrnd(2,0.5,100,1);
qqplot(x,y);
```



These samples clearly are not from the same distribution.
It is incorrect to interpret a linear plot as a guarantee that the two samples come from the same distribution. But, for assessing the validity of a statistical procedure that depends on the two samples coming from the same distribution (e.g., ANOVA), a linear quantile-quantile plot should be sufficient.

## Weibull Probability Plots

A Weibull probability plot is a useful graph for assessing whether data comes from a Weibull distribution. Many reliability analyses make the assumption that the underlying distribution of the lifetimes is Weibull, so this plot can provide some assurance that this assumption is not being violated, or provide an early warning of a problem with your assumptions.

The scale of the $y$-axis is not uniform. The $y$-axis values are probabilities and, as such, go from zero to one. The distance between the tick marks on the $y$-axis matches the distance between the quantiles of a Weibull distribution.

If the data points (pluses) fall near the line, the assumption that the data comes from a Weibull distribution is reasonable.

This example shows a typical Weibull probability plot.

```
y = weibrnd(2,0.5,100,1);
weibplot(y)
```



## Empirical Cumulative Distribution Function (CDF)

If you are not willing to assume that your data follows a specific probability distribution, you can use the cdfplot function to graph an empirical estimate of the cumulative distribution function (cdf). This function computes the proportion of data points less than each $x$ value, and plots the proportion as a function of $x$. The $y$-axis scale is linear, not a probability scale for a specific distribution.

This example shows the empirical cumulative distribution function for a Weibull sample.

```
y = weibrnd(2,0.5,100,1);
cdfplot(y)
```



The plot shows a probability function that rises steeply near $x=0$ and levels off for larger values. Over $80 \%$ of the observations are less than 1 , with the remaining values spread over the range [15].

## Scatter Plots

A scatter plot is a simple plot of one variable against another. The MATLAB plot and scatter functions can produce scatter plots. The MATLAB plotmatrix function can produce a matrix of such plots showing the relationship between several pairs of variables.

The Statistics Toolbox adds functions that produce grouped versions of these plots. These are useful for determining whether the values of two variables or the relationship between those variables is the same in each group.

Suppose you want to examine the weight and mileage of cars from three different model years.

```
load carsmall
gscatter(Weight,MPG,Model_Year,'','xos')
```



This shows that not only is there a strong relationship between the weight of a car and its mileage, but also that newer cars tend to be lighter and have better gas mileage than older cars.
(The default arguments for gscatter produce a scatter plot with the different groups shown with the same symbol but different colors. The last two arguments above request that all groups be shown in default colors and with different symbols.)

The carsmall data set contains other variables that describe different aspects of cars. You can examine several of them in a single display by creating a grouped plot matrix.

```
xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'', 'xos')
```



The upper right subplot displays MPG against Horsepower, and shows that over the years the horsepower of the cars has decreased but the gas mileage has improved.
The gplotmatrix function can also graph all pairs from a single list of variables, along with histograms for each variable. See "Multivariate Analysis of Variance (MANOVA)" on page 6-24.

## Statistical Process Control

Statistical process control (SPC) refers to a number of methods for assessing and monitoring the quality of manufactured goods. The following sections describe the SPC features of the Statistics Toolbox:

Control Charts (p. 9-2)
Capability Studies (p. 9-5)

Explains how to create control charts.
Describes how to perform capability studies.

## Control Charts

Control charts were popularized by Walter Shewhart in his work in the 1920s at Western Electric. A control chart is a plot of a measurements over time with statistical limits applied. Actually, control chart is a slight misnomer. The chart itself is really a monitoring tool. The control activity might occur if the chart indicates that the process is changing in an undesirable systematic direction.

The Statistics Toolbox supports three common control charts, described in the following sections:

- "Xbar Charts" on page 9-2
- "S Charts" on page 9-3
- "EWMA Charts" on page 9-4


## Xbar Charts

Xbar charts are a plot of the average of a sample of a process taken at regular intervals. Suppose you are manufacturing pistons to a tolerance of 0.5 thousandths of an inch. You measure the runout (deviation from circularity in thousandths of an inch) at four points on each piston.

```
load parts
conf = 0.99;
spec = [-0.5 0.5];
xbarplot(runout,conf,spec)
```



The lines at the bottom and the top of the plot show the process specifications. The central line is the average runout over all the pistons. The two lines flanking the center line are the $99 \%$ statistical control limits. By chance only one measurement in 100 should fall outside these lines. You can see that even in this small run of 36 parts, there are several points outside the boundaries (labeled by their observation numbers). This is an indication that the process mean is not in statistical control. This might not be of much concern in practice, since all the parts are well within specification.

## S Charts

The $S$ chart is a plot of the standard deviation of a process taken at regular intervals. The standard deviation is a measure of the variability of a process. So, the plot indicates whether there is any systematic change in the process variability. Continuing with the piston manufacturing example, you can look at the standard deviation of each set of four measurements of runout.

```
schart(runout)
```



The average runout is about 0.1 thousandths of an inch. There is no indication of nonrandom variability.

## EWMA Charts

The exponentially-weighted moving average (EWMA) chart is another chart for monitoring the process average. It operates on slightly different assumptions than the Xbar chart. The mathematical model behind the Xbar chart posits that the process mean is actually constant over time and any variation in individual measurements is due entirely to chance.

The EWMA model is a little looser. Here you assume that the mean may be varying in time. Here is an EWMA chart of the runout example. Compare this with the plot in "Xbar Charts" on page 9-2.

```
ewmaplot(runout,0.5,0.01,spec)
```



## Capability Studies

Before going into full-scale production, many manufacturers run a pilot study to determine whether their process can actually build parts to the specifications demanded by the engineering drawing.

Using the data from these capability studies with a statistical model enables you to get a preliminary estimate of the percentage of parts that will fall outside the specifications.

```
[p,Cp,Cpk] = capable(mean(runout),spec)
p =
 1.3940e-09
Cp =
 2.3950
Cpk =
 1.9812
```

The result above shows that the probability ( $\mathrm{p}=1.3940 \mathrm{e}-09$ ) of observing an unacceptable runout is extremely low. Cp and Cpk are two popular capability indices.
$C_{p}$ is the ratio of the range of the specifications to six times the estimate of the process standard deviation.

$$
C_{p}=\frac{U S L-L S L}{6 \sigma}
$$

For a process that has its average value on target, a $C_{p}$ of 1 translates to a little more than one defect per thousand. Recently many industries have set a quality goal of one part per million. This would correspond to a $C_{p}=1.6$. The higher the value of $C_{p}$, the more capable the process.
$C_{p k}$ is the ratio of difference between the process mean and the closer specification limit to three times the estimate of the process standard deviation.

$$
C_{p k}=\min \left(\frac{U S L-\mu}{3 \sigma}, \frac{\mu-L S L}{3 \sigma}\right)
$$

where the process mean is $\mu$. For processes that do not maintain their average on target, $C_{p k}$, is a more descriptive index of process capability.

## Design of Experiments

Introduction (p. 10-2)<br>Full Factorial Designs (p. 10-4)<br>Fractional Factorial Designs (p. 10-6)<br>Response Surface Designs (p. 10-8)<br>D-Optimal Designs (p. 10-18)

Introduces the topic of design of experiments.
Explains how to create full factorial designs.
Explains how to create fractional factorial designs.
Explains how to create response surface designs.
Explains how to create D-optimal designs.

## Introduction

There is a world of difference between data and information. To extract information from data you have to make assumptions about the system that generated the data. Using these assumptions and physical theory you may be able to develop a mathematical model of the system.

Generally, even rigorously formulated models have some unknown constants. The goal of experimentation is to acquire data that enable you to estimate these constants.

But why do you need to experiment at all? You could instrument the system you want to study and just let it run. Sooner or later you would have all the data you could use.

In fact, this is a fairly common approach. There are three characteristics of historical data that pose problems for statistical modeling:

- Suppose you observe a change in the operating variables of a system followed by a change in the outputs of the system. That does not necessarily mean that the change in the system caused the change in the outputs.
- A common assumption in statistical modeling is that the observations are independent of each other. This is not the way a system in normal operation works.
- Controlling a system in operation often means changing system variables in tandem. But if two variables change together, it is impossible to separate their effects mathematically.

Designed experiments directly address these problems. The overwhelming advantage of a designed experiment is that you actively manipulate the system you are studying. With Design of Experiments (DOE) you may generate fewer data points than by using passive instrumentation, but the quality of the information you get will be higher.

The Statistics Toolbox provides several functions for generating experimental designs appropriate to various situations. These are discussed in the following sections:

- "Full Factorial Designs" on page 10-4
- "Fractional Factorial Designs" on page 10-6
- "Response Surface Designs" on page 10-8
- "D-Optimal Designs" on page 10-18


## Full Factorial Designs

Suppose you want to determine whether the variability of a machining process is due to the difference in the lathes that cut the parts or the operators who run the lathes.

If the same operator always runs a given lathe then you cannot tell whether the machine or the operator is the cause of the variation in the output. By allowing every operator to run every lathe you can separate their effects.

This is a factorial approach. fullfact is the function that generates the design. Suppose you have four operators and three machines. What is the factorial design?

```
d = fullfact([4 3])
d =
 1
 2 1
 3
 4
 2
 2 2
 3 2
 4 2
 3
 2 3
 3
 4 3
```

Each row of d represents one operator/machine combination. Note that there are $4^{*} 3=12$ rows.

One special subclass of factorial designs is when all the variables take only two values. Suppose you want to quickly determine the sensitivity of a process to high and low values of three variables.

```
d2 = ff2n(3)
d2 =
 0 0 0
 0 0
```

| 0 | 1 | 0 |
| :--- | :--- | :--- |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |

There are $2^{3}=8$ combinations to check.

## Fractional Factorial Designs

One difficulty with factorial designs is that the number of combinations increases exponentially with the number of variables you want to manipulate.
For example, the sensitivity study discussed above might be impractical if there were seven variables to study instead of just three. A full factorial design would require $2^{7}=128$ runs!
If you assume that the variables do not act synergistically in the system, you can assess the sensitivity with far fewer runs. The theoretical minimum number is eight. A design known as the Plackett-Burman design uses a Hadamard matrix to define this minimal number of runs. To see the design (X) matrix for the Plackett-Burman design, you use the hadamard function.

| $\mathrm{X}=$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
| 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
| 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
| 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |

The last seven columns are the actual variable settings ( -1 for low, 1 for high.) The first column (all ones) enables you to measure the mean effect in the linear equation, $y=X \beta+\varepsilon$.

The Plackett-Burman design enables you to study the main (linear) effects of each variable with a small number of runs. It does this by using a fraction, in this case $8 / 128$, of the runs required for a full factorial design. A drawback of this design is that if the effect of one variable does vary with the value of another variable, then the estimated effects will be biased (that is, they will tend to be off by a systematic amount).

At a cost of a somewhat larger design, you can find a fractional factorial that is much smaller than a full factorial, but that does allow estimation of main effects independent of interactions between pairs of variables. You can do this by specifying generators that control the confounding between variables.

As an example, suppose you create a design with the first four variables varying independently as in a full factorial, but with the other three variables formed by multiplying different triplets of the first four. With this design the effects of the last three variables are confounded with three-way interactions among the first four variables. The estimated effect of any single variable, however, is not confounded with (is independent of) interaction effects between any pair of variables. Interaction effects are confounded with each other. Box, Hunter, and Hunter [3] present the properties of these designs and provide the generators needed to produce them.

The fracfact function can produce this fractional factorial design using the generator strings that Box, Hunter, and Hunter provide.

| $X=$ fracfact('a b c d abc bcd acd') |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{X}=$ |  |  |  |  |  |  |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| -1 | -1 | -1 | 1 | -1 | 1 | 1 |
| -1 | -1 | 1 | -1 | 1 | 1 | 1 |
| -1 | -1 | 1 | 1 | 1 | -1 | -1 |
| -1 | 1 | -1 | -1 | 1 | 1 | -1 |
| -1 | 1 | -1 | 1 | 1 | -1 | 1 |
| -1 | 1 | 1 | -1 | -1 | -1 | 1 |
| -1 | 1 | 1 | 1 | -1 | 1 | -1 |
| 1 | -1 | -1 | -1 | 1 | -1 | 1 |
| 1 | -1 | -1 | 1 | 1 | 1 | -1 |
| 1 | -1 | 1 | -1 | -1 | 1 | -1 |
| 1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 1 | 1 | -1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | 1 | -1 | -1 | -1 |
| 1 | 1 | 1 | -1 | 1 | -1 | -1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |

## Response Surface Designs

Sometimes simple linear and interaction models are not adequate. For example, suppose that the outputs are defects or yield, and the goal is to minimize defects and maximize yield. If these optimal points are in the interior of the region in which the experiment is to be conducted, you need a mathematical model that can represent curvature so that it has a local optimum. The simplest such model has the quadratic form

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{12} X_{1} X_{2}+\beta_{11} X_{1}^{2}+\beta_{22} X_{2}^{2}
$$

containing linear terms for all factors, squared terms for all factors, and products of all pairs of factors.
Designs for fitting these types of models are known as response surface designs. One such design is the full factorial design having three values for each input. Although the Statistics Toolbox is capable of generating this design, it is not really a satisfactory design in most cases because it has many more runs than are necessary to fit the model.

The two most common designs generally used in response surface modeling are central composite designs and Box-Behnken designs. In these designs the inputs take on three or five distinct values (levels), but not all combinations of these values appear in the design.

The functions described here produce specific response surface designs:

- "Central Composite Designs" on page 10-8
- "Box-Behnken Designs" on page 10-9

If these do not serve your purposes, consider creating a D-optimal design. "Design of Experiments Demo" on page 10-10 uses a D-optimal design to fit data that conforms to a response surface model. For more information see "D-Optimal Designs" on page 10-18.

## Central Composite Designs

Central composite designs are response surface designs that can fit a full quadratic model. To picture a central composite design, imagine you have several factors that can vary between low and high values. For convenience, suppose each factor varies from -1 to +1 .

One central composite design consists of cube points at the corners of a unit cube that is the product of the intervals [-1,1], star points along the axes at or outside the cube, and center points at the origin.

Central composite designs are of three types. Circumscribed (CCC) designs are as described above. Inscribed (CCI) designs are as described above, but scaled so the star points take the values -1 and +1 , and the cube points lie in the interior of the cube. Faced (CCF) designs have the star points on the faces of the cube. Faced designs have three levels per factor, in contrast with the other types, which have five levels per factor. The following figure shows these three types of designs for three factors.


## Box-Behnken Designs

Like central composite designs, Box-Behnken designs are response surface designs that can fit a full quadratic model. Unlike most central composite designs, Box-Behnken designs use just three levels of each factor. This makes them appealing when the factors are quantitative but the set of achievable values is small.

Central composite faced (CCF) designs also use just three factor levels. However, they are not rotatable as Box-Behnken designs are. On the other hand, Box-Behnken designs can be expected to have poorer prediction ability in the corners of the cube that encloses the design, because unlike CCF designs they do not include points at the corners of that cube.

The following figure shows a Box-Behnken design for three factors, with the circled point appearing at the origin and possibly repeated for several runs. A
repeated center point makes it possible to compute an estimate of the error term that does not depend on the fitted model. For this design all points except the center point appear at a distance $\sqrt{2}$ from the origin. That does not hold true for Box-Behnken designs with different numbers of factors.


## Design of Experiments Demo

The rsmdemo utility is an interactive graphic environment that demonstrates the design of experiments and surface fitting through the simulation of a chemical reaction. The goal of the demo is to find the levels of the reactants needed to maximize the reaction rate.

Suitable designs for this experiment include the central composite designs and Box-Behnken designs, described in the previous two sections, and the D-optimal designs, described in "D-Optimal Designs" on page 10-18. This demo uses D-optimal designs.

There are two parts to the demo:

- "Comparing Results from Trial-and-Error Data and a Designed Experiment" on page 10-11
- "Comparing Results Using a Polynomial Model and a Nonlinear Model" on page 10-15


## Comparing Results from Trial-and-Error Data and a Designed Experiment

This part of the experiment compares the results obtained using data gathered through trial and error and using data from a designed experiment:

1 To begin, run the rsmdemo function.
rsmdemo
2 Click Run in the Reaction Simulator window to generate a test reaction for the trial and error phase of the demo.


To perform the experiment, you can click Run as many as 13 times. For each run, based on the results of previous runs, you can move the sliders in the Reaction Simulator window to change the levels of the reactants to increase or decrease the reaction rate. Each time you click the Run button, the levels for the reactants and results of the run are displayed in the Trial and Error Data window, as shown in the following figure after 13 trials.

| - Figure 2: Trial and Error Data |  |  |  |  |  |  |  | - $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File | Edit | View | Insert | Tools | Desktop | Window Help |  | v |
| Run \# |  | drogen | n-Pen | tane | Isopentane | Reaction | Rate |  |
| 1 |  | 200 |  | 150 | 50 |  |  |  |
| 2 |  | 230 |  | 139 | 50 |  |  |  |
| 3 |  | 230 |  | 168 | 61 |  |  |  |
| 4 |  | 260 |  | 146 | 61 |  |  |  |
| 5 |  | 260 |  | 172 | 61 |  |  |  |
| 6 |  | 230 |  | 150 | 61 |  |  |  |
| 7 |  | 341 |  | 150 | 43 |  |  |  |
| 8 |  | 359 |  | 164 | 43 |  |  |  |
| 9 |  | 291 |  | 190 | 43 |  |  |  |
| 10 |  | 260 |  | 190 | 65 |  |  |  |
| 11 |  | 223 |  | 212 | 60 |  |  |  |
| 12 |  | 285 |  | 197 | 60 |  |  |  |
| 13 |  | 341 |  | 128 | 60 |  |  |  |
|  | Analy | ze | Plo |  |  | $\checkmark$ |  |  |

Note The results are determined using an underlying model that takes into account the noise in the process, so even if you keep all of the levels the same, the results will vary from run to run. In this case however, the Analyze function will not be able to generate a fit for the results.

3 When you have completed 13 runs, select Hydrogen vs. Rate, in the field next to Analyze, to plot the relationships between the reactants and the reaction rate.

| Plot |
| :--- |
| Plot |
| Hydrogen vs. Rate |
| n-Pentane vs. Rate |
| Isopentane vs. Rate |

For this set of 13 runs, rsmdemo produces the following plot.


4 Click the Analyze button to call the rstool function, which you can then use to try to optimize the results. See "Exploring Graphs of Multidimensional Polynomials" on page 4-42 for more information about using the rstool demo.

5 Next, perform another set of 13 runs, this time from a designed experiment. In the Experimental Data window, click the Do Experiment button. rsmdemo calls the cordexch function to generate a D-optimal design, and then, for each run, computes the reaction rate.


6 Select Hydrogen vs. Rate in the field next to Nonlinear Model in the Experimental Data window. This displays the following plot.


7 You can also click the Response Surface button to call rstool to find the optimal levels of the reactants.

8 Compare the analysis results for the two sets of data. It is likely (though not certain) that you'll find some or all of these differences:

- You can fit a full quadratic model with the data from the designed experiment, but the trial and error data may be insufficient for fitting a quadratic model or interactions model.
- Using the data from the designed experiment, you are more likely to be able to find levels for the reactants that result in the maximum reaction rate. Even if you find the best settings using the trial and error data, the confidence bounds are likely to be wider than those from the designed experiment.


## Comparing Results Using a Polynomial Model and a Nonlinear Model

This part of the experiment analyzes the experimental design data with a polynomial (response surface) model and a nonlinear model, and compare the results. The true model for the process, which is used to generate the data, is actually a nonlinear model. However, within the range of the data, a quadratic model approximates the true model quite well:

1 Using the results generated in the designed experiment part of "Comparing Results from Trial-and-Error Data and a Designed Experiment" on page 10-11, click the Response Surface button on the Experimental Data window. rsmdemo calls rstool, which fits a full quadratic model to the data. Drag the reference lines to change the levels of the reactants, and find the optimal reaction rate. Observe the width of the confidence intervals.


2 Now click the Nonlinear Model button on the Experimental Data window. rsmdemo calls nlintool, which fits a Hougen-Watson model to the data. As with the quadratic model, you can drag the reference lines to change the reactant levels. Observe the reaction rate and the confidence intervals.


3 Compare the analysis results for the two models. Even though the true model is nonlinear, you may find that the polynomial model provides a good fit. Because polynomial models are much easier to fit and work with than nonlinear models, a polynomial model is often preferable even when modeling a nonlinear process. Keep in mind, however, that such models are unlikely to be reliable for extrapolating outside the range of the data.

## D-Optimal Designs

The designs above pre-date the computer age, and some were in use by early in the 20th century. In the 1970s statisticians started to use the computer in experimental design by recasting the design of experiments (DOE) in terms of optimization. A D-optimal design is one that maximizes the determinant of Fisher's information matrix, $X^{\mathrm{T}} X$. This matrix is proportional to the inverse of the covariance matrix of the parameters. So maximizing $\operatorname{det}\left(X^{\mathrm{T}} X\right)$ is equivalent to minimizing the determinant of the covariance of the parameters.

A D-optimal design minimizes the volume of the confidence ellipsoid of the regression estimates of the linear model parameters, $\beta$.
There are several functions in the Statistics Toolbox that generate D-optimal designs. These are cordexch, daugment, dcovary, and rowexch. The following sections explore D-optimal design in greater detail:

- "Generating D-Optimal Designs" on page 10-18
- "Augmenting D-Optimal Designs" on page 10-21
- "Designing Experiments with Uncontrolled Inputs" on page 10-23
- "Controlling Candidate Points" on page 10-24
- "Including Categorical Factors" on page 10-24


## Generating D-Optimal Designs

The cordexch and rowexch functions provide two competing optimization algorithms for computing a D-optimal design given a model specification.
Both cordexch and rowexch are iterative algorithms. They operate by improving a starting design by making incremental changes to its elements. In the coordinate exchange algorithm, the increments are the individual elements of the design matrix. In row exchange, the elements are the rows of the design matrix. Atkinson and Donev [1] is a reference.
To generate a D-optimal design you must specify the number of inputs, the number of runs, and the order of the model you want to fit.

Both cordexch and rowexch take the following strings to specify the model:

- 'linear ' or 'l' - the default model with constant and first order terms
- 'interaction' or 'i' - includes constant, linear, and cross product terms
- 'quadratic' or 'q' - interactions plus squared terms
- 'purequadratic' or 'p' - includes constant, linear and squared terms

Alternatively, you can use a matrix of integers to specify the terms. Details are in the help for the utility function $\times 2 f x$.

For a simple example using the coordinate-exchange algorithm, consider the problem of quadratic modeling with two inputs. The model form is

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\varepsilon
$$

Suppose you want the D-optimal design for fitting this model with nine runs.


You can plot the columns of settings against each other to get a better picture of the design.

```
h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)
```



For a simple example using the row-exchange algorithm, consider the interaction model with two inputs. The model form is

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\varepsilon
$$

Suppose you want the D-optimal design for fitting this model with four runs.

```
[settings, X] = rowexch(2,4,'i')
settings =
 -1 1
 -1 -1
 1 -1
 1
X =
\begin{tabular}{rrrr}
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{tabular}
```

The settings matrix shows how to vary the inputs from run to run. The $X$ matrix is the design matrix for fitting the above regression model. The first column of $x$ is for fitting the constant term. The last column is the element-wise product of the second and third columns.

The associated plot is simple but elegant.

```
h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
```

```
 set(gca,'Ytick',[-1 0 1])
 set(h,'Markersize',20)
```



## Augmenting D-Optimal Designs

In practice, experimentation is an iterative process. You often want to add runs to a completed experiment to learn more about the system. The function daugment allows you choose these extra runs optimally.

Suppose you execute the eight-run design below for fitting a linear model to four input variables.

```
settings = cordexch(4,8)
settings =
\begin{tabular}{rrrr}
1 & -1 & 1 & 1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 \\
-1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1
\end{tabular}
```

This design is adequate to fit the linear model for four inputs, but cannot fit the six cross-product (interaction) terms. Suppose you are willing to do eight more runs to fit these extra terms. The following code show how to do so.
[augmented, X$]=$ daugment(settings, 8,'i');

```
augmented
augmented =
```

| 1 | -1 | 1 | 1 |
| ---: | ---: | ---: | ---: |
| -1 | -1 | 1 | -1 |
| -1 | 1 | 1 | 1 |
| 1 | 1 | 1 | -1 |
| -1 | 1 | -1 | 1 |
| 1 | -1 | -1 | 1 |
| -1 | -1 | -1 | -1 |
| 1 | 1 | -1 | -1 |
| -1 | -1 | -1 | 1 |
| 1 | 1 | 1 | 1 |
| -1 | -1 | 1 | 1 |
| -1 | 1 | 1 | -1 |
| 1 | -1 | 1 | -1 |
| 1 | -1 | -1 | -1 |
| -1 | 1 | -1 | -1 |
| 1 | 1 | -1 | 1 |

info $=X^{1 *} X$
info =

| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |

The augmented design is orthogonal, since $\mathrm{X}^{\prime}$ * X is a multiple of the identity matrix. In fact, this design is the same as a $2^{4}$ factorial design.

## Designing Experiments with Uncontrolled Inputs

Sometimes it is impossible to control every experimental input. But you might know the values of some inputs in advance. An example is the time each run takes place. If a process is experiencing linear drift, you might want to include the time of each test run as a variable in the model.

The function dcovary enables you to choose the settings for each run in order to maximize your information despite a linear drift in the process.

Suppose you want to execute an eight-run experiment with three factors that is optimal with respect to a linear drift in the response over time. First you create the drift input variable. Note that drift is normalized to have mean zero. Its minimum is -1 and its maximum is 1 .

```
drift = (linspace(-1,1,8))'
drift =
 -1.0000
 -0.7143
 -0.4286
 -0.1429
 0.1429
 0.4286
 0.7143
 1.0000
settings = dcovary(3,drift,'linear')
settings =
\begin{tabular}{rrrr}
1.0000 & 1.0000 & -1.0000 & -1.0000 \\
-1.0000 & -1.0000 & -1.0000 & -0.7143 \\
-1.0000 & 1.0000 & 1.0000 & -0.4286 \\
1.0000 & -1.0000 & 1.0000 & -0.1429 \\
-1.0000 & 1.0000 & -1.0000 & 0.1429 \\
1.0000 & 1.0000 & 1.0000 & 0.4286 \\
-1.0000 & -1.0000 & 1.0000 & 0.7143 \\
1.0000 & -1.0000 & -1.0000 & 1.0000
\end{tabular}
```


## Controlling Candidate Points

The rowexch function generates a candidate set of possible design points, and then uses a D-optimal algorithm to select a design from those points. It does this by invoking the candgen and candexch functions. If you need to supply your own candidate set, or if you need to modify the one that the candgen function provides, you might prefer to call these functions separately.

This example creates a design that represents proportions of a mixture, so the sum of the proportions cannot exceed 1.

```
% Generate a matrix of (x,y) values with x+y<=1
[x,y]=meshgrid(0:.1:1);
xy = [x(:) y(:)];
xy = xy(sum(xy,2)<=1,:);
% Compute quadratic model terms for these points.
f = x2fx(xy,'q');
% Generate a 10-point design and display it
r=candexch(f,10);
xy(r,:)
ans =
\begin{tabular}{rr}
0 & 0 \\
0 & 1.0000 \\
1.0000 & 0 \\
0 & 0.5000 \\
0.5000 & 0 \\
0 & 1.0000 \\
1.0000 & 0 \\
0.5000 & 0.5000 \\
0.5000 & 0 \\
0.5000 & 0.5000
\end{tabular}
```


## Including Categorical Factors

Another example where it is useful to call candexch directly is to generate a design that includes categorical factors. For these designs you create a candidate set containing dummy variables for the categorical factors. The dummyvar function is useful to create such a candidate set.

This example contains three categorical factors, each taking three levels. You create a candidate set $F$ containing all 27 combinations of these factor levels. Then you create a matrix $C$ containing dummy variables for the factors, and remove enough columns to make the resulting matrix full rank. (You remove one column for each factor except the first factor.) Finally, you use the candexch function to generate a nine-run design.

```
F = fullfact([3 3 3]);
C = dummyvar(F);
C(:,[4 7]) = [];
rows = candexch(C,9);
D = F(rows,:)
D =
 3 1 3
 132
 3 3 1
 123
 2 }
 2 12
 3 2
 2 3 3
 1 1
```

In this example, the resulting design has the property that for each pair of factors, each of the nine possible combinations of levels appears exactly once. That is not always true of D-optimal designs. In fact, because of some randomness built into the candexch function, repeated runs of this example might give different designs.

10 Design of Experiments

## Hidden Markov Models

Introduction (p. 11-2)<br>Example of a Hidden Markov Model (p. 11-4)<br>Markov Chains (p. 11-6)<br>Analyzing a Hidden Markov Model (p. 11-8)

Introduces the concept of a hidden Markov model.
Gives an example of a hidden Markov model.

Provides a definition of Markov chains.
Shows how to use Statistics Toolbox functions to analyze a hidden Markov model.

## Introduction

Markov models are mathematical models of stochastic processes - processes that generate random sequences of outcomes according to certain probabilities. A simple example of a stochastic process is a sequence of coin tosses, the outcomes being heads or tails. People use Markov models to analyze a wide variety of stochastic processes, from daily stock prices to the positions of genes in a chromosome.

You can construct Markov models very easily using state diagrams, such as the one shown in this figure.


## A State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you are trying to model, and the arrows represent transitions between states. The label on each arrow represents the probability of that transition, which depends on the process you are modeling. At each step of the process, the model generates an output, or emission, depending on which state it is in, and then makes a transition to another state.

For example, if you are modeling a sequence of coin tosses, the two states are heads and tails. The most recent coin toss determines the current state of the model and each subsequent toss determines the transition to the next state. If the coin is fair, the transition probabilities are all $1 / 2$. In this simple example, the emission at any moment in time is simply the current state. However, in more complicated models, the states themselves can contain random processes that affect their emissions. For example, after each flip of the coin, you could roll a die to determine the emission at that step.

A hidden Markov model is one in which you observe a sequence of emissions, but you do not know the sequence of states the model went through to generate the emissions. In this case, your goal is to recover the state information from the observed data. The next section, "Example of a Hidden Markov Model" on page 11-4, provides an example.
The Statistics Toolbox includes five functions for analyzing hidden Markov models:

- hmmdecode - Calculates the posterior state probabilities of a sequence
- hmmgenerate - Generates a sequence for a hidden Markov model
- hmmestimate - Estimates the parameters for a Markov model
- nmmtrain - Calculates the maximum likelihood estimate of hidden Markov model parameters
- hmmviterbi - Calculates the most likely state path for a hidden Markov model sequence
"Analyzing a Hidden Markov Model" on page 11-8 explains how to use these functions in detail.


## Example of a Hidden Markov Model

This section describes a simple example of a Markov model in which there are two states and six possible emissions. The example uses the following objects:

- A red die, having six sides, labeled 1 through 6.
- A green die, having twelve sides, five of which are labeled 2 through 6 , while the remaining seven sides are labeled 1.
- A weighted red coin, for which the probability of heads is .9 and the probability of tails is .1.
- A weighted green coin, for which the probability of heads is .95 and the probability of tails is 05 .

You create a sequence of numbers from the set $\{1,2,3,4,5,6\}$ using the following rules:

- Begin by rolling the red die and writing down the number that comes up, which is the emission.
- Toss the red coin and do one of the following:
- If the result is heads, roll the red die and write down the result.
- If the result is tails, roll the green die and write down the result.
- At each subsequent step, you flip the coin that has the same color as the die you rolled in the previous step. If the coin comes up heads, roll the same die as in the previous step. If the coin comes up tails, switch to the other die.

You can model this example with a state diagram that has two states, red and green, as shown in the following figure.


You determine the emission from a state by rolling the die with the same color as the state, and the transition to the next state by flipping the coin with the same color as the state.

So far, the model is not hidden, because you know the sequence of states from the colors of the coins and dice. But, suppose that someone else is generating the emissions without showing you the dice or coins. All you can see is the sequence of numbers. If you start seeing more 1 s than other numbers, you might suspect that the model is in the green state, but you cannot be sure because you cannot see the color of the die being rolled. This is an example of a hidden Markov model: you can observe the sequence of emissions, but you do not know what state the model is in - that is, what color die is being rolled when the emission occurs.

Not knowing the state the model is in raises the following problems:

- Given a sequence, what is the most likely state path?
- How can you estimate the parameters of the model given the state path?
- How can you estimate the parameters of the model without knowing the state path?
- What is the probability that the model generates a given sequence? This is known as the forward probability.
- What is the probability that the model is in a particular state at any point in the sequence? This is the posterior probability.


## Markov Chains

This section defines Markov chains, which are the mathematical descriptions of Markov models. A Markov chain contains the following elements:

- A set of states $\{1,2, \ldots, M\}$
- An $M$-by- $M$ transition matrix $T$ whose $\mathrm{i}, \mathrm{j}$ entry is the probability of a transition from state $i$ to state $j$. The matrix corresponds to a state diagram like the one shown in the Figure, A State Diagram for a Markov Model, on page 11-2. The sum of the entries in each row of $T$ must be 1 , because this is the sum of the probabilities of making a transition from a given state to each of the other states.
- A set of possible outputs, or emissions, $\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$. By default, the set of emissions is $\{1,2, \ldots, N\}$, where $N$ is the number of possible emissions, but you can choose a different set of numbers or symbols.
- An $M$-by- $N$ emission matrix $E$ whose i,k entry gives the probability of emitting symbol $s_{\mathrm{k}}$ given that the model is in state i .

When the model is in state $\mathrm{i}_{1}$, it emits an output $s_{k_{1}}$ with probability $E_{i_{1} k_{1}}$. The model then makes a transition to state $i_{2}$ with probability $T_{i_{1} i_{2}}$, and emits another symbol.
You can represent the example in "Example of a Hidden Markov Model" on page 11-4 by a Markov chain with two states, red and green. You determine transitions between states by flipping the coins. The transition matrix is

$$
\mathrm{T}=\left[\begin{array}{cc}
0.9 & 0.1 \\
0.05 & 0.95
\end{array}\right]
$$

You determine emissions by rolling the dice. The emissions matrix is

$$
E=\left[\begin{array}{cccccc}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{7}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12}
\end{array}\right]
$$

"Analyzing a Hidden Markov Model" on page 11-8 shows how to analyze this model using functions in the Statistics Toolbox.

## How the Toolbox Generates Random Sequences

The hidden Markov model functions in the Statistics Toolbox generate random sequences using the transition matrix, $T$, and the emission matrix, $E$, as described in the preceding section. The functions always begin with the model in the initial state, $\mathrm{i}_{0}=1$, at step 0 . The model then makes a transition to state $i_{1}$ with probability $T_{1 i_{1}}$, and emits an output $s_{k_{1}}$ with probability $E_{i_{1} k_{1}}$. Consequently, the probability of observing the sequence of states $i_{1} i_{2} \ldots i_{r}$ and the sequence of emissions $s_{k_{1}} s_{k_{2}} \ldots s_{k_{r}}$ in the first $r$ steps, is

$$
T_{1 i_{1}} E_{i_{1} k_{1}} T_{i_{1} i_{2}} E_{i_{2} k_{2}} \ldots T_{i_{r-1} i_{r}} E_{i_{r} k_{r}}
$$

Note that if the function returns a generated sequence of states, the first state in the sequence is $i_{1}$ : the initial state, $i_{0}$, is not included.

In this implementation, the initial state is 1 with probability 1 , and all other states have probability 0 of being the initial state. At times, you might want to change the probabilities of the initial states. You can do so by adding a new artificial state 1 that has transitions to the other states with any probabilities you want, but that never occurs after step 0. See "Changing the Probabilities of the Initial States" on page 11-13 to learn how to do this.

## Analyzing a Hidden Markov Model

This section explains how to use functions in the Statistics Toolbox to analyze hidden Markov models. For illustration, the section uses the example described in "Example of a Hidden Markov Model" on page 11-4. The section shows how to recover information about the model, assuming that you do not know some of the model's parameters. The section covers the following topics:

- "Setting Up the Model and Generating Data" on page 11-8
- "Computing the Most Likely Sequence of States" on page 11-9
- "Estimating the Transition and Emission Matrices" on page 11-9
- "Changing the Probabilities of the Initial States" on page 11-13
- "Example: Changing the Initial Probabilities" on page 11-14


## Setting Up the Model and Generating Data

This section shows how to set up a hidden Markov model and use it to generate data. First, create the transition and emission matrices by entering the following commands.

```
TRANS = [.9 .1; . 05 . 95;];
EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];
```

Next, generate a random sequence of emissions from the model, seq, of length 1000 , using the function hmmgenerate. You can also return the corresponding random sequence of states in the model as the second output, states.

```
[seq, states] = hmmgenerate(1000, TRANS, EMIS);
```

Note In generating the sequences seq and states, hmmgenerate begins with the model in state $i_{0}=1$ at step 0 . The model then makes a transition to state $i_{1}$ at step 1 , and returns $i_{1}$ as the first entry in states.

## Computing the Most Likely Sequence of States

Suppose you know the transition and emission matrices, TRANS and EMIS. If you observe a sequence, seq, of emissions, how can you compute the most likely sequence of states that generated the sequence? The function hmmviterbi uses the Viterbi algorithm to compute the most likely sequence of states that the model would go through to generate the given sequence of emissions.

```
likelystates = hmmviterbi(seq, TRANS, EMIS);
```

likelystates is a sequence of the same length as seq.
To test the accuracy of hmmviterbi, you can compute the percentage of the time that the actual sequence states agrees with the sequence likelystates.
sum(states==likelystates)/1000
ans =
0.8200

This shows that the most likely sequence of states agrees with the actual sequence $82 \%$ of the time. Note that your results might differ if you run the same commands, because the sequence seq is random.

Note The states at the beginning of the sequence returned by hmmviterbi are less reliable because of the computational delay in the Viterbi algorithm.

## Estimating the Transition and Emission Matrices

Suppose you do not know the transition and emission matrices in the model, and you observe a sequence of emissions, seq. There are two functions that you can use to estimate the matrices:

- hmmestimate
- hmmtrain


## Using hmmestimate

To use hmmestimate, you also need to know the corresponding sequence of states that the model went through to generate seq. The following command
takes the emission and state sequences, seq and states, and returns estimates of the transition and emission matrices, TRANS_EST and EMIS_EST.

```
[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)
TRANS_EST =
0.8989 0.1011
0.0585 0.9415
EMIS_EST =
\begin{tabular}{llllll}
0.1721 & 0.1721 & 0.1749 & 0.1612 & 0.1803 & 0.1393 \\
0.5836 & 0.0741 & 0.0804 & 0.0789 & 0.0726 & 0.1104
\end{tabular}
```

You can compare these outputs with the original transition and emission matrices, TRANS and EMIS, to see how well hmmestimate estimates them.

TRANS
TRANS =

| 0.9000 | 0.1000 |
| :--- | :--- |
| 0.0500 | 0.9500 |

EMIS
EMIS =

| 0.1667 | 0.1667 | 0.1667 | 0.1667 | 0.1667 | 0.1667 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.5833 | 0.0833 | 0.0833 | 0.0833 | 0.0833 | 0.0833 |

## Using hmmtrain

If you do not know the sequence of states, but you have an initial guess as to the values of TRANS and EMIS, you can estimate the transition and emission matrices using the function hmmtrain. For example, suppose you have the following initial guesses for TRANS and EMIS.

```
TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 . 08 . 08 . 08 . 08 08];
```

You can estimate TRANS and EMIS with the following command.

```
[TRANS_EST2, EMIS_EST2] = nmmtrain(seq, TRANS_GUESS, EMIS_GUESS)
TRANS_EST2 =
0.2286 0.7714
0.0032 0.9968
EMIS_EST2 =
0.1436 0.2348 0.1837 0.1963 0.2350
0.4355 0.1089 0.1144 0.1082 0.1109 0.1220
```

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS and EMIS_GUESS so that at each step the adjusted matrices are more likely to generate the observed sequence, seq. The algorithm halts when the matrices in two successive iterations are within a small tolerance of each other. See the reference page for hmmtrain for more information about the tolerance.

If the algorithm fails to reach this tolerance within a maximum number of iterations, whose default value is 100 , the algorithm halts. In this case, hmmtrain returns the last values of TRANS_EST and EMIS_EST and issues a warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, you can increase the default value of the maximum number of iterations with the command

```
hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'maxiterations', maxiter)
```

where maxiter is the maximum number of steps the algorithm executes.
You can also change default value of the tolerance with the command

```
hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)
```

where tol is the desired value of the tolerance. Increasing the value of tol makes the algorithm halt sooner, but the results are less accurate.

Note If the sequence seq is long, the hmmtrain algorithm might take a long time to run. If so, you might want to lower the maximum number of iterations temporarily at first to find out how much time the algorithm requires.

There are two factors that can make the output matrices of hmmtrain less reliable:

- The algorithm might converge to a local maximum that does not represent the true transition and emission matrices. If you suspect that this is the case, try different initial guesses for the matrices TRANS_EST and EMIS_EST.
- The sequence seq might be too short to properly train the matrices. If you suspect this is the case, try using a longer sequence for seq.


## Calculating Posterior State Probabilities

The posterior state probabilities of an emission sequence seq are the conditional probabilities that the model is in a particular state when it generates a symbol in seq, given that seq is emitted. You can compute the posterior state probabilities with the following command:

```
PSTATES = hmmdecode(seq, TRANS, EMIS)
```

The output PSTATES is an $M$-by- $L$ matrix, where $M$ is the number of states and $L$ is the length of seq. $\operatorname{PSTATES}(i, j)$ is the conditional probability that the model is in state $i$ when it generates the $j$ th symbol of seq, given that seq is emitted.

Note The function hmmdecode begins with the model in state 1 at step 0 , prior to the first emission. PSTATES ( $i, 1$ ) is the probability that the model is in state i at the following step 1 .

You can also return the logarithm of the probability of the sequence seq as the second output argument.
[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS)
The actual probability of a sequence tends to 0 rapidly as the length of the sequence increases, so the probability of a sufficiently long sequence is less than the smallest positive number your computer can represent. Consequently, hmmdecode returns the logarithm of the probability instead.

For example, the following code returns the logarithm probability of the one-element sequence [3].

```
[PSTATES, logpseq] = hmmdecode([3], TRANS, EMIS);
exp(logpseq)
ans =
0.1583
```

Note that you can compute this answer directly as

$$
\sum_{i=1}^{6} T_{1 j} E_{j 3}
$$

by the commands

```
TRANS(1,:)*EMIS(:,3)
ans =
0.1583
```


## Changing the Probabilities of the Initial States

By default, the hidden Markov model functions begin with the model in state 1 at step 0 . In other words, with probability 1 , the initial state is 1 , and all other states have probability 0 of being the initial state. See "How the Toolbox Generates Random Sequences" on page 11-7.

For some models, you might want to assign different probabilities to the initial states. For example, you might want to choose initial state probabilities from a probability vector $p$ satisfying $p T=p$. This assignment makes the Markov chain time independent: the probability of observing a given output at a specified step of the sequence is independent of the step number. This section explains how to assign any vector of probabilities for the initial states in your model.

To assign a vector of probabilities, $p=\left[p_{1}, p_{2}, \ldots, p_{\mathrm{M}}\right]$, to the initial states, do the following:

1 Create an M+1-by-M+1 augmented transition matrix, $\hat{T}$, that has the following form:

$$
\hat{T}=\left[\begin{array}{ll}
0 & p \\
0 & T
\end{array}\right]
$$

where $T$ is the true transition matrix. The first column of $\dot{T}$ contains $\mathrm{M}+1$ zeros.

2 Create an M+1-by-N augmented emission matrix, $\hat{E}$, that has the following form:

$$
\hat{T}=\left[\begin{array}{c}
0 \\
E
\end{array}\right]
$$

If the transition and emission matrices are TRANS and EMIS, respectively, you can create the augmented matrices with the following commands:

```
TRANS_HAT = [O p; zeros(size(TRANS,1),1) TRANS];
EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];
```


## Example: Changing the Initial Probabilities

For example, suppose that you have the following transition and emission matrices.

```
TRANS = [.9 .1; .05 . 95;];
EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];
```

You want to assign the states initial probabilities that are given by a left eigenvector, $p$, for TRANS, corresponding to the maximum eigenvalue 1 . These initial probabilities make the Markov model time independent: the probability of observing a given emission is the same at each step of the output sequence.

To find the vector $p$, enter the following commands.

$$
\begin{aligned}
& [V, D]=\text { eigs(TRANS' }) \\
& V= \\
& -0.4472 \\
& -0.8944 \\
& D= \\
& \begin{array}{rc}
-0.7071 \\
1.0000 & 0 \\
0 & 0.8500
\end{array}
\end{aligned}
$$

The first column of V is the right eigenvector for TRANS ' corresponding to eigenvalue 1. So the transpose of this vector is a left eigenvector for TRANS. You can create this vector as follows.

```
p = V(:, 1)'
p =
-0.4472 -0.8944
p*TRANS
ans =
-0.4472 -0.8944
```

This is not yet a probability vector, so divide $p$ by its sum.
$p=p / \operatorname{sum}(p)$
$p=$
$0.3333 \quad 0.6667$
Next, create the augmented matrices TRANS_HAT and EMIS_HAT.


```
EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS]
EMIS_HAT =
\begin{tabular}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 0 \\
0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 & 0.1667 \\
0.5833 & 0.0833 & 0.0833 & 0.0833 & 0.0833 & 0.0833
\end{tabular}
```

This assignment of probabilities makes the Markov model time independent. For example, you can calculate the probability of seeing symbol 3 at step 1 of an emission sequence using the function hmmdecode as follows.

```
[pStates, logp]=hmmdecode([3],TRANS_HAT,EMIS_HAT);
exp(logp)
ans =
0.11111
```

Note that the second output argument, logp, is the logarithm of the probability of the sequence [3].

On the other hand, the probability of seeing symbol 3 at step 2 is the sum of the probabilities of the sequences [1 3], [2 3]. [3 3], [4 3], [5 3], and [6 3].

```
sum = 0;
for n = 1:6
 [pStates, logp] = hmmdecode([n 3],TRANS_HAT,EMIS_HAT);
 sum = sum + exp(logp);
end;
sum
sum =
0.1111
```


## References

To learn more about hidden Markov models and their applications, see the following reference.

Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis, Cambridge Univ. Press, 1998.

## Reference

Functions - By Category (p. 12-2) Brief descriptions of the Statistics Toolbox functions organized by category<br>Functions - Alphabetical List<br>(p. 12-22)<br>Reference pages for the Statistics Toolbox functions in alphabetical order

## Functions - By Category

| The Statistics Toolbox provides several categories of functions. |  |
| :--- | :--- |
| Probability Distributions | Specific functions for each supported <br> distribution |
| Descriptive Statistics | Descriptive statistics for data samples <br> Statistical Plotting |
| Statistical plots |  |
| Statistical Process Control | Statistical Process Control |
| Linear Models | Fitting linear models to data |
| Nonlinear Regression | Fitting nonlinear regression models |
| Design of Experiments | Design of Experiments |
| Multivariate Statistics | Multivariate statistics |
| Decision Tree Techniques | Decision trees |
| Hypothesis Tests | Statistical tests of hypotheses |
| Distribution Testing | Tests for fitting distributions to data |
| Nonparametric Testing | Nonparametric testing |
| Hidden Markov Models | Finding hidden Markov models |
| File I/O | Reading data from and writing data to <br> operating-system files |
| Demonstrations | Demonstrations |
| Data | Data for examples |
| Utility | Utility functions |

## Probability Distributions

For each supported distribution, the Statistics Toolbox provides associated functions in each of these categories

Parameter Estimation
Cumulative Distribution Functions (cdf)

Probability Density Functions (pdf)<br>Inverse Cumulative Distribution Functions<br>Random Number Generators<br>Moments of Distribution Functions

## Parameter Estimation

| betafit | Parameter estimation for the beta distribution |
| :--- | :--- |
| betalike | Negative beta log-likelihood function |
| binofit | Parameter estimation for the binomial distribution |
| evfit | Parameter estimation for the extreme value distribution |
| evlike | Negative log-likelihood for the extreme value distribution |
| expfit | Parameter estimation for the exponential distribution |
| explike | Negative log-likelihood for the exponential distribution |
| gamfit | Parameter estimation for the gamma distribution |
| gamlike | Negative gamma log-likelihood function |
| lognfit | Parameter estimation for the lognormal distribution |
| lognlike | Negative log-likelihood for the lognormal distribution |
| mle | Maximum likelihood estimation |
| nbinfit | Parameter estimates and confidence intervals for negative <br> binomial data |
| normfit | Parameter estimation for the normal distribution |
| normlike | Negative normal log-likelihood function |
| poissfit | Parameter estimation for the Poisson distribution |
| raylfit | Rayleigh parameter estimation <br> unifit |
| Pblfit Weibull parameter estimation <br> wbllike Weibull negative log-likelihood function <br> Cumulative Distribution Functions (cdf)  <br> betacdf Beta cdf <br> binocdf Binomial cdf <br> cdf <br> Parameterized cdf routine  |  |


| chi2cdf | Chi-square cdf |
| :--- | :--- |
| ecdf | Empirical (Kaplan-Meier) cdf |
| evcdf | Extreme value cdf |
| expcdf | Exponential cdf |
| fcdf | F cdf |
| gamcdf | Gamma cdf |
| geocdf | Geometric cdf |
| hygecdf | Hypergeometric cdf |
| logncdf | Lognormal cdf |
| nbincdf | Negative binomial cdf |
| ncfcdf | Noncentral F cdf |
| nctcdf | Noncentral t cdf |
| ncx2cdf | Noncentral Chi-square cdf |
| normcdf | Normal (Gaussian) cdf |
| poisscdf | Poisson cdf |
| raylcdf | Rayleigh cdf |
| tcdf | Student's t cdf |
| unidcdf | Discrete uniform cdf |
| unifcdf | Continuous uniform cdf |
| wblcdf | Weibull cdf |


| Probability | Density Functions (pdf) |
| :--- | :--- |
| betapdf | Beta pdf |
| binopdf | Binomial pdf |
| chi2pdf | Chi-square pdf |
| evpdf | Extreme value pdf |
| exppdf | Exponential pdf |
| fpdf | F pdf |
| gampdf | Gamma pdf |
| geopdf | Geometric pdf |
| hygepdf | Hypergeometric pdf |
| lognpdf | Lognormal pdf |
| mvnpdf | Multivariate normal pdf |
| nbinpdf | Negative binomial pdf |
| ncfpdf | Noncentral F pdf |
| nctpdf | Noncentral t pdf |
| ncx2pdf | Noncentral Chi-square pdf |
| normpdf | Normal (Gaussian) pdf |
| pdf | Parameterized pdf routine |
| poisspdf | Poisson pdf |
| raylpdf | Rayleigh pdf |
| tpdf | Student's t pdf |
| unidpdf | Discrete uniform pdf |
| unifpdf | Continuous uniform pdf |
| wblpdf | Weibull pdf |

## Inverse Cumulative Distribution Functions

| betainv | Beta critical values |
| :--- | :--- |
| binoinv | Binomial critical values |
| chi2inv | Chi-square critical values |
| evinv | Extreme value critical values |
| expinv | Exponential critical values |
| finv | F critical values |
| gaminv | Gamma critical values |
| geoinv | Geometric critical values |
| hygeinv | Hypergeometric critical values |
| icdf | Parameterized inverse distribution routine |
| logninv | Lognormal critical values |
| nbininv | Negative binomial critical values |
| ncfinv | Noncentral F critical values |
| nctinv | Noncentral t critical values |
| ncx2inv | Noncentral Chi-square critical values |
| norminv | Normal (Gaussian) critical values |
| poissinv | Poisson critical values |
| raylinv | Rayleigh critical values |
| tinv | Student's t critical values |
| unidinv | Discrete uniform critical values |
| unifinv | Continuous uniform critical values |
| wblinv | Weibull critical values |

## Random Number Generators

betarnd Beta random numbers
binornd Binomial random numbers

| chi2rnd | Chi-square random numbers |
| :--- | :--- |
| evrnd | Extreme value random numbers |
| exprnd | Exponential random numbers |
| frnd | F random numbers |
| gamrnd | Gamma random numbers |
| geornd | Geometric random numbers |
| hygernd | Hypergeometric random numbers |
| iwishrnd | Inverse Wishart random matrix |
| lhsdesign | Latin hypercube sample |
| lhsnorm | Latin hypercube sample with normal distribution |
| lognrnd | Lognormal random numbers |
| mvnrnd | Multivariate normal random numbers |
| mvtrnd | Multivariate t random numbers |
| nbinrnd | Negative binomial random numbers |
| ncfrnd | Noncentral F random numbers |
| nctrnd | Noncentral t random numbers |
| ncx2rnd | Noncentral Chi-square random numbers |
| normrnd | Normal (Gaussian) random numbers |
| poissrnd | Poisson random numbers |
| random | Parameterized random number routine |
| randsample | Random sample, with or without replacement |
| raylrnd | Rayleigh random numbers |
| trnd | Student's t random numbers |
| unidrnd | Discrete uniform random numbers |
| unifrnd | Continuous uniform random numbers |


| wblrnd | Weibull random numbers |
| :--- | :--- |
| wishrnd | Wishart random matrix |

## Moments of Distribution Functions

| betastat | Beta mean and variance |
| :--- | :--- |
| binostat | Binomial mean and variance |
| chi2stat | Chi-square mean and variance |
| evstat | Extreme value mean and variance |
| expstat | Exponential mean and variance |
| fstat | F mean and variance |
| gamstat | Gamma mean and variance |
| geostat | Geometric mean and variance |
| hygestat | Hypergeometric mean and variance |
| lognstat | Lognormal mean and variance |
| nbinstat | Negative binomial mean and variance |
| ncfstat | Noncentral F mean and variance |
| nctstat | Noncentral t mean and variance |
| ncx2stat | Noncentral Chi-square mean and variance |
| normstat | Normal (Gaussian) mean and variance |
| poisstat | Poisson mean and variance |
| raylstat | Rayleigh mean and variance |
| tstat | Student's t mean and variance |
| unidstat | Discrete uniform mean and variance |
| unifstat | Continuous uniform mean and variance |
| wblstat | Weibull mean and variance |

## Descriptive Statistics

bootstrp Bootstrap statistics for any function
corrcoef Correlation coefficients (in MATLAB)

| cov | Covariance matrix (in MATLAB) |
| :--- | :--- |
| crosstab | Cross tabulation |
| geomean | Geometric mean |
| grpstats | Summary statistics by group |
| harmmean | Harmonic mean |
| iqr | Interquartile range |
| kurtosis | Sample kurtosis |
| mad | Mean absolute deviation |
| mean | Arithmetic average (in MATLAB) |
| median | 50th percentile (in MATLAB) |
| moment | Central moments of all orders |
| nanmax | Maximum ignoring missing data |
| nanmean | Average ignoring missing data |
| nanmedian | Median ignoring missing data |
| nanmin | Minimum ignoring missing data |
| nanstd | Standard deviation ignoring missing data |
| nansum | Sum ignoring missing data |
| prctile | Empirical percentiles of a sample |
| range | Sample range |
| skewness | Sample skewness |
| std | Standard deviation (in MATLAB) |
| tabulate | Frequency table |
| trimmean | Trimmed mean |
| var | Variance |

## Statistical Plotting

| addedvarplot | Added-variable plot for stepwise regression |
| :--- | :--- |
| boxplot | Box plots |
| cdfplot | Plot of empirical cumulative distribution function |
| ecdfhist | Histogram from ecdf output |
| errorbar | Error bar plot |
| fsurfht | Interactive contour plot of a function |
| gline | Interactive line drawing |
| gname | Interactive point labeling |
| gplotmatrix | Matrix of scatter plots grouped by a common variable |
| gscatter | Scatter plot of two variables grouped by a third |
| lsline | Add least-squares fit line to plotted data |
| normplot | Normal probability plots |
| pareto | Pareto charts |
| qqplot | Quantile-Quantile plots |
| rcoplot | Regression case order plot |
| refcurve | Reference polynomial |
| refline | Reference line |
| surfht | Interactive interpolating contour plot |
| wblplot | Weibull plotting |

## Statistical Process Control

| capable | Quality capability indices |
| :--- | :--- |
| capaplot | Plot of process capability |
| ewmaplot | Exponentially weighted moving average plot |
| histfit | Histogram and normal density curve |


| normspec | Plot normal density between limits |
| :--- | :--- |
| schart | Time plot of standard deviation |
| xbarplot | Time plot of means |

## Linear Models

| anova1 | One-way Analysis of Variance (ANOVA) |
| :--- | :--- |
| anova2 | Two-way Analysis of Variance |
| anovan | N-way analysis of variance |
| aoctool | Interactive tool for analysis of covariance |
| dummyvar | Dummy-variable coding |
| friedman | Friedman's test (nonparametric two-way ANOVA) |
| glmfit | Generalized linear model fitting |
| glmval | Compute predictions for generalized linear model |
| kruskalwallis | Kruskal-Wallis test (nonparametric one-way ANOVA) |
| leverage | Regression diagnostic |
| lscov | Regression given a covariance matrix (in MATLAB) |
| manova1 | One-way multivariate analysis of variance |
| manovacluster | Draw clusters of group means for manova1 |
| multcompare | Multiple comparisons of means and other estimates |
| polyconf | Polynomial prediction with confidence intervals |
| polyfit | Polynomial fitting (in MATLAB) |
| polyval | Polynomial prediction (in MATLAB) |
| rcoplot | Residuals case order plot |
| regress | Multiple linear regression |
| regstats | Regression diagnostics for linear models |
| ridge | Ridge regression |
| rstool | Response surface tool |
| robustfit | Robust regression model fitting |
| rstool | Multidimensional response surface visualization (RSM) |
| stepwise | Stepwise regression GUI |

## stepwisefit Fit regression model using stepwise regression <br> $x 2 f x \quad$ Factor settings matrix $(X)$ to design matrix $(D)$

## Nonlinear Regression

| nlinfit | Nonlinear least-squares fitting |
| :--- | :--- |
| nlintool | Prediction graph for nonlinear fits |
| nlparci | Confidence intervals on parameters |
| nlpredci | Confidence intervals for prediction |
| lsqnonneg | Nonnegative least squares (in MATLAB) |
| treefit | Fit a tree-based model for classification or regression. |
| treeprune | Produce a sequence of subtrees by pruning. |
| treedisp | Show classification or regression tree graphically. |
| treetest | Compute error rate for tree. |
| treeval | Compute fitted value for decision tree applied to data. |

## Design of Experiments

| bbdesign | Box-Behnken design |
| :--- | :--- |
| candgen | Candidate set for D-optimal design |
| candexch | D-optimal design from candidate set using row exchanges |
| ccdesign | Central composite design |
| cordexch | D-optimal design using coordinate exchange |
| daugment | D-optimal augmentation of designs |
| dcovary | D-optimal design with fixed covariates |
| ff2n | Two-level full factorial designs |
| fracfact | Two-level fractional factorial design |
| fullfact | Mixed level full factorial designs |


| hadamard | Hadamard designs (in MATLAB) |
| :--- | :--- |
| rowexch | D-optimal design using row exchange |

## Multivariate Statistics

## Cluster Analysis

| cluster | Create clusters from linkage output |
| :--- | :--- |
| clusterdata | Create clusters from a data set |
| cophenet | Calculate the cophenetic correlation coefficient |
| dendrogram | Plot a hierarchical tree in a dendrogram graph |
| inconsistent | Calculate the inconsistency values of objects in a cluster <br> hierarchy tree |
| kmeans | K-means clustering |
| linkage | Link objects in a dataset into a hierarchical tree of binary <br> clusters |
| pdist | Calculate the pairwise distance between objects in a <br> dataset |
| silhouette | Silhouette plot for clustered data <br> Reformat output of pdist function from vector to square <br> matrix |

## Dimension Reduction Techniques

| factoran | Maximum Likelihood Common Factor Analysis |
| :--- | :--- |
| pcacov | PCA from covariance matrix |
| pcares | Residuals from PCA |
| princomp | PCA from raw data matrix |

## Other Multivariate Methods

| barttest | Bartlett's test |
| :--- | :--- |
| canoncorr | Canonical correlation analysis |
| classify | Discriminant Analysis |
| cmdscale | Classical multidimensional scaling |


| mahal | Mahalanobis distance |
| :--- | :--- |
| manova1 | One-way multivariate analysis of variance |
| manovacluster | Draw clusters of group means for manova1 |
| procrustes | Procrustes Analysis |
| zscore | Normalize a dataset before calculating the distance |

## Decision Tree Techniques

treefit Fit a tree-based model for classification or regression.
treeprune Produce a sequence of subtrees by pruning.
treedisp Show classification or regression tree graphically.
treetest Compute error rate for tree.
treeval Compute fitted value for decision tree applied to data.

## Hypothesis Tests

| ranksum | Wilcoxon rank sum test |
| :--- | :--- |
| signrank | Wilcoxon signed rank test |
| signtest | Sign test for paired samples |
| ttest | One sample t-test |
| ttest2 | Two sample t-test |
| ztest | Z-test |

## Distribution Testing

jbtest Jarque-Bera test of normality
kstest Kolmogorov-Smirnov test for one sample
kstest2 Kolmogorov-Smirnov test for two samples
lillietest Lilliefors test of normality

## Nonparametric Testing

friedman Friedman's test (nonparametric two-way anova)
kruskalwallis Kruskal-Wallis test (nonparametric one-way anova)
ksdensity Probability density estimate using a kernel smoothing method
ranksum Wilcoxon rank sum test (independent samples)

| signrank | Wilcoxon sign rank test (paired samples) |
| :--- | :--- |
| signtest | Sign test (paired samples) |

## Hidden Markov Models

| hmmdecode | Calculate the posterior state probabilities of a sequence |
| :--- | :--- |
| hmmestimate | Estimate the parameters for a hidden Markov model |
| hmmgenerate | Generate a sequence for a hidden Markov model |
| hmmtrain | Calculate the maximum likelihood estimate of hidden <br> Markov model parameters |
| hmmviterbi | Calculate the most probable state path for a hidden <br> Markov model sequence |

## File I/O

caseread Read case names from a file
casewrite Write casenames from a string matrix to a file
tblread Retrieve tabular data from the file system
tblwrite Write data in tabular form to the file system
tdfread Read in text and numeric data from tab-delimited file

## Demonstrations

To run glmdemo from the command line, type playshow glmdemo. You can run all other demos by typing the demo name as a command.
aoctool Interactive tool for analysis of covariance
disttool Interactive exploration of distribution functions
glmdemo Generalized linear model slide show.
randtool Interactive random number generation
polytool Interactive fitting of polynomial models

| rsmdemo | Interactive process experimentation and analysis |
| :--- | :--- |
| robustdemo | Interactive tool to compare robust and least squares fits |

## Data

carbig.ma
$\begin{array}{ll}\text { carsmall.mat } & \left.\begin{array}{l}\text { Measurements on } 100 \text { car models from 1970, 1976, and } \\ \\ 1982\end{array}\right]\end{array}$
census.mat U. S. Population 1790 to 1980
cities.mat Names of U.S. metropolitan areas
discrim.mat Classification data
gas.mat Gasoline prices
hald.mat Hald data
hogg.mat Bacteria counts from milk shipments
lawdata.mat GPA versus LSAT for 15 law schools
mileage.mat Mileage data for three car models from two factories
moore.mat Five factor - one response regression data
parts.mat Dimensional run out on 36 circular parts
popcorn.mat Data for popcorn example (anova2, friedman)
polydata.mat Data for polytool demo
reaction.mat Reaction kinetics data
sat.dat ASCII data for tblread example

## Utility

statget Get parameter values from a statistics options structure
statset Create or edit a statistics options structure

## Functions - Alphabetical List

This section contains function reference pages listed alphabetically. The reference pages contain detailed descriptions of the Statistics Toolbox functions.

Purpose
Create added-variable plot for stepwise regression
Syntax
Description

```
addedvarplot(X, y, vnum, inmodel)
```

addedvarplot ( $\mathrm{X}, \mathrm{y}$, vnum, inmodel) produces an added variable plot for the response $y$ and the predictor in column vnum of $X$. This plot illustrates the incremental affect of this predictor in a regression model in which the columns listed in the vector inmodel are used as predictors. X is an n -by-p matrix of predictor values. $y$ is vector of $n$ response values. vnum is a scalar index specifying the column of $X$ to use in the plot. inmodel is a logical vector of $p$ elements specifying the columns of $x$ to use in the base model. By default, all elements of inmodel are false, which means that the model has no predictors. You can call the function stepwisefit, which produces a regression model using stepwise regression, to create the vector inmodel.
addedvarplot(X, y, vnum, inmodel, stats) uses the structure stats, which contains fitted model results created by the stepwisefit function. If you create the structure stats by calling stepwisefit, prior to calling addedvarplot, you can save computational time by including the argument stats in addedvarplot.

An added variable plot contains data and fitted lines. If X 1 is column vnum of $X$, the data curve plots $y$ versus X 1 after removing the effects of the other predictors specified by the vector inmodel. The solid line is a least squares fit to the data curve, and its slope is the coefficient that X 1 would have if it were included in the model. The dotted lines are $95 \%$ confidence bounds for the fitted line, which you can use to judge the significance of X1.

## Example

The following code performs a stepwise regression on the Hald data, and creates an added variable plot for the predictor in column 2.

```
load hald
[b,se,p,inmodel,stats] = stepwisefit(ingredients,heat);
addedvarplot(ingredients,heat,2,inmodel,stats)
```


## addedvarplot



## See Also

stepwisefit

Purpose
Syntax
Description

Andrews plot for multivariate data.

```
andrewsplot(X)
andrewsplot(X, ..., 'Standardize', 'on')
andrewsplot(X, ..., 'Standardize', 'PCA')
andrewsplot(X, ..., 'Standardize', 'PCAStd')
andrewsplot(X, ..., 'Quantile', alpha)
andrewsplot(X, ..., 'Group', group)
andrewsplot(X, ..., 'PropertyName', PropertyValue, ...)
```

andrewsplot ( X ) creates an Andrews plot of the multivariate data in the matrix $X$. The rows of $X$ correspond to observations, the columns to variables. An Andrews plot is a tool for visualizing high-dimensional data, where each observation is represented by a function, $f(t)$, of a continuous dummy variable, $t$, over the interval $[0,1] . f(t)$ is defined for the i-th observation in X as

$$
f(t)=X(i, 1) / \sqrt{2}+X(i, 2) \sin 2 \pi t+X(i, 2) \cos 2 \pi t+\ldots
$$

andrewsplot treats NaNs in X as missing values and ignores the corresponding rows.
andrewsplot (X, ..., 'Standardize', 'on') scales each column of $X$ to have mean 0 and standard deviation 1 before making the plot.
andrewsplot(X, ..., 'Standardize', 'PCA') creates an Andrews plot from the principal component scores of $X$, in order of decreasing eigenvalue.
andrewsplot(X, ..., 'Standardize', 'PCAStd') creates an Andrews plot using the standardized principal component scores.
andrewsplot (X, ..., 'Quantile', alpha) plots only the median and the alpha and ( $1-$ alpha) quantiles of $f(t)$ at each value of $t$. This is useful if $X$ contains many observations.
andrewsplot(X, ..., 'Group', group) plots the data in different groups with different colors. Groups are defined by group, a numeric array containing a group index for each observation. group can also be a character matrix or a cell array of strings, containing a group name for each observation.

## andrewsplot

> andrewsplot ( $X, \ldots$, 'PropertyName', PropertyValue, ....) sets properties to the specified property values for all line graphics objects created by andrewsplot.
> $h=$ andrewsplot ( $X, \ldots$ ) returns a column vector of handles to the line objects created by andrewsplot, one handle per row of $x$. If you use the 'Quantile' input parameter, h contains one handle for each of the three lines objects created. If you use both the 'Quantile' and the 'Group' input parameters, $h$ contains three handles for each group.

## Examples

```
% make a grouped plot of the raw data
load fisheriris
andrewsplot(meas, 'group',species);
% plot only the median and quartiles of each group
andrewsplot(meas, 'group',species, 'quantile',.25);
```

See Also
parallelcoords, glyphplot

Purpose One-way analysis of variance (ANOVA)

```
Syntax p = anova1(X)
p = anova1(X,group)
p = anova1(X,group,'displayopt')
[p,table] = anova1(...)
[p,table,stats] = anova1(...)
```


## Description

$p=$ anova1( $X$ ) performs a balanced one-way ANOVA for comparing the means of two or more columns of data in the $m$-by- $n$ matrix $X$, where each column represents an independent sample containing $m$ mutually independent observations. The function returns the p-value for the null hypothesis that all samples in $X$ are drawn from the same population (or from different populations with the same mean).

If the p -value is near zero, this casts doubt on the null hypothesis and suggests that at least one sample mean is significantly different than the other sample means. The choice of a critical p-value to determine whether the result is judged "statistically significant" is left to the researcher. It is common to declare a result significant if the p -value is less than 0.05 or 0.01 .

The anova1 function displays two figures. The first figure is the standard ANOVA table, which divides the variability of the data in $X$ into two parts:

- Variability due to the differences among the column means (variability between groups)
- Variability due to the differences between the data in each column and the column mean (variability within groups)

The ANOVA table has six columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS) for each source, which is the ratio SS/df.
- The fifth shows the $F$ statistic, which is the ratio of the MS's.
- The sixth shows the p-value, which is derived from the $\operatorname{cdf}$ of $F$. As $F$ increases, the p-value decreases.

The second figure displays box plots of each column of X . Large differences in the center lines of the box plots correspond to large values of $F$ and correspondingly small p-values.
$p=$ anova1 (X, group) uses the values in group (a character array or cell array) as labels for the box plot of the samples in $X$, when $X$ is a matrix. Each row of group contains the label for the data in the corresponding column of $X$, so group must have length equal to the number of columns in X .

When X is a vector, anova1 performs a one-way ANOVA on the samples contained in $X$, as indexed by input group (a vector, character array, or cell array). Each element in group identifies the group (i.e., sample) to which the corresponding element in vector $X$ belongs, so group must have the same length as $X$. The labels contained in group are also used to annotate the box plot. The vector-input form of anova1 does not require equal numbers of observations in each sample, so it is appropriate for unbalanced data.

It is not necessary to label samples sequentially (1, 2, 3, ...). For example, if $x$ contains measurements taken at three different temperatures, $-27^{\circ}, 65^{\circ}$, and $110^{\circ}$, you could use these numbers as the sample labels in group. If a row of group contains an empty cell or empty string, that row and the corresponding observation in X are disregarded. NaNs in either input are similarly ignored.
$\mathrm{p}=$ anova1(X,group, 'displayopt') enables the ANOVA table and box plot displays when 'displayopt' is 'on' (default) and suppresses the displays when 'displayopt' is 'off'.
[p,table] = anova1(...) returns the ANOVA table (including column and row labels) in cell array table. (Copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[p,table,stats] = anova1(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The anova1 test evaluates the hypothesis that the samples all have the same mean against the alternative that the means are not all the same. Sometimes it is preferable to perform a test to determine which pairs of means are significantly different, and which
are not. Use the multcompare function to perform such tests by supplying the stats structure as input.

## Assumptions

The ANOVA test makes the following assumptions about the data in X :

- All sample populations are normally distributed.
- All sample populations have equal variance.
- All observations are mutually independent.

The ANOVA test is known to be robust to modest violations of the first two assumptions.

## Examples

## Example 1

The five columns of $X$ are the constants one through five plus a random normal disturbance with mean zero and standard deviation one.

```
X = meshgrid(1:5)
X =
 1
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 14 2 3 4 5
X = X + normrnd(0,1,5,5)
X =
 -0.0741 2.7782 2.2129 4.0802 5.7902
 1.2018}1.9937 3.7520 3.0627 5.1053
 1.7629 2.5245 2.8331 4.6357 4.8414
 -0.2882 3.3643 2.1838 5.6820 5.8709
 0.0470
p = anova1(X)
p =
 4.0889e-007
```




The very small p-value of $6 \mathrm{e}-5$ indicates that differences between the column means are highly significant. The probability of this outcome under the null hypothesis (i.e., the probability that samples actually drawn from the same population would have means differing by the amounts seen in $X$ ) is less than 6 in 100,000 . The test therefore strongly supports the alternate hypothesis, that one or more of the samples are drawn from populations with different means.

## Example 2

The following example comes from a study of the material strength of structural beams in Hogg (1987). The vector strength measures the deflection of a beam in thousandths of an inch under 3,000 pounds of force. Stronger beams deflect less. The civil engineer performing the study wanted to determine whether the strength of steel beams was equal to the strength of two
more expensive alloys. Steel is coded 'st' in the vector alloy. The other materials are coded 'al1' and 'al2'.

```
strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
 'al1','al1','al1','al1','al1','al1',...
 'al2','al2','al2','al2','al2','al2'};
```

Though alloy is sorted in this example, you do not need to sort the grouping variable.

```
p = anova1(strength,alloy)
p =
 1.5264e-004
```

| ANOVA Table |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Source | SS | df | MS | F | Prob $>$ F | $\Delta$ |
| Groups | 184.8 | 2 | 92.4 | 15.4 | 0.0002 |  |
| Error | 102 | 17 | 6 |  |  |  |
| Total | 286.8 | 19 |  |  |  |  |
|  |  |  |  |  |  |  |

## anoval



The $p$-value indicates that the three alloys are significantly different. The box plot confirms this graphically and shows that the steel beams deflect more than the more expensive alloys.

## References

[1] Hogg, R. V., and J. Ledolter, Engineering Statistics. MacMillan, 1987.
See Also anova2, anovan, boxplot, ttest

Purpose
Two-way Analysis of Variance (ANOVA)
Syntax

```
p = anova2(X,reps)
p = anova2(X,reps,'displayopt')
[p,table] = anova2(...)
[p,table,stats] = anova2(...)
```


## Description

anova2(X, reps) performs a balanced two-way ANOVA for comparing the means of two or more columns and two or more rows of the observations in $X$. The data in different columns represent changes in factor A. The data in different rows represent changes in factor $B$. If there is more than one observation for each combination of factors, input reps indicates the number of replicates in each "cell," which much be constant. (For unbalanced designs, use anovan.)

The matrix below shows the format for a set-up where column factor A has two levels, row factor B has three levels, and there are two replications (reps=2). The subscripts indicate row, column, and replicate, respectively.

$$
\left.\left.\left.\begin{array}{l}
\stackrel{\pi}{\text { II }} \\
\stackrel{\text { II }}{4} \\
{\left[\begin{array}{ll}
x_{111} & x_{121} \\
x_{112} & x_{122} \\
x_{211} & x_{221} \\
x_{212} & x_{222} \\
x_{311} & x_{321} \\
x_{312} & x_{322}
\end{array}\right]}
\end{array}\right\}\right\}_{\mathrm{B}=1}^{\mathrm{B}=2}\right\}_{\mathrm{B}=3}
$$

When reps is 1 (default), anova2 returns two $p$-values in vector $p$ :
1 The p-value for the null hypothesis, $\mathrm{H}_{0 \mathrm{~A}}$, that all samples from factor A (i.e., all column-samples in X ) are drawn from the same population

2 The p-value for the null hypothesis, $H_{0 B}$, that all samples from factor $B$ (i.e., all row-samples in X ) are drawn from the same population

When reps is greater than 1, anova2 returns a third $p$-value in vector $p$ :

3 The p-value for the null hypothesis, $\mathrm{H}_{0 \mathrm{AB}}$, that the effects due to factors A and B are $a d d i t i v e$ (i.e., that there is no interaction between factors A and B )

If any p-value is near zero, this casts doubt on the associated null hypothesis. A sufficiently small p-value for $\mathrm{H}_{0 \mathrm{~A}}$ suggests that at least one column-sample mean is significantly different that the other column-sample means; i.e., there is a main effect due to factor $A$. A sufficiently small p-value for $H_{0 B}$ suggests that at least one row-sample mean is significantly different than the other row-sample means; i.e., there is a main effect due to factor B . A sufficiently small $p$-value for $H_{0 A B}$ suggests that there is an interaction between factors $A$ and B. The choice of a limit for the $p$-value to determine whether a result is "statistically significant" is left to the researcher. It is common to declare a result significant if the p -value is less than 0.05 or 0.01 .
anova2 also displays a figure showing the standard ANOVA table, which divides the variability of the data in X into three or four parts depending on the value of reps:

- The variability due to the differences among the column means
- The variability due to the differences among the row means
- The variability due to the interaction between rows and columns (if reps is greater than its default value of one)
- The remaining variability not explained by any systematic source

The ANOVA table has five columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows the F statistics, which is the ratio of the mean squares.
p = anova2(X,reps,'displayopt') enables the ANOVA table display when 'displayopt' is 'on' (default) and suppresses the display when 'displayopt' is 'off'.
[p,table] = anova2(...) returns the ANOVA table (including column and row labels) in cell array table. (Copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[ $p$,table, stats] = anova2(...) returns a stats structure that you can use to perform a follow-up multiple comparison test.

The anova2 test evaluates the hypothesis that the row, column, and interaction effects are all the same, against the alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of effects are significantly different, and which are not. Use the multcompare function to perform such tests by supplying the stats structure as input.

## Examples

The data below come from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air.) The study popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.

```
load popcorn
popcorn
popcorn =
 5.5000 4.5000 3.5000
 5.5000 4.5000 4.0000
 6.0000 4.0000 3.0000
 6.5000 5.0000 4.0000
 7.0000 5.5000 5.0000
 7.0000 5.0000 4.5000
p = anova2(popcorn,3)
p =
 0.0000 0.0001 0.7462
```

| ANOVA Table |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | 55 | df | MS | F | Prob>F | $\Delta$ |
| Columns | 15.75 | 2 | 7.875 | 56.7 | 0 |  |
| Rows | 4.5 | 1 | 4.5 | 32.4 | 0.0001 |  |
| Interaction | 0.0833 | 2 | 0.04167 | 0.3 | 0.7462 |  |
| Error | 1.6667 | 12 | 0.13889 |  |  |  |
| Total | 22 | 17 |  |  |  |  |

The vector $p$ shows the $p$-values for the three brands of popcorn, 0.0000 , the two popper types, 0.0001 , and the interaction between brand and popper type, 0.7462 . These values indicate that both popcorn brand and popper type affect the yield of popcorn, but there is no evidence of a synergistic (interaction) effect of the two.

The conclusion is that you can get the greatest yield using the Gourmet brand and an Air popper (the three values popcorn (4:6,1)).

## Reference

See Also anova1, anovan

Purpose
N -way analysis of variance (ANOVA)
Syntax

```
p = anovan(x,group)
p = anovan(x,group,'Param1',val1,'Param2',val2,...)
[p,table] = anovan(...)
[p,table,stats] = anovan(...)
[p,table,stats,terms] = anovan(...)
```


## Description

$p$ = anovan(X, group) performs a balanced or unbalanced multiway analysis of variance (ANOVA) for comparing the means of the observations in the vector X with respect to N different factors. The factors and factor levels of the observations in $X$ are assigned by the cell array group. Each of the $N$ cells in group contains a list of factor levels identifying the observations in $X$ with respect to one of the N factors. The list within each cell can be a vector, character array, or cell array of strings, and must have the same number of elements as X. For an example, see "Example of Three-Way ANOVA" on page 12-41.

P = anovan(x,group,'Param1', val1,'Param2', val2,...) specifies one or more of the name/value pairs described in the following table.

| Parameter <br> Name | Parameter Value |
| :--- | :--- |
| 'sstype' | 1, 2, or 3, to specify the type of sum of squares (default = 3) |
| 'varnames ' | A character matrix or a cell array of strings specifying <br> names of grouping variables, one per grouping variable. <br> When you do not specify 'varnames ', the default labels <br> 'X1', 'X2 ', ' X3', ..., 'XN ' are used. See "ANOVA with |
|  | Random Effects" on page 4-18 for an example of how to use <br> 'varnames '. |
| 'display ' | 'on' displays an ANOVA table (the default) <br> 'off' omits the display |


| Parameter <br> Name | Parameter Value |
| :--- | :--- |
| 'random' | A vector of indices indicating which grouping variables are <br> random effects (all are fixed by default). See "ANOVA with <br> Random Effects" on page 4-18 for an example of how to use <br> ' random ' . |
| 'alpha' | A number between 0 and 1 requesting 100(1-alpha)\% <br> confidence bounds (default 0.05 for 95\% confidence) |
| 'model' | The type of model used. See "Model Types" on page 12-38 for <br> a description of the options for this argument. |

[p,table] $=\operatorname{anovan}(\ldots)$ returns the ANOVA table (including factor labels) in cell array table. (Copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[p,table,stats] = anovan(...) returns a stats structure that you can use to perform a follow-up multiple comparison test with the multcompare function. See "The stats Structure" on page 12-43 for more information.
[p,table,stats,terms] = anovan(...) returns the main and interaction terms used in the ANOVA computations. The terms are encoded in the output matrix terms using the same format described above for input 'model'. When you specify 'model' itself in this matrix format, the matrix returned in terms is identical.

The rest of this section explains the following topics:

- "Model Types" on page 12-38
- "Example of Three-Way ANOVA" on page 12-41
- "The stats Structure" on page 12-43


## Model Types

This section explains how to use the argument 'model' with the syntax

```
p = anovan(x,group,'model', modeltype)
```

The argument modeltype, which specifies the type of model the function uses, can be any one of the following:

- 'linear' - The default 'linear' model computes only the p-values for the null hypotheses on the N main effects.
- 'interaction' - The 'interaction' model computes the p-values for null hypotheses on the N main effects and the $\binom{N}{2}$ two-factor interactions.
- 'full' - The 'full' model computes the p-values for null hypotheses on the N main effects and interactions at all levels.
- An integer - For an integer value of modeltype, $k$ ( $k \leq N$ ), anovan computes all interaction levels through the kth level. For example, the value 3 means main effects plus two- and three-factor interactions. The values $k=1$ and $k=2$ are equivalent to the 'linear' and 'interaction' specifications, respectively, while the value $k=N$ is equivalent to the 'full' specification.
- A matrix of term definitions having the same form as the input to the x2fx function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that anovan computes, modeltype can specify a matrix containing one row for each main or interaction term to include in the ANOVA model. Each row defines one term using a vector of N zeros and ones. The table below illustrates the coding for a 3 -factor ANOVA.

| Row of Matrix | Corresponding ANOVA Term |
| :---: | :--- |
| $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ | Main term A |
| $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ | Main term B |
| $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ | Main term C |
| $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ | Interaction term AB |
| $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ | Interaction term BC |
| $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ | Interaction term AC |
| $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ | Interaction term ABC |

## anovan

For example, if modeltype is the matrix $\left[\begin{array}{lllllll}0 & 1 & 0 ; 0 & 0 & 1 ; 0 & 1 & 1\end{array}\right]$, the output vector $p$ contains the $p$-values for the null hypotheses on the main effects $B$ and $C$ and the interaction effect BC , in that order. A simple way to generate the modeltype matrix is to modify the terms output, which codes the terms in the current model using the format described above. If anovan returns [ $010 ; 0001 ; 011$ 1] for terms, for example, and there is no significant result for interaction BC, you can recompute the ANOVA on just the main effects B and C by specifying [0 1 0;0 0 1] for modeltype.
$p=\operatorname{anovan}(x$, group, 'sstype', integer) computes the ANOVA using the type of sum-of-squares specified by integer, which can be 1,2 , or 3 to designate Type 1, Type 2, or Type 3 sum-of-squares, respectively. The default is 3 . The value of integer only influences computations on unbalanced data.

The sum of squares for any term is determined by comparing two models. The Type 1 sum of squares for a term is the reduction in residual sum of squares obtained by adding that term to a fit that already includes the terms listed before it. The Type 2 sum of squares is the reduction in residual sum of squares obtained by adding that term to a model consisting of all other terms that do not contain the term in question. The Type 3 sum of squares is the reduction in residual sum of squares obtained by adding that term to a model containing all other terms, but with their effects constrained to obey the usual "sigma restrictions" that make models estimable.
Suppose you are fitting a model with two factors and their interaction, and that the terms appear in the order $\mathrm{A}, \mathrm{B}, \mathrm{AB}$. Let $\mathrm{R}(\cdot)$ represent the residual sum of squares for a model, so for example $R(A, B, A B)$ is the residual sum of squares fitting the whole model, $R(A)$ is the residual sum of squares fitting just the main effect of $A$, and $R(1)$ is the residual sum of squares fitting just the mean. The three types of sums of squares are as follows:

| Term | Type 1 SS | Type 2 SS | Type 3 SS |
| :--- | :--- | :--- | :--- |
| $A$ | $R(1)-R(A)$ | $R(B)-R(A, B)$ | $R(B, A B)-R(A, B, A B)$ |
| $B$ | $R(A)-R(A, B)$ | $R(A)-R(A, B)$ | $R(A, A B)-R(A, B, A B)$ |
| $A B$ | $R(A, B)-R(A, B, A B)$ | $R(A, B)-R(A, B, A B)$ | $R(A, B)-R(A, B, A B)$ |

The models for Type 3 sum of squares have sigma restrictions imposed. This means, for example, that in fitting $R(B, A B)$, the array of $A B$ effects is constrained to sum to 0 over A for each value of $B$, and over $B$ for each value of $A$.

## Example of Three-Way ANOVA

As an example of three-way ANOVA, consider the vector y and group inputs below.

```
y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [lllllllll
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g3 = {'may'; 'may'; 'may'; 'may'; 'june'; 'june'; 'june'; 'june'};
```

This defines a three-way ANOVA with two levels of each factor. Every observation in y is identified by a combination of factor levels. If the factors are A, B, and C, then observation $y(1)$ is associated with

## - Level 1 of factor A

- Level 'hi' of factor B
- Level 'may ' of factor C

Similarly, observation $y(6)$ is associated with

- Level 2 of factor A
- Level 'hi' of factor B
- Level 'june' of factor C

To compute the ANOVA, enter
$p=\operatorname{anovan}(y,\{g 1$ g2 g3\})
$p=$
0.4174
0.0028
0.9140

Output vector p contains p -values for the null hypotheses on the N main effects. Element p(1) contains the p-value for the null hypotheses, $\mathrm{H}_{0 \mathrm{~A}}$, that samples at all levels of factor A are drawn from the same population;
element $p(2)$ contains the $p$-value for the null hypotheses, $H_{0 B}$, that samples at all levels of factor $B$ are drawn from the same population; and so on.

If any p-value is near zero, this casts doubt on the associated null hypothesis. For example, a sufficiently small p-value for $\mathrm{H}_{0 \mathrm{~A}}$ suggests that at least one A-sample mean is significantly different from the other A-sample means; that is, there is a main effect due to factor A. You need to choose a bound for the $p$-value to determine whether a result is statistically significant. It is common to declare a result significant if the p -value is less than 0.05 or 0.01 .
anovan also displays a figure showing the standard ANOVA table, which by default divides the variability of the data in $x$ into

- The variability due to differences between the levels of each factor accounted for in the model (one row for each factor)
- The remaining variability not explained by any systematic source

The ANOVA table has six columns:

- The first shows the source of the variability.
- The second shows the sum of squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the mean squares (MS), which is the ratio $\mathrm{SS} / \mathrm{df}$.
- The fifth shows the F statistics, which are the ratios of the mean squares.
- The sixth shows the p-values for the F statistics.

The table is shown in the following figure:

| Analysis of Variance |  |  |  |  |  |
| :---: | ---: | :---: | :---: | :---: | :---: |
| Source | Sum Sq. | d.f. | Mean Sq. | F | Prob>F |
| X1 | 3.781 | 1 | 3.781 | 0.82 | 0.4174 |
| X2 | 199.001 | 1 | 199.001 | 42.95 | 0.0028 |
| X3 | 0.061 | 1 | 0.061 | 0.01 | 0.914 |
| Error | 18.535 | 4 | 4.634 |  |  |
| Total | 221.379 | 7 |  |  |  |
| Constrained (Type III) sums of squares. |  |  |  |  |  |

Two-Factor Interactions. By default, anovan computes p-values just for the three main effects. To also compute p -values for the two-factor interactions, X 1 * X 2 ,

X1*X3, and X2*X3, add the name/value pair 'model', 'interaction' as input arguments.

```
p = anovan(y, {g1 g2 g3}, 'model', 'interaction')
p =
 0.0347
 0.0048
 0.2578
 0.0158
 0.1444
 0.5000
```

The first three entries of $p$ are the $p$-values for the main effects. The last three entries are the $p$-values for the two-factor interactions. You can determine the order in which the two-factor interactions occur from the ANOVAN table shown in the following figure.

| Analysis of Variance |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | Sum Sq. | d.f. | Mean Sq. | F | Prob>F | $\triangle$ |
| X1 | 3.781 | 1 | 3.781 | 336.11 | 0.0347 |  |
| X 2 | 199.001 | 1 | 199.001 | 17689 | 0.0048 |  |
| X3 | 0.061 | 1 | 0.061 | 5.44 | 0.2578 |  |
| X1*X2 | 18.301 | 1 | 18.301 | 1626.78 | 0.0158 |  |
| X1*X3 | 0.211 | 1 | 0.211 | 18.78 | 0.1444 |  |
| X2*X3 | 0.011 | 1 | 0.011 | 1 | 0.5 |  |
| Error | 0.011 | 1 | 0.011 |  |  |  |
| Total | 221.379 | 7 |  |  |  |  |
| Constrained (Type III) sums of squares. |  |  |  |  |  |  |

## The stats Structure

The anovan test evaluates the hypothesis that the different levels of a factor (or more generally, a term) have the same effect, against the alternative that they do not all have the same effect. Sometimes it is preferable to perform a test to determine which pairs of levels are significantly different, and which are not. Use the multcompare function to perform such tests by supplying the stats structure as input.

The stats structure contains the fields listed below, in addition to a number of other fields required for doing multiple comparisons using the multcompare function:

| Stats Field | Meaning |
| :--- | :--- |
| coeffs | Estimated coefficients |
| coeffnames | Name of term for each coefficient |
| vars | Matrix of grouping variable values for each <br> term |
| resid | Residuals from the fitted model |

The stats structure also contains the following fields if there are random effects:

| Stats Field | Meaning |
| :--- | :--- |
| ems | Expected mean squares |
| denom | Denominator definition |
| rtnames | Names of random terms |
| varest | Variance component estimates <br> (one per random term) |
| varci | Confidence intervals for <br> variance components |

## Examples

"Two-Way Analysis of Variance (ANOVA)" on page 4-8 shows how to use anova2 to analyze the effects of two factors on a response in a balanced design. For a design that is not balanced, use anovan instead.

In this example, the data set carbig contains a number of measurements on 406 cars. You can use anonvan to study how the mileage depends on where and when the cars were made.

```
load carbig
```

```
anovan(MPG,{org when},2,3,{'Origin';'Mfg date'})
ans =
 0
 0
 0.3059
```

The $p$-value for the interaction term is not small, indicating little evidence that the effect of the car's year or manufacture (when) depends on where the car was made (org). The linear effects of those two factors, though, are significant.

| Analysis of Variance |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | Sum Sq. | d.f. | Mean Sq. | F | Prob>F | $\Delta$ |
| Origin | 5727.2 | 2 | 2863.58 | 115.09 | 0 |  |
| Mfg date | 4710.3 | 2 | 2355.15 | 94.65 | 0 |  |
| Origin*Mfg date | 120.5 | 4 | 30.12 | 1.21 | 0.3059 |  |
| Error | 9679.1 | 389 | 24.88 |  |  |  |
| Total | 24252.6 | 397 |  |  |  |  |
| Constrained (Type III) sums of squares. |  |  |  |  |  |  |

## Reference

See Also
[1] Hogg, R. V., and J. Ledolter, Engineering Statistics, MacMillan, 1987.
anova1, anova2, multcompare

## aoctool

## Purpose Interactive plot for fitting and predicting analysis of covariance models

## Syntax

```
aoctool(x,y,g)
aoctool(x,y,g,alpha)
aoctool(x,y,g,alpha, xname, yname,gname)
aoctool(x,y,g,alpha,xname,yname,gname,'displayopt')
aoctool(x,y,g,alpha,xname,yname,gname,'displayopt','model')
h = aoctool(...)
[h,atab,ctab] = aoctool(...)
[h,atab,ctab,stats] = aoctool(...)
```


## Description

aoctool ( $x, y, g$ ) fits a separate line to the column vectors, $x$ and $y$, for each group defined by the values in the array $g$. These types of models are known as one-way analysis of covariance (ANOCOVA) models. The output consists of three figures:

- An interactive graph of the data and prediction curves
- An ANOVA table
- A table of parameter estimates

You can use the figures to change models and to test different parts of the model. More information about interactive use of the aoctool function appears in "The aoctool Demo" on page 4-25.
aoctool ( $\mathrm{x}, \mathrm{y}, \mathrm{g}$, alpha) determines the confidence levels of the prediction intervals. The confidence level is $100(1-$ alpha $) \%$. The default value of alpha is 0.05 .
aoctool ( $x, y, g$, alpha, xname, yname, gname) specifies the name to use for the $x, y$, and $g$ variables in the graph and tables. If you enter simple variable names for the $\mathrm{x}, \mathrm{y}$, and g arguments, the aoctool function uses those names. If you enter an expression for one of these arguments, you can specify a name to use in place of that expression by supplying these arguments. For example, if you enter $m(:, 2)$ as the $x$ argument, you might choose to enter 'Col 2' as the xname argument.
aoctool(x,y,g,alpha, xname, yname, gname, 'displayopt') enables the graph and table displays when 'displayopt' is 'on' (default) and suppresses those displays when 'displayopt' is 'off'.
aoctool( $\mathrm{x}, \mathrm{y}, \mathrm{g}$, alpha, xname, yname, gname, 'displayopt', 'model') specifies the initial model to fit. The value of 'model' can be any of the following:

- 'same mean' - fit a single mean, ignoring grouping
- 'separate means ' - fit a separate mean to each group
- 'same line' - fit a single line, ignoring grouping
- 'parallel lines' - fit a separate line to each group, but constrain the lines to be parallel
- 'separate lines' - fit a separate line to each group, with no constraints
$\mathrm{h}=\operatorname{aoctool}(\ldots)$ returns a vector of handles to the line objects in the plot.
[h,atab, ctab] = aoctool(...) returns cell arrays containing the entries in ANOVA table (atab) and the table of coefficient estimates (ctab). (You can copy a text version of either table to the clipboard by using the Copy Text item on the Edit menu.)
[h,atab,ctab,stats] = aoctool(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The ANOVA table output includes tests of the hypotheses that the slopes or intercepts are all the same, against a general alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of values are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying the stats structure as input. You can test either the slopes, the intercepts, or population marginal means (the heights of the curves at the mean $x$ value).


## Example

This example illustrates how to fit different models non-interactively. After loading the smaller car data set and fitting a separate-slopes model, you can examine the coefficient estimates.

```
load carsmall
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
 '','','','off','separate lines');
c(:,1:2)
```


## aoctool

```
ans =
 'Term' 'Estimate'
 'Intercept' [45.97983716833132]
 ' 70' [-8.58050531454973]
 ' 76' [-3.89017396094922]
 ' 82' [12.47067927549897]
 'Slope' [-0.00780212907455]
 ' 70' [0.00195840368824]
 ' 76' [0.00113831038418]
 ' 82' [-0.00309671407243]
```

Roughly speaking, the lines relating MPG to Weight have an intercept close to 45.98 and a slope close to -0.0078 . Each group's coefficients are offset from these values somewhat. For instance, the intercept for the cars made in 1970 is $45.98-8.58=37.40$.

Next, try a fit using parallel lines. (The ANOVA table shows that the parallel-lines fit is significantly worse than the separate-lines fit.)

```
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
 '','','','off','parallel lines');
c(:,1:2)
ans =
 'Term' 'Estimate'
 'Intercept' [43.38984085130596]
 ' 70' [-3.27948192983761]
 ' 76' [-1.35036234809006]
 ' 82' [4.62984427792768]
 'Slope' [-0.00664751826198]
```

Again, there are different intercepts for each group, but this time the slopes are constrained to be the same.

## See Also

anova1, multcompare, polytool

Purpose

## Syntax <br> Description

Bartlett's test for dimensionality

```
ndim = barttest(x,alpha)
[ndim,prob,chisquare] = barttest(x,alpha)
```

ndim = barttest(x,alpha) returns the number of dimensions necessary to explain the nonrandom variation in the data matrix $x$, using the significance probability alpha. The dimension is determined by a series of hypothesis tests. The test for ndim=1 tests the hypothesis that the variances of the data values along each principal component are equal, the test for ndim=2 tests the hypothesis that the variances along the second through last components are equal, and so on.
[ndim, prob,chisquare] = barttest(x,alpha) returns the number of dimensions, the significance values for the hypothesis tests, and the $\chi^{2}$ values associated with the tests.

```
x = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,3:4) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,5:6) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
[ndim, prob] = barttest(x,0.05)
ndim =
 3
prob =
 0
 0
 0
 0.5081
 0.6618
```

See Also princomp, pcacov, pcares

## bbdesign

Purpose Generate Box-Behnken design

```
Syntax \(\quad D=\) bbdesign(nfactors)
D = bbdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
[D,blk] = bbdesign(...)
```

Description $\quad D=$ bbdesign(nfactors) generates a Box-Behnken design for nfactors factors. The output matrix $D$ is $n$-by-nfactors, where $n$ is the number of points in the design. Each row lists the settings for all factors, scaled between - 1 and 1.
[D,blk] = bbdesign(nfactors) requests a blocked design. The output vector blk is a vector of block numbers. Blocks are groups of runs that are to be measured under similar conditions (for example, on the same day). Blocked designs minimize the effect of between-block differences on the parameter estimates.
[...] = bbdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...) allows you to specify additional parameters and their values. Valid parameters are:
'center' Number of center points to include.
'blocksize' Maximum number of points allowed in a block.

## Remarks

See Also

Box and Behnken proposed designs when the number of factors was equal to $3-7,9-12$, or 16. This function produces those designs. For other values of nfactors, this function produces designs that are constructed in a similar way, even though they were not tabulated by Box and Behnken, and they may be too large to be practical.
ccdesign, cordexch, rowexch

## Purpose Beta cumulative distribution function (cdf)

## Syntax $\quad p=\operatorname{betacdf}(X, A, B)$

Description

## Examples

```
x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)
p =
 0.0280}00.2160 0.5000 0.7840 0.9720
a = [1 2 3];
p = betacdf(0.5,a,a)
p =
 0.5000 0.5000 0.5000
```

See Also betafit, betainv, betalike, betapdf, betarnd, betastat, cdf, betainc

## betafit

## Purpose Parameter estimates and confidence intervals for beta distributed data

## Syntax phat = betafit(data)

[phat,pci] = betafit(data,alpha)

Description

## Example

Reference
phat = betafit(data) computes the maximum likelihood estimates of the beta distribution parameters $a$ and $b$ from the data in the vector data, where the beta cdf is given by

$$
F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

and $B(\cdot)$ is the Beta function. The elements of data must lie in the interval (0 1).
[phat, pci] = betafit(data,alpha) returns confidence intervals on the $a$ and $b$ parameters in the 2 -by- 2 matrix pci. The first column of the matrix contains the lower and upper confidence bounds for parameter $a$, and the second column contains the confidence bounds for parameter $b$. The optional input argument alpha is a value in the range [ 0 1] specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to $95 \%$ confidence intervals.

This example generates 100 beta distributed observations. The true $a$ and $b$ parameters are 4 and 3 , respectively. Compare these to the values returned in $p$. Note that the columns of ci both bracket the true parameters.

```
data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)
p =
 3.9010 2.6193
ci =
 2.5244 1.7488
 5.2776 3.4898
```

[1] Hahn, Gerald J., and Shapiro, Samuel S., Statistical Models in Engineering. John Wiley \& Sons, 1994. p. 95.

## betafit

## See Also

betalike, mle

## betainv

## Purpose Inverse of the beta cumulative distribution function

## Syntax $\quad X=\operatorname{betainv}(P, A, B)$

Description

Algorithm

Examples

See Also
$X=$ betainv $(P, A, B)$ computes the inverse of the beta cdf with parameters specified by $A$ and $B$ for the corresponding probabilities in $P$. $P, A$, and $B$ can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in A and B must all be positive, and the values in $P$ must lie on the interval [01].

The inverse beta cdf for a given probability $p$ and a given pair of parameters $a$ and $b$ is

$$
x=F^{-1}(p \mid a, b)=\{x: F(x \mid a, b)=p\}
$$

where

$$
p=F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

and $B(\cdot)$ is the Beta function. Each element of output X is the value whose cumulative probability under the beta cdf defined by the corresponding parameters in $A$ and $B$ is specified by the corresponding value in $P$.

The betainv function uses Newton's method with modifications to constrain steps to the allowable range for $x$, i.e., [01].

$$
\begin{aligned}
& p=\left[\begin{array}{lll}
0.01 & 0.5 & 0.99
\end{array}\right] \\
& x=\operatorname{betainv}(p, 10,5) \\
& x= \\
& \\
& 0.3726 \quad 0.6742 \quad 0.8981
\end{aligned}
$$

According to this result, for a beta $\operatorname{cdf}$ with $a=10$ and $b=5$, a value less than or equal to 0.3726 occurs with probability 0.01 . Similarly, values less than or equal to 0.6742 and 0.8981 occur with respective probabilities 0.5 and 0.99 .

```
betafit, icdf
```

Purpose

## Syntax <br> Description

Negative beta log-likelihood function
logL = betalike(params,data)
[logL,AVAR] = betalike(params,data)
logL = betalike(params, data) returns the negative of the beta log-likelihood function for the beta parameters $a$ and $b$ specified in vector params and the observations specified in the column vector data. The length of $\operatorname{logL}$ is the length of data.
[logL,AVAR] = betalike(params, data) also returns AVAR, which is the asymptotic variance-covariance matrix of the parameter estimates if the values in params are the maximum likelihood estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the asymptotic variances of their respective parameters.
betalike is a utility function for maximum likelihood estimation of the beta distribution. The likelihood assumes that all the elements in the data sample are mutually independent. Since betalike returns the negative beta log-likelihood function, minimizing betalike using fminsearch is the same as maximizing the likelihood.

This example continues the betafit example, which calculates estimates of the beta parameters for some randomly generated beta distributed data.

```
r = betarnd(4,3,100,1);
[logl,AVAR] = betalike(betafit(r),r)
logl =
 -39.1615
AVAR =
 0.3717 0.2644
 0.2644 0.2414
```

betafit, fminsearch, gamlike, mle, normlike, wbllike

## betapdf

## Purpose Beta probability density function (pdf)

$$
\text { Syntax } \quad Y=\operatorname{betapdf}(X, A, B)
$$

Description

## Examples

See Also
$Y=\operatorname{betapdf}(X, A, B)$ computes the beta pdf at each of the values in $X$ using the corresponding parameters in A and B. $\mathrm{X}, \mathrm{A}$, and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs. The parameters in $A$ and $B$ must all be positive, and the values in $X$ must lie on the interval [ $\left.\begin{array}{ll}0 & 1\end{array}\right]$.

The beta probability density function for a given value $x$ and given pair of parameters $a$ and $b$ is

$$
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} I_{(0,1)}(x)
$$

where $B(\cdot)$ is the Beta function. The result, $y$, is the probability that a single observation from a beta distribution with parameters $a$ and $b$ will have value $x$. The indicator function $I_{(0,1)}(x)$ ensures that only values of $x$ in the range ( 01 ) have nonzero probability. The uniform distribution on (01) is a degenerate case of the beta pdf where $a=1$ and $b=1$.

A likelihood function is the pdf viewed as a function of the parameters. Maximum likelihood estimators (MLEs) are the values of the parameters that maximize the likelihood function for a fixed value of $x$.

```
a = [0.5 1; 2 4]
a =
 0.5000 1.0000
 2.0000 4.0000
y = betapdf(0.5,a,a)
y =
 0.6366 1.0000
 1.5000 2.1875
```

betacdf, betafit, betainv, betalike, betarnd, betastat, pdf, beta, betaln

## Purpose Random numbers from the beta distribution

```
Syntax R = betarnd (A,B)
R = betarnd(A,B,v)
R = betarnd(A,B,m,n)
R = betarnd(A,B,m,n,o,...)
```


## Description

$R=$ betarnd $(A, B)$ generates random numbers from the beta distribution with parameters specified by A and B. A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for A or B is expanded to a constant array with the same dimensions as the other input.
$R=$ betarnd $(A, B, v)$ generates an array $R$ of size $v$ containing random numbers from the beta distribution with parameters $A$ and $B$, where $v$ is a row vector. If $v$ is a 1 -by- 2 vector, $R$ is a matrix with $v(1)$ rows and $v(2)$ columns. If $v$ is 1 -by- $n, R$ is an $n$-dimensional array.
$R=$ betarnd $(A, B, m, n)$ generates an $m-b y-n$ matrix containing random numbers from the beta distribution with parameters A and B.
$R=$ betarnd(A, $B, m, n, o, \ldots)$ generates an m-by-n-by-o-by-... multidimensional array containing random numbers from the beta distribution with parameters A and B.

## Reproducing the Output of betarnd

betarnd uses the MATLAB functions rand and randn to generate random numbers. When you call betarnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to betarnd or any other functions that depend on rand or randn. If you want to reproduce the output of betarnd, reset the states of rand and randn to the same fixed values each time you call betarnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

## betarnd

Note The results in the following examples depend on the current states of rand and randn. If you run the code in these examples, your results may differ from the answers shown here.

## Examples

```
a = [1 1;2 2];
b = [1 2;1 2];
r = betarnd(a,b)
r =
 0.6987 0.6139
 0.9102 0.8067
r = betarnd(10,10,[1 5])
r =
 0.5974 0.4777 0.5538
r = betarnd(4,2,2,3)
r =
 0.3943 0.6101 0.5768
 0.5990 0.2760 0.5474
```

```
See Also
betacdf, betafit, betainv, betalike, betapdf, betastat, rand, randn,
``` randtool

\section*{Purpose Mean and variance for the beta distribution}

\section*{Syntax \(\quad[M, V]=\operatorname{betastat}(A, B)\)}

Description
\([M, V]=\operatorname{betastat}(A, B)\) returns the mean and variance for the beta distribution with parameters specified by \(A\) and \(B\). \(A\) and \(B\) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(A\) or \(B\) is expanded to a constant array with the same dimensions as the other input.

The mean of the beta distribution with parameters \(a\) and \(b\) is \(a /(a+b)\) and the variance is
\[
\frac{a b}{(a+b+1)(a+b)^{2}}
\]

\section*{Examples}

If parameters \(a\) and \(b\) are equal, the mean is \(1 / 2\).
```

a = 1:6;
[m,v] = betastat(a,a)
m =
0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
v =
0.0833 0.0500

```

\section*{See Also}
betacdf, betafit, betainv, betalike, betapdf, betarnd

\section*{binocdf}

\section*{Purpose Binomial cumulative distribution function (cdf)}
\[
\text { Syntax } \quad Y=\operatorname{binocdf}(X, N, P)
\]

Description

\section*{Examples}

See Also
binocdf( \(X, N, P\) ) computes a binomial cdf at each of the values in \(X\) using the corresponding parameters in \(N\) and \(P\). \(X, N\), and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs. The values in \(N\) must all be positive integers, the values in \(X\) must lie on the interval \([0, N]\), and the values in \(P\) must lie on the interval [ 011\(]\).

The binomial cdf for a given value \(x\) and given pair of parameters \(n\) and \(p\) is
\[
y=F(x \mid n, p)=\sum_{i=0}^{x}\binom{n}{i} p^{i} q^{(n-i)} I_{(0,1, \ldots, n)}(i)
\]

The result, \(y\), is the probability of observing up to \(x\) successes in \(n\) independent trials, where the probability of success in any given trial is \(p\). The indicator function \(I_{(0,1, \ldots, n)}(i)\) ensures that \(x\) only adopts values of \(0,1, \ldots, n\).

If a baseball team plays 162 games in a season and has a 50-50 chance of winning any game, then the probability of that team winning more than 100 games in a season is:
```

1 - binocdf(100,162,0.5)

```

The result is 0.001 (i.e., 1-0.999). If a team wins 100 or more games in a season, this result suggests that it is likely that the team's true probability of winning any game is greater than 0.5 .

\author{
binofit, binoinv, binopdf, binornd, binostat, cdf
}

Purpose
Parameter estimates and confidence intervals for binomial data
```

Syntax phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)

```

\section*{Description}

\section*{Example}
phat \(=\) binofit( \(x, n\) ) returns a maximum likelihood estimate of the probability of success in a given binomial trial based on the number of successes, \(x\), observed in \(n\) independent trials. If \(x=(x(1), x(2), \ldots x(k))\) is a vector, binofit returns a vector of the same size as \(x\) whose ith entry is the parameter estimate for \(x(i)\). All \(k\) estimates are independent of each other. If \(n=(n(1), n(2), \ldots, n(k))\) is a vector of the same size as \(x\), binofit returns a vector whose ith entry is the parameter estimate based on the number of successes \(x(i)\) in \(n(i)\) independent trials. A scalar value for x or n is expanded to the same size as the other input.
[phat, pci] = binofit(x,n) returns the probability estimate, phat, and the \(95 \%\) confidence intervals, pci.
[phat,pci] = binofit(x,n,alpha) returns the 100(1-alpha)\% confidence intervals. For example, alpha \(=0.01\) yields \(99 \%\) confidence intervals.

Note binofit behaves differently than other functions in the Statistics Toolbox that compute parameter estimates, in that it returns independent estimates for each entry of \(x\). By comparison, expfit returns a single parameter estimate based on all the entries of \(x\).

This example generates a binomial sample of 100 elements, where the probability of success in a given trial is 0.6 , and then estimates this probability from the outcomes in the sample.
```

r = binornd(100,0.6);
[phat,pci] = binofit(r,100)
phat =
0.5800

```

\section*{binofit}
\[
\begin{array}{ll}
\text { pci } & = \\
0.4771 \quad 0.6780
\end{array}
\]

The \(95 \%\) confidence interval, pci, contains the true value, 0.6.
Reference \(\quad\) [1] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete Distributions,
2nd edition, Wiley, 1992, pp. 124-130.
See Also binocdf, binoinv, binopdf, binornd, binostat, mle

\section*{Purpose}

\section*{Syntax \\ \(X=\operatorname{binoinv}(Y, N, P)\)}

Description

\section*{Examples}

See Also between 71 and 91 games.

Inverse of the binomial cumulative distribution function (cdf)
\(X=\) binoinv \((Y, N, P)\) returns the smallest integer \(X\) such that the binomial cdf evaluated at \(X\) is equal to or exceeds \(Y\). You can think of \(Y\) as the probability of observing \(X\) successes in \(N\) independent trials where \(P\) is the probability of success in each trial. Each \(X\) is a positive integer less than or equal to \(N\).
\(Y, N\), and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(N\) must be positive integers, and the values in both \(P\) and \(Y\) must lie on the interval [01].

If a baseball team has a 50-50 chance of winning any game, what is a reasonable range of games this team might win over a season of 162 games?
```

 binoinv([0.05 0.95],162,0.5)
 ans =
 71 91
    ```

This result means that in \(90 \%\) of baseball seasons, a .500 team should win
binocdf, binofit, binopdf, binornd, binostat, icdf

\section*{binopdf}

\section*{Purpose Binomial probability density function (pdf)}
\[
\text { Syntax } \quad Y=\operatorname{binopdf}(X, N, P)
\]

Description

\section*{Examples}
\(Y=\operatorname{binopdf}(X, N, P)\) computes the binomial pdf at each of the values in \(X\) using the corresponding parameters in \(N\) and \(P\). \(Y, N\), and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs.

The parameters in \(N\) must be positive integers, and the values in \(P\) must lie on the interval [0 1].

The binomial probability density function for a given value \(x\) and given pair of parameters \(n\) and \(p\) is
\[
y=f(x \mid n, p)=\binom{n}{x} p^{x} q^{(n-x)} I_{(0,1, \ldots, n)}(x)
\]
where \(q=1-p\). The result, \(y\), is the probability of observing \(x\) successes in \(n\) independent trials, where the probability of success in any given trial is \(p\). The indicator function \(I_{(0,1, \ldots, n)}(x)\) ensures that \(x\) only adopts values of \(0,1, \ldots, n\).

A Quality Assurance inspector tests 200 circuit boards a day. If \(2 \%\) of the boards have defects, what is the probability that the inspector will find no defective boards on any given day?
```

binopdf(0,200,0.02)
ans =
0.0176

```

What is the most likely number of defective boards the inspector will find?
```

y = binopdf([0:200],200,0.02);
[x,i] = max(y);
i
i =
5

```

See Also
binocdf, binofit, binoinv, binornd, binostat, pdf

Purpose
Random numbers from the binomial distribution
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{binornd}(N, P)\) \\
\(R\) & \(=\operatorname{binornd}(N, P, v)\) \\
\(R\) & \(=\operatorname{binornd}(N, P, m, n)\)
\end{tabular}

Description

\section*{Algorithm} parameters specified by \(N\) and P. \(N\) and \(P\) can be vectors, matrices, or scalar input for N or P is expanded to a constant array with the same dimensions as the other input.
\(R=\) binornd ( \(N, P, v\) ) generates an array \(R\) of size \(v\) containing random numbers from the beta distribution with parameters \(N\) and \(P\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=\) binornd ( \(N, p, m, n\) ) generates an \(m-b y-n\) matrix containing random numbers from the binomial distribution with parameters \(N\) and \(P\).

The binornd function uses the direct method using the definition of the
\(R=\) binornd ( \(N, P\) ) generates random numbers from the beta distribution with multidimensional arrays that have the same size, which is also the size of R. A binomial distribution as a sum of Bernoulli random variables.

\section*{Reproducing the Output of binornd}
binornd uses the MATLAB function rand to generate random numbers. When you call binornd, you change the current state of rand, and thereby alter the output of subsequent calls to binornd or any other functions that depend on rand. If you want to reproduce the output of binornd, reset the state of rand to the same fixed value each time you call binornd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current state of rand. If you run the code in these examples, your results may differ from the answers shown here.

Examples
```

n = 10:10:60;
r1 = binornd(n,1./n)
r1 =
2
r2 = binornd(n,1./n,[1 6])
r2 =
0
r3 = binornd(n,1./n,1,6)
r3 =
0

```

See Also
binocdf, binofit, binoinv, binopdf, binostat, rand, randtool

Purpose

\section*{Syntax \\ \([\mathrm{M}, \mathrm{V}]=\operatorname{binostat}(\mathrm{N}, \mathrm{P})\)}

Mean and variance for the binomial distribution
\([M, V]=\) binostat ( \(N, P\) ) returns the mean and variance for the binomial distribution with parameters specified by \(N\) and \(P\). \(N\) and \(P\) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(N\) or \(P\) is expanded to a constant array with the same dimensions as the other input.

The mean of the binomial distribution with parameters \(n\) and \(p\) is \(n p\). The variance is \(n p q\), where \(q=1-p\).

\section*{Examples}
```

n = logspace(1,5,5)
n =
10}100\quad1000 10000 10000
[m,v] = binostat(n,1./n)
m =
1 1 1 1 1 1
v =
0.9000}00.9900 0.9990 0.9999 1.0000
[m,v] = binostat(n,1/2)
m =
5 50 500 5000 50000
v =
1.0e+04 *
0.0003 0.0025 0.0250 0.2500 2.5000

```
See Also binocdf, binofit, binoinv, binopdf, binornd

\section*{Purpose Biplot of variable/factor coefficients and scores}
```

Syntax biplot(coefs)
biplot(coefs, ..., 'Scores', scores)
biplot(coefs, ..., 'VarLabels', varlabs)
biplot(coefs, ..., 'Scores', scores, 'ObsLabels', obslabs)
biplot(coeffs, ..., 'PropertyName', PropertyValue, ...)
h = biplot(coefs, ...)

```

Description biplot (coefs) creates a biplot of the coefficients in the matrix coefs. The biplot is two dimensional if coefs has two columns or three dimensional if it has three columns. coefs usually contains principal component coefficients created with princomp, pcacov, or factor loadings estimated with factoran. The axes in the biplot represent the principal components or latent factors (columns of coefs), and the observed variables (rows of coefs) are represented as vectors.
biplot(coefs, ..., 'Scores', scores) plots both coefs and the scores in the matrix scores in the biplot. scores usually contains principal component scores created with princomp or factor scores estimated with factoran. Each observation (row of scores) is represented as a point in the biplot.

A biplot allows you to visualize the magnitude and sign of each variable's contribution to the first two or three principal components, and how each observation is represented in terms of those components.
biplot imposes a sign convention, forcing the element with largest magnitude in each column of coefs is positive.
biplot(coefs, ..., 'VarLabels', varlabs) labels each vector (variable) with the text in the character array or cell array varlabs.
biplot(coefs, ..., 'Scores', scores, 'ObsLabels', obslabs) labels each point (observation) with the text in the character array or cell array obslabs.
biplot(coeffs, ..., 'PropertyName', PropertyValue, ...) sets properties to the specified property values for all line graphics objects created by biplot.
h = biplot (coefs, ...) returns a column vector of handles to the graphics objects created by biplot. h contains, in order, handles corresponding to
variables (line handles, followed by marker handles, followed by text handles), to observations (if present, marker handles followed by text handles), and to the axis lines.

\section*{Example}

See Also
```

load carsmall
x = [Acceleration Displacement Horsepower MPG Weight];
x = x(all(~isnan(x),2),:);
[coefs,score] = princomp(zscore(x));
vlabs = {'Accel','Disp','HP','MPG','Wgt'};
biplot(coefs(:,1:3), 'scores',score(:,1:3), 'varlabels',vlabs);

```
factoran, princomp, pcacov, rotatefactors

\section*{Purpose Bootstrap statistics through resampling of data}
```

Syntax bootstat = bootstrp(nboot,bootfun,d1,d2,···.)
[bootstat,bootsam] = bootstrp(...)

```

Description

\section*{Examples}

\section*{Correlating Two Data Sets}

Correlate the LSAT scores and law-school GPA for 15 students. These 15 data points are resampled to create 1000 different data sets, and the correlation between the two variables is computed for each data set.
```

load lawdata
[bootstat,bootsam] = bootstrp(1000,'corrcoef',lsat,gpa);
bootstat(1:5,:)

```
```

ans =
1.0000}00.3021 0.3021 1.0000
1.0000}00.6869 0.6869 1.0000
1.0000}00.8346 0.8346 1.0000
1.0000}00.8711 0.8711 1.0000
1.0000}00.8043 0.8043 1.0000
bootsam(:,1:5)
ans =

| 4 | 7 | 5 | 12 | 8 |
| :--- | :--- | :--- | :--- | :--- |

| 1 | 11 | 10 | 8 | 4 |
| :--- | :--- | :--- | :--- | :--- |

 11
 11
 15}1313\quad6\quad6 2,
 6
 8
    ```

```

 1
 1
 8
 11}1212\quad10 8 15
 1
 6
 2
 hist(bootstat(:,2))

```


\section*{bootstrp}

The histogram shows the variation of the correlation coefficient across all the bootstrap samples. The sample minimum is positive, indicating that the relationship between LSAT score and GPA is not accidental.

\section*{Estimating Density of Bootstrapped Means}

Compute a sample of 100 bootstrapped means of random samples taken from the vector Y , and plot an estimate of the density of these bootstrapped means:
```

y = exprnd(5,100,1);
m = bootstrp(100, @mean, y);
[fi,xi] = ksdensity(m);
plot(xi,fi);

```


\section*{Estimating Bootstrap Pairs}

Compute a sample of 100 bootstrapped means and standard deviations of random samples taken from the vector Y , and plot the bootstrap estimate pairs:
```

y = exprnd(5,100,1);
stats = bootstrp(100, @(x) [mean(x) std(x)], y);
plot(stats(:,1),stats(:,2),'o')

```


\section*{Computing a Bootstrap Regression}

Compute a sample of 200 bootstrapped coefficient vectors for a regression of the vector Y on the matrix X :
```

load hald
x = [ones(size(heat)), ingredients];
y = heat;
b = bootstrp(200, 'regress', y, x);

```

\section*{boxplot}

Purpose Box plots of a data sample
```

Syntax boxplot(X)
boxplot(x,G)
boxplot(...,'Param1', val1, 'Param2', val2,...)
h = boxplot(...)

```

Description boxplot ( \(X\) ) produces a box and whisker plot for each column of the matrix \(X\). The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the rest of the data. Outliers are data with values beyond the ends of the whiskers. If there is no data outside the whisker, a dot is placed at the bottom whisker.
boxplot ( \(\mathrm{x}, \mathrm{G}\) ) produces a box and whisker plot for the vector x grouped by G . G is a grouping variable defined as a vector, string matrix, or cell array of strings. G can also be a cell array of several grouping variables (such as \{G1 G2 G3\}) to group the values in \(x\) by each unique combination of grouping variable values. boxplot(...,'Param1', val1, 'Param2', val2,...) specifies optional parameter name/value pairs, as described in the following table.
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & Parameter Values \\
\hline 'notch' & 'on' to include notches (default is ' off') \\
\hline 'symbol' & \begin{tabular}{l} 
Symbol to use for outliers (default is 'r+'). See \\
LineSpec for a description of symbols.
\end{tabular} \\
\hline 'orientation' & Box orientation, 'vertical' (default) or 'horizontal' \\
\hline 'whisker' & \begin{tabular}{l} 
Maximum whisker length in units of interquartile range \\
(default 1.5)
\end{tabular} \\
\hline 'labels' & \begin{tabular}{l} 
Character array or cell array of strings containing \\
column labels (used only if X is a matrix, and the \\
default label is the column number)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Parameter \\
Name
\end{tabular} & Parameter Values \\
\hline 'colors ' & \begin{tabular}{l} 
A string, such as 'bgry ', or a three-column matrix of box \\
colors. Letters in the string specify colors, as described in \\
LineSpec. Each box (outline, median line, and whiskers) \\
is drawn in the corresponding color. The default is to \\
draw all boxes with blue outline, red median, and black \\
whiskers. Colors are reused in the same order if \\
necessary.
\end{tabular} \\
\hline 'widths' & \begin{tabular}{l} 
A numeric vector of box widths. The default is 0.5, or \\
slightly smaller for fewer than three boxes. Widths are \\
reused if necessary.
\end{tabular} \\
\hline 'positions ' & \begin{tabular}{l} 
A numeric vector of box positions. The default is 1:n.
\end{tabular} \\
\hline 'grouporder' & \begin{tabular}{l} 
When the grouping variable G is given, a character array \\
or cell array of group names, specifying the ordering of \\
the groups in G. Ignored when G is not given.
\end{tabular} \\
\hline
\end{tabular}

In a notched box plot the notches represent a robust estimate of the uncertainty about the medians for box-to-box comparison. Boxes whose notches do not overlap indicate that the medians of the two groups differ at the 5\% significance level.

Whiskers extend from the box out to the most extreme data value within whis*iqr, where whis is the value of the 'whisker' parameter and iqr is the interquartile range of the sample.
\(\mathrm{h}=\operatorname{boxplot}(\ldots)\) returns a matrix of handles to the lines in the box plot. h contains one column for each box. Each column contains seven handles corresponding to the upper whisker, lower whisker, upper adjacent value, lower adjacent value, box, median, and outliers.

\section*{Examples}

The following commands create a box plot of car mileage grouped by country.
```

load carsmall
boxplot(MPG, Origin)

```

\section*{boxplot}


The following example produces notched box plots for two groups of sample data.
```

x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);
boxplot([x1,x2],'notch','on')

```


The difference between the medians of the two groups is approximately 1. Since the notches in the boxplot do not overlap, you can conclude, with \(95 \%\) confidence, that the true medians do differ.
The following figure shows the boxplot for same data with the length of the whiskers specified as 1.0 times the interquartile range. Points beyond the whiskers are displayed using '+'.
```

boxplot([x1,x2],'notch','on','whisker',1)

```

\section*{boxplot}


References

See Also

\section*{See Also}
[1] McGill, R., J. W. Tukey, and W. A. Larsen, "Variations of Boxplots," The American Statistician, Vol. 32, 1978, pp.12-16.
[2] Velleman, P.F., and D.C. Hoaglin, Applications, Basics, and Computing of Exploratory Data Analysis, Duxbury Press, 1981.
[3] Nelson, L. S., "Evaluating Overlapping Confidence Intervals," Journal of Quality Technology, Vol. 21, 1989, pp. 140-141.
anova1, kruskalwallis, multcompare

Purpose
Syntax

Description

D-optimal design from candidate set using row exchanges
```

rlist = candexch(C,nrows)
rlist = candexch(C,nrows,'param1',value1,'param2',value2,...)

```
rlist = candexch(C, nrows) uses a row-exchange algorithm to select a D-optimal design from the candidate set C . C is an n -by-p matrix containing the values of \(p\) model terms at each of \(n\) points. nrows is the desired number of rows in the design. rlist is a vector of length nrows listing the selected rows.

The candexch function selects a starting design \(X\) at random, and uses a row-exchange algorithm to iteratively replace rows of \(X\) by rows of \(C\) in an attempt to improve the determinant of \(\mathrm{X}^{\prime *} \mathrm{X}\).
rlist \(=\) candexch(C, nrows,'param1', value1,'param2', value2,.. .) provides more control over the design generation through a set of parameter/value pairs. Valid parameters are the following:
\begin{tabular}{ll}
\hline Parameter & Value \\
\hline 'display ' & \begin{tabular}{l} 
Either 'on ' or 'off ' to control display of iteration number \\
The default is 'on '.
\end{tabular} \\
\hline 'init' & \begin{tabular}{l} 
Initial design as an nrows-by-p matrix. The default is a \\
random subset of the rows of c.
\end{tabular} \\
\hline 'maxiter' & Maximum number of iterations. The default is 10. \\
\hline
\end{tabular}

Note The rowexch function also generates D-optimal designs using a row-exchange algorithm, but it accepts a model type and automatically selects a candidate set that is appropriate for such a model.

Generate a D-optimal design when there is a restriction on the candidate set. In this case, the rowexch function isn't appropriate.
```

F = (fullfact([5 5 5])-1)/4; % Factor settings in unit cube.
T = sum(F,2)<=1.51; % Find rows matching a restriction.

```
```

F = F(T,:); % Take only those rows.
C = [ones(size(F,1),1) F F.^2]; % Compute model terms including
% a constant and all squared terms.
R = candexch(C,12); % Find a D-optimal 12-point subset.
X = F(R,:); % Get factor settings.

```

See Also
candgen, cordexch, rowexch, x2fx

\section*{Purpose}

Syntax \(\quad\) xcand \(=\) candgen(nfactors,'model') [xcand,fxcand] = candgen(nfactors,'model')

\section*{Description}

See Also

\section*{Purpose Canonical correlation analysis}
```

Syntax [A,B] = canoncorr(X,Y)
[A,B,r] = canoncorr(X,Y)
[A,B,r,U,V] = canoncorr(X,Y)
[A,B,r,U,V,stats] = canoncorr(X,Y)

```

\section*{Description}
\([A, B]=\) canoncorr \((X, Y)\) computes the sample canonical coefficients for the \(n\)-by-d1 and \(n\)-by-d2 data matrices \(X\) and \(Y\). \(X\) and \(Y\) must have the same number of observations (rows) but can have different numbers of variables (columns). A and \(B\) are d1-by-d and d2-by-d matrices, where \(d=\min (\operatorname{rank}(X), \operatorname{rank}(Y))\). The \(j\) th columns of \(A\) and \(B\) contain the canonical coefficients, i.e., the linear combination of variables making up the \(j\) th canonical variable for \(X\) and \(Y\), respectively. Columns of A and B are scaled to make the covariance matrices of the canonical variables the identity matrix (see \(U\) and \(V\) below). If \(X\) or \(Y\) is less than full rank, canoncorr gives a warning and returns zeros in the rows of \(A\) or \(B\) corresponding to dependent columns of \(X\) or \(Y\).
\([A, B, r]=\) canoncorr \((X, Y)\) also returns a 1-by-d vector containing the sample canonical correlations. The \(j\) th element of \(r\) is the correlation between the jth columns of \(U\) and \(V\) (see below).
\([A, B, r, U, V]=\) canoncorr \((X, Y)\) also returns the canonical variables, scores. \(U\) and \(V\) are \(n\)-by-d matrices computed as
\[
\begin{aligned}
& U=(X-\operatorname{repmat}(\operatorname{mean}(X), N, 1)) * A \\
& V=(Y-\operatorname{repmat}(\operatorname{mean}(Y), N, 1)) * B
\end{aligned}
\]
\([A, B, r, U, V, s t a t s]=\) canoncorr \((X, Y)\) also returns a structure stats containing information relating to the sequence of d null hypotheses \(H_{0}^{(k)}\), that the ( \(k+1\) )st through dth correlations are all zero, for \(k=0\) : (d-1). stats contains seven fields, each a 1-by-d vector with elements corresponding to the values of \(k\), as described in the following table:

Wilks Wilks' lambda (likelihood ratio) statistic
chisq Bartlett's approximate chi-squared statistic for \(H_{0}^{(k)}\) with Lawley's modification
pChisq Right-tail significance level for chisq
```

F Rao's approximate F statistic for }\mp@subsup{H}{0}{(k)
pF Right-tail significance level for F
df1 Degrees of freedom for the chi-squared statistic, and the
numerator degrees of freedom for the F statistic
df2 Denominator degrees of freedom for the F statistic

```

\section*{Examples}

References
```

load carbig;

```
load carbig;
X = [Displacement Horsepower Weight Acceleration MPG];
X = [Displacement Horsepower Weight Acceleration MPG];
nans = sum(isnan(X),2) > 0;
nans = sum(isnan(X),2) > 0;
[A B r U V] = canoncorr(X(~nans,1:3), X(~nans,4:5));
[A B r U V] = canoncorr(X(~nans,1:3), X(~nans,4:5));
plot(U(:,1),V(:,1),'.');
xlabel('0.0025*Disp + 0.020*HP - 0.000025*Wgt');
ylabel('-0.17*Accel + -0.092*MPG')
```



```
[1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University Press, 1988.
[2] Seber, G. A. F., Multivariate Observations, Wiley, 1984.
```


canoncorr

See Also
 manova1, princomp

Purpose Process capability indices

Syntax	$p=$ capable (data, specs)
$[p, C p, C p k]=$ capable (data, specs $)$	

Description

Example

p = capable(data, specs) computes the probability that a sample, data, from some process falls outside the bounds specified in specs, a 2 -element vector of the form [lower upper].

The assumptions are that the measured values in the vector data are normally distributed with constant mean and variance and that the measurements are statistically independent.
[$p, C p, C p k]$ = capable(data,specs) additionally returns the capability indices Cp and Cpk .
C_{p} is the ratio of the range of the specifications to six times the estimate of the process standard deviation:

$$
C_{p}=\frac{U S L-L S L}{6 \sigma}
$$

For a process that has its average value on target, a C_{p} of 1 translates to a little more than one defect per thousand. Recently, many industries have set a quality goal of one part per million. This would correspond to $C_{p}=1.6$. The higher the value of C_{p}, the more capable the process.
$C_{p k}$ is the ratio of difference between the process mean and the closer specification limit to three times the estimate of the process standard deviation:

$$
C_{p k}=\min \left(\frac{U S L-\mu}{3 \sigma}, \frac{\mu-L S L}{3 \sigma}\right)
$$

where the process mean is μ. For processes that do not maintain their average on target, $C_{p k}$ is a more descriptive index of process capability.

Imagine a machined part with specifications requiring a dimension to be within three thousandths of an inch of nominal. Suppose that the machining process cuts too thick by one thousandth of an inch on average and also has a

capable

standard deviation of one thousandth of an inch. What are the capability indices of this process?

```
data = normrnd(1,1,30,1);
[p,Cp,Cpk] = capable(data,[-3 3]);
indices = [p Cp Cpk]
indices =
    0.0172 1.1144 0.7053
```

You expect 17 parts out of a thousand to be out-of-specification. Cpk is less than Cp because the process is not centered.

Reference

See Also
[1] Montgomery, D., "Introduction to Statistical Quality Control," John Wiley \& Sons, 1991, pp. 369-374.
capaplot, histfit

Purpose
$\begin{array}{ll}\text { Syntax } & p=\text { capaplot(data, specs) } \\ & {[p, h]=\text { capaplot (data, specs) }}\end{array}$

Example

p = capaplot(data, specs) estimates the mean and variance of the observations in input vector data, and plots the pdf of the resulting T distribution. The observations in data are assumed to be normally distributed. The output, p, is the probability that a new observation from the estimated distribution will fall within the range specified by the two-element vector specs. The portion of the distribution between the lower and upper bounds specified in specs is shaded in the plot.
[$\mathrm{p}, \mathrm{h}]=$ capaplot(data, specs) additionally returns handles to the plot elements in h .

Imagine a machined part with specifications requiring a dimension to be within 3 thousandths of an inch of nominal. Suppose that the machining process cuts too thick by one thousandth of an inch on average and also has a standard deviation of one thousandth of an inch.

```
data = normrnd(1,1,30,1);
p = capaplot(data,[-3 3])
p =
    0.9784
```

The probability of a new observation being within specs is 97.84%.

capaplot

See Also

capable, histfit

Purpose
Read casenames from a file

```
Syntax names = caseread('filename')
names = caseread
Description
```


Example

```
Read the file months.dat created using the function casewrite on the next page.
```

```
type months.dat
```

type months.dat
January
January
February
February
March
March
April
April
May
May
names = caseread('months.dat')
names = caseread('months.dat')
names =
names =
January
January
February
February
March
March
April
April
May

```
May
```

[^1]
Purpose Write casenames from a string matrix to a file

```
Syntax casewrite(strmat,'filename')
casewrite(strmat)
Description
```


Example

```
strmat = str2mat('January','February','March','April','May')
```

strmat = str2mat('January','February','March','April','May')
strmat =
strmat =
January
January
February
February
March
March
April
April
May
May
casewrite(strmat,'months.dat')
casewrite(strmat,'months.dat')
type months.dat
type months.dat
January
January
February
February
March
March
April
April
May

```
May
```


See Also

gname, caseread, tblwrite, tdfread

Purpose
 Generate central composite design

Syntax
Description

```
D = ccdesign(nfactors)
D = ccdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
[D,blk] = ccdesign(...)
```

D = ccdesign(nfactors) generates a central composite design for nfactors factors. The output matrix D is n-by-nfactors, where n is the number of points in the design. Each row represents one run of the design, and it has the settings of all factors for that run. Factor values are normalized so that the cube points take values between -1 and 1 .
[D,blk] = ccdesign(nfactors) requests a blocked design. The output vector blk is a vector of block numbers. Blocks are groups of runs that are to be measured under similar conditions (for example, on the same day). Blocked designs minimize the effect of between-block differences on the parameter estimates.
[...] = ccdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...) enables you to specify additional parameters and their values. Valid parameters are:
'center' Number of center points:
Integer Specific number of center points to include
'uniform' Number of center points is selected to give uniform precision
'orthogonal' Number of center points is selected to give an orthogonal design (default)
'fraction' Fraction of full factorial for cube portion expressed as an exponent of $1 / 2$. For example:
$0 \quad$ Whole design
$1 \quad 1 / 2$ fraction
2
1/4 fraction

[^2]
ccdesign

See Also

bbdesign, cordexch, rowexch

Purpose

Syntax
Description

Examples

See Also

Computes a chosen cumulative distribution function (cdf)

```
P = cdf('name',X,A1,A2,A3)
```

$P=\operatorname{cdf}($ 'name' $, \mathrm{X}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3)$ returns a matrix of probabilities, where name is a string containing the name of the distribution, X is a matrix of values, and A, A2, and A3 are matrices of distribution parameters. Depending on the distribution, some of these parameters may not be necessary.

Vector or matrix inputs for X, A1, A2, and A3 must have the same size, which is also the size of P. A scalar input for X, A1, A2, or A3 is expanded to a constant matrix with the same dimensions as the other inputs.
cdf is a utility routine allowing you to access all the cdfs in the Statistics Toolbox by using the name of the distribution as a parameter. See "Overview of the Distributions" on page 2-45 for the list of available distributions.

```
p = cdf('Normal',-2:2,0,1)
p =
    0.0228 0.1587 0.5000 0.8413 0.9772
p = cdf('Poisson',0:5,1:6)
p =
    0.3679 0.4060 0.4232 0.4335 0.4405 0.4457
```

betacdf, binocdf, chi2cdf, expcdf, fcdf, gamcdf, geocdf, hygecdf, icdf, logncdf, mle, nbincdf, ncfcdf, nctcdf, ncx2cdf, normcdf, pdf, poisscdf, random, raylcdf, tcdf, unidcdf, unifcdf, wblcdf

Purpose Plot of empirical cumulative distribution function

```
Syntax cdfplot(X)
h = cdfplot(X)
[h,stats] = cdfplot(X)
```

Description $\quad \operatorname{cdfplot}(X)$ displays a plot of the empirical cumulative distribution function (cdf) for the data in the vector X . The empirical $\operatorname{cdf} F(x)$ is defined as the proportion of X values less than or equal to x.

This plot, like those produced by hist and normplot, is useful for examining the distribution of a sample of data. You can overlay a theoretical cdf on the same plot to compare the empirical distribution of the sample to the theoretical distribution.

The kstest, kstest2, and lillietest functions compute test statistics that are derived from the empirical cdf. You may find the empirical cdf plot produced by cdfplot useful in helping you to understand the output from those functions.
$H=\operatorname{cdfplot}(X)$ returns a handle to the cdf curve.
[h,stats] $=$ cdfplot(X) also returns a stats structure with the following fields.

Field	Contents
stats.min	Minimum value
stats.max	Maximum value
stats.mean	Sample mean
stats.median	Sample median (50th percentile)
stats.std	Sample standard deviation

Examples

Generate a normal sample and an empirical cdf plot of the data.

```
x = normrnd(0,1,50,1);
cdfplot(x)
```


See Also
ecdf, hist, kstest, kstest2, lillietest, normplot

Purpose \quad Chi-square $\left(\chi^{2}\right)$ cumulative distribution function (cdf)

Syntax
 $P=\operatorname{chi2cdf}(X, V)$

Description

Examples

See Also
$P=\operatorname{chi2cdf}(X, V)$ computes the χ^{2} cdf at each of the values in X using the corresponding parameters in $V . X$ and V can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The degrees of freedom parameters in V must be positive integers, and the values in X must lie on the interval [01].
The χ^{2} cdf for a given value x and degrees-of-freedom v is

$$
p=F(x \mid v)=\int_{0}^{x} \frac{t^{(v-2) / 2} e^{-t / 2}}{2^{v / 2} \Gamma(v / 2)} d t
$$

where $\Gamma(\cdot)$ is the Gamma function. The result, p , is the probability that a single observation from a χ^{2} distribution with v degrees of freedom will fall in the interval [0 $x]$.
The χ^{2} density function with v degrees-of-freedom is the same as the gamma density function with parameters $v / 2$ and 2 .

```
probability = chi2cdf(5,1:5)
probability =
    0.9747 0.9179 0.8282 0.7127 0.5841
probability = chi2cdf(1:5,1:5)
probability =
    0.6827 0.6321 0.6084 0.5940
```

cdf, chi2inv, chi2pdf, chi2rnd, chi2stat

Purpose

Syntax
Description

Examples

See Also

Inverse of the chi-square (χ^{2}) cumulative distribution function (cdf)

$$
X=\operatorname{chi2inv}(P, V)
$$

$X=$ chi2inv (P, V) computes the inverse of the χ^{2} cdf with parameters specified by V for the corresponding probabilities in P. P and V can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The degrees of freedom parameters in \vee must be positive integers, and the values in P must lie in the interval [01].

The inverse χ^{2} cdf for a given probability p and v degrees of freedom is

$$
x=F^{-1}(p \mid v)=\{x: F(x \mid v)=p\}
$$

where

$$
p=F(x \mid v)=\int_{0}^{x} \frac{t^{(v-2) / 2} e^{-t / 2}}{2^{v / 2} \Gamma(v / 2)} d t
$$

and $\Gamma(\cdot)$ is the Gamma function. Each element of output X is the value whose cumulative probability under the χ^{2} cdf defined by the corresponding degrees of freedom parameter in V is specified by the corresponding value in P.

Find a value that exceeds 95% of the samples from a χ^{2} distribution with 10 degrees of freedom.

```
\(x=\operatorname{chi2inv}(0.95,10)\)
\(\mathrm{x}=\)
```

 18.3070
 You would observe values greater than 18.3 only 5% of the time by chance.

```
chi2cdf, chi2pdf, chi2rnd, chi2stat, icdf
```


chi2pdf

Purpose
Chi-square (χ^{2}) probability density function (pdf)

Description

Examples

See Also
$\mathrm{Y}=\operatorname{chi2pdf}(\mathrm{X}, \mathrm{V})$
$Y=$ chi2pdf (X, V) computes the $\chi^{2} p d f$ at each of the values in X using the corresponding parameters in V. X and V can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of the output Y. A scalar input is expanded to a constant array with the same dimensions as the other input.

The degrees of freedom parameters in V must be positive integers, and the values in X must lie on the interval [$\left.\begin{array}{ll}0 & 1\end{array}\right]$.
The χ^{2} pdf for a given value x and v degrees of freedom is

$$
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{v / 2} \Gamma(v / 2)}
$$

where $\Gamma(\cdot)$ is the Gamma function. The result, y, is the probability that a single observation from a χ^{2} distribution with v degrees of freedom will have value x.
If x is standard normal, then x^{2} is distributed χ^{2} with one degree of freedom. If $x_{1}, x_{2}, \ldots, x_{n}$ are n independent standard normal observations, then the sum of the squares of the x 's is distributed χ^{2} with n degrees of freedom (and is equivalent to the gamma density function with parameters $v / 2$ and 2).

```
nu = 1:6;
x = nu;
y = chi2pdf(x,nu)
y =
    0.2420
```

The mean of the χ^{2} distribution is the value of the degrees of freedom parameter, nu. The above example shows that the probability density of the mean falls as nu increases.
chi2cdf, chi2inv, chi2rnd, chi2stat, pdf

Purpose

Syntax \quad| R | $=\operatorname{chi2rnd}(V)$ |
| ---: | :--- |
| R | $=\operatorname{chi2rnd}(V, u)$ |
| R | $=\operatorname{chi2rnd}(V, m, n)$ |

$$
\begin{aligned}
& R=\operatorname{chi} 2 r n d(V) \\
& R=\operatorname{chi} 2 r n d(V, u) \\
& R=\operatorname{chi} 2 r n d(V, m, n)
\end{aligned}
$$

Random numbers from the chi-square (χ^{2}) distribution

Description

$R=$ chi2rnd (V) generates random numbers from the χ^{2} distribution with degrees of freedom parameters specified by $\mathrm{V} . \mathrm{V}$ can be a vector, a matrix, or a multidimensional array. R is the same size as V.
$R=c h i 2 r n d(V, u)$ generates an array R of size u containing random numbers from the χ^{2} distribution with degrees of freedom parameters specified by V , where u is a row vector. If u is a 1-by- 2 vector, R is a matrix with $u(1)$ rows and $u(2)$ columns. If u is 1 -by- n, R is an n-dimensional array.
$R=c h i 2 r n d(V, m, n)$ generates an m-by-n matrix containing random numbers from the χ^{2} distribution with degrees of freedom parameter V.

Reproducing the Output of chi2rnd

chi2rnd uses the MATLAB functions rand and randn to generate random numbers. When you call chi2rnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to chi2rnd or any other functions that depend on rand or randn. If you want to reproduce the output of chi2rnd, reset the states of rand and randn to the same fixed values each time you call chi2rnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current states of rand and randn. If you run the code in these examples, your results may differ from the answers shown here.

Note that the first and third commands are the same, but are different from the second command.

```
r = chi2rnd(1:6)
r=
```

```
    0.0037 3.0377 7.8142 0.9021 3.2019 9.0729
r = chi2rnd(6,[1 6])
r =
    6.5249 2.6226 12.2497 3.0388 6.3133 5.0388
r = chi2rnd(1:6,1,6)
r =
    0.7638 6.0955 0.8273 3.2506 1.5469 10.9197
```

See Also chi2cdf, chi2inv, chi2pdf, chi2stat

Purpose
Syntax
Description

Mean and variance for the chi-square $\left(\chi^{2}\right)$ distribution
[M, V] = chi2stat(NU)
$[M, V]=$ chi2stat(NU) returns the mean and variance for the χ^{2} distribution with degrees of freedom parameters specified by NU.

The mean of the χ^{2} distribution is v, the degrees of freedom parameter, and the variance is $2 v$.

```
nu = 1:10;
nu = nu'*nu;
[m,v] = chi2stat(nu)
m =
\begin{tabular}{rrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 \\
7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \\
8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 \\
9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 \\
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100
\end{tabular}
v =
\begin{tabular}{llllllllll}
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20
\end{tabular}
\begin{tabular}{llllllllll}
4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40
\end{tabular}
\begin{tabular}{llllllllll}
6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60
\end{tabular}
\begin{tabular}{llllllllll}
8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80
\end{tabular}
\begin{tabular}{llllllllll}
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100
\end{tabular}
\begin{tabular}{llllllllll}
12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 & 120
\end{tabular}
\[
\begin{array}{llllllllll}
14 & 28 & 42 & 56 & 70 & 84 & 98 & 112 & 126 & 140
\end{array}
\]
\[
\begin{array}{llllllllll}
16 & 32 & 48 & 64 & 80 & 96 & 112 & 128 & 144 & 160
\end{array}
\]
\[
\begin{array}{llllllllll}
18 & 36 & 54 & 72 & 90 & 108 & 126 & 144 & 162 & 180
\end{array}
\]
\[
\begin{array}{llllllllll}
20 & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 180 & 200
\end{array}
\]
```


See Also

chi2cdf, chi2inv, chi2pdf, chi2rnd

classify

Purpose Discriminant analysis

```
Syntax class = classify(sample,training,group)
class = classify(sample,training,group,type)
class = classify(sample,training,group,type,prior)
[class,err] = classify(...)
[class,err,posterior] = classify(...)
[class,err,posterior,logp] = classify(...)
```

Description class = classify (sample, training, group) classifies the rows of the matrix sample into groups, based on the grouping of the rows in training. sample and training must be matrices with the same number of columns. group is a vector whose distinct values define the grouping of the rows of training. Each row of training belongs to the group whose value is the corresponding entry of group. group can be a numeric vector, a string array, or a cell array of strings. training and group must have the same number of rows. classify treats NaNs or empty strings in group as missing values, and ignores the corresponding rows of training. class indicates which group each row of sample has been assigned to, and is of the same type as group.
class = classify(sample,training, group,type) enables you to specify the type of discriminant function type as one of:

'linear'	Fits a multivariate normal density to each group, with a pooled estimate of covariance (default).
'diaglinear'	Same as 'linear ', except that the covariance matrices are assumed to be diagonal and are estimated as diag(var).
'quadratic'	Fits multivariate normal densities with covariance estimates stratified by group.
'diagquadratic'Same as 'quadratic', except that the covariance matrices are assumed to be diagonal and are estimated as diag(var).	
'mahalanobis'Uses Mahalanobis distances with stratified covariance estimates.	

class = classify(sample,training, group,type, prior) enables you to specify prior probabilities for the groups in one of three ways. prior can be

- A numeric vector of the same length as the number of unique values in group. If group is numeric, the order of prior must correspond to the sorted values in group, or, if group contains strings, to the order of first occurrence of the values in group.
- A 1-by-1 structure with fields:
prob A numeric vector
group Of the same type as group, and containing unique values indicating which groups the elements of prob correspond to.

As a structure, prior can contain groups that do not appear in group. This can be useful if training is a subset a larger training set.

- The string value 'empirical', indicating that classify should estimate the group prior probabilities from the group relative frequencies in training.
prior defaults to a numeric vector of equal probabilities, i.e., a uniform distribution. prior is not used for discrimination by Mahalanobis distance, except for error rate calculation.
[class,err] = classify(...) also returns an estimate of the misclassification error rate. classify returns the apparent error rate, i.e., the percentage of observations in the training that are misclassified.
[class,err, posterior] = classify(...) returns posterior, a matrix containing estimates of the posterior probabilities that the j'th training group was the source of the i'th sample observation, that is, $\operatorname{Pr}\{\operatorname{group} j \mid$ obs $i\}$. posterior is not computed for Mahalanobis discrimination.
[class,err, posterior, logp] = classify(...) returns logp, a vector containing estimates of the logarithms of the unconditional predictive probability density of the sample observations, p (obs i). p (obs i) is the sum of p (obs i | group j)* Pr \{group j$\}$ taken over all groups. logp is not computed for Mahalanobis discrimination.

Examples

load discrim
sample = ratings(idx,:);

classify

```
training = ratings(1:200,:);
g = group(1:200);
class = classify(sample,training,g);
first5 = class(1:5)
first5 =
    2
    2
    2
    2
    2
```


See Also
 mahal

References [1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University
[2] Seber, G.A.F., Multivariate Observations, Wiley, 1984

Purpose
Syntax

Description

Example

Construct clusters from linkage output

```
T = cluster(Z,'cutoff',c)
T = cluster(Z,'maxclust',n)
T = cluster(...,'criterion','crit')
T = cluster(...,'depth',d)
```

$T=$ cluster (Z, 'cutoff ${ }^{\prime}, \mathrm{c}$) constructs clusters from the hierarchical cluster tree, Z, generated by the linkage function. Z is a matrix of size ($m-1$)-by- 3 , where m is the number of observations in the original data. c is a threshold for cutting Z into clusters. Clusters are formed when inconsistent values are less than c. See the inconsistent function for more information. The output T is a vector of size m that contains the cluster number for each observation in the original data.
$\mathrm{T}=$ cluster $(\mathrm{Z}$, 'maxclust' n$)$ specifies n as the maximum number of clusters to form from the hierarchical tree in Z.

T = cluster(...,'criterion','crit') uses the specified criterion for forming clusters, where crit is either 'inconsistent' or 'distance'.

T = cluster(...,'depth',d) evaluates inconsistent values to a depth of din the tree. The default is $d=2$. An inconsistency coefficient computation compares a link between two objects in the cluster tree with neighboring links up to the specified depth. See the inconsistent function for more information.

The example uses the pdist function to calculate the distance between items in a matrix of random numbers and then uses the linkage function to compute the hierarchical cluster tree based on the matrix. The example passes the output of the linkage function to the cluster function. The 'maxclust' value 3 indicates that you want to group the items into three clusters. The find function lists all the items grouped into cluster 1.

```
rand('state', 7)
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y);
T = cluster(Z,'maxclust',3);
find(T==1)
```


cluster

ans =
11
12
13
14
15
16
17
18
19
20
See Also clusterdata, cophenet, inconsistent, linkage, pdist

Purpose
 Construct clusters from data

Syntax
 Description

```
T = clusterdata(X, cutoff)
T = clusterdata(X,'param1',val1,'param2',val2,...)
```

T = clusterdata(X, cutoff) uses the pdist, linkage, and cluster functions to construct clusters from data X. X is an m-by- n matrix, treated as m observations of n variables. cutoff is a threshold for cutting the hierarchical tree generated by linkage into clusters. When $0<c u t o f f<2$, clusterdata forms clusters when inconsistent values are greater than cutoff (see the inconsistent function). When cutoff is an integer and cutoff >= 2 , then clusterdata interprets cutoff as the maximum number of clusters to keep in the hierarchical tree generated by linkage. The output T is a vector of size m containing a cluster number for each observation.

T = clusterdata(X, cutoff) is the same as
Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z, 'cutoff', cutoff);
T = clusterdata(X,'param1', val1,'param2', val2, ...) provides more control over the clustering through a set of parameter/value pairs. Valid parameters are
'distance ' Any of the distance metric names allowed by pdist (follow the 'minkowski' option by the value of the exponent p)
' linkage ' Any of the linkage methods allowed by the linkage function
'cutoff ' Cutoff for inconsistent or distance measure
'maxclust' Maximum number of clusters to form
'criterion' Either 'inconsistent' or 'distance'
'depth ${ }^{\text {' }} \quad$ Depth for computing inconsistent values

Example

The example first creates a sample data set of random numbers. It then uses clusterdata to compute the distances between items in the data set and create a hierarchical cluster tree from the data set. Finally, the clusterdata function groups the items in the data set into three clusters. The example uses the find

clusterdata

function to list all the items in cluster 2, and the scatter3 function to plot the data with each cluster shown in a different color.

```
rand('state',12);
X = [rand(10,3); rand(10,3)+1.2; rand(10,3)+2.5];
T = clusterdata(X,'maxclust',3);
find(T==2)
ans =
    11
    11
    13
    14
    115
    16
    17
    18
    19
    20
scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')
```


Purpose Classical multidimensional scaling
Syntax $\quad Y=$ cmdscale (D)
$[\mathrm{Y}, \mathrm{e}]=$ cmdscale(D)

Description

Examples can be embedded. e.g., for $k=2$. cmdscale.
$Y=$ cmdscale(D) takes an n-by-n distance matrix D, and returns an n-by-p configuration matrix Y. Rows of Y are the coordinates of n points in p-dimensional space for some $p<n$. When D is a Euclidean distance matrix, the distances between those points are given by D. p is the dimension of the smallest space in which the n points whose interpoint distances are given by D
$[Y, e]=$ cmdscale(D) also returns the eigenvalues of $Y^{*} Y^{\prime}$. When D is Euclidean, the first p elements of e are positive, the rest zero. If the first k elements of e are much larger than the remaining ($n-k$), then you can use the first k columns of Y as k-dimensional points whose interpoint distances approximate D. This can provide a useful dimension reduction for visualization,

D need not be a Euclidean distance matrix. If it is non-Euclidean or a more general dissimilarity matrix, then some elements of e are negative, and cmdscale choses p as the number of positive eigenvalues. In this case, the reduction to p or fewer dimensions provides a reasonable approximation to D only if the negative elements of e are small in magnitude.

You can specify D as either a full dissimilarity matrix, or in upper triangle vector form such as is output by pdist. A full dissimilarity matrix must be real and symmetric, and have zeros along the diagonal and positive elements everywhere else. A dissimilarity matrix in upper triangle form must have real, positive entries. You can also specify D as a full similarity matrix, with ones along the diagonal and all other elements less than one. cmdscale transforms a similarity matrix to a dissimilarity matrix in such a way that distances between the points returned in Y equal or approximate sqrt (1-D). To use a different transformation, you must transform the similarities prior to calling

Generate some points in 4-dimensional space, but close to 3-dimensional space, then reduce them to distances only.

```
X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');
```

Find a configuration with those inter-point distances.

```
[Y,e] = cmdscale(D);
% Four, but fourth one small
dim = sum(e > eps^(3/4))
% Poor reconstruction
maxerr2 = max(abs(pdist(X) - pdist(Y(:,1:2))))
% Good reconstruction
maxerr3 = max(abs(pdist(X) - pdist(Y(:,1:3))))
% Exact reconstruction
maxerr4 = max(abs(pdist(X) - pdist(Y)))
% D is now non-Euclidean
D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);
% One is large negative
min(e)
% Poor reconstruction
maxerr = max(abs(pdist(X) - pdist(Y)))
```


References

See Also mdscale, pdist, procrustes

combnk

Purpose Enumeration of all combinations of n objects k at a time
Syntax
$C=\operatorname{combnk}(v, k)$

Description
$\mathrm{C}=$ combnk (v, k) returns all combinations of the n elements in v taken k at a time.
$\mathrm{C}=$ combnk($\mathrm{v}, \mathrm{k})$ produces a matrix C with k columns and $n!/ k!(n-k)$! rows, where each row contains k of the elements in the vector v.

It is not practical to use this function if v has more than about 15 elements.
Example Combinations of characters from a string.

```
    C = combnk('tendril',4);
    last5 = C(31:35,:)
    last5 =
    tedr
    tenl
    teni
    tenr
    tend
```

Combinations of elements from a numeric vector.

```
c = combnk(1:4,2)
c =
        3 4
        2 4
        2 3
        1 4
        1 3
        1 2
```


Purpose Cophenetic correlation coefficient

$$
\begin{array}{ll}
\text { Syntax } & c=\operatorname{cophenet}(Z, Y) \\
& {[c, d]=\operatorname{cophenet}(Z, Y)}
\end{array}
$$

Description

$c=\operatorname{cophenet}(Z, Y)$ computes the cophenetic correlation coefficient for the hierarchical cluster tree represented by $Z . Z$ is the output of the linkage function. Y contains the distances or dissimilarities used to construct Z, as output by the pdist function. Z is a matrix of size $(m-1)$-by- 3 , with distance information in the third column. Y is a vector of size $m \cdot(m-1) / 2$.
$[c, d]=\operatorname{cophenet}(Z, Y)$ returns the cophenetic distances d in the same lower triangular distance vector format as Y .

The cophenetic correlation for a cluster tree is defined as the linear correlation coefficient between the cophenetic distances obtained from the tree, and the original distances (or dissimilarities) used to construct the tree. Thus, it is a measure of how faithfully the tree represents the dissimilarities among observations.

The cophenetic distance between two observations is represented in a dendrogram by the height of the link at which those two observations are first joined. That height is the distance between the two subclusters that are merged by that link.

The output value, c , is the cophenetic correlation coefficient. The magnitude of this value should be very close to 1 for a high-quality solution. This measure can be used to compare alternative cluster solutions obtained using different algorithms.

The cophenetic correlation between $Z(:, 3)$ and Y is defined as

$$
c=\frac{\Sigma_{i<j}\left(Y_{i j}-y\right)\left(Z_{i j}-z\right)}{\sqrt{\Sigma_{i<j}\left(Y_{i j}-y\right)^{2} \Sigma_{i<j}\left(Z_{i j}-z\right)^{2}}}
$$

where:

- $Y_{i j}$ is the distance between objects i and j in Y.
- $Z_{i j}$ is the cophenetic distance between objects i and j, from $Z(:, 3)$.
- y and z are the average of Y and $Z(:, 3)$, respectively.

cophenet

Example

```
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'average');
% Compute Spearman's rank correlation between the
% dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
r = corr(Y',D','type','spearman')
r =
    0.8279
```

See Also cluster, dendrogram, inconsistent, linkage, pdist, squareform

Purpose
D-optimal design of experiments - coordinate exchange algorithm

Syntax

Description

settings $=$ cordexch(nfactors, nruns)
[settings, X] $=$ cordexch(nfactors, nruns)
[settings, X] = cordexch(nfactors,nruns,'model')
[settings, X] = cordexch(...,'param1', value1,'param2', value2,...)
settings $=$ cordexch(nfactors, nruns) generates the factor settings matrix,
settings, for a D-optimal design using a linear additive model with a constant term. settings has nruns rows and nfactors columns.
[settings, X] = cordexch(nfactors, nruns) also generates the associated design matrix X.
[settings, X] = cordexch(nfactors, nruns,'model') produces a design for fitting a specified regression model. The input, 'model', can be one of these strings:

'linear'	Includes constant and linear terms (the default)
'interaction'	Includes constant, linear, and cross-product terms.
'quadratic'	Includes interactions and squared terms.
'purequadratic'	Includes constant, linear and squared terms.

Alternatively model can be a matrix of term definitions as accepted by the x 2 fx function.
[settings,X] = cordexch(...,'param1', value1,'param2', value2,...) provides more control over the design generation through a set of parameter/value pairs. Valid parameters are:
'display' Either 'on' or 'off' to control display of iteration counter. The default is 'on'.
'init ' Initial design as an nruns-by-nfactors matrix. The default is a randomly selected set of points.
'maxiter' Maximum number of iterations. The default is 10 .

cordexch

Example

Algorithm

See Also

The D-optimal design for two factors in nine runs using a quadratic model is the 3^{2} factorial as shown below:

```
settings = cordexch(2,9,'quadratic')
settings =
```

 -1 1
 11
 01
 1 - 1
 -1 -1
 \(0-1\)
 10
 00
 -1 0
 The cordexch function searches for a D-optimal design using a coordinate exchange algorithm. It creates a starting design, and then iterates by changing each coordinate of each design point in an attempt to reduce the variance of the coefficients that would be estimated using this design.
bbdesign, candexch, candgen, ccdesign, daugment, dcovary, rowexch, x2fx

Purpose Linear or rank correlation

```
Syntax RHO = corr(X)
RHO = corr(X,Y,...)
[RHO, PVAL] = corr(...)
[...] = corr(...,'param1', val1, 'param2', val2,...)
```


Description

RHO $=\operatorname{corr}(\mathrm{X})$ returns a p-by- p matrix containing the pairwise linear correlation coefficient between each pair of columns in the n-by- p matrix X .

RHO $=\operatorname{corr}(\mathrm{X}, \mathrm{Y}, \ldots)$ returns a $p 1$-by- $p 2$ matrix containing the pairwise correlation coefficient between each pair of columns in the n-by- $p 1$ and n-by- $p 2$ matrices X and Y.
[RHO, PVAL] $=\operatorname{corr}(\ldots)$ also returns PVAL, a matrix of p-values for testing the hypothesis of no correlation against the alternative that there is a non-zero correlation. Each element of PVAL is the p-value for the corresponding element of RHO. If PVAL (i, j) is small, say less than 0.05 , then the correlation $\mathrm{RHO}(\mathrm{i}, \mathrm{j})$ is significantly different from zero.
[...] = corr(...,'param1', val1, 'param2', val2,...) specifies additional parameters and their values. The following table lists the valid parameters and their values.

Parameter	Values
'type'	• 'Pearson' (the default) computes Pearson's
	linear correlation coefficient
	- 'Kendall' computes Kendall's tau
	- 'Spearman ' computes Spearman's rho

Parameter	Values
'rows '	- 'all' (the default) uses all rows regardless of missing values (NaNs) - 'complete' uses only rows with no missing values
- 'pairwise 'computes RHO (i, j) using rows with	
no missing values in column i or j	

Using the 'pairwise' option for the 'rows ' parameter might return a matrix that is not positive definite. The 'complete' option always returns a positive definite matrix, but in general the estimates will be based on fewer observations.
corr computes p-values for Pearson's correlation using a Student's t distribution for a transformation of the correlation. This is exact when X and Y are normal. corr computes p-values for Kendall's tau and Spearman's rho using either the exact permutation distributions (for small sample sizes), or large-sample approximations.
corr computes p -values for the two-tailed test by doubling the more significant of the two one-tailed p-values.

See Also

corrcoef

Purpose
Correlation coefficients

```
\(R=\operatorname{corrcoef}(X)\)
\(R=\operatorname{corrcoef}(x, y)\)
[R,P]=corrcoef(...)
[R,P,RLO, RUP]=corrcoef(...)
[...]=corrcoef(...,'param1', val1,'param2', val2,...)
```


Description

$R=\operatorname{corrcoef}(X)$ returns a matrix R of correlation coefficients calculated from an input matrix X whose rows are observations and whose columns are variables. The (i, j) th element of the matrix R is related to the covariance matrix $C=\operatorname{cov}(X)$ by

$$
R(i, j)=\frac{C(i, j)}{\sqrt{C(i, i) C(j, j)}}
$$

corrcoef (X) is the zeroth lag of the covariance function, that is, the zeroth lag of $x \operatorname{cov}(x$, coeff') packed into a square array.
$R=\operatorname{corrcoef}(x, y)$ where x and y are column vectors is the same as corrcoef([x y]).
$[R, P]=\operatorname{corrcoef}(\ldots)$ also returns P, a matrix of p-values for testing the hypothesis of no correlation. Each p-value is the probability of getting a correlation as large as the observed value by random chance, when the true correlation is zero. If $P(i, j)$ is small, say less than 0.05 , then the correlation $R(i, j)$ is significant.
[R, P, RLO , RUP] =corrcoef (. . .) also returns matrices RLO and RUP, of the same size as R, containing lower and upper bounds for a 95% confidence interval for each coefficient.
[...]=corrcoef(...,'param1', val1,'param2', val2,...) specifies additional parameters and their values. Valid parameters are the following.

```
'alpha' A number between 0 and 1 to specify a confidence level of \(100(1\) - alpha) \(\%\). Default is 0.05 for \(95 \%\) confidence intervals.
'rows' Either 'all' (default) to use all rows, 'complete' to use rows with no NaN values, or 'pairwise' to compute R(i,j) using rows with no NaN values in either column \(i\) or \(j\).
```

The p-value is computed by transforming the correlation to create at statistic having $n-2$ degrees of freedom, where n is the number of rows of x. The confidence bounds are based on an asymptotic normal distribution of $0.5^{*} \log ((1+R) /(1-R))$, with an approximate variance equal to $1 /(n-3)$. These bounds are accurate for large samples when X has a multivariate normal distribution. The 'pairwise' option can produce an R matrix that is not positive definite.

The corrcoef function is part of the standard MATLAB language.

Examples

Generate random data having correlation between column 4 and the other columns.

```
x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.
r =
    1.0000 -0.3566 0.1929 0.3457
    -0.3566 1.0000 -0.1429 0.4461
    0.1929 -0.1429 1.0000 0.5183
    0.3457 0.4461 0.5183 1.0000
p =
    1.0000
    0.0531}10.0000 0.4511 0.013
    0.3072 0.4511 1.0000}00.003
    0.0613 0.0135 0.0033 1.0000
ans =
    4 
```

43
24
34
See Also
cov, mean, std, var
xcorr, xcov in the Signal Processing Toolbox

Purpose Covariance matrix.

Syntax
$C=\operatorname{cov}(X)$
$C=\operatorname{cov}(x, y)$

Algorithm
The algorithm for cov is

```
[n,p] = size(X);
X = X - ones(n,1) * mean(X);
Y = X'*X/(n-1);
```


See Also

corrcoef, mean, std, var
xcov, xcorr in the Signal Processing Toolbox

Purpose Cross-tabulation of several vectors

```
Syntax table = crosstab(col1,col2)
```

table = crosstab(col1,col2,col3,...)

```
table = crosstab(col1,col2,col3,...)
[table,chi2,p] = crosstab(col1,col2)
[table,chi2,p] = crosstab(col1,col2)
[table,chi2,p,label] = crosstab(col1,col2)
```

```
[table,chi2,p,label] = crosstab(col1,col2)
```

```

\section*{Description}

\section*{Example}
table \(=\) crosstab(col1, col2) takes two vectors of positive integers and returns a matrix, table, of cross-tabulations. The \(i j\) th element of table contains the count of all instances where \(\operatorname{col} 1=i\) and \(\operatorname{col} 2=j\).

Alternatively, col1 and col2 can be vectors containing noninteger values, character arrays, or cell arrays of strings. crosstab implicitly assigns a positive integer group number to each distinct value in coll and col2, and creates a cross-tabulation using those numbers.
table \(=\) crosstab(col1,col2, col3,...) returns table as an \(n\)-dimensional array, where \(n\) is the number of arguments you supply. The value of table \((i, j, k, \ldots)\) is the count of all instances where coll \(=i, \operatorname{col} 2=j\), \(\operatorname{col} 3=k\), and so on.
[table, chi2, p] = crosstab(col1,col2) also returns the chi-square statistic, chi2, for testing the independence of the rows and columns of table. The scalar \(p\) is the significance level of the test. Values of \(p\) near zero cast doubt on the assumption of independence of the rows and columns of table.
[table,chi2, p,label] = crosstab(col1,col2) also returns a cell array label that has one column for each input argument. The value in label (i,j) is the value of col \(j\) that defines group \(i\) in the \(j\) th dimension.

\section*{Example 1}

This example generates 2 columns of 50 discrete uniform random numbers. The first column has numbers from 1 to 3 . The second has only the numbers 1 and 2 . The two columns are independent so it would be surprising if \(p\) were near zero.
```

r1 = unidrnd(3,50,1);
r2 = unidrnd(2,50,1);
[table,chi2,p] = crosstab(r1,r2)

```
```

table =
10 5
8
6 13
chi2 =
4.1723
p =
0.1242

```

The result, 0.1242 , is not a surprise. A very small value of \(p\) would make you suspect the "randomness" of the random number generator.

\section*{Example 2}
you have data collected on several cars over a period of time. How many four-cylinder cars were made in the USA during the late part of this period?
```

[t,c,p,l] = crosstab(cyl4,when,org);
l
l =
'Other' 'Early' 'USA'
'Four' 'Mid' 'Europe'
[] 'Late' 'Japan'
t(2,3,1)
ans =
38

```

See Also tabulate

Purpose
D-optimal augmentation of an experimental design

\section*{Syntax \\ Description}
settings = daugment(startdes, nruns)
[settings, X\(]=\) daugment(startdes, nruns)
[settings,X] = daugment(startdes, nruns,'model')

settings \(=\) daugment(startdes, nruns) adds nruns runs to an experimental
design using the coordinate exchange D-optimal algorithm. startdes is a matrix of factor settings in the original design. The output matrix settings is the matrix of factor settings for the design.
[settings, X ] = daugment(startdes, nruns) also generates the associated design matrix, \(X\).
[settings, X\(]=\) daugment (startdes, nruns, 'model') also controls the order of the regression model. The input, 'model', can be one of these:
'linear' Includes constant and linear terms (the default)
'interaction' Includes constant, linear, and cross-product terms.
'quadratic' Includes interactions and squared terms.
'purequadratic' Includes constant, linear and squared terms.

Alternatively model can be a matrix of term definitions as accepted by the x2fx function.
[settings, X] = daugment(...,'param1', value1,'param2', value2,...) provides more control over the design generation through a set of parameter/value pairs. Valid parameters are the following:

\section*{Parameter Value}
'display ' Either 'on' or 'off' to control display of iteration counter. The default is 'on'.
\begin{tabular}{ll}
\hline Parameter & Value \\
\hline 'init' & \begin{tabular}{l} 
Initial design as an nruns-by-nfactors matrix. The default \\
is a randomly selected set of points.
\end{tabular} \\
\hline 'maxiter' & Maximum number of iterations. The default is 10. \\
\hline
\end{tabular}

\section*{Example}

This example adds 5 runs to a \(2^{2}\) factorial design to fit a quadratic model.
```

startdes = [-1 -1; 1 -1; -1 1; 1 1];
settings = daugment(startdes,5,'quadratic')
settings =

```
    \(\begin{array}{ll}-1 & -1\end{array}\)
    1 -1
    -1 1
    11
    10
    -1 0
    01
    \(0 \quad 0\)
    0-1

The result is a \(3^{2}\) factorial design.
See Also cordexch, x2fx

Purpose
Syntax

Description

D-optimal design with specified fixed covariates
```

settings = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates,'model')
[settings,X] = dcovary(...,'param1',value1,'param2',value2,...)

```
settings = dcovary(nfactors, covariates) uses a coordinate exchange algorithm to generate a D-optimal design for nfactors factors, subject to the constraint that it also include the fixed covariate values in the input matrix covariates. The number of runs in the design is taken to be the number of rows in the covariates matrix. The output matrix settings is the matrix of factor settings for the design, including the fixed covariates.
[settings, X ] = dcovary(nfactors, covariates) also generates the associated design matrix, \(X\).
[settings, X ] = dcovary(nfactors, covariates, 'model') also controls the order of the regression model. The input, 'model', can be one of these:
\begin{tabular}{ll} 
'linear' & Includes constant and linear terms (the default) \\
'interaction' & Includes constant, linear, and cross-product terms. \\
'quadratic' & Includes interactions and squared terms. \\
'purequadratic' & Includes constant, linear and squared terms.
\end{tabular}

Alternatively 'model' can be a matrix of term definitions as accepted by the x 2 fx function. The model is applied to the fixed covariates as well as the regular factors. If you want to treat the fixed covariates specially, for example by including linear terms for them but quadratic terms for the regular factors, you can do this by creating the proper 'model' matrix.
[settings, X] = dcovary(...,'param1', value1,'param2', value2,...) provides more control over the design generation through a set of parameter/value pairs. Valid parameters are:
```

'display ' Either 'on' or 'off' to control display of iteration counter.
The default is 'on'.
'init' Initial design as an nruns-by-nfactors matrix. The default is a
randomly selected set of points.
'maxiter' Maximum number of iterations. The default is 10 .

```

\section*{Example}

Example 1. Generate a design for three factors in 2 blocks of 4 runs.
```

blk = [-1 -1 -1 -1 1 1 1 1]';
dsgn = dcovary(3,blk)
dsgn =

-1	1	1	-1
1	-1	-1	-1
-1	1	-1	-1
1	-1	1	-1
1	1	-1	1
1	1	1	1
-1	-1	1	1
-1	-1	-1	1

```

Example 2. Suppose you want to block an eight run experiment into 4 blocks of size 2 to fit a linear model on two factors.
```

covariates = dummyvar([11 1 2 2 3 3 4 4]);
settings = dcovary(2,covariates(:,1:3),'linear')
settings =

1	1	1	0	0
-1	-1	1	0	0
-1	1	0	1	0
1	-1	0	1	0
1	1	0	0	1
-1	-1	0	0	1
-1	1	0	0	0
1	-1	0	0	0

```

The first two columns of the output matrix contain the settings for the two factors. The last three columns are dummy variable codings for the four blocks.
Algorithm
See AlsoThe dcovary function creates a starting design that includes the fixed covariatevalues, and then iterates by changing the non-fixed coordinates of each designpoint in an attempt to reduce the variance of the coefficients that would beestimated using this design.
cordexch, daugment, rowexch, x2fx

Purpose Plot dendrogram graphs
```

Syntax H = dendrogram(Z)
H = dendrogram(Z,p)
[H,T] = dendrogram(...)
[H,T,perm] = dendrogram(...)
[...] = dendrogram(...,'colorthreshold',t)
[...] = dendrogram(...,'orientation','orient')
[...] = dendrogram(...,'labels', S)

```

Description \(\quad H=\) dendrogram \((Z)\) generates a dendrogram plot of the hierarchical, binary cluster tree represented by \(Z . Z\) is an ( \(m-1\) )-by- 3 matrix, generated by the linkage function, where \(m\) is the number of objects in the original data set. The output, H , is a vector of handles to the lines in the dendrogram.

A dendrogram consists of many U-shaped lines connecting objects in a hierarchical tree. The height of each \(U\) represents the distance between the two objects being connected.
\(H=\operatorname{dendrogram}(Z, p)\) generates a dendrogram with only the top \(p\) nodes. By default, dendrogram uses 30 as the value of \(p\). When there are more than 30 initial nodes, a dendrogram may look crowded. To display every node, set \(\mathrm{p}=0\).
\([\mathrm{H}, \mathrm{T}]=\) dendrogram (...) generates a dendrogram and returns T , a vector of length \(m\) that contains the leaf node number for each object in the original data set. T is useful when \(p\) is less than the total number of objects, so some leaf nodes in the display correspond to multiple objects. For example, to find out which objects are contained in leaf node \(k\) of the dendrogram, use find ( \(\mathrm{T}==\mathrm{k}\) ). When there are fewer than \(p\) objects in the original data, all objects are displayed in the dendrogram. In this case, \(T\) is the identity map, i.e., \(\mathrm{T}=(1: \mathrm{m})\) ', where each node contains only a single object.
[ \(\mathrm{H}, \mathrm{T}, \mathrm{perm}\) ] = dendrogram(...) generates a dendrogram and returns the permutation vector of the node labels of the leaves of the dendrogram. perm is ordered from left to right on a horizontal dendrogram and bottom to top for a vertical dendrogram.

\section*{dendrogram}
[...] = dendrogram(..., 'colorthreshold',t) assigns a unique color to each group of nodes in the dendrogram where the linkage is less than the threshold \(t\). \(t\) is a value in the interval \([0, \max (Z(:, 3))]\). Setting \(t\) to the string 'default' is the same as \(t=.7(\max (Z(:, 3))) .0\) is the same as not specifying 'colorthreshold'. The value \(\max (Z(:, 3))\) treats the entire tree as one group and colors it all one color.
[...] = dendrogram(...,'orientation','orient') orients the dendrogram within the figure window. The options for 'orient' are
\begin{tabular}{ll} 
'top ' & Top to bottom (default) \\
'bottom' & Bottom to top \\
'left' & Left to right \\
'right' & Right to left
\end{tabular}
[...] = dendrogram(...,'labels', S) accepts a character array or cell array of strings S with one label for each observation. Any leaves in the tree containing a single observation are labeled with that observation's label.

\section*{Example}
```

X= rand(100,2);
Y= pdist(X,'cityblock');
Z= linkage(Y,'average');
[H,T] = dendrogram(Z,'colorthreshold','default');

```

\section*{dendrogram}

find \((T==20)\)
ans \(=\)
20
49
62
65
73
96
This output indicates that leaf node 20 in the dendrogram contains the original data points \(20,49,62,65,73\), and 96 .

\section*{See Also}
cluster, clusterdata, cophenet, inconsistent, linkage, silhouette

Purpose Interactive plot of cdf (or pdf) for many probability distributions

\section*{Syntax \\ disttool}

Description The disttool command displays a graphical interface for exploring the effects of changing parameters on the plot of a cdf or pdf. See "Probability Distributions Demo" on page 2-3 for detailed information about the demo.

\section*{See Also \\ randtool}

\section*{dummyvar}

Purpose Matrix of 0-1 "dummy" variables
\[
\text { Syntax } \quad D=\text { dummyvar (group) }
\]

Description \(\quad D=\) dummyvar (group) generates a matrix, \(D\), of 0-1 columns. \(D\) has one column for each unique value in each column of the matrix group. Each column of group contains positive integers that indicate the group membership of an individual row.

Example
Suppose you are studying the effects of two machines and three operators on a process. The first column of group would have the values 1 or 2 depending on which machine was used. The second column of group would have the values 1,2 , or 3 depending on which operator ran the machine.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { group }=\left[\begin{array}{lll}
1 & 1 ; 1 & 2 ; 1 \\
D & =\text { dummyvar (group) }
\end{array}\right.
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{D =} \\
\hline 1 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

See Also
pinv, regress

\section*{Purpose}

Empirical (Kaplan-Meier) cumulative distribution function

\section*{Syntax}
```

[f,x] = ecdf(y)
[f,x,flo,fup] = ecdf(y)
[...] = ecdf(y,'param1',value1,'param2',value2,...)

```

\section*{Description}

\section*{Examples}
\([f, x]=\operatorname{ecdf}(y)\) calculates the Kaplan-Meier estimate of the cumulative distribution function (cdf), also known as the empirical cdf. y is a vector of data values. \(f\) is a vector of values of the empirical cdf evaluated at \(x\).
\([f, x, f l o, f u p]=\operatorname{ecdf}(y)\) also returns lower and upper confidence bounds for the cdf. These bounds are calculated using Greenwood's formula, and are not simultaneous confidence bounds.
[...] = ecdf(y,'param1',value1,'param2',value2,...) specifies additional parameter name-value pairs chosen from the following:
'censoring ' Boolean vector of the same size as x. Elements are 1 for observations that are right-censored and 0 for observations that are observed exactly. Default is all observations observed exactly.
'frequency ' Vector of the same size as \(x\) containing non-negative integer counts. The \(j\) th element of this vector gives the number of times the \(j\) th element of \(x\) was observed. Default is 1 observation per element of \(x\).
'alpha' Value between 0 and 1 for a confidence level of \(100(1\)-alpha) \(\%\). Default is alpha= 0.05 for \(95 \%\) confidence.
'function ' Type of function returned as the foutput argument, chosen from 'cdf' (default), 'survivor', or 'cumulative hazard'.

Generate random failure times and random censoring times, and compare the empirical cdf with the known true cdf.
```

y = exprnd(10,50,1); % Random failure times are exponential(10)
d = exprnd(20,50,1); % Drop-out times are exponential(20)
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe also whether the subject failed

```
```

% Calculate and plot the empirical cdf and confidence bounds
[f,x,flo,fup] = ecdf(t,'censoring',censored);
stairs(x,f);
hold on;
stairs(x,flo,'r:'); stairs(x,fup,'r:');
% Superimpose a plot of the known true cdf
xx = 0:.1:max(t); yy = 1-exp(-xx/10); plot(xx,yy,'g-')
hold off;

```


See Also
[1] Cox, D. R., and D. Oakes, Analysis of Survival Data, Chapman \& Hall, London, 1984.

Purpose
Create histogram from output of ecdf

\author{
Syntax \\ Description
}

\section*{Example}
```

n = ecdfhist(f, x)
n = ecdfhist(f, x, m)
n = ecdfhist(f, x, c)
[n, c] = ecdfhist(...)
ecdfhist(...)

``` hist produces bars whose heights represent bin counts.
\(\mathrm{n}=\) ecdfhist(f, \(x, m\) ), where \(m\) is a scalar, uses \(m\) bins. by c. results.
\(\mathrm{n}=\) ecdfhist( \(\mathrm{f}, \mathrm{x}\) ) takes a vector f of empirical cumulative distribution function (cdf) values and a vector \(x\) of evaluation points, and returns a vector \(n\) containing the heights of histogram bars for 10 equally spaced bins. The function computes the bar heights from the increases in the empirical cdf, and normalizes them so that the area of the histogram is equal to 1 . In contrast,
\(\mathrm{n}=\) ecdfhist( \(\mathrm{f}, \mathrm{x}, \mathrm{c}\) ), where c is a vector, uses bins with centers specified
[ \(n, \mathrm{c}\) ] = ecdfhist(...) also returns the position of the bin centers in c .
ecdfhist (...) without output arguments produces a histogram bar plot of the

The following code generates random failure times and random censoring times, and compares the empirical pdf with the known true pdf.
```

y = exprnd(10,50,1); % random failure times

```
y = exprnd(10,50,1); % random failure times
d = exprnd(20,50,1); % drop-out times
d = exprnd(20,50,1); % drop-out times
t = min(y,d); % observe the minimum of these times
t = min(y,d); % observe the minimum of these times
censored = (y>d); % observe whether the subject failed
censored = (y>d); % observe whether the subject failed
% Calculate the empirical cdf and plot a histogram from it
% Calculate the empirical cdf and plot a histogram from it
[f,x] = ecdf(t,'censoring',censored);
[f,x] = ecdf(t,'censoring',censored);
ecdfhist(f,x);
ecdfhist(f,x);
% Superimpose a plot of the known true pdf
% Superimpose a plot of the known true pdf
hold on;
hold on;
xx = 0:.1:max(t); yy = exp(-xx/10)/10; plot(xx,yy,'g-');
xx = 0:.1:max(t); yy = exp(-xx/10)/10; plot(xx,yy,'g-');
hold off;
```

hold off;

```


See Also
ecdf, hist, histc

Purpose
Plot error bars along a curve
```

Syntax errorbar(X,Y,L,U,symbol)
errorbar(X,Y,L)
errorbar(Y,L)

```

Description
errorbar ( \(X, Y, L, U\), symbol) plots \(X\) versus \(Y\) with error bars specified by \(L\) and \(U . X, Y, L\), and \(U\) must be the same length. If \(X, Y, L\), and \(U\) are matrices, then each column produces a separate line. The error bars are each drawn a distance of \(U(i)\) above and \(L(i)\) below the points in \((X, Y)\). symbol is a string that controls the line type, plotting symbol, and color of the error bars.
errorbar ( \(\mathrm{X}, \mathrm{Y}, \mathrm{L}\) ) plots X versus Y with symmetric error bars about Y .
errorbar ( \(\mathrm{Y}, \mathrm{L}\) ) plots Y with error bars [ \(\mathrm{Y}-\mathrm{L} \mathrm{Y}+\mathrm{L}\) ].
The errorbar function is a part of the standard MATLAB language.

\section*{Example}
```

lambda = (0.1:0.2:0.5);
r = poissrnd(lambda(ones(50,1),:));
[p,pci] = poissfit(r,0.001);
L = p - pci(1,:)
U = pci(2,:) - p
errorbar(1:3,p,L,U,'+')
L =
0.1200 0.1600 0.2600
U =
0.2000 0.2200 0.3400

```


\section*{Purpose Extreme value cumulative distribution function}
```

Syntax P = evcdf(X, MU, SIGMA)
[P, PLO, PUP] = evcdf(X, MU, SIGMA, PCOV, alpha)

```

Description

See Also
\(P=\operatorname{evcdf}(X, M U, S I G M A)\) computes the cumulative distribution function (cdf) for the type 1 extreme value distribution, with location parameter MU and scale parameter SIGMA, at each of the values in X. X, MU, and SIGMA can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for MU and SIGMA are 0 and 1, respectively.
[P, PLO, PUP] = evcdf(X, MU, SIGMA, PCOV, alpha) produces confidence bounds for \(P\) when the input parameters MU and SIGMA are estimates. PCOV is a 2-by-2 covariance matrix of the estimated parameters. alpha has a default value of 0.05 , and specifies \(100(1\) - alpha) \% confidence bounds. PLO and PUP are arrays of the same size as \(P\), containing the lower and upper confidence bounds.

The function evcdf computes confidence bounds for \(P\) using a normal approximation to the distribution of the estimate
\[
\frac{X-\hat{\mu}}{\hat{\sigma}}
\]
and then transforming those bounds to the scale of the output P. The computed bounds give approximately the desired confidence level when you estimate MU, SIGMA, and PCOV from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. If \(Y\) has a Weibull distribution, then \(X=\log (Y)\) has the type 1 extreme value distribution.
```

cdf, evfit, evinv, evlike, evpdf, evrnd, evstat

```

Purpose
Parameter estimates and confidence intervals for extreme value data

\section*{Syntax}

\section*{Description}
```

parmhat = evfit(data)
[parmhat, parmci] = evfit(data)
[parmhat, parmci] = evfit(data, alpha)
[...] = evfit(data, alpha, censoring)
[...] = evfit(data, alpha, censoring, freq)
[...] = evfit(data, alpha, censoring, freq, options)

```
parmhat = evfit(data) returns maximum likelihood estimates of the parameters of the type 1 extreme value distribution given the data in the vector data. parmhat (1) is the location parameter, \(\mu\), and parmhat (2) is the scale parameter, \(\sigma\).
[parmhat, parmci] = evfit(data) returns 95\% confidence intervals for the parameter estimates on the \(\mu\) and \(\sigma\) parameters in the 2 -by- 2 matrix parmci. The first column of the matrix contains the lower and upper confidence bounds for the parameter \(\mu\), and the second column contains the confidence bounds for the parameter \(\sigma\).
[parmhat, parmci] = evfit(data, alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates, where alpha is a value in the range [ \(\left.0 \begin{array}{ll}0 & 1\end{array}\right]\) specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to \(95 \%\) confidence intervals.
[...] = evfit(data, alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = evfit(data, alpha, censoring, freq) accepts a frequency vector, freq of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.
[...] = evfit(data, alpha, censoring, freq, options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. You can create options using the function statset. Enter statset ('evfit') to see the names and default values of the parameters that evfit accepts in the
options structure. See the reference page for statset for more information about these options.

The type 1 extreme value distribution is also known as the Gumbel distribution. If Y has a Weibull distribution, then \(\mathrm{X}=\log (\mathrm{Y})\) has the type 1 extreme value distribution.

See Also evcdf, evinv, evlike, evpdf, evrnd, evstat, mle, statset

\section*{Purpose \\ Inverse of the extreme value cumulative distribution function}

\section*{Syntax \\ Description}

See Also
evcdf, evfit, evlike, evpdf, evrnd, evstat, icdf

\section*{Purpose Negative log-likelihood for the extreme value distribution}

\author{
Syntax \\ Description
}

See Also
```

nlogL = evlike(params, data)
[nlogL, AVAR] = evlike(params, data)
[...] = evlike(params, data, censoring)
[...] = evlike(params, data, censoring, freq)

```
nlogL = evlike(params, data) returns the negative of the log-likelihood for the type 1 extreme value distribution, evaluated at parameters params(1) = MU and params(2) = SIGMA, given data. nlogL is a scalar.
[nlogL, AVAR] = evlike(params, data) returns the inverse of Fisher's information matrix, AVAR. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of AVAR are their asymptotic variances. AVAR is based on the observed Fisher's information, not the expected information.
[...] = evlike(params, data, censoring) accepts a Boolean vector of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = evlike(params, data, censoring, freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.

The type 1 extreme value distribution is also known as the Gumbel distribution. If Y has a Weibull distribution, then \(\mathrm{X}=\log (\mathrm{Y})\) has the type 1 extreme value distribution.
evcdf, evfit, evinv, evpdf, evrnd, evstat

Purpose

\section*{Syntax}

Description

See Also
\begin{tabular}{ll} 
Purpose & Random matrices from the extreme value distribution \\
Syntax & \(R=\operatorname{evrnd}(M U, S I G M A)\) \\
& \(R=\operatorname{evrnd}(M U, S I G M A, ~ v)\) \\
\(R\) & \(=\operatorname{evrnd}(M U, S I G M A, m, n)\)
\end{tabular}

Description \(\quad R=\operatorname{evrnd}(M U, S I G M A)\) generates random numbers from the extreme value distribution with parameters specified by MU and SIGMA. MU and SIGMA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for MU or SIGMA is expanded to a constant array with the same dimensions as the other input.
\(R=\operatorname{evrnd}(M U, S I G M A, v)\) generates an array \(R\) of size \(v\) containing random numbers from the extreme value distribution with parameters MU and SIGMA, where \(v\) is a row vector. If \(v\) is a 1-by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.

If MU and SIGMA are both scalars, \(R=\operatorname{evrnd}(M U, S I G M A, m, n)\) returns an m-by-n matrix.

The type 1 extreme value distribution is also known as the Gumbel distribution. If \(Y\) has a Weibull distribution, then \(X=\log (Y)\) has the type 1 extreme value distribution.

\section*{Reproducing the Output of evrnd}
evrnd uses the MATLAB function rand to generate random numbers. When you call evrnd, you change the current state of rand, and thereby alter the output of subsequent calls to evrnd or any other functions that depend on rand. If you want to reproduce the output of evrnd, reset the state of rand to the same fixed value each time you call evrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

See Also evcdf, evfit, evinv, evlike, evpdf, evstat

\section*{Purpose \\ Mean and variance of the extreme value distribution}

\section*{Syntax \\ [M, V] = evstat(MU, SIGMA)}

Description

See Also evcdf, evfit, evinv, evlike, evpdf, evrnd
Purpose Exponentially Weighted Moving Average (EWMA) chart for Statistical ProcessControl (SPC)
Syntax ewmaplot(data)
ewmaplot(data, lambda)
ewmaplot(data, lambda, alpha)
ewmaplot(data, lambda, alpha, specs)
h = ewmaplot(...)

\section*{Description}
ewmaplot (data) produces an EWMA chart of the grouped responses in data. The rows of data contain replicate observations taken at a given time. The rows should be in time order.
ewmaplot (data, lambda) produces an EWMA chart of the grouped responses in data, and specifies how much the current prediction is influenced by past observations. Higher values of lambda give more weight to current observations. By default, lambda \(=0.4\); lambda must be between 0 and 1.
ewmaplot (data, lambda, alpha) produces an EWMA chart of the grouped responses in data, and specifies the significance level of the upper and lower plotted confidence limits. alpha is 0.0027 by default. This value produces three-sigma limits:
```

norminv(1-0.0027/2)
ans =
3

```
To get \(k\)-sigma limits, use the expression 2* ( 1 - \(\operatorname{normcdf}(\mathrm{k})\) ). For example, the correct alpha value for 2 -sigma limits is 0.0455 , as shown below.
```

k = 2;
2*(1-normcdf(k))
ans =
0.0455

```
ewmaplot(data, lambda, alpha, specs) produces an EWMA chart of the grouped responses in data, and specifies a two-element vector, specs, for the lower and upper specification limits of the response.
\(\mathrm{h}=\) ewmaplot (...) returns a vector of handles to the plotted lines.

\section*{Example}

\section*{Reference}

See Also

Consider a process with a slowly drifting mean. An EWMA chart is preferable to an x-bar chart for monitoring this kind of process. The simulation below demonstrates an EWMA chart for a slow linear drift.
```

t = (1:28)';
r = normrnd(10+0.02*t(:,ones(4,1)),0.5);
ewmaplot(r,0.4,0.01,[9.75 10.75])

```


The EWMA value for group 28 is higher than would be expected purely by chance. If you had been monitoring this process continuously, you would have detected the drift when group 28 was collected, and would have had an opportunity to investigate its cause.
[1] Montgomery, D., Introduction to Statistical Quality Control, John Wiley \& Sons, 1991. p. 299.
xbarplot, schart

\section*{Purpose Exponential cumulative distribution function (cdf)}
```

Syntax P = expcdf(X,MU)
[P, PLO, PUP] = expcdf(X, MU, pcov, alpha)

```

Description

\section*{Examples}
\(P=\operatorname{expcdf}(X, M U)\) computes the exponential cdf at each of the values in \(X\) using the corresponding parameters in MU. X and MU can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in MU must be positive.

The exponential cdf is
\[
p=F(x \mid \mu)=\int_{0}^{x} \frac{1}{\mu} e^{-\frac{t}{\mu}} d t=1-e^{-\frac{x}{\mu}}
\]

The result, \(p\), is the probability that a single observation from an exponential distribution will fall in the interval [ \(0 x\) ].
[P, PLO, PUP] = expcdf(X, MU, pcov, alpha) produces confidence bounds for \(P\) when the input parameter \(M U\) is an estimate. \(p c o v\) is the variance of the estimated MU. alpha specifies \(100(1\) - alpha) \% confidence bounds. The default value of alpha is 0.05 . PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds. The bounds are based on a normal approximation for the distribution of the log of the estimate of MU. If you estimate MU from a set of data, you can get a more accurate set of bounds by applying expfit to the data to get a confidence interval for MU, and then evaluating expinv at the lower and upper endpoints of that interval.

The following code shows that the median of the exponential distribution is \(\mu * \log (2)\).
```

mu = 10:10:60;
p = expcdf(log(2)*mu,mu)
p =
0.5000 0.5000}00.5000 0.5000 0.5000 0.5000

```

What is the probability that an exponential random variable is less than or equal to the mean, \(\mu\) ?
```

mu = 1:6;
x = mu;
p = expcdf(x,mu)
p =
0.6321 0.6321 0.6321 0.6321 0.6321 0.6321

```

See Also cdf, expfit, expinv, exppdf, exprnd, expstat

\section*{Purpose Parameter estimates and confidence intervals for exponential data}

Syntax
Description

\section*{Example}
```

parmhat = expfit(DATA)
[parmhat,parmci] = expfit(DATA)
[parmhat,parmci] = expfit(DATA,alpha)
[...] = expfit(x, alpha, censoring)
[...] = expfit(x, alpha, censoring, freq)

```
parmhat \(=\operatorname{expfit}(\) DATA \()\) returns estimates of the parameter, \(\mu\), of the exponential distribution, given the data in DATA. Each entry of parmhat corresponds to the data in a column of DATA.
[parmhat, parmci] = expfit(DATA) returns \(95 \%\) confidence intervals for the parameter estimates in matrix parmci. The first row of parmci contains the lower bounds of the confidence intervals, and the second row contains the upper bounds.
[parmhat, parmci] = expfit(DATA, alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates, where alpha is a value in the range [ \(\left.\begin{array}{ll}0 & 1\end{array}\right]\) specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to \(95 \%\) confidence intervals.
[...] = expfit(data, alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly. data must be a vector in order to pass in the argument censoring.
[...] = expfit(data, alpha, censoring, freq) accepts a frequency vector, freq of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.

This example generates 100 independent samples of exponential data with \(\mu=3\). muhat is an estimate of \(\mu\) and muci is a \(99 \%\) confidence interval around muhat. Notice that muci contains the true value of \(\mu\).
```

data = exprnd(3, 100, 1);
[parmhat, parmci] = expfit(data, 0.01)
parmhat =

```
\[
\begin{array}{r}
2.7292 \\
\text { parmci }= \\
2.1384 \\
3.5854
\end{array}
\]

See Also expcdf, expinv, explike, exppdf, exprnd, expstat, mle, statset

\section*{Purpose Inverse of the exponential cumulative distribution function (cdf)}
```

Syntax X = expinv(P, MU)
[P, PLO, PUP] = expinv(X, MU, pcov, alpha)

```

\section*{Description}

\section*{Examples}
\(X=\operatorname{expinv}(P, M U)\) computes the inverse of the exponential cdf with parameters specified by MU for the corresponding probabilities in P. P and MU can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in MU must be positive and the values in \(P\) must lie on the interval [01].
[X, XLO, XUP] = expinv(X, MU, pcov, alpha) produces confidence bounds for \(X\) when the input parameter \(M U\) is an estimate. \(p c o v\) is the variance of the estimated MU. alpha specifies \(100(1-a l p h a) \%\) confidence bounds. The default value of alpha is 0.05 . XLO and XUP are arrays of the same size as \(X\) containing the lower and upper confidence bounds. The bounds are based on a normal approximation for the distribution of the log of the estimate of MU. If you estimate MU from a set of data, you can get a more accurate set of bounds by applying expfit to the data to get a confidence interval for MU, and then evaluating expinv at the lower and upper end points of that interval.

The inverse of the exponential cdf is
\[
x=F^{-1}(p \mid \mu)=-\mu \ln (1-p)
\]

The result, \(x\), is the value such that an observation from an exponential distribution with parameter \(\mu\) will fall in the range \([0 x]\) with probability \(p\).

Let the lifetime of light bulbs be exponentially distributed with \(\mu=700\) hours. What is the median lifetime of a bulb?
```

expinv(0.50,700)
ans =

```
485.2030

Suppose you buy a box of " 700 hour" light bulbs. If 700 hours is the mean life of the bulbs, half of them will burn out in less than 500 hours.
See Also expcdf, expfit, exppdf, exprnd, expstat, icdf

\section*{Purpose Negative log-likelihood for the exponential distribution}
```

Syntax nlogL = explike(param, data)
[nlogL, avar] = explike(param, data)
[...] = explike(param, data, censoring)
[...] = explike(param, data, censoring, freq)

```
Description nlogL = explike (param, data) returns the negative of the log-likelihood for
    the exponential distribution, evaluated at the parameter param = MU, given
    data. nlogL is a scalar.
[nlogL, avar] = explike(param, data) returns the inverse of Fisher's information, avar, a scalar. If the input parameter value in param is the maximum likelihood estimate, avar is its asymptotic variance. avar is based on the observed Fisher's information, not the expected information.
[...] = explike(param, data, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = explike(param, data, censoring, freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.

See Also expcdf, expfit, expinv, exppdf, exprnd

\section*{Purpose Exponential probability density function (pdf)}

\section*{Syntax \\ Y = exppdf(X, MU)}

Description
\(Y=\) exppdf( \(\mathrm{X}, \mathrm{MU}\) ) computes the exponential pdf at each of the values in X using the corresponding parameters in MU. X and MU can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in MU must be positive.

The exponential pdf is
\[
y=f(x \mid \mu)=\frac{1}{\mu} e^{-\frac{x}{\mu}}
\]

The exponential pdf is the gamma pdf with its first parameter equal to 1 .
The exponential distribution is appropriate for modeling waiting times when the probability of waiting an additional period of time is independent of how long you have already waited. For example, the probability that a light bulb will burn out in its next minute of use is relatively independent of how many minutes it has already burned.

\section*{Examples}
```

y = exppdf(5,1:5)
y =
0.0067 0.0410}00.0630 0.0716 0.0736
y = exppdf(1:5,1:5)
y =
0.3679 0.1839 0.1226 0.0920

```

See Also expcdf, expfit, expinv, exprnd, expstat, pdf

Purpose Generate random numbers from the exponential distribution

\section*{Syntax}
\(R=\operatorname{exprnd}(M U)\)
\(R=\operatorname{exprnd}(M U, v)\)
\(R=\operatorname{exprnd}(M U, m, n)\)
Description \(\quad R=\) exprnd (MU) generates exponential random numbers with mean MU.MU can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of \(M U\).
\(R=\) exprnd \((M U, v)\) generates an array \(R\) of size \(v\) containing exponential random numbers with mean \(M U\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an n-dimensional array.
\(R=\operatorname{exprnd}(M U, m, n)\) generates exponential random numbers with mean MU, where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of exprnd}
exprnd uses the MATLAB function rand to generate random numbers. When you call exprnd, you change the current state of rand, and thereby alter the output of subsequent calls to exprnd or any other functions that depend on rand. If you want to reproduce the output of exprnd, reset the state of rand to the same fixed value each time you call exprnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current state of rand. If you run the code in these examples, your results might differ from the answers shown here.

\section*{Examples}
```

n1 = exprnd(5:10)
n1 =
7.5943 18.3400
n2 = exprnd(5:10,[1 6])

```
```

n2 =
3.2752 1.1110 23.5530}223.4303 5.7190 3.9876
n3 = exprnd(5,2,3)
n3 =
24.3339 13.5271 1.8788
4.7932 4.3675 2.6468

```

See Also
expcdf, expfit, expinv, exppdf, expstat
Purpose Mean and variance for the exponential distribution
Syntax
```

 [m,v] = expstat(mu)
    ```Description
Examples
See Alsoexpcdf, expfit, expinv, exppdf, exprnd

Purpose
Syntax

\section*{Definition}

Description

Maximum likelihood common factor analysis
```

lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
[...] = factoran(...,'param1',value1,'param2',value2,...)

```
factoran computes the maximum likelihood estimate (MLE) of the factor loadings matrix \(\Lambda\) in the factor analysis model
\[
x=\mu+\Lambda f+e
\]
where \(x\) is a vector of observed variables, \(\mu\) is a constant vector of means, \(\Lambda\) is a constant d-by-m matrix of factor loadings, \(f\) is a vector of independent, standardized common factors, and \(e\) is a vector of independent specific factors. \(x, \mu\), and \(e\) are of length d. \(f\) is of length \(m\).

Alternatively, the factor analysis model can be specified as
\[
\operatorname{cov}(x)=\Lambda \Lambda^{T}+\Psi
\]
where \(\Psi=\operatorname{cov}(e)\) is a d-by-d diagonal matrix of specific variances.
lambda \(=\) factoran \((X, m)\) returns the maximum likelihood estimate, lambda, of the factor loadings matrix, in a common factor analysis model with \(m\) common factors. \(X\) is an \(n\)-by-d matrix where each row is an observation of \(d\) variables. The ( \(i, j\) ) th element of the d-by-m matrix lambda is the coefficient, or loading, of the \(j\) th factor for the ith variable. By default, factoran calls the function rotatefactors to rotate the estimated factor loadings using the 'varimax' option.
[lambda,psi] = factoran(X,m) also returns maximum likelihood estimates of the specific variances as a column vector psi of length \(d\).
[lambda, psi, T] = factoran(X,m) also returns the m-by-m factor loadings rotation matrix \(T\).

\section*{factoran}
[lambda, psi, T, stats] = factoran(X,m) also returns a structure stats containing information relating to the null hypothesis, \(\mathrm{H}_{0}\), that the number of common factors is m . stats includes the following fields:
loglike Maximized log-likelihood value
dfe Error degrees of freedom \(=\left((d-m)^{\wedge} 2-(d+m)\right) / 2\)
chisq Approximate chi-squared statistic for the null hypothesis
p Right-tail significance level for the null hypothesis
factoran does not compute the chisq and \(p\) fields unless dfe is positive and all the specific valiance estimates in psi are positive (see "Heywood Case" below). If \(X\) is a covariance matrix, then you must also specify the ' nobs ' parameter if you want factoran to compute the chisq and \(p\) fields.
[lambda, psi, \(T\), stats, \(F\) ] = factoran (X,m) also returns, in F, predictions of the common factors, known as factor scores. \(F\) is an \(n\)-by-m matrix where each row is a prediction of \(m\) common factors. If \(X\) is a covariance matrix, factoran cannot compute F. factoran rotates \(F\) using the same criterion as for lambda.
[...] = factoran(...,'param1',value1,'param2',value2,...) enables you to specify optional parameter name/value pairs to control the model fit and the outputs. These are the valid parameters. The most commonly used parameters are listed first.
\begin{tabular}{l|l|l}
\hline Parameter & Value & \\
\hline 'xtype' & Type of input in the matrix X. 'xtype ' can be one of: \\
\hline & 'data' \(\quad\) Raw data (default)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{Value} \\
\hline & \[
\begin{aligned}
& \text { 'wls' } \\
& \hline \text { 'Bartlett' }
\end{aligned}
\] & Synonyms for a weighted least squares estimate that treats F as fixed (default) \\
\hline & \begin{tabular}{l}
'regression' \\
'Thomson'
\end{tabular} & Synonyms for a minimum mean squared error prediction that is equivalent to a ridge regression \\
\hline \multirow[t]{5}{*}{'start'} & \multicolumn{2}{|l|}{Starting point for the specific variances psi in the maximum likelihood optimization. Can be specified as:} \\
\hline & 'random' & Chooses d uniformly distributed values on the interval \([0,1]\). \\
\hline & 'Rsquared' & Chooses the starting vector as a scale factor times diag(inv(corrcoef(X))) (default). For examples, see Jöreskog [2]. \\
\hline & Positive integer & Performs the given number of maximum likelihood fits, each initialized as with 'random'. factoran returns the fit with the highest likelihood. \\
\hline & Matrix & Performs one maximum likelihood fit for each column of the specified matrix. The ith optimization is initialized with the values from the ith column. The matrix must have d rows. \\
\hline \multirow[t]{2}{*}{'rotate '} & \multicolumn{2}{|l|}{Method used to rotate factor loadings and scores. 'rotate' can have the same values as the 'Method' parameter of rotatefactors. See the reference page for rotatefactors for a full description of the available methods.} \\
\hline & 'none ' & Performs no rotation. \\
\hline
\end{tabular}

\section*{factoran}
\begin{tabular}{l|ll}
\hline Parameter & Value & \\
\hline & 'equamax' & \begin{tabular}{l} 
Special case of the orthomax rotation. \\
Use the 'normalize ' ' reltol', and \\
'maxit' parameters to control the \\
details of the rotation.
\end{tabular} \\
\hline & 'orthomax' & \begin{tabular}{l} 
Orthogonal rotation that maximizes a \\
criterion based on the variance of the \\
loadings. \\
Use the ' coeff ', 'normalize', \\
'reltol', and 'maxit' parameters to \\
control the details of the rotation.
\end{tabular} \\
\hline & 'parsimax' & \begin{tabular}{l} 
Special case of the orthomax rotation \\
(default). Use the 'normalize ', \\
'reltol', and 'maxit' parameters to \\
control the details of the rotation.
\end{tabular} \\
\hline & 'pattern' & \begin{tabular}{l} 
Performs either an oblique rotation \\
(the default) or an orthogonal rotation \\
to best match a specified pattern \\
matrix. Use the 'type ' parameter to \\
choose the type of rotation. Use the \\
'target ' parameter to specify the
\end{tabular} \\
pattern matrix.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Parameter & Value & \multicolumn{1}{l}{} \\
\hline & 'promax' & \(\begin{array}{l}\text { Performs an oblique procrustes } \\
\text { rotation to a target matrix } \\
\text { determined by factoran as a function } \\
\text { of an orthomax solution. } \\
\text { Use the 'power ' parameter to specify } \\
\text { the exponent for creating the target } \\
\text { matrix. Because 'promax' uses } \\
\text { 'orthomax' internally, you can also } \\
\text { specify the parameters that apply to } \\
\text { 'orthomax'. }\end{array}\) \\
& 'quartimax' & \(\begin{array}{l}\text { Special case of the orthomax rotation } \\
\text { (default). Use the 'normalize ', } \\
\text { 'reltol', and 'maxit' parameters to } \\
\text { control the details of the rotation. }\end{array}\) \\
& 'varimax' & \(\begin{array}{l}\text { Special case of the orthomax rotation } \\
\text { (default). Use the 'normalize ', }\end{array}\) \\
'reltol', and 'maxit' parameters to \\
control the details of the rotation.
\end{tabular}\(\}\)

\section*{factoran}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'coeff' & \begin{tabular}{l} 
Coefficient, often denoted as \(\gamma\), defining the specific \\
'orthomax ' criterion. Must be between 0 and 1. The \\
value 0 corresponds to quartimax, and 1 corresponds to \\
varimax. Default is 1.
\end{tabular} \\
\hline 'normalize' & \begin{tabular}{l} 
Flag indicating whether the loading matrix should be \\
row-normalized (1) or left unnormalized (0) for \\
'orthomax' or 'varimax' rotation. Default is 1.
\end{tabular} \\
\hline 'reltol' & \begin{tabular}{l} 
Relative convergence tolerance for 'orthomax ' or \\
'varimax ' rotation. Default is sqrt (eps).
\end{tabular} \\
\hline 'maxit' & \begin{tabular}{l} 
Iteration limit for 'orthomax ' or 'varimax' rotation. \\
Default is 250.
\end{tabular} \\
\hline 'target' & \begin{tabular}{l} 
Target factor loading matrix for 'procrustes ' rotation. \\
Required for 'procrustes ' rotation. No default value.
\end{tabular} \\
\hline 'type' & \begin{tabular}{l} 
Type of 'procrustes ' rotation. Can be ' oblique ' \\
(default) or 'orthogonal'.
\end{tabular} \\
\hline 'power' & \begin{tabular}{l} 
Exponent for creating the target matrix in the 'promax ' \\
rotation. Must be >= 1. Default is 4.
\end{tabular} \\
\hline 'userargs ' & \begin{tabular}{l} 
Denotes the beginning of additional input values for a \\
user-defined rotation function. factoran appends all \\
subsequent values, in order and without processing, to \\
the rotation function argument list, following the \\
unrotated factor loadings matrix A. See Example 4.
\end{tabular} \\
\hline 'nobs ' & \begin{tabular}{l} 
If x is a covariance or correlation matrix, indicates the \\
number of observations that were used in its \\
estimation. This allows calculation of significance for \\
the null hypothesis even when the original data are not \\
available. There is no default. ' nobs' is ignored if \(x\) is \\
raw data.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'delta' & \begin{tabular}{l} 
Lower bound for the specific variances psi during the \\
maximum likelihood optimization. Default is 0.005.
\end{tabular} \\
\hline 'optimopts' & \begin{tabular}{l} 
Structure that specifies control parameters for the \\
iterative algorithm the function uses to compute \\
maximum likelihood estimates. Create this structure \\
with the function statset. Enter statset ('factoran ') \\
to see the names and default values of the parameters \\
that factoran accepts in the options structure. See the \\
reference page for statset for more information about \\
these options.
\end{tabular} \\
\hline
\end{tabular}

\section*{Remarks}

Observed Data Variables. The variables in the observed data matrix \(X\) must be linearly independent, i.e., cov (X) must have full rank, for maximum likelihood estimation to succeed. factoran reduces both raw data and a covariance matrix to a correlation matrix before performing the fit.
factoran standardizes the observed data \(X\) to zero mean and unit variance before estimating the loadings lambda. This does not affect the model fit, because MLEs in this model are invariant to scale. However, lambda and psi are returned in terms of the standardized variables, i.e., lambda*lambda' + diag (psi) is an estimate of the correlation matrix of the original data \(X\) (although not after an oblique rotation). See Examples 1 and 3.

Heywood Case. If elements of psi are equal to the value of the 'delta' parameter (i.e., they are essentially zero), the fit is known as a Heywood case, and interpretation of the resulting estimates is problematic. In particular, there can be multiple local maxima of the likelihood, each with different estimates of the loadings and the specific variances. Heywood cases can indicate overfitting (i.e., \(m\) is too large), but can also be the result of underfitting.

Rotation of Factor Loadings and Scores. Unless you explicitly specify no rotation using the ' rotate ' parameter, factoran rotates the estimated factor loadings, lambda, and the factor scores, F. The output matrix \(T\) is used to rotate the loadings, i.e., lambda \(=\) lambda0*T, where lambda0 is the initial (unrotated) MLE of the loadings. T is an orthogonal matrix for orthogonal rotations, and

\section*{factoran}
the identity matrix for no rotation. The inverse of T is known as the primary axis rotation matrix, while \(T\) itself is related to the reference axis rotation matrix. For orthogonal rotations, the two are identical.
factoran computes factor scores that have been rotated by inv ( \(T^{\prime}\) ), i.e., \(F=F 0\) * inv ( \(T^{\prime}\) ), where F0 contains the unrotated predictions. The estimated covariance of \(F\) is inv ( \(T^{\prime *} T\) ), which, for orthogonal or no rotation, is the identity matrix. Rotation of factor loadings and scores is an attempt to create a more easily interpretable structure in the loadings matrix after maximum likelihood estimation.

\section*{Examples}

Example 1. Load the carbig data, and fit the default model with two factors.
```

load carbig
X = [Acceleration Displacement Horsepower MPG Weight];
X = X(all(~isnan(X),2),:);
[Lambda,Psi,T,stats,F] = factoran(X,2,'scores','regression')
inv(T'*T) % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda' + diag(Psi) % Estimated correlation matrix of X
Lambda*inv(T) % Unrotate the loadings
F*T' % Unrotate the factor scores
biplot(Lambda) % Create a biplot of the two factors

```


Example 2. Although the estimates are the same, the use of a covariance matrix rather than raw data doesn't let you request scores or significance level.
```

[Lambda, Psi, T] = factoran(cov(X),2,'xtype', 'cov')
[Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

```

Example 3. Use promax rotation.
```

[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',...
'powerpm',4)
inv(T'*T) % Est'd correlation matrix of F, no longer eye(2)
Lambda*inv(T'*T)*Lambda' + diag(Psi) % Est'd correlation
% matrix of X

```

Plot the unrotated variables with oblique axes superimposed.
```

invT = inv(T)
LambdaO = Lambda*invT
biplot(Lambda0);
line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...
[-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...
color','r','linewidth',2);
text(invT(:,1), invT(:,2),[' I '; ' II'],'color','r');

```
```

xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')

```


Plot the rotated variables against the oblique axes.
biplot(Lambda)


Example 4. Syntax for passing additional arguments to a user-defined rotation function.
[Lambda, Psi,T] = ...
factoran(X,2,'rotate', @myrotation,'userargs',1,'two')

References

See Also
[1] Harman, H. H., Modern Factor Analysis, 3rd Ed., University of Chicago Press, Chicago, 1976.
[2] Jöreskog, K. G., "Some Contributions to Maximum Likelihood Factor Analysis," Psychometrika, Vol.32, 1967, pp. 443-482.
[3] Lawley, D. N. and A. E. Maxwell, Factor Analysis as a Statistical Method, 2nd Edition, American Elsevier Pub. Co., New York, 1971.
biplot, princomp, procrustes, pcacov, rotatefactors, statset

\section*{Purpose F cumulative distribution function (cdf)}

\section*{Syntax \(\quad P=\operatorname{fcdf}(X, V 1, V 2)\)}

Description

\section*{Examples}

See Also
cdf, finv, fpdf, frnd, fstat

\section*{Purpose}

\section*{Syntax}

Description
\(X=f f 2 n(n)\) creates a two-level full-factorial design, \(X\), where \(n\) is the desired number of columns of \(X\). The number of rows in \(X\) is \(2^{n}\).

Example
\begin{tabular}{rl}
\(X=f f 2 n(3)\) \\
\(X=\) & \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 1 \\
1 & 0 \\
1
\end{tabular}

X is the binary representation of the numbers from 0 to \(2^{n}-1\).
See Also fracfact, fullfact

\section*{finv}

\section*{Purpose Inverse of the F cumulative distribution function (cdf)}

\section*{Syntax \\ \(X=f i n v(P, V 1, V 2)\)}

Description
\(X=f i n v(P, V 1, V 2)\) computes the inverse of the \(F\) cdf with numerator degrees of freedom V1 and denominator degrees of freedom V2 for the corresponding probabilities in P. P, V1, and V2 can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The parameters in V1 and V2 must all be positive integers, and the values in P must lie on the interval [01].

The F inverse function is defined in terms of the F cdf as
\[
x=F^{-1}\left(p \mid v_{1}, v_{2}\right)=\left\{x: F\left(x \mid v_{1}, v_{2}\right)=p\right\}
\]
where
\[
p=F\left(x \mid v_{1}, v_{2}\right)=\int_{0}^{x} \frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{t^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) t\right]^{\frac{v_{1}+v_{2}}{2}}} d t
\]

\section*{Examples}

Find a value that should exceed \(95 \%\) of the samples from an F distribution with 5 degrees of freedom in the numerator and 10 degrees of freedom in the denominator.
```

x = finv(0.95,5,10)
x =
3.3258

```

You would observe values greater than 3.3258 only \(5 \%\) of the time by chance.
See Also
fcdf, fpdf, frnd, fstat, icdf

Purpose
F probability density function (pdf)

\section*{Syntax}
\(Y=f p d f(X, V 1, V 2)\)
Description
\(Y=f p d f(X, V 1, V 2)\) computes the \(F \operatorname{pdf}\) at each of the values in \(X\) using the corresponding parameters in V1 and V2. X , V1, and V2 can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in V1 and V2 must all be positive integers, and the values in \(X\) must lie on the interval \([0 \infty\) ).

The probability density function for the F distribution is
\[
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x\right]^{\frac{v_{1}+v_{2}}{2}}}
\]

Examples
\[
\left.\begin{array}{rl}
y= & \operatorname{fpdf}(1: 6,2,2) \\
y= & \\
& 0.2500 \\
0.1111 & 0.0625
\end{array} 0.0400 \quad 0.0278 \quad 0.0204\right\}
\]

\section*{See Also}

\section*{fracfact}

\section*{Purpose Generate fractional factorial design from generators}
```

Syntax }x=\mathrm{ fracfact('gen')
[x,conf] = fracfact('gen')

```

Description

\section*{Examples}
\(x=\) fracfact('gen') generates a fractional factorial design as specified by the generator string gen, and returns a matrix \(x\) of design points. The input string gen is a generator string consisting of "words" separated by spaces. Each word describes how a column of the output design should be formed from columns of a full factorial. Typically gen will include single-letter words for the first few factors, plus additional multiple-letter words describing how the remaining factors are confounded with the first few.

The output matrix x is a fraction of a two-level full-factorial design. Suppose there are \(m\) words in gen, and that each word is formed from a subset of the first \(n\) letters of the alphabet. The output matrix \(x\) has \(2^{n}\) rows and \(m\) columns. Let F represent the two-level full-factorial design as produced by \(f f 2 n(n)\). The values in column \(j\) of \(x\) are computed by multiplying together the columns of \(F\) corresponding to letters that appear in the \(j\) th word of the generator string.
[x,conf] = fracfact('gen') also returns a cell array, conf, that describes the confounding pattern among the main effects and all two-factor interactions.

\section*{Example 1}

You want to run an experiment to study the effects of four factors on a response, but you can only afford eight runs. (A run is a single repetition of the experiment at a specified combination of factor values.) Your goal is to determine which factors affect the response. There may be interactions between some pairs of factors.

A total of sixteen runs would be required to test all factor combinations. However, if you are willing to assume there are no three-factor interactions, you can estimate the main factor effects in just eight runs.
```

[x,conf] = fracfact('a b c abc')
x =
-1
-1

```
```

| -1 | 1 | -1 | 1 |
| ---: | ---: | ---: | ---: |
| -1 | 1 | 1 | -1 |
| 1 | -1 | -1 | 1 |
| 1 | -1 | 1 | -1 |
| 1 | 1 | -1 | -1 |
| 1 | 1 | 1 | 1 |

conf =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
'X3' 'c' 'X3'
'X4' 'abc' 'X4'
'X1*X2' 'ab' 'X1*X2 + X3*X4'
'X1*X3' 'ac' 'X1*X3 + X2*X4'
'X1*X4' 'bc' 'X1*X4 + X2*X3'
'X2*X3' 'bc' 'X1*X4 + X2*X3'
'X2*X4' 'ac' 'X1*X3 + X2*X4'
'X3*X4' 'ab' 'X1*X2 + X3*X4'

```

The first three columns of the \(x\) matrix form a full-factorial design. The final column is formed by multiplying the other three. The confounding pattern shows that the main effects for all four factors are estimable, but the two-factor interactions are not. For example, the X1*X2 and X3*X4 interactions are confounded, so it is not possible to estimate their effects separately.

After conducting the experiment, you may find out that the ' \(a b\) ' effect is significant. In order to determine whether this effect comes from X1*X2 or \(X 3 * X 4\) you would have to run the remaining eight runs. You can obtain those runs by reversing the sign of the final generator.
```

fracfact('a b c -abc')
ans =

| -1 | -1 | -1 | 1 |
| ---: | ---: | ---: | ---: |
| -1 | -1 | 1 | -1 |
| -1 | 1 | -1 | -1 |
| -1 | 1 | 1 | 1 |
| 1 | -1 | -1 | -1 |
| 1 | -1 | 1 | 1 |
| 1 | 1 | -1 | 1 |

```

\section*{fracfact}

\section*{Example 2}

Suppose now you need to study the effects of eight factors. A full factorial would require 256 runs. By clever choice of generators, you can find a sixteen-run design that can estimate those eight effects with no confounding from two-factor interactions.
```

[x,c] = fracfact('a b c d abc acd abd bcd');
c(1:10,:)
ans =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
'X3' 'c' 'X3'
'X4' 'd' 'X4'
'X5' 'abc' 'X5'
'X6' 'acd' 'X6'
'X7' 'abd' 'X7'
'X8' 'bcd' 'X8'
'X1*X2' 'ab' 'X1*X2 + X3*X5 + X4*X7 + X6*X8'

```

This confounding pattern shows that the main effects are not confounded with two-factor interactions. The final row shown reveals that a group of four two-factor interactions is confounded. Other choices of generators would not have the same desirable property.
```

[x,c] = fracfact('a b c d ab cd ad bc');
c(1:10,:)
ans =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1 + X2*X5 + X4*X7'
'X2' 'b' 'X2 + X1*X5 + X3*X8'
'X3' 'c' 'X3 + X2*X8 + X4*X6'
'X4' 'd' 'X4 + X1*X7 + X3*X6'
'X5' 'ab' 'X5 + X1*X2'
'X6' 'cd' 'X6 + X3*X4'
'X7' 'ad' 'X7 + X1*X4'

```
```

'X8' 'bc' 'X8 + X2*X3'
'X1*X2' 'ab' 'X5 + X1*X2'

```

Here all the main effects are confounded with one or more two-factor interactions.

\author{
References \\ [1] Box, G. A. F., W. G. Hunter, and J. S. Hunter, Statistics for Experimenters, Wiley, 1978.
}

See Also
ff2n, fullfact, hadamard

\section*{Purpose Friedman's nonparametric two-way Analysis of Variance (ANOVA)}
```

Syntax p = friedman(X,reps)
p = friedman(X,reps,'displayopt')
[p,table] = friedman(...)
[p,table,stats] = friedman(...)

```

\section*{Description}
\(p=\) friedman(X, reps) performs the nonparametric Friedman's test to compare column effects in a two-way layout. Friedman's test is similar to classical balanced two-way ANOVA, but it tests only for column effects after adjusting for possible row effects. It does not test for row effects or interaction effects. Friedman's test is appropriate when columns represent treatments that are under study, and rows represent nuisance effects (blocks) that need to be taken into account but are not of any interest.

The different columns of \(X\) represent changes in a factor \(A\). The different rows represent changes in a blocking factor B . If there is more than one observation for each combination of factors, input reps indicates the number of replicates in each "cell," which must be constant.

The matrix below illustrates the format for a set-up where column factor A has three levels, row factor B has two levels, and there are two replicates (reps=2). The subscripts indicate row, column, and replicate, respectively.
\[
\left[\begin{array}{lll}
x_{111} & x_{121} & x_{131} \\
x_{112} & x_{122} & x_{132} \\
x_{211} & x_{221} & x_{231} \\
x_{212} & x_{222} & x_{232}
\end{array}\right]
\]

Friedman's test assumes a model of the form
\[
x_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k}
\]
where \(\mu\) is an overall location parameter, \(\alpha_{i}\) represents the column effect, \(\beta_{j}\) represents the row effect, and \(\varepsilon_{i j k}\) represents the error. This test ranks the data within each level of \(B\), and tests for a difference across levels of \(A\). The \(p\) that friedman returns is the \(p\)-value for the null hypothesis that \(\alpha_{i}=0\). If the \(p\)-value is near zero, this casts doubt on the null hypothesis. A sufficiently
small p-value suggests that at least one column-sample median is significantly different than the others; i.e., there is a main effect due to factor A. The choice of a critical \(p\)-value to determine whether a result is "statistically significant" is left to the researcher. It is common to declare a result significant if the p -value is less than 0.05 or 0.01 .
friedman also displays a figure showing an ANOVA table, which divides the variability of the ranks into two or three parts:
- The variability due to the differences among the column effects
- The variability due to the interaction between rows and columns (if reps is greater than its default value of 1 )
- The remaining variability not explained by any systematic source

The ANOVA table has six columns:
- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows Friedman's chi-square statistic.
- The sixth shows the p-value for the chi-square statistic.
p = friedman(X,reps,'displayopt') enables the ANOVA table display when 'displayopt' is 'on' (default) and suppresses the display when 'displayopt' is 'off'.
[ \(p\),table] = friedman(...) returns the ANOVA table (including column and row labels) in cell array table. (You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text from the Edit menu.
[p,table,stats] = friedman(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The friedman test evaluates the hypothesis that the column effects are all the same against the alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of column effects are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying the stats structure as input.

\section*{friedman}

\section*{Assumptions}

Friedman's test makes the following assumptions about the data in X :
- All data come from populations having the same continuous distribution, apart from possibly different locations due to column and row effects.
- All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the stronger assumption that data come from normal distributions.

\section*{Examples}

Let's repeat the example from the anova2 function, this time applying Friedman's test. Recall that the data below come from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air). The study popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{load popcorn popcorn} \\
\hline \multicolumn{3}{|l|}{popcorn \(=\)} \\
\hline 5.5000 & 4.5000 & 3.5000 \\
\hline 5.5000 & 4.5000 & 4.0000 \\
\hline 6.0000 & 4.0000 & 3.0000 \\
\hline 6.5000 & 5.0000 & 4.0000 \\
\hline 7.0000 & 5.5000 & 5.0000 \\
\hline 7.0000 & 5.0000 & 4.5000 \\
\hline \multicolumn{3}{|l|}{\(\mathrm{p}=\) friedman(popcorn,3)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(p=\)}} \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Friedman's ANOVA Table} \\
\hline Source & 55 & df & MS & Chi-sq & Prob>Chi-sq & \(\wedge\) \\
\hline \begin{tabular}{l}
Columns \\
Interaction
\end{tabular} & \[
\begin{gathered}
99.75 \\
0.0833
\end{gathered}
\] & 2 & \[
\begin{gathered}
49.875 \\
0.0417
\end{gathered}
\] & 13.76 & 0.001 & \\
\hline Error & 16.1667 & 12 & 1.3472 & & & \\
\hline Total & 116 & 17 & & & & \\
\hline \multicolumn{7}{|c|}{Test for column effects after row effects are removed} \\
\hline
\end{tabular}

The small p-value of 0.001 indicates the popcorn brand affects the yield of popcorn. This is consistent with the results from anova2.

You could also test popper type by permuting the popcorn array as described on "Friedman's Test" on page 4-60 and repeating the test.

\section*{References}

See Also
anova2, multcompare, kruskalwallis

\section*{Purpose Random numbers from the F distribution}
\[
\text { Syntax } \quad \begin{aligned}
R & =f r n d(V 1, V 2) \\
& R=f r n d(V 1, V 2, v) \\
& R=f r n d(V 1, V 2, m, n)
\end{aligned}
\]

Description \(\quad R=f r n d(V 1, V 2)\) generates random numbers from the \(F\) distribution with numerator degrees of freedom V1 and denominator degrees of freedom V2. V1 and V2 can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for V1 or V2 is expanded to a constant array with the same dimensions as the other input.
\(R=f r n d(V 1, V 2, v)\) generates random numbers from the \(F\) distribution with parameters \(V 1\) and \(V 2\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=f r n d(V 1, V 2, m, n)\) generates random numbers from the \(F\) distribution with parameters V1 and V2, where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of frnd}
frnd uses the MATLAB functions rand and randn to generate random numbers. When you call frnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to frnd or any other functions that depend on rand or randn. If you want to reproduce the output of frnd, reset the states of rand and randn to the same fixed values each time you call frnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current states of rand and randn. If you run the code in these examples, your results may differ from the answers shown here.

\footnotetext{
Examples \(n 1=\operatorname{frnd}(1: 6,1: 6)\)
}
```

n1 =
0.0022 0.3121 3.0528
n2 = frnd(2,2,[2 3])
n2 =
0.3186 0.9727 3.0268
0.2052 148.5816 0.2191
n3 = frnd([[1 2 3;4 5 6],1,2,3)
n3 =
0.6233 0.2322 31.5458
2.5848 0.2121 4.4955

```

See Also
fcdf, finv, fpdf, fstat

\section*{Purpose Mean and variance for the F distribution}

\section*{Syntax \\ [M,V] = fstat(V1,V2)}

Description

\section*{Examples}

\section*{See Also}

Purpose

\section*{Syntax}

\section*{Description}

\section*{Example}

Interactive contour plot of a function
```

fsurfht('fun',xlims,ylims)
fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5)

```
fsurfht('fun',xlims, ylims) is an interactive contour plot of the function specified by the text variable fun. The \(x\)-axis limits are specified by xlims in the form [xmin xmax], and the \(y\)-axis limits are specified by ylims in the form [ymin ymax].
fsurfht('fun', xlims, ylims, p1, p2, p3, p4, p5) allows for five optional parameters that you can supply to the function fun.

The intersection of the vertical and horizontal reference lines on the plot defines the current \(x\)-value and \(y\)-value. You can drag these reference lines and watch the calculated \(z\)-values (at the top of the plot) update simultaneously. Alternatively, you can type the \(x\)-value and \(y\)-value into editable text fields on the \(x\)-axis and \(y\)-axis.

Plot the Gaussian likelihood function for the gas.mat data.
```

load gas

```

Create a function containing the following commands, and name it gauslike.m.
```

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end

```

The gauslike function calls normpdf, treating the data sample as fixed and the parameters \(\mu\) and \(\sigma\) as variables. Assume that the gas prices are normally distributed, and plot the likelihood surface of the sample.
```

fsurfht('gauslike',[112 118],[3 5],price1)

```


The sample mean is the \(x\)-value at the maximum, but the sample standard deviation is not the \(y\)-value at the maximum.
```

mumax = mean(price1)
mumax =
115.1500
sigmamax = std(price1)*sqrt(19/20)
sigmamax =
3.7719

```

Purpose
Full-factorial experimental design

\section*{Syntax \\ design = fullfact(levels)}

Description

Example

See Also
ff2n, dcovary, daugment, cordexch

\section*{gamcdf}

\section*{Purpose Gamma cumulative distribution function (cdf)}

Syntax \(\quad P=\operatorname{gamcdf}(X, A, B)\)
[P,PLO, PUP] = gamcdf(X,A,B,PCOV,ALPHA)
Description

\section*{Examples}
```

a = 1:6;
b = 5:10;
prob = gamcdf(a.*b,a,b)
prob =
0.6321 0.5940 0.5768 0.5665 0.5595 0.5543

```

The mean of the gamma distribution is the product of the parameters, \(a b\). In this example, the mean approaches the median as it increases (i.e., the distribution becomes more symmetric).

\section*{See Also \\ cdf, gamfit, gaminv, gamlike, gampdf, gamrnd, gamstat, gammainc}

\section*{Purpose Parameter estimates and confidence intervals for gamma distributed data}
```

Syntax phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,options)

```

Description

\section*{Example}
phat = gamfit(data) returns the maximum likelihood estimates (MLEs) for the parameters of the gamma distribution given the data in vector data.
[phat,pci] = gamfit(data) returns MLEs and 95\% percent confidence intervals. The first row of pci is the lower bound of the confidence intervals; the last row is the upper bound.
[phat,pci] = gamfit(data,alpha) returns 100(1-alpha)\% confidence intervals. For example, alpha \(=0.01\) yields \(99 \%\) confidence intervals.
[...] = gamfit(data, alpha, censoring) accepts a boolean vector of the same size as data that is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = gamfit(data, alpha, censoring,freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but may contain any non-negative values.
[...] = gamfit(data, alpha, censoring,freq,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. You can create options using the function statset. Enter statset('gamfit') to see the names and default values of the parameters that gamfit accepts in the options structure.

Note that the \(95 \%\) confidence intervals in the example below bracket the true parameter values of 2 and 4.
```

a = 2; b = 4;
data = gamrnd(a,b,100,1);
[p,ci] = gamfit(data)
p =
2.1990 3.7426

```

\section*{gamfit}
```

ci =
1.6840 2.8298
2.7141 4.6554

```

Reference \(\quad\) [1] Hahn, G. J., and S. S. Shapiro, Statistical Models in Engineering. John
Wiley \& Sons, 1994. p. 88.
See Also gamcdf, gaminv, gamlike, gampdf, gamrnd, gamstat, mle, statset

12-193

\section*{Purpose Inverse of the gamma cumulative distribution function (cdf)}

\section*{Syntax}

Description

Algorithm

Examples
\[
\begin{aligned}
& X=\operatorname{gaminv}(P, A, B) \\
& {[X, X L O, X U P]=\operatorname{gamcdf}(P, A, B, P C O V, A L P H A)}
\end{aligned}
\]
\(X=\) gaminv ( \(P, A, B\) ) computes the inverse of the gamma cdf with parameters \(A\) and \(B\) for the corresponding probabilities in P. P, A, and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in A and B must all be positive, and the values in \(P\) must lie on the interval [01].

The gamma inverse function in terms of the gamma cdf is
\[
x=F^{-1}(p \mid a, b)=\{x: F(x \mid a, b)=p\}
\]
where
\[
p=F(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} \int_{0}^{x} t^{a-1} e^{-\frac{t}{b}} d t
\]
[ \(\mathrm{X}, \mathrm{XLO}, \mathrm{XUP}]=\operatorname{gamcdf}(\mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{PCOV}, \mathrm{ALPHA})\) produces confidence bounds for P when the input parameters \(A\) and \(B\) are estimates. PCOV is a 2-by-2 matrix containing the covariance matrix of the estimated parameters. ALPHA has a default value of 0.05 , and specifies 100 ( 1 -ALPHA) \% confidence bounds. PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.

There is no known analytical solution to the integral equation above. gaminv uses an iterative approach (Newton's method) to converge on the solution.

This example shows the relationship between the gamma cdf and its inverse function.
```

a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)
x =
1.0000 2.0000 3.0000 4.0000 5.0000

```

\section*{See Also}
gamcdf, gamfit, gamlike, gampdf, gamrnd, gamstat, icdf

\section*{gamlike}

\section*{Purpose Negative gamma log-likelihood function}

\section*{Syntax}

Description
```

logL = gamlike(params,data)
[logL,AVAR] = gamlike(params,data)

```
logL = gamlike(params, data) returns the negative of the gamma log-likelihood function for the parameters, params, given data. The length of output vector logL is the length of vector data.
[logL,AVAR] = gamlike(params, data) also returns AVAR, which is the asymptotic variance-covariance matrix of the parameter estimates when the values in params are the maximum likelihood estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the asymptotic variances of their respective parameters.
[...] = gamlike(params, data, censoring) accepts a boolean vector of the same size as data that is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = gamfit(params, data, censoring,freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but may contain any non-negative values.
gamlike is a utility function for maximum likelihood estimation of the gamma distribution. Since gamlike returns the negative gamma log-likelihood function, minimizing gamlike using fminsearch is the same as maximizing the likelihood.

Example This example continues the example for gamfit.
```

 a = 2; b = 3;
 r = gamrnd(a,b,100,1);
 [logL,info] = gamlike(gamfit(r),r)
 logL =
 267.5648
 info =
 0.0788 -0.1104
 -0.1104 0.1955
    ```

\section*{See Also}
betalike, gamcdf, gamfit, gaminv, gampdf, gamrnd, gamstat, mle, normlike, wbllike

\section*{gampdf}

\section*{Purpose Gamma probability density function (pdf)}

\section*{Syntax \(\quad Y=\operatorname{gampdf}(X, A, B)\)}

Description

\section*{Examples}

\section*{See Also}
gampdf \((X, A, B)\) computes the gamma pdf at each of the values in \(X\) using the corresponding parameters in \(A\) and \(B . X, A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(A\) and \(B\) must all be positive, and the values in \(X\) must lie on the interval \([0 \infty\) ).

The gamma pdf is
\[
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}
\]

The gamma probability density function is useful in reliability models of lifetimes. The gamma distribution is more flexible than the exponential distribution in that the probability of a product surviving an additional period may depend on its current age. The exponential and \(\chi^{2}\) functions are special cases of the gamma function.

The exponential distribution is a special case of the gamma distribution.
```

mu = 1:5;
y = gampdf(1,1,mu)
y =
0.3679 0.3033 0.2388
y1 = exppdf(1,mu)
y1 =
0.3679 0.3033 0.2388

```
gamcdf, gamfit, gaminv, gamlike, gamrnd, gamstat, pdf, gamma, gammaln

Purpose
Random numbers from the gamma distribution
```

Syntax R = gamrnd(A,B)
R = gamrnd(A,B,v)
R = gamrnd(A,B,m,n)

```

Description \(\quad R=\) gamrnd \((A, B)\) generates random numbers from the gamma distribution with parameters \(A\) and \(B\). \(A\) and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for A or B is expanded to a constant array with the same dimensions as the other input.
\(R=\operatorname{gamrnd}(A, B, v)\) generates random numbers from the gamma distribution with parameters \(A\) and \(B\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=\operatorname{gamrnd}(A, B, m, n)\) generates gamma random numbers with parameters \(A\) and \(B\), where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of gamrnd}
gamrnd uses the MATLAB function rand to generate random numbers. When you call gamrnd, you change the current state of rand, and thereby alter the output of subsequent calls to gamrnd or any other functions that depend on rand. If you want to reproduce the output of gamrnd, reset the state of rand to the same fixed value each time you call gamrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current state of rand. If you run the code in these examples, your results may differ from the answers shown here.
```

n1 = gamrnd(1:5,6:10)
n1 =
9.1132 12.8431 24.8025 38.5960 106.4164

```
```

n2 = gamrnd(5,10,[1 5])
n2 =
30.9486 33.5667 33.6837 55.2014 46.8265
n3 = gamrnd(2:6,3,1,5)
n3 =
12.8715 11.3068 3.0982 15.6012 21.6739

```

\section*{See Also}
gamcdf, gamfit, gaminv, gamlike, gampdf, gamstat, randg

Purpose

\section*{Syntax}
\([\mathrm{M}, \mathrm{V}]=\operatorname{gamstat}(\mathrm{A}, \mathrm{B})\)

\section*{Examples}

See Also

Mean and variance for the gamma distribution
\([\mathrm{M}, \mathrm{V}]=\) gamstat \((\mathrm{A}, \mathrm{B})\) returns the mean and variance for the gamma distribution with parameters specified by \(A\) and \(B\). \(A\) and \(B\) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(A\) or \(B\) is expanded to a constant array with the same dimensions as the other input.

The mean of the gamma distribution with parameters \(a\) and \(b\) is \(a b\). The variance is \(a b^{2}\).
```

[m,v] = gamstat(1:5,1:5)
m =
14}409416 25
v =
1 8 27 64 125
[m,v] = gamstat(1:5,1./(1:5))
m =
1 1 1 1 1 1
v =
1.0000}00.5000 0.3333 0.2500 0.2000

```
gamcdf, gamfit, gaminv, gamlike, gampdf, gamrnd

\section*{geocdf}

\section*{Purpose Geometric cumulative distribution function (cdf)}

\section*{Syntax \\ \(Y=\operatorname{geocdf}(X, P)\)}

Description

Examples

See Also
geocdf \((X, P)\) computes the geometric cdf at each of the values in \(X\) using the corresponding probabilities in \(P\). \(X\) and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in P must lie on the interval [01].

The geometric cdf is
\[
y=F(x \mid p)=\sum_{i=0}^{\operatorname{floor}(x)} p q^{i}
\]
where \(q=1-p\).
The result, \(y\), is the probability of observing up to \(x\) trials before a success, when the probability of success in any given trial is \(p\).

Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing three or fewer tails before getting a heads?
\[
\begin{aligned}
& p=\operatorname{geocdf}(3,0.5) \\
& p= \\
& 0.9375
\end{aligned}
\]
cdf, geoinv, geopdf, geornd, geostat

\section*{Purpose}

Syntax \(\quad X=\operatorname{geoinv}(Y, P)\)

\section*{Examples}

\section*{9}

The example below shows the inverse method for generating random numbers from the geometric distribution.
```

rndgeo = geoinv(rand(2,5),0.5)
rndgeo =
0
0}10000

```

\section*{See Also}

\section*{Purpose Geometric mean of a sample}

\section*{Syntax \(\quad m=\) geomean \((X)\) \\ geomean(X, dim)}

Description

Examples
The sample average is greater than or equal to the geometric mean.
```

x = exprnd(1,10,6);
geometric = geomean(x)
geometric =
0.7466
average = mean(x)
average =
1.3509}1.1.1583 0.9741 0.5319 1.0088 0.8122

```

\footnotetext{
See Also
mean, median, harmmean, trimmean
}

\section*{Purpose Geometric probability density function (pdf)}
\[
\text { Syntax } \quad Y=\operatorname{geopdf}(X, P)
\]

Description
geopdf \((X, P)\) computes the geometric \(p d f\) at each of the values in \(X\) using the corresponding probabilities in \(P\). \(X\) and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in P must lie on the interval [01].

The geometric pdf is
\[
y=f(x \mid p)=p q^{x} I_{(0,1, \mathrm{~K})}(x)
\]
where \(q=1-p\).

\section*{Examples}

Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing exactly three tails before getting a heads?
\[
\begin{aligned}
& p=\operatorname{geopdf}(3,0.5) \\
& p= \\
& 0.0625
\end{aligned}
\]

\section*{See Also}
geocdf, geoinv, geornd, geostat, pdf

\section*{geornd}

\section*{Purpose Random numbers from the geometric distribution}
```

Syntax R = geornd(P)
R = geornd(P,v)
R = geornd(P,m,n)

```

Description The geometric distribution is useful when you want to model the number of successive failures preceding a success, where the probability of success in any given trial is the constant \(P\).
\(R=\) geornd \((P)\) generates geometric random numbers with probability parameter P. P can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of \(P\).
\(R=\) geornd \((P, v)\) generates geometric random numbers with probability parameter \(P\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=\) geornd \((P, m, n)\) generates geometric random numbers with probability parameter \(P\), where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

The parameters in P must lie on the interval [01].

\section*{Reproducing the Output of geornd}
geornd uses the MATLAB function rand to generate random numbers. When you call geornd, you change the current state of rand, and thereby alter the output of subsequent calls to geornd or any other functions that depend on rand. If you want to reproduce the output of geornd, reset the state of rand to the same fixed value each time you call geornd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current state of rand. If you run the code in these examples, your results may differ from the answers shown here.

Examples \(\quad r 1=\operatorname{geornd}\left(1 . / 2 .^{\wedge}(1: 6)\right)\)
```

r1 =
2 10 2 5 5 2 60
r2 = geornd(0.01,[1 5])
r2 =
65
r3 = geornd(0.5,1,6)
r3 =
0

```

See Also
geocdf, geoinv, geopdf, geostat
Purpose Mean and variance for the geometric distribution
Syntax \(\quad[M, V]=\operatorname{geostat}(P)\)

Description
\([M, V]=\) geostat \((P)\) returns the mean and variance for the geometric distribution with parameters specified by \(P\).

The mean of the geometric distribution with parameter \(p\) is \(q / p\), where \(q=1-p\). The variance is \(q / p^{2}\).

Examples
```

 [m,v] = geostat(1./(1:6))
 m =
 lllllll
 v =
llllll

```

\section*{See Also}
geocdf, geoinv, geopdf, geornd

Purpose

\section*{Syntax \\ ```
gline(fig) \\ h = gline(fig) \\ gline
```}

Description

See Also
refline, gname

Interactively draw a line in a figure
gline(fig) allows you to draw a line segment in the figure fig by clicking the pointer at the two end-points. A rubber band line tracks the pointer movement.
\(\mathrm{h}=\) gline(fig) returns the handle to the line in h .
gline with no input arguments draws in the current figure.

\section*{glmdemo}

Purpose Demo of generalized linear models

\section*{Syntax \\ glmdemo}

Description
glmdemo begins a slide show demonstration of generalized linear models. The slides indicate when generalized linear models are useful, how to fit generalized linear models using the glmfit function, and how to make predictions using the glmval function.

Note To run this demo from the command line, type playshow glmdemo.

See Also glmfit, glmval

Purpose
Syntax

Description

Generalized linear model fitting
```

b = glmfit(DATA,Y,'distr')
b = glmfit(DATA,Y,'distr','link','estdisp',offset,pwts,'const')
[b,dev,stats] = glmfit(...)

```
b = glmfit(DATA, Y, 'distr') fits the generalized linear model for response Y , predictor variable matrix DATA, and distribution 'distr'. The following distributions are available: 'binomial', 'gamma', 'inverse gaussian', 'normal' (the default), and 'poisson'. In most cases \(Y\) is a vector of response measurements, but for the binomial distribution \(Y\) is a two-column array having the measured number of counts in the first column and the number of trials (the binomial \(N\) parameter) in the second column. DATA is a matrix having the same number of rows as \(Y\) and containing the values of the predictor variables for each observation. The output \(b\) is a vector of coefficient estimates. This syntax uses the canonical link (see below) to relate the distribution parameter to the predictors.
b = glmfit(x,y,'distr','link','estdisp',offset,pwts,'const') provides additional control over the fit. The 'link' argument specifies the relationship between the distribution parameter (\(\mu\)) and the fitted linear combination of predictor variables \((x b)\). In most cases 'link' is one of the following:
\begin{tabular}{l|l|l}
\hline 'link' & Meaning & Default (Canonical) Link \\
\hline 'identity ' & \(\mu=x b\) & 'normal' \\
\hline 'log' & \(\log (\mu)=x b\) & 'poisson' \\
\hline 'logit' & \(\log (\mu /(1-\mu))=x b\) & 'binomial' \\
\hline 'probit' & norminv \((\mu)=x b\) & \\
\hline 'comploglog' & \(\log (-\log (1-\mu))=x b\) & \\
\hline 'logloglink' & \(\log (-\log (\mu))=x b\) & \\
\hline 'reciprocal' & \(1 / \mu=x b\) & 'gamma' \\
\hline p (a number) & \(\mu^{p}=x b\) & 'inverse gaussian' (with \(p=-2)\) \\
\hline
\end{tabular}

\section*{glmfit}

Alternatively, you can write functions to define your own custom link. You specify the link argument as a three-element cell array containing functions that define the link function, its derivative, and its inverse. For example, suppose you want to define a reciprocal square root link using inline functions. You could define the variable mylinks to use as your 'link' argument by writing:
```

FL = inline('x.^-.5')
FD = inline('-.5*x.^-1.5')
FI = inline('x.^-2')
mylinks = {FL FI FD}

```

Alternatively, you could define functions named FL, FD, and FI in their own M-files, and then specify mylinks in the form
```

mylinks = {@FL @FD @FI}

```

The 'estdisp' argument can be 'on' to estimate a dispersion parameter for the binomial or Poisson distribution, or 'off' (the default) to use the theoretical value of 1.0 for those distributions. The glmfit function always estimates dispersion parameters for other distributions.

The offset and pwts parameters can be vectors of the same length as \(Y\), or can be omitted (or specified as an empty vector). The offset vector is a special predictor variable whose coefficient is known to be 1.0. As an example, suppose that you are modeling the number of defects on various surfaces, and you want to construct a model in which the expected number of defects is proportional to the surface area. You might use the number of defects as your response, along with the Poisson distribution, the log link function, and the log surface area as an offset.

The pwts argument is a vector of prior weights. As an example, if the response value \(Y(i)\) is the average of \(f(i)\) measurements, you could use \(f\) as a vector of prior weights.

The 'const' argument can be 'on' (the default) to estimate a constant term, or 'off' to omit the constant term. If you want the constant term, use this argument rather than specifying a column of ones in the DATA matrix.
[b,dev,stats] = glmfit(...) returns the additional outputs dev and stats. dev is the deviance at the solution vector. The deviance is a generalization of the residual sum of squares. It is possible to perform an analysis of deviance to
compare several models, each a subset of the other, and to test whether the model with more terms is significantly better than the model with fewer terms. stats is a structure with the following fields:
- stats.dfe = degrees of freedom for error
- stats.s = theoretical or estimated dispersion parameter
- stats.sfit = estimated dispersion parameter
- stats.estdisp \(=1\) if dispersion is estimated, 0 if fixed
- stats.beta = vector of coefficient estimates (same as b)
- stats.se \(=\) vector of standard errors of the coefficient estimates \(b\)
- stats.coeffcorr = correlation matrix for b
- stats. \(\mathrm{t}=\mathrm{t}\) statistics for b
- stats. \(p=p\)-values for \(b\)
- stats.resid = vector of residuals
- stats.residp \(=\) vector of Pearson residuals
- stats.residd \(=\) vector of deviance residuals
- stats. resida \(=\) vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution, then stats.s is set equal to stats.sfit. Also, the elements of stats.se differ by the factor stats.s from their theoretical values.

\section*{Example}

You have data on cars weighing between 2100 and 4300 pounds. For each car weight you have the total number of cars of that weight, and the number that can be considered to get "poor mileage" according to some test. For example, 8 out of 21 cars weighing 3100 pounds get poor mileage according to a measurement of the miles they can travel on a gallon of gasoline.
```

w = (2100:200:4300)';
poor = [llllllllllllll}
total = [lllllllllllllll

```

You can compare several fits to these data. First, try fitting logit and probit models:
```

[bl,dl,sl] = glmfit(w,[poor total],'binomial');
[bp,dp,sp] = glmfit(w,[poor total],'binomial','probit');

```

\section*{glmfit}
```

dl
dl =
6.4842
dp
dp =
7.5693

```

The deviance for the logit model is smaller than for the probit model. Although this is not a formal test, it suggests that the logit model is preferable.

You can do a formal test comparing two logit models. You already fit one model using \(w\) as a linear predictor, so fit another logit model using both linear and squared terms in w. If there is no true effect for the squared term, the difference in their deviances should be small compared with a chi-square distribution having one degree of freedom.
```

[b2,d2,s2] = glmfit([w w.^2],[poor total],'binomial');
dl-d2
ans =
0.7027
chi2cdf(dl-d2,1)
ans =
0.5981

```

A difference of 0.7072 is not at all unusual for a chi-square distribution with one degree of freedom, so the quadratic model does not give a significantly better fit than the simpler linear model.

The following are the coefficient estimates, their standard errors, t-statistics, and \(p\)-values for the linear model:
```

[bl sl.se sl.t sl.p]
ans =
-13.3801 1.3940 -9.5986 0.0000
0.0042 0.0004 9.4474 0.0000

```

This shows that you cannot simplify the model any further. Both the intercept and slope coefficients are significantly different from 0 , as indicated by p -values that are 0.0000 to four decimal places.

\author{
References \\ See Also \\ glmval, glmdemo, nlinfit, regress, regstats
}

\section*{glmval}

\section*{Purpose \(\quad\) Compute predictions for generalized linear model}
```

Syntax yfit = glmval(b,x,'link')
[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev)
[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev,N,offset,'const')

```

Description \(\quad y f i t=\operatorname{glmval}\left(\mathrm{b}, \mathrm{x}, \mathrm{A}^{\prime}\right.\) link' \()\) computes the predicted distribution parameters for observations with predictor values \(X\) using the coefficient vector \(b\) and link function 'link'. Typically, b is a vector of coefficient estimates computed by the glmfit function. The value of 'link' must be the same as that used in glmfit. The result yfit is the value of the inverse of the link function at the linear combination \(\mathrm{X} * \mathrm{~b}\).
[yfit,dlo,dhi] = glmval(b, X,'link',stats,clev) returns confidence bounds for the predicted values when you supply the stats structure returned from glmfit, and optionally specify a confidence level as the clev argument. (The default confidence level is 0.95 for \(95 \%\) confidence.) The interval [yfit-dlo, yfit+dhi] is a confidence bound for the true parameter value at the specified \(X\) values.
> [yhat,dlo,dhi] = glmval(beta, X,'link',stats,clev,N,offset,'const') specifies three additional arguments that may be needed if you used certain arguments to glmfit. If you fit a binomial distribution using glmfit, specify \(N\) as the value of the binomial N parameter for the predictions. If you included an offset variable, specify offset as the new value of this variable. Use the same 'const' value ('on' or 'off') that you used with glmfit.

\section*{Example}

Let's model the number of cars with poor gasoline mileage using the binomial distribution. First, use the binomial distribution with the default logit link to model the probability of having poor mileage as a function of the weight and squared weight of the cars. Then you compute a vector wnew of new car weights at which you want to make predictions. Next you compute the expected number of cars, out of a total of 30 cars of each weight, that would have poor mileage. Finally you graph the predicted values and \(95 \%\) confidence bounds as a function of weight.
```

w = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor = [11 2 0 3 8 8 14 17 19 15 17 21]';
total = [l48 42 31 34 31 21 23 23 21 16 17 21]';;

```
[b2,d2,s2] = glmfit([w w.^2],[poor total],'binomial') wnew = (3000:100:4000)';
[yfit,dlo,dhi] = glmval(b2,[wnew wnew.^2],'logit',s2,0.95,30) errorbar(wnew,yfit,dlo,dhi);

See Also glmfit, glmdemo

\section*{glyphplot}

Purpose
Plot stars or Chernoff faces for multivariate data

\author{
Syntax
}
```

glyphplot(X)
glyphplot(X, 'Glyph','face')
glyphplot(X, 'Glyph','face', 'Features', F)
glyphplot(X, ..., 'Grid', [ROWS,COLS])
glyphplot(X, ..., 'Grid', [ROWS,COLS], 'Page', page)
glyphplot, ..., 'Centers', C,' Radius', r)
glyphplot(X, ..., 'ObsLabels', labels)
glyphplot(X, ..., 'Standardize', method)
glyphplot(X, ..., 'PropertyName', PropertyValue, ...)
h = glyphplot(X, ...)

```

\section*{Description}
glyphplot(X) creates a star plot from the multivariate data in the n-by-p matrix \(X\). Rows of \(X\) correspond to observations, columns to variables. A star plot represents each observation as a "star" whose i-th spoke is proportional in length to the i-th coordinate of that observation. glyphplot standardizes X by shifting and scaling each column separately onto the interval \([0,1]\) before making the plot, and centers the glyphs on a rectangular grid that is as close to square as possible. glyphplot treats NaNs in \(X\) as missing values, and does not plot the corresponding rows of X . glyphplot (X, 'Glyph', 'star') is a synonym for glyphplot (X).
glyphplot(X, 'Glyph','face') creates a face plot from X. A face plot represents each observation as a "face," whose i-th facial feature is drawn with a characteristic proportional to the i-th coordinate of that observation. The features are described in "Face Features" on page 12-219.
glyphplot(X, 'Glyph','face', 'Features', F) creates a face plot where the i-th element of the index vector \(F\) defines which facial feature will represent the i-th column of \(X\). F must contain integers from 0 to 17 , where zeros indicate that the corresponding column of \(X\) should not be plotted. See "Face Features" on page 12-219 for more information.
glyphplot(X, ..., 'Grid', [rows, cols]) organizes the glyphs into a rows-by-cols grid.
glyphplot(X, ..., 'Grid', [rows, cols], 'Page', page) organizes the glyph into one or more pages of a rows-by-cols grid, and displays the page'th page. If page is a vector, glyphplot displays multiple pages in succession. If

\section*{glyphplot}
page is 'all', glyphplot displays all pages. If page is 'scroll', glyphplot displays a single plot with a scrollbar.
glyphplot(X, ..., 'Centers', C) creates a plot with each glyph centered at the locations in the N-by-2 matrix C .
glyphplot, ..., 'Centers', C,' Radius', r) creates a plot with glyphs positioned using \(C\), and scale the glyphs so the largest has radius \(r\).
glyphplot(X, ..., 'ObsLabels', labels) labels each glyph with the text in the character array or cell array of strings labels. By default, the glyphs are labelled 1:N. Pass in ' ' for no labels.
glyphplot(X, ..., 'Standardize', method) standardizes X before making the plot. Choices for method are
- 'column' - Maps each column of \(X\) separately onto the interval [0,1\(]\). This is the default.
- 'matrix' - Maps the entire matrix \(X\) onto the interval \([0,1]\).
- 'PCA' - Transforms \(X\) to its principal component scores, in order of decreasing eigenvalue, and maps each one onto the interval \([0,1]\).
- 'off' - No standardization. Negative values in X may make a star plot uninterpretable.
glyphplot(X, ..., 'PropertyName', PropertyValue, ...) sets properties to the specified property values for all line graphics objects created by glyphplot.
\(\mathrm{h}=\) glyphplot (X, ...) returns a matrix of handles to the graphics objects created by glyphplot. For a star plot, \(h(:, 1)\) and \(h(:, 2)\) contain handles to the line objects for each star's perimeter and spokes, respectively. For a face plot, \(h(:, 1)\) and \(h(:, 2)\) contain object handles to the lines making up each face and to the pupils, respectively. \(h(:, 3)\) contains handles to the text objects for the labels, if present.

\section*{Face Features}

The following table describes the correspondence between the columns of the vector \(F\), the value of the 'Features ' input parameter, and the facial features

\section*{glyphplot}
of the glyph plot. If \(X\) has fewer than 17 columns, unused features are displayed at their default value.
\begin{tabular}{l|l}
\hline Column & Facial Feature \\
\hline 1 & Size of face \\
\hline 2 & Forehead/jaw relative arc length \\
\hline 3 & Shape of forehead \\
\hline 4 & Shape of jaw \\
\hline 5 & Width between eyes \\
\hline 6 & Vertical position of eyes \\
\hline 7 & Height of eyes \\
\hline 8 & Width of eyes (this also affects eyebrow width) \\
\hline 9 & Angle of eyes (this also affects eyebrow angle) \\
\hline 10 & Vertical position of eyebrows \\
\hline 11 & Angle of eyebrows (relative to eyes) \\
\hline 12 & Direction of pupils \\
\hline 13 & Length of nose \\
\hline 14 & Vertical position of mouth \\
\hline 15 & Shape of mouth \\
\hline 16 & Mouth arc length \\
\hline 17 & \\
\hline 1 & \\
\hline 10 & \\
\hline 10
\end{tabular}

\section*{Examples}
```

load carsmall
X = [Acceleration Displacement Horsepower MPG Weight];
glyphplot(X, 'Standardize','column', 'ObsLabels',Model, ...
'grid',[2 2], 'page','scroll');

```

\section*{glyphplot}
```

glyphplot(X, 'Glyph','face', 'ObsLabels',Model, 'grid',[2 3], ...
'page',9);

```

See Also andrewsplot, parallelcoords

\section*{Purpose Label plotted points with their case names or case number}
```

Syntax gname(cases)
gname
h = gname(cases,line_handle)

```

Description gname (cases) displays a figure window and waits for you to press a mouse button or a keyboard key. The input argument cases is a character array or a cell array of strings, in which each row of the character array or each element of the cell array contains the case name of a point. Moving the mouse over the graph displays a pair of cross-hairs. If you position the cross-hairs near a point with the mouse and click once, the graph displays the name of the city corresponding to that point. Alternatively, you can click and drag the mouse to create a rectangle around several points. When you release the mouse button, the graph displays the labels for all points in the rectangle. Right-click a point to remove its label. When you are done labelling points, press the Enter or Escape key to stop labeling.
gname with no arguments labels each case with its case number.
h = gname(cases, line_handle) returns a vector of handles to the text objects on the plot. Use the scalar line_handle to identify the correct line if there is more than one line object on the plot.

You can use gname to label plots created by the plot, scatter, gscatter, plotmatrix, and gplotmatrix functions.

Example This example uses the city ratings data sets to find out which cities are the best and worst for education and the arts.
```

load cities
education = ratings(:,6);
arts = ratings(:,7);
plot(education,arts,'+')
gname(names)

```


Click the point at the top of the graph to display its label, "New York."
See Also
gplotmatrix, gscatter, gtext, plot, plotmatrix, scatter

\section*{gplotmatrix}

\section*{Purpose Plot matrix of scatter plots by group}
```

Syntax
gplotmatrix(x,y,g)
gplotmatrix(x,y,g,'clr','sym',siz)
gplotmatrix(x,y,g,'clr','sym',siz,'doleg')
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt')
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt','xnam','ynam')
[h,ax,bigax] = gplotmatrix(...)

```

Description gplotmatrix \((x, y, g)\) creates a matrix of scatter plots. Each individual set of axes in the resulting figure contains a scatter plot of a column of \(x\) against a column of y . All plots are grouped by the grouping variable g .
\(x\) and \(y\) are matrices with the same number of rows. If \(x\) has \(p\) columns and \(y\) has \(q\) columns, the figure contains a \(p-b y-q\) matrix of scatter plots. If you omit \(y\) or specify it as the empty matrix, [], gplotmatrix creates a square matrix of scatter plots of columns of \(x\) against each other.
\(g\) is a grouping variable that can be a vector, string array, or cell array of strings. \(g\) must have the same number of rows as \(x\) and \(y\). Points with the same value of \(g\) are placed in the same group, and appear on the graph with the same marker and color. Alternatively, g can be a cell array containing several grouping variables (such as \(\{\) G1 G2 G3\}); in that case, observations are in the same group if they have common values of all grouping variables.
gplotmatrix(x,y,g,'clr','sym', siz) specifies the color, marker type, and size for each group. 'clr' is a string array of colors recognized by the plot function. The default is 'clr' = 'bgrcmyk'. 'sym' is a string array of symbols recognized by the plot command, with the default value '. '. siz is a vector of sizes, with the default determined by the 'defaultlinemarkersize' property. If you do not specify enough values for all groups, gplotmatrix cycles through the specified values as needed.
gplotmatrix(x,y,g,'clr','sym', siz,'doleg') controls whether a legend is displayed on the graph ('doleg' = 'on', the default) or not ('doleg' = 'off').
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt') controls what appears along the diagonal of a plot matrix of \(y\) versus \(x\). Allowable values are

\section*{gplotmatrix}
'none ', to leave the diagonals blank, 'hist' (the default), to plot histograms, or 'variable', to write the variable names.
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt','xnam', 'ynam') specifies the names of the columns in the \(x\) and \(y\) arrays. These names are used to label the \(x\) - and \(y\)-axes. 'xnam' and 'ynam' must be character arrays or cell arrays of strings, with one name for each column of \(x\) and \(y\), respectively.
[h,ax, bigax] = gplotmatrix(...) returns three arrays of handles. \(h\) is an array of handles to the lines on the graphs. The array's third dimension corresponds to groups in G. ax is a matrix of handles to the axes of the individual plots. If 'dispopt' is 'hist', ax contains one extra row of handles to invisible axes in which the histograms are plotted. bigax is a handle to big (invisible) axes framing the entire plot matrix. bigax is fixed to point to the current axes, so a subsequent title, xlabel, or ylabel command will produce labels that are centered with respect to the entire plot matrix.

\section*{Example}

Load the cities data. The ratings array has ratings of the cities in nine categories (category names are in the array categories). group is a code whose value is 2 for the largest cities. You can make scatter plots of the first three categories against the other four, grouped by the city size code.
```

load discrim
gplotmatrix(ratings(:,1:3),ratings(:,4:7),group)

```

The output figure (not shown) has an array of graphs with each city group represented by a different color. The graphs are a little easier to read if you specify colors and plotting symbols, label the axes with the rating categories, and move the legend off the graphs.
```

gplotmatrix(ratings(:,1:3),ratings(:,4:7),group,...
'br','.o',[],'on','',categories(1:3,:),...
categories(4:7,:))

```

\section*{gplotmatrix}

\author{
See Also \\ grpstats, gscatter, plotmatrix
}

\section*{Purpose}

\author{
Syntax \\ Description
}

\section*{Example}

\section*{See Also tabulate, crosstab}

\section*{gscałter}

\section*{Purpose Scatter plot by group}

Syntax gscatter \((x, y, g)\)
gscatter(\(\mathrm{x}, \mathrm{y}, \mathrm{g}, \mathrm{c}\) clr', 'sym', siz)
gscatter(x,y,g,'clr','sym',siz,'doleg')
gscatter(x,y,g,'clr','sym',siz,'doleg','xnam', 'ynam')
h = gscatter(...)

Description

\section*{Example}
gscatter (\(x, y, g\)) creates a scatter plot of \(x\) and \(y\), grouped by \(g\), where \(x\) and \(y\) are vectors with the same size and \(g\) can be a vector, string array, or cell array of strings. Points with the same value of \(g\) are placed in the same group, and appear on the graph with the same marker and color. Alternatively, g can be a cell array containing several grouping variables (such as \{G1 G2 G3\}); in that case, observations are in the same group if they have common values of all grouping variables.
gscatter(\(\mathrm{x}, \mathrm{y}, \mathrm{g}\), 'clr', 'sym', siz) specifies the color, marker type, and size for each group. 'clr' is a string array of colors recognized by the plot function. The default is 'clr' = 'bgrcmyk'. 'sym' is a string array of symbols recognized by the plot command, with the default value '. '. siz is a vector of sizes, with the default determined by the 'defaultlinemarkersize' property. If you do not specify enough values for all groups, gscatter cycles through the specified values as needed.
gscatter(x,y,g,'clr','sym',siz,'doleg') controls whether a legend is displayed on the graph ('doleg' = 'on', the default) or not ('doleg' = 'off').
gscatter(x,y,g,'clr','sym',siz,'doleg', 'xnam', 'ynam') specifies the name to use for the \(x\)-axis and \(y\)-axis labels. If the x and y inputs are simple variable names and xnam and ynam are omitted, gscatter labels the axes with the variable names.
\(\mathrm{h}=\) gscatter(...) returns an array of handles to the lines on the graph.
Load the cities data and look at the relationship between the ratings for climate (first column) and housing (second column) grouped by city size. We'll also specify the colors and plotting symbols.
```

load discrim

```
gscatter(ratings(:,1), ratings(:,2),group,'br', 'xo')

See Also gplotmatrix, grpstats, scatter

\section*{harmmean}

\section*{Purpose Harmonic mean of a sample of data}
Syntax \(\quad\)\begin{tabular}{ll}
\(m=\operatorname{harmmean}(X)\) \\
& harmmean \((X, \operatorname{dim})\)
\end{tabular}

Description

Examples
The sample average is greater than or equal to the harmonic mean.
```

x = exprnd(1,10,6);
harmonic = harmmean(x)
harmonic =
0.3382 0.3200
average = mean(x)
average =
1.3509}1.1.1583 0.9741 0.5319 1.0088 0.8122

```

See Also
mean, median, geomean, trimmean

\section*{Purpose}

Plot histograms

\section*{Syntax}
```

hist(y)
hist(y,nb)
hist(y,x)
[n,x] = hist(y,...)

```

Description

Examples
hist (\(y\)) draws a 10-bin histogram for the data in vector \(y\). The bins are equally spaced between the minimum and maximum values in \(y\).
hist (\(\mathrm{y}, \mathrm{nb}\)) draws a histogram with nb bins.
hist \((y, x)\) draws a histogram using the bins in the vector \(x\).
\([\mathrm{n}, \mathrm{x}]=\operatorname{hist}(\mathrm{y}, \ldots)\) do not draw graphs, but return vectors n and x containing the frequency counts and the bin locations such that bar (\(x, n\)) plots the histogram. This is useful in situations where more control is needed over the appearance of a graph, for example, to combine a histogram into a more elaborate plot statement.

The hist function is a part of the standard MATLAB language.
Generate bell-curve histograms from Gaussian data.
```

x = -2.9:0.1:2.9;
y = normrnd(0,1,1000,1);
hist(y,x)

```


See Also hist3, histc

12-231

\section*{Purpose Three-dimensional histogram of bivariate data}
```

Syntax hist3(X)
hist3(X, nbins)
hist3(X, ctrs)
hist3(X, 'Edges', edges)
N = hist3(X,...)
[N, C] = hist3(X,...)
hist3(..., 'param1',val1, 'param2',val2, ...)

```

Description hist3 (\(X\)) bins the elements of the m-by-2 matrix \(X\) into a 10-by-10 grid of equally-spaced containers, and plots a histogram. Each column of \(\mathbf{X}\) corresponds to one dimension in the bin grid.
hist3(X, nbins) plots a histogram using an nbins(1)-by-nbins(2) grid of bins. hist3(\(X\), 'Nbins', nbins) is equivalent to hist3(\(X\), nbins).
hist3(\(X\), ctrs), where ctrs is a two-element cell array of numeric vectors with monotonically non-decreasing values, uses a two-dimensional grid of bins centered on \(\operatorname{ctrs}\{1\}\) in the first dimension and on \(\operatorname{ctrs}\{2\}\) in the second. hist3 assigns rows of \(x\) falling outside the range of that grid to the bins along the outer edges of the grid, and ignores rows of \(X\) containing NaNs. hist3(X, 'Ctrs', ctrs) is equivalent to hist3(X , ctrs).
hist3(X, 'Edges', edges), where edges is a two-element cell array of numeric vectors with monotonically non-decreasing values, uses a two-dimensional grid of bins with edges at edges \(\{1\}\) in the first dimension and at edges \(\{2\}\) in the second. The (\(\mathrm{i}, \mathrm{j}\))-th bin includes the value \(\mathrm{X}(\mathrm{k},: \mathrm{s})\) if
```

edges{1}(i) <= X(k,1) < edges{1}(i+1)
edges{2}(j) <= X(k,2) < edges{2}(j+1)

```

Rows of \(X\) that fall on the upper edges of the grid, edges\{1\}(end) or edges \(\{2\}\) (end), are counted in the (\(I, j\))-th or (i, J)-th bins, where I and \(J\) are the lengths of edges \(\{1\}\) and edges \(\{2\}\). hist 3 does not count rows of \(X\) falling outside the range of the grid. Use - Inf and Inf in edges to include all non-NaN values.
\(N=\) hist3(\(X, \ldots\)) returns a matrix containing the number of elements of \(X\) that fall in each bin of the grid, and does not plot the histogram.
[\(\mathrm{N}, \mathrm{C}]=\) hist3 \((\mathrm{X}, \ldots)\) returns the positions of the bin centers in a1-by-2 cell array of numeric vectors, and does not plot the histogram. hist3 (ax, X, ...) plots onto an axes with handle ax instead of the current axes. See the reference page for axes for more information about handles to plots.
hist3(..., 'param1', val1, 'param2', val2, ...) allows you to specify graphics parameter name/value pairs to fine-tune the plot.

\section*{Example}

\section*{Example 1}

Make a 3-D figure using a histogram with a density plot underneath:
```

figure;
load seamount
dat = [-y,x]; % Make grid, correcting for negative y-values
hold on
hist3(dat) % Draw histogram in 2D
n = hist3(dat); % Extract histogram data; default to 10x10 bins
n1 = n';
n1( size(n,1) + 1 ,size(n,2) + 1 ) = 0;
% Generate grid for 2-D projected view of intensities
xb = linspace( min(dat(:,1)) , max(dat(:,1)) , size(n,1) + 1);
yb = linspace( min(dat(:,2)) , max(dat(:,2)) , size(n,1) + 1);
% Make a pseudocolor plot on this grid
h = pcolor(xb,yb,n1);
% Set the z-level and colormap of the displayed grid
set(h, 'zdata', ones(size(n1)) * -max(max(n)))
colormap(hot) % heat map
title...
('Seamount: Data Point Density Histogram and Intensity Map');
grid on
view(3); % Display the default 3-D perspective view

```

Seamount: Data Point Density Histogram and Intensity Map

\section*{Example 2}

Create the car data and make a histogram on a \(7 \times 7\) grid of bins.
```

load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');
% Make a histogram with semi-transparent bars
hist3(X,[7 7],'FaceAlpha',.65);
xlabel('MPG'); ylabel('Weight');
set(gcf,'renderer','opengl');
% Specify bin centers, different in each direction. Get back
% counts, but don't make the plot.
cnt = hist3(X, {0:10:50 2000:500:5000});

```

See Also
accumarray, bar, bar3, hist, histc

Purpose
Syntax \begin{tabular}{ll}
histfit(data) \\
& histfit(data, nbins) \\
& \(h=\) histfit(data, nbins)
\end{tabular}

\section*{Example}
```

r = normrnd(10,1,100,1);
histfit(r)

```


See Also
hist, hist3, normfit

\section*{hmmdecode}

\section*{Purpose Calculate the posterior state probabilities of a sequence}

Description
```

Syntax
PSTATES = hmmdecode(seq, TRANS, EMIS)
[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS)
[PSTATES, logpseq, FORWARD, BACKWARD, S] = hmmdecode(seq,TRANS,EMIS) hmmdecode(...,'Symbols', SYMBOLS)

```

PSTATES = hmmdecode(seq, TRANS, EMIS) calculates the posterior state probabilities, PSTATES, of the sequence seq, from a hidden Markov model. The posterior state probabilities are the conditional probabilities of being at state \(k\) at step i, given the observed sequence of symbols, sym. You specify the model by a transition probability matrix, TRANS, and an emissions probability matrix, EMIS. TRANS \((i, j)\) is the probability of transition from state \(i\) to state \(j\). EMIS (\(k\), sym) is the probability that symbol sym is emitted from state \(k\).

PSTATES is an array with the same length as seq and one row for each state in the model. The (\(\mathrm{i}, \mathrm{j}\)) element of PSTATES gives the probability that the model is in state \(i\) at the jth step, given the sequence seq.

Note The function hmmdecode begins with the model in state 1 at step 0 , prior to the first emission. hmmdecode computes the probabilities in PSTATES based on the fact that the model begins in state 1. See "How the Toolbox Generates Random Sequences" on page 11-7 for more information
[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS) returns logpseq, the logarithm of the probability of sequence seq, given transition matrix TRANS and emission matrix EMIS.
[PSTATES, logpseq, FORWARD, BACKWARD, S] = hmmdecode(seq,TRANS,EMIS) returns the forward and backward probabilities of the sequence scaled by S . See "Reference" on page 12-237 for a reference that explains the forward and backward probabilities.
hmmdecode(..., 'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.

See "Calculating Posterior State Probabilities" on page 11-12 for an example of using hmmdecode.

\section*{Examples}
```

trans = [0.95,0.05;
0.10,0.90];
emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
[seq, states] = hmmgenerate(100,trans,emis);
pStates = hmmdecode(seq,tr,e);
[seq, states] = hmmgenerate(100, trans, emis, 'Symbols',...
{'one','two','three','four','five','six'})
pStates = hmmdecode(seq, tr, e, 'Symbols',...
{'one','two','three','four','five','six'});

```

\section*{Reference}

See Also

Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis, Cambridge University Press, 1998.

\section*{hmmestimate}

Purpose
Estimate the parameters for a hidden Markov model given state information
Syntax

Description
[TRANS, EMIS] = hmmestimate(seq, states)
hmmestimate(..., 'Symbols', SYMBOLS)
hmmestimate(..., 'Statenames', STATENAMES)
hmmestimate(..., 'Pseudoemissions', PSEUDOE)
hmmestimate(..., 'Pseudotransitions', PSEUDOTR)
[TRANS, EMIS] = hmmestimate(seq, states) calculates the maximum likelihood estimate of the transition, TRANS, and emission, EMIS, probabilities of a hidden Markov model for sequence, seq, with known states, states.
hmmestimate(..., 'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through N , where N is the number of possible emissions.
hmmestimate(..., 'Statenames', STATENAMES) specifies the names of the states. STATENAMES can be a numeric array or a cell array of the names of the states. The default state names are 1 through \(M\), where \(M\) is the number of states.
hmmestimate(...,'Pseudoemissions', PSEUDOE) specifies pseudocount emission values in the matrix PSEUDO. Use this argument to avoid zero probability estimates for emissions with very low probability that might not be represented in the sample sequence. PSEUDOE should be a matrix of size M-by-N, where M is the number of states in the hidden Markov model and N is the number of possible emissions. If the \(i \rightarrow k\) emission does not occur in seq, you can set PSEUDOE (\(i, k\)) to be a positive number representing an estimate of the expected number of such emissions in the sequence seq.
hmmestimate(..., 'Pseudotransitions', PSEUDOTR) specifies pseudocount transition values. You can use this argument to avoid zero probability estimates for transitions with very low probability that might not be represented in the sample sequence. PSEUDOTR should be a matrix of size \(\mathrm{M}-\mathrm{by}-\mathrm{M}\), where M is the number of states in the hidden Markov model. If the \(i \rightarrow j\) transition does not occur in states, you can set PSEUDOTR (\(\mathrm{i}, \mathrm{j}\)) to be a positive number representing an estimate of the expected number of such transitions in the sequence states.

\section*{hmmestimate}

See "Using hmmestimate" on page 11-9 for an example of using hmmestimate.

\section*{Pseudotransitions and Pseudoemissions}

If the probability of a specific transition or emission is very low, the transition might never occur in the sequence states, or the emission might never occur in the sequence seq. In either case, the algorithm returns a probability of 0 for the given transition or emission in TRANS or EMIS. You can compensate for the absence of transition with the 'Pseudotransitions' and 'Pseudoemissions' arguments. The simplest way to do this is to set the corresponding entry of PSEUDO or PSEUDOTR to 1. For example, if the transition \(i \rightarrow j\) does not occur in states, set PSEUOTR \((i, j)=1\). This forces \(\operatorname{TRANS}(i, j)\) to be positive. If you have an estimate for the expected number of transitions \(i \rightarrow j\) in a sequence of the same length as states, and the actual number of transitions \(i \rightarrow j\) that occur in seq is substantially less than what you expect, you can set \(\operatorname{PSEUOTR}(i, j)\) to the expected number. This increases the value of TRANS \((i, j)\). For transitions that do occur in states with the frequency you expect, set the corresponding entry of PSEUDOTR to 0 , which does not increase the corresponding entry of TRANS.

If you do not know the sequence of states, use hmmtrain to estimate the model parameters.
```

Examples:

```
```

trans = [0.95,0.05; 0.10,0.90];

```
trans = [0.95,0.05; 0.10,0.90];
e = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
e = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
[seq, states] = hmmgenerate(1000,trans,emis);
[seq, states] = hmmgenerate(1000,trans,emis);
[estimateTR, estimateE] = hmmestimate(seq,states);
```

[estimateTR, estimateE] = hmmestimate(seq,states);

```

See Also hmmgenerate, hmmdecode, hmmviterbi, hmmtrain

\section*{hmmgenerate}

\section*{Purpose Generate random sequences from a Markov model}
```

Syntax
[seq, states] = hmmgenerate(len, TRANS, EMIS)
hmmgenerate(..., 'Symbols', SYMBOLS)
hmmgenerate(...,'Statenames', STATENAMES)

```

Description
[seq, states] = hmmgenerate(len, TRANS, EMIS) takes a known Markov model, specified by transition probability matrix TRANS and emission probability matrix EMIS, and uses it to generate
- A random sequence seq of emission symbols
- A random sequence states of states

The length of both seq and states is len. TRANS (i, \(j\)) is the probability of transition from state \(i\) to state \(j\). EMIS \((k, l)\) is the probability that symbol \(l\) is emitted from state k .

Note The function hmmgenerate begins with the model in state 1 at step 0 , prior to the first emission. The model then makes a transition to state \(i_{1}\), with probability \(T_{1 i_{1}}\), and generates an emission \(a_{k_{1}}\) with probability \(E_{i_{1} k_{11}}\). hmmgenerate returns \(i_{1}\) as the first entry of states, and \(a_{k_{1}}\) as the first entry of seq. See "How the Toolbox Generates Random Sequences" on page 11-7 for more information
hmmgenerate(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.
hmmgenerate (..., 'Statenames ', STATENAMES) specifies the names of the states. STATENAMES can be a numeric array or a cell array of the names of the states. The default state names are 1 through \(M\), where \(M\) is the number of states.

Since the model always begins at state 1, whose transition probabilities are in the first row of TRANS, in the following example, the first entry of the output states is be 1 with probability 0.95 and 2 with probability 0.05 .

See "Setting Up the Model and Generating Data" on page 11-8 for an example of using hmmgenerate.

Examples

See Also
```

trans = [0.95,0.05;
0.10,0.90];
emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
[seq, states] = hmmgenerate(100,trans,emis)
[seq, states] = hmmgenerate(100,trans,emis,'Symbols',...
{'one','two','three','four','five','six'},...
'Statenames',{'fair';'loaded'})

```
hmmviterbi, hmmdecode, hmmestimate, hmmtrain

Purpose
Maximum likelihood estimate of model parameters for a hidden Markov model

\section*{Syntax}

\section*{Description}
[ESTTR, ESTEMIT] = hmmtrain(seq, TRGUESS, EMITGUESS)
hmmtrain(...,'Algorithm', algorithm)
hmmtrain(...,'Symbols', SYMBOLS)
hmmtrain(...,'Tolerance', tol)
hmmtrain(...,'Maxiterations', maxiter)
hmmtrain(...,'Verbose', true)
hmmtrain(...,'Pseudoemissions', PSEUDOE)
hmmtrain(...,'Pesudotransitions', PSEUDOTR)
[ESTTR, ESTEMIT] = hmmtrain(seq,TRGUESS, EMITGUESS) estimates the
transition and emission probabilities for a hidden Markov model using the Baum-Welch algorithm. seq can be a row vector containing a single sequence, a matrix with one row per sequence, or a cell array with each cell containing a sequence. TRGUESS and EMITGUESS are initial estimates of the transition and emission probability matrices. \(\operatorname{TRGUESS}(i, j)\) is the estimated probability of transition from state \(i\) to state \(j\). EMITGUESS (\(i, k\)) is the estimated probability that symbol \(k\) is emitted from state \(i\).
hmmtrain(...,'Algorithm', algorithm) specifies the training algorithm. algorithm can be either 'BaumWelch' or 'Viterbi'. The default algorithm is 'BaumWelch'.
hmmtrain(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.
hmmtrain(...,'Tolerance', tol) specifies the tolerance used for testing convergence of the iterative estimation process. The default tolerance is 1e-4.
hmmtrain(...,'Maxiterations', maxiter) specifies the maximum number of iterations for the estimation process. The default maximum is 100 .
hmmtrain(...,'Verbose', true) returns the status of the algorithm at each iteration.
hmmtrain(...,'Pseudoemissions', PSEUDOE) specifies pseudocount emission values for the Viterbi training algorithm. Use this argument to avoid zero probability estimates for emissions with very low probability that might not be

\section*{hmmtrain}
represented in the sample sequence. PSEUDOE should be a matrix of size M-by-N, where M is the number of states in the hidden Markov model and N is the number of possible emissions. If the \(i \rightarrow k\) emission does not occur in seq, you can set \(\operatorname{PSEUDOE}(i, k)\) to be a positive number representing an estimate of the expected number of such emissions in the sequence seq.
hmmtrain(...,'Pseudotransitions', PSEUDOTR) specifies pseudocount transition values for the Viterbi training algorithm. Use this argument to avoid zero probability estimates for transitions with very low probability that might not be represented in the sample sequence. PSEUDOTR should be a matrix of size M-by-M, where M is the number of states in the hidden Markov model. If the \(i \rightarrow j\) transition does not occur in states, you can set \(\operatorname{PSEUDOTR}(i, j)\) to be a positive number representing an estimate of the expected number of such transitions in the sequence states.

See "Pseudotransitions and Pseudoemissions" on page 12-239 for more information.

If you know the states corresponding to the sequences, use hmmestimate to estimate the model parameters.

\section*{Tolerance}

The input argument 'tolerance ' controls how many steps the hmmtrain algorithm executes before the function returns an answer. The algorithm terminates when all of the following three quantities are less than the value that you specify for tolerance:
- The log likelihood that the input sequence seq is generated by the currently estimated values of the transition and emission matrices
- The change in the norm of the transition matrix, normalized by the size of the matrix
- The change in the norm of the emission matrix, normalized by the size of the matrix

The default value of 'tolerance ' is .0001. Increasing the tolerance decreases the number of steps the hmmtrain algorithm executes before it terminates.

\section*{Maxiterations}

The maximum number of iterations, 'maxiterations ', controls the maximum number of steps the algorithm executes before it terminates. If the algorithm

\section*{hmmtrain}
executes maxiter iterations before reaching the specified tolerance, the algorithm terminates and the function returns a warning. If this occurs, you can increase the value of 'maxiterations' to make the algorithm reach the desired tolerance before terminating.

See "Using hmmtrain" on page 11-10 for an example of using hmmtrain.

\section*{Examples:}
```

tr = [0.95,0.05;
0.10,0.90];
e = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
seq1 = hmmgenerate(100,tr,e);
seq2 = hmmgenerate(200,tr,e);
seqs = {seq1,seq2};
[estTR, estE] = hmmtrain(seqs,tr,e);

```

See Also hmmgenerate, hmmdecode, hmmestimate, hmmviterbi

\section*{Purpose}

Syntax

Description

Examples

Calculate the most probable state path for a hidden Markov model sequence

STATES = hmmvitervi(seq, TRANS, EMIS)
hmmviterbi(..., 'Symbols', SYMBOLS)
hmmviterbi(..., 'Statenames', STATENAMES)
STATES = hmmvitervi(seq, TRANS, EMIS) given a sequence, seq, calculates the most likely path through the hidden Markov model specified by transition probability matrix, TRANS, and emission probability matrix EMIS. TRANS (\(i, j\)) is the probability of transition from state \(i\) to state \(j\). EMIS \((i, k)\) is the probability that symbol k is emitted from state \(i\).

Note The function hmmviterbi begins with the model in state 1 at step 0 , prior to the first emission. hmmviterbi computes the most likely path based on the fact that the model begins in state 1. See "How the Toolbox Generates Random Sequences" on page 11-7 for more information.
hmmviterbi(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.
hmmviterbi(...,'Statenames', STATENAMES) specifies the names of the states. STATENAMES can be a numeric array or a cell array of the names of the states. The default state names are 1 through \(M\), where \(M\) is the number of states.

See "Computing the Most Likely Sequence of States" on page 11-9 for an example of using hmmviterbi.
```

```
trans = [0.95,0.05;
```

```
trans = [0.95,0.05;
 0.10,0.90];
 0.10,0.90];
emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
 1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
 1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
[seq, states] = hmmgenerate(100,trans,emis);
[seq, states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);
```

```
estimatedStates = hmmviterbi(seq,trans,emis);
```

```

\section*{hmmviterbi}
```

[seq, states] =
hmmgenerate(100,trans,emis,'Statenames',{'fair';'loaded'});
estimatesStates =
hmmviterbi(seq,trans,eemis,'Statenames',{'fair';'loaded'});

```

See Also
hmmgenerate, hmmdecode, hmmestimate, hmmtrain

\section*{Purpose Hougen-Watson model for reaction kinetics}

\section*{Syntax \(\quad\) yhat \(=\) hougen \((\) beta,\(x)\)}

Description \(\quad y\) hat \(=\) hougen \((\operatorname{beta}, x)\) returns the predicted values of the reaction rate, \(y\) hat, as a function of the vector of parameters, beta, and the matrix of data, \(x\). beta must have 5 elements and \(X\) must have three columns.
hougen is a utility function for rsmdemo.
The model form is:
\[
\hat{y}=\frac{\beta_{1} x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} x_{1}+\beta_{3} x_{2}+\beta_{4} x_{3}}
\]

Reference
[1] Bates, D., and D. Watts, Nonlinear Regression Analysis and Its Applications. Wiley, 1988, pp. 271-272.

\section*{See Also \\ rsmdemo}

\section*{hygecdf}

\section*{Purpose Hypergeometric cumulative distribution function (cdf)}

\section*{Syntax \\ \(P=\operatorname{hygecdf}(X, M, K, N)\)}

Description

\section*{Examples}

See Also cdf, hygeinv, hygepdf, hygernd, hygestat

\section*{Purpose}

\section*{Syntax}

Description

\section*{Examples}

See Also

Inverse of the hypergeometric cumulative distribution function (cdf)
\(X=\operatorname{hygeinv}(P, M, K, N)\)
hygeinv (\(P, M, K, N\)) returns the smallest integer \(X\) such that the hypergeometric cdf evaluated at \(X\) equals or exceeds \(P\). You can think of \(P\) as the probability of observing \(X\) defective items in \(N\) drawings without replacement from a group of \(M\) items where \(K\) are defective.

Suppose you are the Quality Assurance manager for a floppy disk manufacturer. The production line turns out floppy disks in batches of 1,000 . You want to sample 50 disks from each batch to see if they have defects. You want to accept \(99 \%\) of the batches if there are no more than 10 defective disks in the batch. What is the maximum number of defective disks should you allow in your sample of 50 ?
```

x = hygeinv(0.99,1000,10,50)
x =
3

```

What is the median number of defective floppy disks in samples of 50 disks from batches with 10 defective disks?
```

x = hygeinv(0.50,1000,10,50)
x =
0

```
hygecdf, hygepdf, hygernd, hygestat, icdf

\section*{hygepdf}

\section*{Purpose Hypergeometric probability density function (pdf)}

\section*{Syntax \\ \(Y\) = hygepdf(\(X, M, K, N\))}

Description

\section*{Examples}

\section*{See Also}
\(Y=\) hygecdf \((X, M, K, N)\) computes the hypergeometric pdf at each of the values in \(X\) using the corresponding parameters in \(M, K\), and \(N . X, M, K\), and \(N\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The parameters in \(M, K\), and \(N\) must all be positive integers, with \(N \leq M\). The values in X must be less than or equal to all the parameter values.

The hypergeometric pdf is
\[
y=f(x \mid M, K, N)=\frac{\binom{K}{x}\binom{M-K}{N-x}}{\binom{M}{N}}
\]

The result, \(y\), is the probability of drawing exactly \(x\) of a possible \(K\) items in \(n\) drawings without replacement from a group of \(M\) objects.

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing 0 through 5 defective floppy disks if you select 10 at random?
```

p = hygepdf(0:5,100,20,10)
p =
0.0951 0.2679

```
hygecdf, hygeinv, hygernd, hygestat, pdf

\section*{Purpose Random numbers from the hypergeometric distribution}
```

Syntax R = hygernd(M, K,N)
R = hygernd(M,K,N,v)
R = hygernd(M,K,N,m,n)

```

Description \(\quad R=\) hygernd \((M, K, N)\) generates hypergeometric random numbers with parameters M, K, and N. M, K, and N can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(R\). A scalar input for \(\mathrm{M}, \mathrm{K}\), or N is expanded to a constant array with the same dimensions as the other inputs.
\(R=\) hygernd \((M, K, N, v)\) generates hypergeometric random numbers with parameters \(M, K\), and \(N\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=\) hygernd (\(M, K, N, m, n\)) generates hypergeometric random numbers with parameters \(M, K\), and \(N\), where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of hygernd}
hygernd uses the MATLAB function rand to generate random numbers. When you call hygernd, you change the current state of rand, and thereby alter the output of subsequent calls to hygernd or any other functions that depend on rand. If you want to reproduce the output of hygernd, reset the state of rand to the same fixed value each time you call hygernd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The result in the following example depends on the current state of rand. If you run the code in this example, your results may differ from the answer shown here.

\footnotetext{
Example \(\quad\) numbers \(=\) hygernd \((1000,40,50)\)
}

\section*{numbers \(=\) 1}

\author{
See Also \\ hygecdf, hygeinv, hygepdf, hygestat
}

Purpose

\section*{Syntax \\ [MN, V] = hygestat (M,K,N)}

Mean and variance for the hypergeometric distribution
[MN,V] = hygestat (\(M, K, N\)) returns the mean and variance for the hypergeometric distribution with parameters specified by M, K, and N. Vector or matrix inputs for \(M, K\), and \(N\) must have the same size, which is also the size of \(M N\) and V. A scalar input for \(M, K\), or \(N\) is expanded to a constant matrix with the same dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters \(\mathrm{M}, \mathrm{K}\), and N is \(\mathrm{NK} / \mathrm{M}\), and the variance is
\(N \frac{K}{M} \frac{M-K}{M} \frac{M-N}{M-1}\)

\section*{Examples}

The hypergeometric distribution approaches the binomial distribution, where \(p=K / M\) as \(M\) goes to infinity.
```

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)
m =
0.9000}00.9000 0.9000 0.9000
v =
0.0900}00.7445 0.8035 0.8094
[m,v] = binostat(9,0.1)
m =
0.9000
v =
0.8100

```

See Also
hygecdf, hygeinv, hygepdf, hygernd

\section*{Purpose Inverse of a specified cumulative distribution function (icdf)}
\[
\text { Syntax } \quad X=\text { icdf('name' }, \mathrm{P}, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{~A} 3)
\]

Description

\section*{Examples}
x \(=\)
\(\begin{array}{lllll}-1.2816 & -0.5244 & 0 & 0.5244 & 1.2816\end{array}\)
x = icdf('Poisson',0.1:0.2:0.9,1:5)
x =
\(\begin{array}{lllll}0 & 1 & 3 & 5 & 8\end{array}\)
betainv, binoinv, cdf, chi2inv, expinv, finv, gaminv, geoinv, hygeinv, logninv, nbininv, ncfinv, nctinv, ncx2inv, norminv, pdf, poissinv, random, raylinv, tinv, unidinv, unifinv, wblinv

Purpose
Calculate the inconsistency coefficient of a cluster tree

\section*{Syntax \\ \(Y\) = inconsistent(Z) \\ Y = inconsistent(Z,d)}

Description

\section*{Example}
\(Y=\) inconsistent \((Z)\) computes the inconsistency coefficient for each link of the hierarchical cluster tree \(Z\), where \(Z\) is an (\(m-1\))-by- 3 matrix generated by the linkage function. The inconsistency coefficient characterizes each link in a cluster tree by comparing its length with the average length of other links at the same level of the hierarchy. The higher the value of this coefficient, the less similar the objects connected by the link.

Y = inconsistent (Z,d) computes the inconsistency coefficient for each link in the hierarchical cluster tree \(Z\) to depth \(d\), where \(d\) is an integer denoting the number of levels of the cluster tree that are included in the calculation. By default, \(\mathrm{d}=2\).

The output, Y , is an (\(m-1\))-by-4 matrix formatted as follows.
\begin{tabular}{l|l}
\hline Column & Description \\
\hline 1 & Mean of the lengths of all the links included in the calculation. \\
2 & Standard deviation of all the links included in the calculation. \\
\hline 3 & Number of links included in the calculation. \\
4 & Inconsistency coefficient. \\
\hline
\end{tabular}

For each link, \(k\), the inconsistency coefficient is calculated as:
\[
Y(k, 4)=(z(k, 3)-Y(k, 1)) / Y(k, 2)
\]

For leaf nodes, nodes that have no further nodes under them, the inconsistency coefficient is set to 0 .
```

rand('state',12);
X = rand(10,2);
Y = pdist(X);

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& Z=\text { linkage(Y,'centroid'); } \\
& W=\text { inconsistent }(Z, 3)
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{W =} \\
\hline 0.1313 & & 1.0000 & 0 \\
\hline 0.1386 & 0 & 1.0000 & 0 \\
\hline 0.1727 & 0.0482 & 2.0000 & 0.7071 \\
\hline 0.2391 & 0 & 1.0000 & 0 \\
\hline 0.2242 & 0.0955 & 3.0000 & 1.0788 \\
\hline 0.2357 & 0.1027 & 3.0000 & 0.9831 \\
\hline 0.3222 & 0.1131 & 3.0000 & 0.9772 \\
\hline 0.3376 & 0.1485 & 6.0000 & 1.4883 \\
\hline 0.4920 & 0.1341 & 4.0000 & 1.1031 \\
\hline
\end{tabular}

See Also cluster, cophenet, clusterdata, dendrogram, linkage, pdist, squareform

\section*{Purpose}

Syntax

Description

Interquartile range (IQR) of a sample
\(y=\operatorname{iqr}(X)\)
iqr(\(\mathrm{X}, \mathrm{dim}\))
\(y=i q r(X)\) returns the interquartile range of the values in \(X\). For vector input, \(y\) is the difference between the 75th and the 25th percentiles of the sample in \(x\). For matrix input, \(y\) is a row vector containing the interquartile range of each column of \(X\). For \(N\)-dimensional arrays, iqr operates along the first non-singleton dimension of \(X\).
iqr(\(\mathrm{X}, \mathrm{dim}\)) calculates the interquartile range along the dimension dim of X .

\section*{Remarks}

\section*{Examples}

This Monte Carlo simulation shows the relative efficiency of the IQR to the sample standard deviation for normal data.
```

x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413 * iqr(x);
efficiency = (norm(s - 1)./norm(s_IQR - 1)).^2
efficiency =
0.3297

```

\section*{See Also}

\section*{iwishrnd}

\section*{Purpose Generate inverse Wishart random matrix}
Syntax \(\quad\)\begin{tabular}{ll}
W=iwishrnd(SIGMA, df) \\
& W=iwishrnd (SIGMA, df, DI) \\
& {\([W, D I]=\) iwishrnd (SIGMA, df) }
\end{tabular}

Description \(W=\) iwishrnd (SIGMA, df) generates a random matrix \(W\) whose inverse has the Wishart distribution with covariance matrix inv (SIGMA) and with df degrees of freedom. SIGMA can be a vector, a matrix, or a multidimensional array.

W=iwishrnd (SIGMA, df, DI) expects DI to be the Cholesky factor of the inverse of SIGMA. DI is an array of the same size as SIGMA. If you call iwishrnd multiple times using the same value of SIGMA, it is more efficient to supply DI instead of computing it each time.
[W, DI]=iwishrnd(SIGMA, df) returns DI so you can provide it as input in future calls to iwishrnd.

\section*{Reproducing the Output of iwishrnd}
iwishrnd uses the MATLAB functions rand and randn to generate random numbers. When you call iwishrnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to iwishrnd or any other functions that depend on rand or randn. If you want to reproduce the output of iwishrnd, reset the states of rand and randn to the same fixed values each time you call iwishrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

\section*{See Also wishrnd}

\section*{Purpose}

Jarque-Bera test for goodness-of-fit to a normal distribution
```

Syntax
H = jbtest(X)
H = jbtest(X,alpha)
[H,P,JBSTAT,CV] = jbtest(X,alpha)

```

Description

\section*{Example}
\(H=j b t e s t(X)\) performs the Jarque-Bera test on the input data vector \(X\) and returns H , the result of the hypothesis test. The result is \(\mathrm{H}=1\) if you can reject the hypothesis that X has a normal distribution, or \(\mathrm{H}=0\) if you cannot reject that hypothesis. you reject the hypothesis if the test is significant at the \(5 \%\) level.

The Jarque-Bera test evaluates the hypothesis that X has a normal distribution with unspecified mean and variance, against the alternative that \(X\) does not have a normal distribution. The test is based on the sample skewness and kurtosis of X. For a true normal distribution, the sample skewness should be near 0 and the sample kurtosis should be near 3. The Jarque-Bera test determines whether the sample skewness and kurtosis are unusually different than their expected values, as measured by a chi-square statistic.

The Jarque-Bera test is an asymptotic test, and should not be used with small samples. You may want to use lillietest in place of jbtest for small samples.

H = jbtest(X,alpha) performs the Jarque-Bera test at the 100*alpha\% level rather than the \(5 \%\) level, where alpha must be between 0 and 1 .
[\(\mathrm{H}, \mathrm{P}, \mathrm{JBSTAT}, \mathrm{CV}]=\mathrm{jbtest}(\mathrm{X}\), alpha) returns three additional outputs. P is the \(p\)-value of the test, JBSTAT is the value of the test statistic, and CV is the critical value for determining whether to reject the null hypothesis.
you can use jbtest to determine if car weights follow a normal distribution.
```

load carsmall
[h,p,j] = jbtest(Weight)
h =
1
p =
0.026718

```

\section*{¡btest}
\[
j=7.2448
\]

With a p-value of \(2.67 \%\), you reject the hypothesis that the distribution is normal. With a log transformation, the distribution becomes closer to normal but is still significantly different at the \(5 \%\) level.
```

[h,p,j] = jbtest(log(Weight))
h =
1
p =
0.043474
j =
6.2712

```

See lillietest for a different test of the same hypothesis.

\section*{Reference}

See Also
[1] Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lutkepohl, and T.-C. Lee. Introduction to the Theory and Practice of Econometrics, Wiley, 1988.
hist, kstest2, lillietest

Purpose
K-means clustering
Syntax
```

IDX = kmeans(X,k)
[IDX,C] = kmeans(X,k)
[IDX,C,sumd] = kmeans(X,k)
[IDX,C,sumd,D] = kmeans(X,k)
[...] = kmeans(...,'param1',val1,'param2',val2,...)

```

Description
IDX \(=\) kmeans (\(\mathrm{X}, \mathrm{k}\)) partitions the points in the n -by-p data matrix X into k clusters. This iterative partitioning minimizes the sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid distances. Rows of \(X\) correspond to points, columns correspond to variables. kmeans returns an n-by-1 vector IDX containing the cluster indices of each point. By default, kmeans uses squared Euclidean distances.
[IDX, C] = kmeans(X,k) returns the \(k\) cluster centroid locations in the k-by-p matrix C .
[IDX, C, sumd] = kmeans(X,k) returns the within-cluster sums of point-to-centroid distances in the 1-by-k vector sumd.
[IDX, C, sumd, D] = kmeans (\(\mathrm{X}, \mathrm{k}\)) returns distances from each point to every centroid in the \(n\)-by- \(k\) matrix \(D\).
[...] = kmeans(...,'param1',val1,'param2',val2,...) enables you to specify optional parameter name-value pairs to control the iterative algorithm used by kmeans. Valid parameters are the following.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'distance' & \begin{tabular}{l}
Distance measure, in p-dimensional space, that kmeans \\
minimizes with respect to. kmeans computes centroid \\
clusters differently for the different supported distance \\
measures:
\end{tabular} \\
\hline 'sqEuclidean' & \begin{tabular}{l}
Squared Euclidean distance (default). \\
Each centroid is the mean of the points in \\
that cluster.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Parameter & Value & \\
\hline & 'cityblock' & \begin{tabular}{l}
Sum of absolute differences, i.e., L1. Each \\
centroid is the component-wise median of \\
the points in that cluster.
\end{tabular} \\
\hline & 'cosine' & \begin{tabular}{l}
One minus the cosine of the included \\
angle between points (treated as vectors). \\
Each centroid is the mean of the points in \\
that cluster, after normalizing those \\
points to unit Euclidean length.
\end{tabular} \\
\hline & 'correlation' & \begin{tabular}{l}
One minus the sample correlation \\
between points (treated as sequences of \\
values). Each centroid is the \\
component-wise mean of the points in \\
that cluster, after centering and \\
normalizing those points to zero mean \\
and unit standard deviation.
\end{tabular} \\
\hline & 'Hamming' & \begin{tabular}{l}
Percentage of bits that differ (only \\
suitable for binary data). Each centroid is \\
the component-wise median of points in \\
that cluster.
\end{tabular} \\
\hline & Method used to choose the initial cluster centroid positions, \\
sometimes known as "seeds." Valid starting values are:
\end{tabular}
\begin{tabular}{l|l|l}
\hline Parameter & Value & \\
\hline & Matrix & \begin{tabular}{l}
k-by-p matrix of centroid starting \\
locations. In this case, you can pass in [] \\
for k, and kmeans infers k from the first \\
dimension of the matrix. You can also \\
supply a 3-dimensional array, implying a \\
value for the 'replicates ' parameter \\
from the array's third dimension.
\end{tabular} \\
\hline 'replicates' & \begin{tabular}{l}
Number of times to repeat the clustering, each with a new \\
set of initial cluster centroid positions. kmeans returns the \\
solution with the lowest value for sumd. You can supply \\
'replicates' implicitly by supplying a 3-dimensional \\
array as the value for the 'start' parameter.
\end{tabular} \\
\hline & Maximum number of iterations. Default is 100.
\end{tabular}
\begin{tabular}{l|ll}
\hline Parameter & Value & \\
\hline & 'final' & Display a summary of each replication. \\
\hline & 'notify' & \begin{tabular}{l}
Display only warning and error \\
messages. (default)
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithm}

\section*{See Also}

References
kmeans uses a two-phase iterative algorithm to minimize the sum of point-to-centroid distances, summed over all k clusters:
- The first phase uses what the literature often describes as "batch" updates, where each iteration consists of reassigning points to their nearest cluster centroid, all at once, followed by recalculation of cluster centroids. You can think of this phase as providing a fast but potentially only approximate solution as a starting point for the second phase.
- The second phase uses what the literature often describes as "online" updates, where points are individually reassigned if doing so will reduce the sum of distances, and cluster centroids are recomputed after each reassignment. Each iteration during this second phase consists of one pass though all the points.
kmeans can converge to a local optimum, in this case, a partition of points in which moving any single point to a different cluster increases the total sum of distances. This problem can only be solved by a clever (or lucky, or exhaustive) choice of starting points.
clusterdata, linkage, silhouette
[1] Seber, G. A. F., Multivariate Observations, Wiley, 1984.
[2] Spath, H., Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples, translated by J. Goldschmidt, Halsted Press, 1985, 226 pp.

Purpose
Kruskal-Wallis nonparametric one-way Analysis of Variance (ANOVA)
Syntax
```

p = kruskalwallis(X)
p = kruskalwallis(X,group)
p = kruskalwallis(X,group,'displayopt')
[p,table] = kruskalwallis(...)
[p,table,stats] = kruskalwallis(...)

```
\(p\) = kruskalwallis(X) performs a Kruskal-Wallis test to compare samples from two or more groups. Each column of the \(m\)-by- \(n\) matrix X represents an independent sample containing \(m\) mutually independent observations. The function compares the medians of the samples in \(X\), and returns the \(p\)-value for the null hypothesis that all samples are drawn from the same population (or equivalently, from different populations with the same distribution). Note that the Kruskal-Wallis test is a nonparametric version of the classical one-way ANOVA, and an extension of the Wilcoxon rank sum test to more than two groups.

If the \(p\)-value is near zero, this casts doubt on the null hypothesis and suggests that at least one sample median is significantly different from the others. The choice of a critical \(p\)-value to determine whether the result is judged "statistically significant" is left to the researcher. It is common to declare a result significant if the p-value is less than 0.05 or 0.01 .

The kruskalwallis function displays two figures. The first figure is a standard ANOVA table, calculated using the ranks of the data rather than their numeric values. Ranks are found by ordering the data from smallest to largest across all groups, and taking the numeric index of this ordering. The rank for a tied observation is equal to the average rank of all observations tied with it. For example, the following table shows the ranks for a small sample.
\begin{tabular}{l|l|l|l|l|l|l}
\hline X value & 1.4 & 2.7 & 1.6 & 1.6 & 3.3 & 0.9 \\
\hline Rank & 3 & 6 & 4.5 & 4.5 & 7 & 1 \\
\hline
\end{tabular}

The entries in the ANOVA table are the usual sums of squares, degrees of freedom, and other quantities calculated on the ranks. The usual F statistic is

\section*{kruskalwallis}
replaced by a chi-square statistic. The p-value measures the significance of the chi-square statistic.

The second figure displays box plots of each column of \(X\) (not the ranks of \(X\)).
\(p\) = kruskalwallis(X, group) uses the values in group (a character array or cell array) as labels for the box plot of the samples in \(X\), when \(X\) is a matrix. Each row of group contains the label for the data in the corresponding column of \(X\), so group must have length equal to the number of columns in \(X\).

When \(X\) is a vector, kruskalwallis performs a Kruskal-Wallis test on the samples contained in \(X\), as indexed by input group (a vector, character array, or cell array). Each element in group identifies the group (i.e., sample) to which the corresponding element in vector \(X\) belongs, so group must have the same length as X . The labels contained in group are also used to annotate the box plot.

It is not necessary to label samples sequentially (1, 2, 3, ...). For example, if X contains measurements taken at three different temperatures, \(-27^{\circ}, 65^{\circ}\), and \(110^{\circ}\), you could use these numbers as the sample labels in group. If a row of group contains an empty cell or empty string, that row and the corresponding observation in X are disregarded. NaNs in either input are similarly ignored.
p = kruskalwallis(X,group, 'displayopt') enables the table and box plot displays when 'displayopt' is 'on' (default) and suppresses the displays when 'displayopt' is 'off'.
[p,table] = kruskalwallis(...) returns the ANOVA table (including column and row labels) in cell array table. (You can copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[p,table,stats] = kruskalwallis(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The kruskalwallis test evaluates the hypothesis that all samples come from populations that have the same median, against the alternative that the medians are not all the same. Sometimes it is preferable to perform a test to determine which pairs are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying the stats structure as input.

\section*{Assumptions}

The Kruskal-Wallis test makes the following assumptions about the data in X :
- All samples come from populations having the same continuous distribution, apart from possibly different locations due to group effects.
- All observations are mutually independent.

The classical one-way ANOVA test replaces the first assumption with the stronger assumption that the populations have normal distributions.

\section*{Example}

This example compares the material strength study used with the anova1 function, to see if the nonparametric Kruskal-Wallis procedure leads to the same conclusion. The example studies the strength of beams made from three alloys:
```

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

```

This example uses both classical and Kruskal-Wallis anova, omitting displays:
```

anova1(strength,alloy,'off')
ans =
1.5264e-004
kruskalwallis(strength,alloy,'off')
ans =
0.0018

```

Both tests find that the three alloys are significantly different, though the result is less significant according to the Kruskal-Wallis test. It is typical that when a data set has a reasonable fit to the normal distribution, the classical ANOVA test is more sensitive to differences between groups.

To understand when a nonparametric test may be more appropriate, let's see how the tests behave when the distribution is not normal. You can simulate this by replacing one of the values by an extreme value (an outlier).

\section*{kruskalwallis}
```

strength(20)=120;
anova1(strength,alloy,'off')
ans =
0.2501
kruskalwallis(strength,alloy,'off')
ans =
0.0060

```

Now the classical ANOVA test does not find a significant difference, but the nonparametric procedure does. This illustrates one of the properties of nonparametric procedures - they are often not severely affected by changes in a small portion of the data.

\author{
Reference \\ [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker, 1985. \\ [2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 1973.
}

See Also
anova1, boxplot, friedman, multcompare, ranksum

Purpose
Compute density estimate using a kernel smoothing method

\section*{Syntax \\ Description}
```

[f,xi] = ksdensity(x)
f = ksdensity(x,xi)
[f,xi,u] = ksdensity(...)
[...] = ksdensity(...,'param1',val1,'param2',val2,...)

```
[\(f, x i]=k s d e n s i t y(x)\) computes a probability density estimate of the sample in the vector \(x . f\) is the vector of density values evaluated at the points in xi. The estimate is based on a normal kernel function, using a window parameter ('width') that is a function of the number of points in \(x\). The density is evaluated at 100 equally-spaced points covering the range of the data in \(x\).
\(\mathrm{f}=\mathrm{ksdensity}(\mathrm{x}, \mathrm{xi})\) specifies the vector xi of values where the density estimate is to be evaluated.
[\(\mathrm{f}, \mathrm{xi}, \mathrm{u}]=\mathrm{ksdensity}(\ldots)\) also returns the width of the kernel smoothing window.
[...] = ksdensity(...,'param1',val1,'param2',val2,...) specifies parameter name/value pairs to control the density estimation. Valid parameters and their possible values are: '
' censoring' A logical vector of the same length as \(x\), indicating which entries are censoring times. Default is no censoring.
'kernel' The type of kernel smoother to use. Choose the value as 'normal' (default), 'box', 'triangle', or 'epanechnikov'. Alternatively, you can specify some other function, as a function handle or as a string, e.g., @normpdf or 'normpdf'. The function must take a single argument that is an array of distances between data values and places where the density is evaluated. It must return an array of the same size containing corresponding values of the kernel function.
'npoints ' The number of equally-spaced points in xi. Default is 100.

\section*{ksdensity}
> 'support ' - 'unbounded ' allows the density to extend over the whole real line (default).
> - 'positive ' restricts the density to positive values.
> - A two-element vector gives finite lower and upper bounds for the support of the density.
> 'weights ' Vector of the same length as x , assigning weight to each x value. The default is equal weights).
> 'width' The bandwidth of the kernel smoothing window. The default is optimal for estimating normal densities, but you may want to choose a smaller value to reveal features such as multiple modes.

\section*{Examples}

This example generates a mixture of two normal distributions, and plots the estimated density.
```

x = [randn(30,1); 5+randn(30,1)];
[f,xi] = ksdensity(x);
plot(xi,f);

```


\section*{ksdensity}

\author{
References \\ See Also hist, @ (function handle)
}

\section*{Purpose Kolmogorov-Smirnov test of the distribution of one sample}
```

Syntax H = kstest(X)
H = kstest(X,cdf)
H = kstest(X,cdf,alpha)
H = kstest(X,cdf,alpha,tail)
[H,P] = kstest(...)
[H,P,KSSTAT,] = kstest(...)
[H,P,KSSTAT,CV] = kstest(...)

```

Description \(\quad H=\) kstest (\(X\)) performs a Kolmogorov-Smirnov test to compare the values in the data vector X with a standard normal distribution (that is, a normal distribution having mean 0 and variance 1). The null hypothesis for the Kolmogorov-Smirnov test is that X has a standard normal distribution. The alternative hypothesis that \(X\) does not have that distribution. The result \(H\) is 1 if you can reject the hypothesis that \(X\) has a standard normal distribution, or 0 if you cannot reject that hypothesis. You reject the hypothesis if the test is significant at the \(5 \%\) level.

For each potential value \(x\), the Kolmogorov-Smirnov test compares the proportion of values less than \(x\) with the expected number predicted by the standard normal distribution. The kstest function uses the maximum difference over all \(x\) values is its test statistic. Mathematically, this can be written as
\[
\max (|F(x)-G(x)|)
\]
where \(F(x)\) is the proportion of X values less than or equal to \(x\) and \(G(x)\) is the standard normal cumulative distribution function evaluated at \(x\).
\(H=k s t e s t(X, c d f)\) compares the distribution of \(X\) to the hypothesized continuous distribution defined by the two-column matrix cdf. Column one contains a set of possible \(x\) values, and column two contains the corresponding hypothesized cumulative distribution function values \(G(x)\). If possible, you should define cdf so that column one contains the values in \(X\). If there are values in X not found in column one of cdf, kstest will approximate \(G(X)\) by interpolation. All values in \(X\) must lie in the interval between the smallest and largest values in the first column of cdf. If the second argument is empty
\((c d f=[])\), kstest uses the standard normal distribution as if there were no second argument.

The Kolmogorov-Smirnov test requires that cdf be predetermined. It is not accurate if cdf is estimated from the data. To test \(X\) against a normal distribution without specifying the parameters, use lillietest instead.
\(\mathrm{H}=\mathrm{kstest}(\mathrm{X}, \mathrm{cdf}, \mathrm{alpha})\) specifies the significance level alpha for the test. The default is 0.05 .

H = kstest (X, cdf, alpha, tail) specifies the type of test in the string tail. tail can have one of the following values:
- 'unequal'
- 'larger'
- 'smaller'

The tests specified by these values are described in "Tests Specified by tail" on page 12-273.
[H,P,KSSTAT, CV] = kstest(X,cdf,alpha, tail) also returns the observed p-value P, the observed Kolmogorov-Smirnov statistic KSSTAT, and the cutoff value CV for determining if KSSTAT is significant. If the return value of CV is NaN , then kstest determined the significance calculating a p-value according to an asymptotic formula rather than by comparing KSSTAT to a critical value.

\section*{Tests Specified by tail}

Let \(\mathrm{S}(x)\) be the empirical c.d.f. estimated from the sample vector X , let \(\mathrm{F}(x)\) be the corresponding true (but unknown) population c.d.f., and let CDF be the known input c.d.f. specified under the null hypothesis. The one-sample Kolmogorov-Smirnov test tests the null hypothesis that \(\mathrm{F}(x)=\mathrm{CDF}\) for all \(x\) against the alternative specified by one of the following possible values of tail:
\begin{tabular}{ll|l}
\hline tail & Alternative Hypothesis & Test Statistic \\
\hline 'unequal' & \(\mathrm{F}(x)\) does not equal CDF (two-sided test) & \(\max |\mathrm{S}(x)-\mathrm{CDF}|\) \\
\hline 'larger' & \(\mathrm{F}(x)>\mathrm{CDF}\) (one-sided test) & \(\max [\mathrm{S}(x)-\mathrm{CDF}]\) \\
\hline 'smaller' & \(\mathrm{F}(x)<\mathrm{CDF}\) (one-sided test) & \(\max [\mathrm{S}(x)-\mathrm{CDF}]\) \\
\hline
\end{tabular}

\section*{Examples}

Example 1. Let's generate some evenly spaced numbers and perform a Kolmogorov-Smirnov test to see how well they fit to a standard normal distribution:
```

$x=-2: 1: 4$
x =
$\begin{array}{lllllll}-2 & -1 & 0 & 1 & 2 & 3 & 4\end{array}$
[h,p,k,c] = kstest(x,[],0.05,0)
h =
0
$\mathrm{p}=$
0.13632
k =
0.41277
c $=$
0.48342

```

You cannot reject the null hypothesis that the values come from a standard normal distribution. Although intuitively it seems that these evenly-spaced integers could not follow a normal distribution, this example illustrates the difficulty in testing normality in small samples.

To understand the test, it is helpful to generate an empirical cumulative distribution plot and overlay the theoretical normal distribution.
```

xx = -3:.1:5;
cdfplot(x)
hold on
plot(xx,normcdf(xx),'r--')

```


The Kolmogorov-Smirnov test statistic is the maximum difference between these curves. It appears that this maximum of 0.41277 occurs as the data approaches \(x=1.0\) from below. You can see that the empirical curve has the value \(3 / 7\) here, and you can easily verify that the difference between the curves is 0.41277 .
```

normcdf(1) - 3/7
ans =
0.41277

```

You can also perform a one-sided test. Setting tail \(=-1\) indicates that the alternative is \(F<G\), so the test statistic counts only points where this inequality is true.
```

[h,p,k] = kstest(x, [], .05, -1)
h =
0
p =
0.068181
k =

```

\section*{kstest}
0.41277

The test statistic is the same as before because in fact \(F<G\) at \(x=1.0\). However, the p-value is smaller for the one-sided test. If you carry out the other one-sided test, you see that the test statistic changes, and is the difference between the two curves near \(x=-1.0\).
```

[h,p,k] = kstest(x,[],0.05,1)
h =
0
p =
0.77533
k =
0.12706
2/7 - normcdf(-1)
ans =
0.12706

```

Example 2. Now let's generate random numbers from a Weibull distribution, and test against that Weibull distribution and an exponential distribution.
```

x = wblrnd(1, 2, 100, 1);
kstest(x, [x wblcdf(x, 1, 2)])
ans =
0
kstest(x, [x expcdf(x, 1)])
ans =
1

```

See Also
kstest2, lillietest

Purpose
Syntax

Description

Kolmogorov-Smirnov test to compare the distribution of two samples
```

H = kstest2(X1,X2)
H = kstest2(X1,X2,alpha,tail)
[H,P,KSSTAT] = kstest2(X1,X2,cdf,alpha,tail)

```

H = kstest2(X1, X2) performs a two-sample Kolmogorov-Smirnov test to compare the distributions of values in the two data vectors X1 and X2 of length n 1 and n 2 , respectively, representing random samples from some underlying distribution(s). The null hypothesis for this test is that X 1 and X 2 are drawn from the same continuous distribution. The alternative hypothesis is that they are drawn from different continuous distributions. The result H is 1 if you can reject the hypothesis that the distributions are the same, or 0 if you cannot reject that hypothesis. You reject the hypothesis if the test is significant at the \(5 \%\) level.

For each potential value \(x\), the Kolmogorov-Smirnov test compares the proportion of X 1 values less than \(x\) with proportion of X 2 values less than \(x\). The kstest2 function uses the maximum difference over all \(x\) values is its test statistic. Mathematically, this can be written as
\[
\max (|F 1(x)-F 2(x)|)
\]
where \(F 1(x)\) is the proportion of X 1 values less than or equal to \(x\) and \(F 2(x)\) is the proportion of X 2 values less than or equal to \(x\). Missing observations, indicated by NaNs are ignored.
\(H=k s t e s t 2(X 1, X 2\), alpha) performs the test at the (100*alpha)\% significance level.

The decision to reject the null hypothesis occurs when the significance level, alpha, equals or exceeds the P -value.

H = kstest2(X1, X2, alpha, tail) accepts a string tail that specifies the type of test. tail can have one of the following values:
- 'unequal'
- 'larger'
- 'smaller'

The tests specified by these values are described in "Tests Specified by tail" on page 12-278
[\(\mathrm{H}, \mathrm{P}]=\) kstest2 (...) also returns the asymptotic p -value P . The asymptotic \(p\)-value becomes very accurate for large sample sizes, and is believed to be reasonably accurate for sample sizes \(n 1\) and \(n 2\) such that (\(n 1 * n 2\)) / \(n 1+n 2\)) \(>=4\).
[H,P,ksstat] = KSTEST2(...) also returns the Kolmogorov-Smirnov test statistic KSSTAT defined above for the test type indicated by tail.

\section*{Tests Specified by tail}

Let \(\mathrm{S} 1(x)\) and \(\mathrm{S} 2(x)\) be the empirical distribution functions from the sample vectors X 1 and X 2 , respectively, and \(\mathrm{F} 1(x)\) and \(\mathrm{F} 2(x)\) be the corresponding true (but unknown) population CDFs. The two-sample Kolmogorov-Smirnov test tests the null hypothesis that \(\mathrm{F} 1(x)=\mathrm{F} 2(x)\), for all \(x\), against the alternative hypothesis specified by tail, as described in the following table.
\begin{tabular}{ll|l}
\hline tail & Alternative Hypothesis & Test Statistic \\
\hline 'unequal' & \begin{tabular}{l}
\(\mathrm{F} 1(x)\) does not equal F2 \((x)\) (two-sided \\
test)
\end{tabular} & \(\max |\mathrm{S} 1(x)-\mathrm{S} 2(x)|\) \\
\hline 'larger' & \(\mathrm{F} 1(x)>\) F2 \((x)\) (one-sided test) & \(\max [\mathrm{S} 1(x)-\mathrm{S} 2(x)]\) \\
\hline 'smaller' & \(\mathrm{F}(x)<\mathrm{F} 2(x)\) (one-sided test) & \(\max [\mathrm{S} 2(x)-\mathrm{S} 1(x)]\) \\
\hline
\end{tabular}

\section*{Examples}

The following commands compare the distributions of a small evenly-spaced sample and a larger normal sample:
```

x = -1:1:5
y = randn(20,1);
[h,p,k] = kstest2(x,y)
h =
1
p =
0.0403
k =
0.5714

```

The difference between their distributions is significant at the \(5 \%\) level (\(p=4 \%\)). To visualize the difference, you can overlay plots of the two empirical cumulative distribution functions. The Kolmogorov-Smirnov statistic is the maximum difference between these functions. After changing the color and line style of one of the two curves, you can see that the maximum difference appears to be near \(x=1.9\). You can also verify that the difference equals the \(k\) value that kstest2 reports:
```

cdfplot(x)
hold on
cdfplot(y)
h = findobj(gca,'type','line');
set(h(1),'linestyle',':','color','r')
1-3/7
ans =
0.5714

```


\section*{See Also}
kstest, lillietest

\section*{kurtosis}

\section*{Purpose Sample kurtosis}
\begin{tabular}{|c|c|}
\hline Syntax & \(\mathrm{k}=\) kurtosis(X\()\) \\
\hline & \(\mathrm{k}=\) kurtosis(X,flag) \\
\hline & k = kurtosis(X,flag, dim) \\
\hline
\end{tabular}

Description \(\quad k=\) kurtosis \((X)\) returns the sample kurtosis of \(X\). For vectors, kurtosis \((x)\) is the kurtosis of the elements in the vector \(x\). For matrices kurtosis (\(X\)) returns the sample kurtosis for each column of X. For N-dimensional arrays, kurtosis operates along the first non-singleton dimension of \(X\).
\(\mathrm{k}=\) kurtosis \((\mathrm{X}, \mathrm{flag})\) specifies whether to correct for bias \((f l a g=0)\) or not (\(f l a g=1\), the default). When \(X\) represents a sample from a population, the kurtosis of \(X\) is biased, that is, it will tend to differ from the population kurtosis by a systematic amount that depends on the size of the sample. You can set flag \(=0\) to correct for this systematic bias.
kurtosis (\(\mathrm{X}, \mathrm{flag}, \mathrm{dim}\)) takes the kurtosis along dimension dim of X .
kurtosis treats NaNs as missing values and removes them.

\section*{Remarks}

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution is 3. Distributions that are more outlier-prone than the normal distribution have kurtosis greater than 3; distributions that are less outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as
\[
k=\frac{E(x-\mu)^{4}}{\sigma^{4}}
\]
where \(\mu\) is the mean of \(x, \sigma\) is the standard deviation of \(x\), and \(E(t)\) represents the expected value of the quantity \(t\).

Note Some definitions of kurtosis subtract 3 from the computed value, so that the normal distribution has kurtosis of 0 . The kurtosis function does not use this convention.

Example

See Also
mean, moment, skewness, std, var

\section*{Purpose Leverage values for a regression}
```

Syntax h = leverage(data)
h = leverage(data,'model')

```

Example One rule of thumb is to compare the leverage to \(2 p / n\) where \(n\) is the number of observations and \(p\) is the number of parameters in the model. For the Hald data set this value is 0.7692 .
```

load hald
h = max(leverage(ingredients,'linear'))
h =
0.7004

```

Since \(0.7004<0.7692\), there are no high leverage points using this rule.

\section*{Algorithm \\ Reference}

See Also

Purpose
Syntax

Description

See Also

Generate a latin hypercube sample
```

X = lhsdesign(n,p)
X = lhsdesign(...,'smooth','off')
X = lhsdesign(...,'criterion','c')
X = lhsdesign(...,'iterations',k)

```
\(X=\operatorname{lnsdesign}(n, p)\) generates a latin hypercube sample \(X\) containing \(n\) values on each of \(p\) variables. For each column, the \(n\) values are randomly distributed with one from each interval \((0,1 / n),(1 / n, 2 / n), \ldots,(1-1 / n, 1)\), and they are randomly permuted.

X = lhsdesign(...,'smooth','off') produces points at the midpoints of the above intervals: \(0.5 / \mathrm{n}, 1.5 / \mathrm{n}, \ldots, 1-0.5 / \mathrm{n}\). The default is ' on'.

X = lhsdesign(...,'criterion','c') iteratively generates latin hypercube samples to find the best one according to the criterion ' \(c\) ', which can be:
\begin{tabular}{ll}
'none' & No iteration \\
'maximin' & Maximize minimum distance between points \\
'correlation' & Reduce correlation
\end{tabular}

X = lhsdesign(...,'iterations', \(k\)) iterates up to \(k\) times in an attempt to improve the design according to the specified criterion. Default is K \(=5\).

Latin hypercube designs are useful when you need a sample that is random but that is guaranteed to be relatively uniformly distributed over each dimension.

\footnotetext{
lhsnorm, unifrnd
}

\section*{Ihsnorm}

Purpose Generate a latin hypercube sample with a normal distribution
Syntax \(\quad\)\begin{tabular}{ll}
& \(X=\operatorname{lhsnorm}(m u, S I G M A, n)\) \\
& \(X=\operatorname{lhsnorm}\left(m u, S I G M A, n\right.\), ' onoff \(\left.^{\prime}\right)\)
\end{tabular}

Description

See Also lhsdesign, mvnrnd

Purpose
```

Syntax H = lillietest(X)

```
H = lillietest(X,alpha)
```

H = lillietest(X,alpha)
[H,P,LSTAT,CV] = lillietest(X,alpha)

```
```

[H,P,LSTAT,CV] = lillietest(X,alpha)

```
```


## Description

## Example

Lilliefors test for goodness of fit to a normal distribution specified in advance. indicates whether to reject the hypothesis.

H = lillietest(X) performs the Lilliefors test on the input data vector $X$ and returns H , the result of the hypothesis test. The result H is 1 if you can reject the hypothesis that $x$ has a normal distribution, or 0 if you cannot reject that hypothesis. you reject the hypothesis if the test is significant at the $5 \%$ level.

The Lilliefors test evaluates the hypothesis that X has a normal distribution with unspecified mean and variance, against the alternative that $X$ does not have a normal distribution. This test compares the empirical distribution of $x$ with a normal distribution having the same mean and variance as $X$. It is similar to the Kolmogorov-Smirnov test, but it adjusts for the fact that the parameters of the normal distribution are estimated from $X$ rather than

H = lillietest (X, alpha) performs the Lilliefors test at the 100*alpha\% level rather than the $5 \%$ level. alpha must be between 0.01 and 0.2 .
[H, P, LSTAT, CV] = lillietest (X, alpha) returns three additional outputs. P is the $p$-value of the test, obtained by linear interpolation in a set of table created by Lilliefors. LSTAT is the value of the test statistic. CV is the critical value for determining whether to reject the null hypothesis. If the value of LSTAT is outside the range of the Lilliefors table, P is returned as NaN but H

Do car weights follow a normal distribution? Not exactly, because weights are always positive, and a normal distribution allows both positive and negative values. However, perhaps the normal distribution is a reasonable approximation.

```
load carsmall
```

load carsmall
[h p l c] = lillietest(Weight);
[h p l c] = lillietest(Weight);
[h p l c]
[h p l c]
ans =
ans =
1.0000 0.0232 0.1032 0.0886

```
 1.0000 0.0232 0.1032 0.0886
```


## lillietest

The Lilliefors test statistic of 0.10317 is larger than the cutoff value of 0.0886 for a $5 \%$ level test, so you reject the hypothesis of normality. In fact, the p-value of this test is approximately 0.02 .

To visualize the distribution, you can make a histogram. This graph shows that the distribution is skewed to the right - from the peak near 2250, the frequencies drop off abruptly to the left but more gradually to the right.
hist (Weight)


Sometimes it is possible to transform a variable to make its distribution more nearly normal. A log transformation, in particular, tends to compensate for skewness to the right.

```
[h p l c] = lillietest(log(Weight))
ans =
 0
```

Now the p-value is approximately 0.13 , so you do not reject the hypothesis.

Reference
See Also
[1] Conover, W. J., Practical Nonparametric Statistics. Wiley, 1980.
hist, jbtest, kstest2

Purpose
Syntax

Description

Create hierarchical cluster tree

```
Z = linkage(Y)
Z = linkage(Y,'method')
```

$Z=$ linkage $(Y)$ creates a hierarchical cluster tree, using the Single Linkage algorithm. The input $Y$ is a distance vector of length $((m-1) \cdot m / 2)$-by-1, where $m$ is the number of objects in the original data set. You can generate such a vector with the pdist function. $Y$ can also be a more general dissimilarity matrix conforming to the output format of pdist.

Z = linkage(Y,'method') computes a hierarchical cluster tree using the algorithm specified by 'method', where 'method' can be any of the following character strings, whose definitions are explained in "Mathematical Definitions" on page 12-288.

'single'	Shortest distance (default)
'complete'	Furthest distance
'average'	Unweighted average distance (UPGMA) (also   known as group average)
'weighted'	Weighted average distance (WPGMA)
'centroid'	Centroid distance (UPGMC)
'median'	Weighted center of mass distance (WPGMC)   Inner squared distance (minimum variance   algorithm)

Note When 'method' is 'centroid', 'median', or 'ward', the output of linkage is meaningful only if the input $Y$ contains Euclidean distances.

The output, z , is an (m-1)-by- 3 matrix containing cluster tree information. The leaf nodes in the cluster hierarchy are the objects in the original data set, numbered from 1 to $m$. They are the singleton clusters from which all higher

## linkage

clusters are built. Each newly formed cluster, corresponding to row $i$ in Z, is assigned the index $m+i$, where $m$ is the total number of initial leaves.

Columns 1 and $2, Z(i, 1: 2)$, contain the indices of the objects that were linked in pairs to form a new cluster. This new cluster is assigned the index value $m+i$. There are $m-1$ higher clusters that correspond to the interior nodes of the hierarchical cluster tree.

Column 3, Z(i,3), contains the corresponding linkage distances between the objects paired in the clusters at each row $i$.

For example, consider a case with 30 initial nodes. If the tenth cluster formed by the linkage function combines object 5 and object 7 and their distance is 1.5 , then row 10 of $Z$ will contain the values ( $5,7,1.5$ ). This newly formed cluster will have the index $10+30=40$. If cluster 40 shows up in a later row, that means this newly formed cluster is being combined again into some bigger cluster.

## Mathematical Definitions

The 'method ' argument is a character string that specifies the algorithm used to generate the hierarchical cluster tree information. These linkage algorithms are based on different ways of measuring the distance between two clusters of objects. If $n_{r}$ is the number of objects in cluster $r$ and $n_{s}$ is the number of objects in cluster $s$, and $x_{r i}$ is the $i$ th object in cluster $r$, the definitions of these various measurements are as follows:

- Single linkage, also called nearest neighbor, uses the smallest distance between objects in the two clusters.

$$
d(r, s)=\min \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(i, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
$$

- Complete linkage, also called furthest neighbor, uses the largest distance between objects in the two clusters.

$$
d(r, s)=\max \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(1, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
$$

- Average linkage uses the average distance between all pairs of objects in cluster $r$ and cluster $s$.

$$
d(r, s)=\frac{1}{n_{r} n_{s}} \sum_{i=1}^{n_{r}} \sum_{j=1}^{n_{s}} \operatorname{dist}\left(x_{r i}, x_{s j}\right)
$$

- Centroid linkage uses the Euclidean distance between the centroids of the two clusters,

$$
d(r, s)=\left\|\bar{x}_{r}-\bar{x}_{s}\right\|_{2}
$$

where

$$
\bar{x}_{r}=\frac{1}{n_{r}} \sum_{i=1}^{n_{r}} x_{r i}
$$

$\bar{x}_{s}$ is defined similarly. The input $Y$ should contain Euclidean distances.

- Median linkage uses the Euclidean distance between weighted centroids of the two clusters,

$$
d(r, s)=\left\|\tilde{x}_{r}-\tilde{x}_{s}\right\|_{2}
$$

where $\tilde{x}_{r}$ and $\tilde{x}_{s}$ are weighted centroids for the clusters $r$ and $s$. If cluster $r$ was created by combining clusters $p$ and $q, \tilde{x}_{r}$ is defined recursively as

$$
\tilde{x}_{r}=\frac{1}{2}\left(\tilde{x}_{p}+\tilde{x}_{q}\right)
$$

$\tilde{x}_{s}$ is defined similarly. The input $Y$ should contain Euclidean distances.

- Ward's linkage uses the incremental sum of squares; that is, the increase in the total within-cluster sum of squares as a result of joining clusters $r$ and $s$. The within-cluster sum of squares is defined as the sum of the squares of the distances between all objects in the cluster and the centroid of the cluster. The equivalent distance is given by

$$
d^{2}(r, s)=n_{r} n_{s} \frac{\left\|\bar{x}_{r}-\bar{x}_{s}\right\|_{2}^{2}}{\left(n_{r}+n_{s}\right)}
$$

where $\left\|\|_{2}\right.$ is Euclidean distance, and $\bar{x}_{r}$ and $\bar{x}_{s}$ are the centroids of clusters $r$ and $s$, as defined in the Centroid linkage, respectively. The input Y should contain Euclidean distances.

The centroid and median methods can produce a cluster tree that is not monotonic. This occurs when the distance from the union of two clusters, $r$ and $s$, to a third cluster is less than the distance from either $r$ or $s$ to that

## linkage

third cluster. In this case, sections of the dendrogram change direction. This is an indication that you should use another method.

## Example

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, kmeans, pdist, silhouette, squareform

## Purpose Lognormal cumulative distribution function

```
Syntax P = logncdf(X,MU,SIGMA)
 [P, PLO, PUP] = logncdf(X, MU, SIGMA, PCOV, alpha)
```


## Description

$P$ = logncdf( $X, M U, S I G M A)$ computes the lognormal cdf at each of the values in X using the corresponding means in MU and standard deviations in SIGMA. $\mathrm{X}, \mathrm{MU}$, and SIGMA can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for X, MU, or SIGMA is expanded to a constant array with the same dimensions as the other inputs.
[P, PLO, PUP] = logncdf(X, MU, SIGMA, PCOV, alpha) produces confidence bounds for $P$ when the input parameters MU and SIGMA are estimates. PCOV is the covariance matrix of the estimated parameters. alpha specifies $100(1-$ alpha $) \%$ confidence bounds. The default value of alpha is 0.05 . PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.

The function logncdf computes confidence bounds for P using a normal approximation to the distribution of the estimate

$$
\frac{X-\hat{\mu}}{\hat{\sigma}}
$$

and then transforming those bounds to the scale of the output P. The computed bounds give approximately the desired confidence level when you estimate MU, SIGMA, and PCOV from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The lognormal cdf is

$$
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{x} \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
$$

Example $\quad x=(0: 0.2: 10)$;
$y=\operatorname{logncdf}(x, 0,1)$;
plot(x,y); grid;
xlabel('x'); ylabel('p');

## logncdf



## Reference

See Also
cdf, logninv, lognpdf, lognrnd, lognstat

Purpose
Parameter estimates and confidence intervals for lognormal data

## Syntax

Description

```
parmhat = lognfit(data)
[parmhat,parmci] = lognfit(data)
[parmhat,parmci] = lognfit(data, alpha)
[...] = lognfit(data, alpha, censoring)
[...] = lognfit(data, alpha, censoring, freq)
[...] = lognfit(data, alpha, censoring, freq, options)
```

parmhat $=$ lognfit(data) returns the estimate of the parameters $\mu$ and $\sigma$ of the lognormal distribution, given the data in the vector data.
[parmhat, parmci] = lognfit(data) returns $95 \%$ confidence intervals for the parameter estimates on the $\mu$ and $\sigma$ parameters in the 2 -by- 2 matrix parmci. The first column of the matrix contains the lower and upper confidence bounds for parameter $\mu$, and the second column contains the confidence bounds for parameter $\sigma$.
[parmhat, parmci] = lognfit(data, alpha) returns 100(1- alpha) \% confidence intervals for the parameter estimates, where alpha is a value in the range ( 01 1) specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to $95 \%$ confidence intervals.
[...] = lognfit(data, alpha, censoring) accepts a Boolean vector censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = lognfit(data, alpha, censoring, freq) accepts a frequency vector, freq, of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [ ] for alpha, censoring, or freq to use their default values.
[...] = lognfit(data, alpha, censoring, freq, options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates when there is censoring. You can create options using the function statset. Enter statset('lognfit') to see the names and default values of the parameters that lognfit accepts in the options structure. See the reference page for statset for more information about these options.

## lognfit

## Example

## See Also

This example generates 100 independent samples of lognormal data with $\mu=0$ and $\sigma=3$. parmhat is an estimate of $\mu$ and parmci is a $99 \%$ confidence interval around parmhat. Notice that parmci contains the true value of $\mu$.

```
data = lognrnd(0, 3, 100, 1);
[parmhat,parmci] = lognfit(data, 0.01)
parmhat =
 -0.2480 2.8902
parmci =
 -1.0071 2.4393
 0.5111 3.5262
```

logncdf, logninv, lognlike, lognpdf, lognrnd, lognstat, mle, statset

Purpose

## Syntax

## Description

Inverse of the lognormal cumulative distribution function (cdf)

```
X = logninv(P, MU,SIGMA)
[X, XLO, XUP] = logninv(P, MU, SIGMA, PCOV, alpha)
```

$X=$ logninv(P,MU,SIGMA) computes the inverse lognormal cdf with parameters MU and SIGMA, at the corresponding probabilities in P. P, MU, and SIGMA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of $X$. A scalar input for $P, M U$, or SIGMA is expanded to a constant array with the same dimensions as the other inputs.
[X, XLO, XUP] = logninv(P, MU, SIGMA, PCOV, alpha) produces confidence bounds for $X$ when the input parameters MU and SIGMA are estimates. PCOV is the covariance matrix of the estimated parameters. alpha specifies $100(1-$ alpha $) \%$ confidence bounds. The default value of alpha is 0.05 . XLO and XUP are arrays of the same size as $X$ containing the lower and upper confidence bounds.

The function logninv computes confidence bounds for P using a normal approximation to the distribution of the estimate

$$
\hat{\mu}+\hat{\sigma} q
$$

where $q$ is the Pth quantile from a normal distribution with mean 0 and standard deviation 1 . The computed bounds give approximately the desired confidence level when you estimate MU, SIGMA, and PCOV from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The lognormal inverse function is defined in terms of the lognormal cdf as

$$
x=F^{-1}(p \mid \mu, \sigma)=\{x: F(x \mid \mu, \sigma)=p\}
$$

where

$$
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{x} \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
$$

Example

## logninv

```
crit = logninv(p,1,0.5);
plot(p,crit)
xlabel('Probability');ylabel('Critical Value'); grid
```



## Reference

See Also icdf, logncdf, lognpdf, lognrnd, lognstat edition, John Wiley and Sons, 1993, pp. 102-105.

Purpose
Syntax

Description

See Also logncdf, lognfit, logninv, lognpdf, lognrnd

## lognpdf

## Purpose Lognormal probability density function (pdf)

## Syntax <br> $Y=$ lognpdf( $X, M U$, SIGMA $)$

Description

Example

## Reference

See Also logncdf, logninv, lognrnd, lognstat, pdf

Purpose
Syntax $\quad \begin{aligned} R & =\operatorname{lognrnd}(M U, \text { SIGMA }) \\ R & =\operatorname{lognrnd}(M U, \text { SIGMA, } v) \\ R & =\log n r n d(M U, \text { SIGMA, } m, n)\end{aligned}$
Description

## Example

```
R = lognrnd(MU,SIGMA)
R = lognrnd(MU,SIGMA,m,n)
``` dimensions as the other input. array. dimensions of \(R\).

\section*{Reproducing the Output of lognrnd} answer shown here.
\[
r=\operatorname{lognrnd}(0,1,4,3)
\]

Random matrices from the lognormal distribution
\(R=\) lognrnd(MU,SIGMA) generates lognormal random numbers with parameters MU and SIGMA. MU and SIGMA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for MU or SIGMA is expanded to a constant array with the same
\(R=\) lognrnd(MU,SIGMA, v) generates lognormal random numbers with parameters MU and SIGMA, where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional
\(R=\) lognrnd(MU,SIGMA, \(m, n\) ) generates lognormal random numbers with parameters MU and SIGMA, where scalars \(m\) and \(n\) are the row and column
lognrnd uses the MATLAB function randn to generate random numbers. When you call lognrnd, you change the current state of randn, and thereby alter the output of subsequent calls to lognrnd or any other functions that depend on randn. If you want to reproduce the output of lognrnd, reset the state of randn to the same fixed value each time you call lognrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The result in the following example depends on the current state of randn. If you run the code in this example, your results might differ from the

\section*{lognrnd}
\begin{tabular}{llll} 
& \(r=\) & \\
3.2058 & 0.4983 & 1.3022 \\
1.8717 & 5.4529 & 2.3909 \\
1.0780 & 1.0608 & 0.2355 \\
1.4213 & 6.0320 & 0.4960
\end{tabular}

Purpose

\section*{Syntax}

Description

Mean and variance for the lognormal distribution
```

[M,V] = lognstat(MU,SIGMA)

```
[M,V] = lognstat(MU,SIGMA) returns the mean and variance of the lognormal distribution with parameters MU and SIGMA. MU and SIGMA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(M\) and \(V\). A scalar input for MU or SIGMA is expanded to a constant array with the same dimensions as the other input.

The mean of the lognormal distribution with parameters \(\mu\) and \(\sigma\) is
\[
e^{\left(\mu+\frac{\sigma^{2}}{2}\right)}
\]
and the variance is
\[
e^{\left(2 \mu+2 \sigma^{2}\right)}-e^{\left(2 \mu+\sigma^{2}\right)}
\]

\section*{Example}
\[
[\mathrm{m}, \mathrm{v}]=\operatorname{lognstat}(0,1)
\]
\[
m=
\]
\[
1.6487
\]
\[
v=
\]
\[
4.6708
\]

\section*{Reference}

See Also
[1] Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of Statistics, 3rd edition, McGraw-Hill 1974, pp. 540-541.
logncdf, logninv, lognrnd, lognrnd

\section*{Isline}

Purpose Least squares fit line(s)
\begin{tabular}{ll} 
Syntax & lsline \\
& \(h=\) lsline
\end{tabular}

Description
lsline superimposes the least squares line on each line object in the current axes (except LineStyles '-','--', '- ' \()\).
\(\mathrm{h}=\) lsline returns the handles to the line objects.

\section*{Example}
```

y = [2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
plot(y,'+');
lsline;

```


See Also
polyfit, polyval

Purpose
Mean or median absolute deviation (MAD) of a sample of data

\section*{Syntax}
\[
\begin{aligned}
& y=\operatorname{mad}(X) \\
& y=\operatorname{mad}(X, \operatorname{dim}) \\
& y=\operatorname{mad}(X, f l a g, \operatorname{dim})
\end{aligned}
\]

\section*{Remarks}

\section*{Examples}
\(y=\operatorname{mad}(X)\) returns the mean absolute deviation of the values in \(X\). For vector input, \(y\) is mean (abs \((X\) - mean \((X))\). For a matrix input, \(y\) is a row vector containing the mean absolute deviation of each column of \(X\). For N-dimensional arrays, mad operates along the first nonsingleton dimension of \(X\).
\(Y=\operatorname{mad}(X, 1)\) computes \(Y\) based on medians, that is, median(abs(X-median(X)).
\(Y=\operatorname{mad}(X, 0)\) is the same as mad \((X)\), and uses means.
\(\operatorname{mad}(X, f l a g, d i m)\) takes the MAD along dimension \(\operatorname{dim}\) of \(X\).
mad treats NaNs as missing values and removes them.
The MAD is less efficient than the standard deviation as an estimate of the spread when all the data is from the normal distribution.

For normal data, multiply the MAD by 1.3 as a robust estimate of \(\sigma\) (the scale parameter of the normal distribution).

Note The default version of MAD, based on means, is also commonly referred to as the average absolute deviation (AAD).

This example shows a Monte Carlo simulation of the relative efficiency of the MAD to the sample standard deviation for normal data.
```

x = normrnd(0,1,100,100);
s = std(x);
s_MAD = 1.3 * mad(x);
efficiency = (norm(s - 1)./norm(s_MAD - 1)).^2
efficiency =

```
0.5972
\begin{tabular}{ll} 
Reference & [1] Sachs, L., Applied Statistics: A Handbook of Techniques, Springer-Verlag, \\
1984, p. 253.
\end{tabular}

Purpose

\section*{Syntax}

Description

Mahalanobis distance
\(d=\operatorname{mahal}(Y, X)\)
mahal \((\mathrm{Y}, \mathrm{X})\) computes the Mahalanobis distance (in squared units) of each point (row) of the matrix \(Y\) from the sample in the matrix \(X\).

The number of columns of \(Y\) must equal the number of columns in \(X\), but the number of rows may differ. The number of rows in \(X\) must exceed the number of columns.

The Mahalanobis distance is a multivariate measure of the separation of a data set from a point in space. It is the criterion minimized in linear discriminant analysis.

\section*{Example \\ The Mahalanobis distance of a matrix \(r\) when applied to itself is a way to find outliers.}
```

r = mvnrnd([0 0],[1 0.9;0.9 1],100);
r = [r;10 10];
d = mahal(r,r);
last6 = d(96:101)
last6 =

```
    1.1036
    2.2353
    2.0219
    0.3876
    1.5571
    52.7381

The last element is clearly an outlier.

\section*{See Also \\ classify}

Purpose
One-way Multivariate Analysis of Variance (MANOVA)

\author{
Syntax \\ Description
}
```

d = manova1(X,group)
d = manova1(X,group,alpha)
[d,p] = manova1(...)
[d,p,stats] = manova1(...)

```
d = manova1 (X, group) performs a one-way Multivariate Analysis of Variance
(MANOVA) for comparing the multivariate means of the columns of \(X\), grouped by group. X is an \(m\)-by- \(n\) matrix of data values, and each row is a vector of measurements on \(n\) variables for a single observation. group is a grouping variable defined as a vector, string array, or cell array of strings. Two observations are in the same group if they have the same value in the group array. The observations in each group represent a sample from a population.

The function returns \(d\), an estimate of the dimension of the space containing the group means. manova1 tests the null hypothesis that the means of each group are the same \(n\)-dimensional multivariate vector, and that any difference observed in the sample \(X\) is due to random chance. If \(d=0\), there is no evidence to reject that hypothesis. If \(d=1\), then you can reject the null hypothesis at the \(5 \%\) level, but you cannot reject the hypothesis that the multivariate means lie on the same line. Similarly, if d \(=2\) the multivariate means may lie on the same plane in \(n\)-dimensional space, but not on the same line.
d = manova1(X, group, alpha) gives control of the significance level, alpha. The return value \(d\) will be the smallest dimension having \(p>\) alpha, where \(p\) is a \(p\)-value for testing whether the means lie in a space of that dimension.
[ \(d, p\) ] = manova1(...) also returns a \(p\), a vector of \(p\)-values for testing whether the means lie in a space of dimension 0,1 , and so on. The largest possible dimension is either the dimension of the space, or one less than the number of groups. There is one element of \(p\) for each dimension up to, but not including, the largest.

If the \(i\) th \(p\)-value is near zero, this casts doubt on the hypothesis that the group means lie on a space of \(i-1\) dimensions. The choice of a critical p-value to determine whether the result is judged "statistically significant" is left to the researcher and is specified by the value of the input argument alpha. It is common to declare a result significant if the p-value is less than 0.05 or 0.01 .
[d,p,stats] = manova1(...) also returns stats, a structure containing additional MANOVA results. The structure contains the following fields.
\begin{tabular}{|c|c|}
\hline Field & Contents \\
\hline W & Within-groups sum of squares and cross-products matrix \\
\hline B & Between-groups sum of squares and cross-products matrix \\
\hline T & Total sum of squares and cross-products matrix \\
\hline \(d f W\) & Degrees of freedom for \(W\) \\
\hline \(d f B\) & Degrees of freedom for B \\
\hline dft & Degrees of freedom for \(T\) \\
\hline lambda & Vector of values of Wilk's lambda test statistic for testing whether the means have dimension 0,1 , etc. \\
\hline chisq & Transformation of lambda to an approximate chi-square distribution \\
\hline chisqdf & Degrees of freedom for chisq \\
\hline eigenval & Eigenvalues of \(W^{-1} B\) \\
\hline eigenvec & Eigenvectors of \(W^{-1} B\); these are the coefficients for the canonical variables C , and they are scaled so the within-group variance of the canonical variables is 1 \\
\hline canon & Canonical variables C, equal to \(\mathrm{XC*}\) eigenvec, where XC is X with columns centered by subtracting their means \\
\hline mdist & A vector of Mahalanobis distances from each point to the mean of its group \\
\hline gmdist & A matrix of Mahalanobis distances between each pair of group means \\
\hline
\end{tabular}

The canonical variables C are linear combinations of the original variables, chosen to maximize the separation between groups. Specifically, C ( \(:, 1\) ) is the linear combination of the \(X\) columns that has the maximum separation between groups. This means that among all possible linear combinations, it is the one with the most significant F statistic in a one-way analysis of variance.
\(C(:, 2)\) has the maximum separation subject to it being orthogonal to \(C(:, 1)\), and so on.

You may find it useful to use the outputs from manova1 along with other functions to supplement your analysis. For example, you may want to start with a grouped scatter plot matrix of the original variables using gplotmatrix. You can use gscatter to visualize the group separation using the first two canonical variables. You can use manovacluster to graph a dendrogram showing the clusters among the group means.

\section*{Assumptions}

The MANOVA test makes the following assumptions about the data in X :
- The populations for each group are normally distributed.
- The variance-covariance matrix is the same for each population.
- All observations are mutually independent.

\section*{Example}

References
you can use manova1 to determine whether there are differences in the averages of four car characteristics, among groups defined by the country where the cars were made.
```

load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],Origin)
d =
3
p =
0
0.0000
0.0075
0.1934

```

There are four dimensions in the input matrix, so the group means must lie in a four-dimensional space. manova1 shows that you cannot reject the hypothesis that the means lie in a three-dimensional subspace.
[1] Krzanowski, W. J., Principles of Multivariate Analysis. Oxford University Press, 1988.

\author{
See Also \\ anova1, canoncorr, gscatter, gplotmatrix, manovacluster
}

Purpose
Plot dendrogram showing group mean clusters after MANOVA

\section*{Syntax}

Description

\section*{Example}
```

manovacluster(stats)
manovacluster(stats,'method')
H = manovacluster(stats)

```
manovacluster(stats) generates a dendrogram plot of the group means after a multivariate analysis of variance (MANOVA). stats is the output stats structure from manova1. The clusters are computed by applying the single linkage method to the matrix of Mahalanobis distances between group means.

See dendrogram for more information on the graphical output from this function. The dendrogram is most useful when the number of groups is large.
manovacluster(stats, 'method') uses the specified method in place of single linkage. 'method' can be any of the following character strings that identify ways to create the cluster hierarchy. See linkage for further explanation.
\begin{tabular}{ll} 
'single' & Shortest distance (default) \\
'complete' & Largest distance \\
'average ' & Average distance \\
'centroid' & Centroid distance \\
'ward' & Incremental sum of squares
\end{tabular}

H = manovacluster(stats,'method') returns a vector of handles to the lines in the figure.

Let's analyze the larger car data set to determine which countries produce cars with the most similar characteristics.
```

load carbig
X = [MPG Acceleration Weight Displacement];
[d,p,stats] = manova1(X,Origin);
manovacluster(stats)

```


See Also cluster, dendrogram, linkage, manova1

\section*{Purpose \(\quad\) Nonmetric and metric multidimensional scaling}
```

Syntax Y = mdscale(D, p)
[Y, stress] = mdscale(D, p)
[...] = mdscale(..., 'param1', val1, 'param2', val2, ...)

```

Description \(\quad Y=\) mdscale \((D, p)\) performs non-metric multidimensional scaling on the \(n\)-by- \(n\) dissimilarity matrix D , and returns Y , a configuration of \(n\) points (rows) in \(p\) dimensions (columns). The Euclidean distances between points in \(Y\) approximate a monotonic transformation of the corresponding dissimilarities in D. By default, mdscale uses Kruskal's normalized stress1 criterion.

You can specify D as either a full \(n\)-by- \(n\) matrix, or in upper triangle form such as is output by pdist. A full dissimilarity matrix must be real and symmetric, and have zeros along the diagonal and non-negative elements everywhere else. A dissimilarity matrix in upper triangle form must have real, non-negative entries. mdscale treats NaNs in D as missing values, and ignores those elements. Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the diagonal and all other elements less than one. mdscale transforms a similarity matrix to a dissimilarity matrix in such a way that distances between the points returned in Y approximate sqrt ( \(1-\mathrm{D}\) ). To use a different transformation, transform the similarities prior to calling mdscale.
[ Y , stress] = mdscale( \(\mathrm{D}, \mathrm{p}\) ) returns the minimized stress, i.e., the stress evaluated at Y .
[ \(Y\), stress, disparities] = mdscale( \(\mathrm{D}, \mathrm{p}\) ) returns the disparities, that is, the monotonic transformation of the dissimilarities \(D\).
[...] = mdscale(..., 'param1', val1, 'param2', val2, ...) enables you to specify optional parameter name/value pairs that control further details of mdscale. The parameters are
- 'Criterion' - The goodness-of-fit criterion to minimize. This also determines the type of scaling, either non-metric or metric, that mdscale performs. Choices for non-metric scaling are:
- 'stress' - Stress normalized by the sum of squares of the interpoint distances, also known as stress1. This is the default.
- 'sstress ' - Squared stress, normalized with the sum of 4th powers of the interpoint distances.
Choices for metric scaling are:
- 'metricstress' - Stress, normalized with the sum of squares of the dissimilarities.
- 'metricsstress' - Squared stress, normalized with the sum of 4th powers of the dissimilarities.
- 'sammon ' - Sammon's nonlinear mapping criterion. Off-diagonal dissimilarities must be strictly positive with this criterion.
- 'strain' - A criterion equivalent to that used in classical multidimensional scaling.
- 'Weights ' - A matrix or vector the same size as D, containing nonnegative dissimilarity weights. You can use these to weight the contribution of the corresponding elements of D in computing and minimizing stress. Elements of \(D\) corresponding to zero weights are effectively ignored.
- 'Start' - Method used to choose the initial configuration of points for Y. The choices are
- 'cmdscale' - Use the classical multidimensional scaling solution. This is the default. 'cmdscale' is not valid when there are zero weights.
- 'random' - Choose locations randomly from an appropriately scaled p-dimensional normal distribution with uncorrelated coordinates.
- An \(n\)-by-p matrix of initial locations, where n is the size of the matrix D and \(p\) is the number of columns of the output matrix \(Y\). In this case, you can pass in [] for \(p\) and mdscale infers \(p\) from the second dimension of the matrix. You can also supply a three-dimensional array, implying a value for 'Replicates' from the array's third dimension.
- 'Replicates ' - Number of times to repeat the scaling, each with a new initial configuration. The default is 1 .
- 'Options ' - Options for the iterative algorithm used to minimize the fitting criterion. Pass in an options structure created by statset. For example, opts = statset('param1', val1, 'param2', val2, ...);
[...] = mdscale(..., 'Options', opts)

The choices of statset parameters are
- 'Display ' Level of display output. The choices are 'off' (the default), 'iter', and 'final'.
- 'MaxIter' - Maximum number of iterations allowed. The default is 200.
- 'TolFun' - Termination tolerance for the stress criterion and its gradient. The default is \(1 \mathrm{e}-4\).
- 'TolX' - Termination tolerance for the configuration location step size. The default is 1e-4.

\section*{Example}
```

% Generate some 4D data, and create a dissimilarity matrix.
load cereal.mat
X = [Calories Protein Fat Sodium Fiber Carbo Sugars Shelf ...
Potass Vitamins];
X = X(strmatch('K',Mfg),:); % take a subset from a single
% manufacturer
dissimilarities = pdist(X);
% Use non-metric scaling to recreate the data in 2D, and make a
% Shepard plot of the results.
[Y,stress,disparities] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord), disparities(ord),'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'}, 'Location','NorthWest');
% Do metric scaling on the same dissimilarities.
[Y,stress] = ...
mdscale(dissimilarities,2,'criterion','metricsstress');
distances = pdist(Y);
plot(dissimilarities,distances,'bo', ...
[0 max(dissimilarities)],[0 max(dissimilarities)],'k:');
xlabel('Dissimilarities'); ylabel('Distances')

```

See Also cmdscale, pdist, statset

\section*{Purpose \\ Average or mean value of vectors and matrices}

\section*{Syntax}

Description

\section*{Example}

See Also
\(\mathrm{m}=\) mean \((\mathrm{X})\)
\(m=\operatorname{mean}(X, d i m)\)
\(m=\) mean \((X)\) calculates the sample average
\[
\bar{x}_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i j}
\]

For vectors, mean ( \(x\) ) is the mean value of the elements in vector \(x\). For matrices, mean \((X)\) is a row vector containing the mean value of each column.
\(m=\) mean( \(X\), dim) returns the mean values for elements along the dimension of \(X\) specified by scalar dim. For matrices, mean \((X, 2)\) is a column vector containing the mean value of each row. The default of dim is 1.

The mean function is part of the standard MATLAB language.
These commands generate five samples of 100 normal random numbers with mean, zero, and standard deviation, one. The sample averages in xbar are much less variable ( \(0.00 \pm 0.10\) ).
```

x = normrnd(0,1,100,5);
xbar = mean(x)
xbar =
0.0727 0.0264 0.0351 0.0424 0.0752

```
median, std, cov, corrcoef, var

\section*{Purpose Median value of vectors and matrices}

\section*{Syntax m = median \((X)\)}

Description

\section*{Examples}
```

xodd = 1:5;
modd = median(xodd)
modd =
3
xeven = 1:4;
meven = median(xeven)
meven =
2.5000

```

This example shows robustness of the median to outliers.
```

xoutlier = [(1:4) 10000];
moutlier = median(xoutlier)
moutlier =
3

```

\section*{See Also}
mean, std, cov, corrcoef

Purpose
Maximum likelihood estimation
Syntax

\section*{Description}
```

phat = mle(data)
[phat, pci] = mle(data)
[...] = mle(data,'distribution', dist)
[...] = mle(data, ..., 'name1', value1, 'name2', value2,...)
[...] = mle(data, 'pdf', pdf, 'cdf', cdf, 'start', start,...)
[...] = mle(data, 'logpdf' logpdf, 'logsf', logsf, ...
'start', start,...)
[...] = mle(data, 'nloglf', nloglf, 'start', start,...)

```
phat \(=\) mle(data) returns maximum likelihood estimates (MLEs) for the parameters of a normal distribution, computed using the sample data in the vector data.
[phat, pci] = mle(data) returns MLEs and 95\% confidence intervals for the parameters.
[...] = mle(data,'distribution', dist) computes parameter estimates for the distribution specified by dist. dist is a character string containing the name of one of the distributions supported by mle.
[...] = mle(data, ..., 'name1', value1, 'name2', value2,...) specifies optional argument name/value pairs chosen from the following list, in which argument names are case insensitive and partial matches are allowed.
\begin{tabular}{ll}
\hline Name & Value \\
\hline 'censoring ' & \begin{tabular}{l} 
A boolean vector of the same size as data, containing ones \\
when the corresponding elements of data are \\
right-censored observations and zeros when the \\
corresponding elements are exact observations. The \\
default is that all observations are observed exactly. \\
Censoring is not supported for all distributions.
\end{tabular} \\
'frequency ' & \begin{tabular}{l} 
A vector of the same size as data, containing non-negative \\
integer frequencies for the corresponding elements in \\
data. The default is one observation per element of data.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Name & Value \\
\hline ' alpha' & \begin{tabular}{l} 
A value between 0 and 1 specifying a confidence level of \\
\(100(1-\) alpha) \% for pci. The default is 0.05 for 95\% \\
confidence.
\end{tabular} \\
\hline 'ntrials' & \begin{tabular}{l} 
A scalar, or a vector of the same size as data, containing \\
the total number of trials for the corresponding element of \\
data. Applies only to the binomial distribution.
\end{tabular} \\
\hline 'options ' & \begin{tabular}{l} 
A structure created by a call to statset, containing \\
numerical options for the fitting algorithm. Not applicable \\
to all distributions.
\end{tabular} \\
\hline
\end{tabular}

The following table lists the distributions that you can use for the input argument 'distribution'. Arguments are not case sensitive and partial matches are accepted.
\begin{tabular}{l|l}
\hline Distribution & Value of 'dist' \\
\hline Beta & 'Beta' \\
\hline Bernoulli & 'Bernoulli' \\
\hline Binomial & 'binomial' \\
\hline Discrete uniform & 'Discrete uniform' \\
\hline Exponential & 'Exponential' \\
\hline Extreme value & 'Extreme Value' \\
\hline Gamma & 'Gamma' \\
\hline Geometric & 'Geometric' \\
\hline Log normal & 'lognormal' \\
\hline Negative binomial & 'negative binomial' \\
\hline Normal & 'Normal' \\
\hline Poisson & 'Poisson' \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Distribution & Value of 'dist' \\
\hline Rayleigh & 'Rayleigh' \\
\hline Uniform & 'Uniform' \\
\hline Weibull & 'Weibull' \\
\hline
\end{tabular}
mle can also fit a custom distribution that you define using distribution functions, in one of three ways.
[...] = mle(data, 'pdf', pdf, 'cdf', cdf, 'start', start,...) returns MLEs for the parameters of the distribution defined by the probability density and cumulative distribution functions pdf and cdf. pdf and cdf are function handles created using the @ sign. They accept as inputs a vector data and one or more individual distribution parameters, and return vectors of probability density values and cumulative probability values, respectively. If the ' censoring ' name/value pair is not present, you can omit the 'cdf' name/value pair. mle computes the estimates by numerically maximizing the distribution's log-likelihood, and start is a vector containing initial values for the parameters.
[...] = mle(data, 'logpdf' logpdf, 'logsf', logsf, 'start', start, . . . ) returns MLEs for the parameters of the distribution defined by the \(\log\) probability density and \(\log\) survival functions logpdf and logsf. logpdf and logsf are function handles created using the @ sign. They accept as inputs a vector data and one or more individual distribution parameters, and return vectors of logged probability density values and logged survival function values, respectively. This form is sometimes more robust to the choice of starting point than using pdf and cdf functions. If the 'censoring' name/value pair is not present, you can omit the 'logsf' name/value pair. start is a vector containing initial values for the distribution's parameters.
[...] = mle(data, 'nloglf', nloglf, 'start', start,...) returns MLEs for the parameters of the distribution whose negative log-likelihood is given by nloglf. nloglf is a function handle, specified using the @ sign, that accepts the four input arguments:
- params - a vector of distribution parameter values
- data - a vector of data
- cens - a boolean vector of censoring values
- freq-a vector of integer data frequencies
nloglf must accept all four arguments even if you do not supply the 'censoring' or 'frequency ' name/value pairs (see above). However, nloglf can safely ignore its cens and freq arguments in that case. nloglf returns a scalar negative log-likelihood value and, optionally, a negative log-likelihood gradient vector (see the 'GradObj' statset parameter below). start is a vector containing initial values for the distribution's parameters.
pdf, cdf, logpdf, logsf, or nloglf can also be cell arrays whose first element is a function handle as defined above, and whose remaining elements are additional arguments to the function. mle places these arguments at the end of the argument list in the function call.

The following optional argument name/value pairs are valid only when 'pdf ' and 'cdf', 'logpdf' and 'logcdf', or 'nloglf' are given:
- ' lowerbound ' - A vector the same size as start containing lower bounds for the distribution parameters. The default is - Inf.
- 'upperbound ' - A vector the same size as start containing upper bounds for the distribution parameters. The default is Inf.
- 'optimfun' - A string, either 'fminsearch' or 'fmincon', naming the optimization function to be used in maximizing the likelihood. The default is 'fminsearch'. You can only specify 'fmincon' if the Optimization Toolbox is available.

When fitting a custom distribution, use the 'options ' parameter to control details of the maximum likelihood optimization. See statset('mlecustom')
for parameter names and default values. mle interprets the following statset parameters for custom distribution fitting as follows:
\begin{tabular}{ll}
\hline Parameter & Value \\
\hline 'GradObj ' & \begin{tabular}{l} 
'on' or ' off ', indicating whether or not fmincon can \\
expect the function provided with the ' nloglf' \\
name/value pair to return the gradient vector of the \\
negative log-likelihood as a second output. The default is \\
'off'. Ignored when using fminsearch.
\end{tabular} \\
\hline 'DerivStep' & \begin{tabular}{l} 
The relative difference used in finite difference derivative \\
approximations when using fmincon, and 'Grad0bj ' is \\
'off'. 'DerivStep' can be a scalar, or the same size as \\
'start'. The default is eps^(1/3). Ignored when using \\
fminsearch.
\end{tabular} \\
\hline 'FunValCheck' & \begin{tabular}{l} 
'on' or 'off ', indicating whether or not mle should check \\
the values returned by the custom distribution functions \\
for validity. The default is 'on'. A poor choice of starting \\
point can sometimes cause these functions to return NaNs, \\
infinite values, or out of range values if they are written \\
without suitable error-checking.
\end{tabular} \\
\hline 'TolBnd' & \begin{tabular}{l} 
An offset for upper and lower bounds when using \\
fmincon. mle treats upper and lower bounds as strict \\
inequalities (i.e., open bounds). With fmincon, this is \\
approximated by creating closed bounds inset from the
\end{tabular} \\
specified upper and lower bounds by TolBnd. The default \\
is 1e-6.
\end{tabular}

\section*{Example}
rv = binornd(20,0.75)
rv =
16
[p,pci] = mle('binomial',rv,0.05,20)
\(p=\)
0.8000
pci \(=\)
0.5634
\[
0.9427
\]

\section*{See Also}
betafit, binofit, evfit, expfit, gamfit, lognfit, nbinfit, normfit, mlecov, poissfit, raylfit, statset, unifit, wblfit

\section*{Purpose}

Syntax

\section*{Description}

Asymptotic covariance matrix of maximum likelihood estimators
```

ACOV = mlecov(params, data, ...)
ACOV = mlecov(params, DATA, 'pdf',PDF, 'cdf', CDF)
ACOV = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf)
ACOV = mlecov(params, data, 'nloglf', nloglf)
[...] = mlecov(params, data, ..., 'parm1', val1, 'parm2', val2, ...)

```

ACOV = mlecov(params, data, ...) returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters for a specified distribution. The following paragraphs describe how to specify the distribution. mlecov computes a finite difference approximation to the hessian of the log-likelihood at the maximum likelihood estimates params, given the observed data, and returns the negative inverse of that hessian. ACOV is a \(p\)-by- \(p\) matrix, where \(p\) is the number of elements in params.

You must specify a distribution after the input argument data, as follows.
ACOV = mlecov(params, data, 'pdf', pdf, 'cdf', cdf) enables you to define a distribution by its probability density and cumulative distribution functions, pdf and cdf, respectively. pdf and cdf are function handles that you create using the @ sign. They accept a vector of data and one or more individual distribution parameters as inputs and return vectors of probability density function values and cumulative distribution values, respectively. If the ' censoring' name/value pair (see below) is not present, you can omit the 'cdf' name/value pair.

ACOV = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf) enables you to define a distribution by its log probability density and log survival functions, logpdf and logsf, respectively. logpdf and logsf are function handles that you create using the @ sign. They accept as inputs a vector of data and one or more individual distribution parameters, and return vectors of logged probability density values and logged survival function values, respectively. If the ' censoring ' name/value pair (see below) is not present, you can omit the 'logsf' name/value pair.

ACOV = mlecov(params, data, 'nloglf', nloglf) enables you to define a distribution by its log-likelihood function. nloglf is a function handle, specified using the @ sign, that accepts the following four input arguments:
- params - Vector of distribution parameter values
- data - Vector of data
- cens - Boolean vector of censoring values
- freq - Vector of integer data frequencies
nloglf must accept all four arguments even if you do not supply the 'censoring' or 'frequency' name/value pairs (see below). However, nloglf can safely ignore its cens and freq arguments in that case. nloglf returns a scalar negative log-likelihood value and, optionally, the negative log-likelihood gradient vector (see the 'gradient' name/value pair below).
pdf, cdf, logpdf, logsf, and nloglf can also be cell arrays whose first element is a function handle, as defined above, and whose remaining elements are additional arguments to the function. mle places these arguments at the end of the argument list, in the function call. [...] = mlecov (params, data, ..., 'parm1', val1, 'parm2', val2, ...) specifies optional argument name/value pairs chosen from the following:
\begin{tabular}{l|l} 
Name & Value \\
\hline ' censoring ' & \begin{tabular}{l} 
Boolean vector of the same size as data, containing 1's when \\
the corresponding elements of data are right-censored \\
observations and 0's when the corresponding elements are \\
exact observations. The default is that all observations are \\
observed exactly. Censoring is not supported for all \\
distributions.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|}
\hline Name & Value \\
\hline 'frequency ' & A vector of the same size as data containing nonnegative frequencies for the corresponding elements in data. The default is one observation per element of data. \\
\hline 'options' & \begin{tabular}{l}
A structure opts containing numerical options for the finite difference Hessian calculation. You create opts by calling statset. The applicable statset parameters are: \\
- 'GradObj'- 'on' or 'off', indicating whether or not the function provided with the 'nloglf' name/value pair can return the gradient vector of the negative log-likelihood as its second output. The default is 'off '. \\
- 'DerivStep' - Relative step size used in finite difference for Hessian calculations. Can be a scalar, or the same size as params. The default is \(\mathrm{eps}^{\wedge}(1 / 4)\). A smaller value might be appropriate if 'GradObj' is 'on'.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

% Fit a beta distribution to some simulated data, and compute the
% approximate covariance matrix of the parameter estimates.
x = betarnd(1.23, 3.45, 25, 1);
phat = mle(x, 'dist','beta')
acov = mlecov(phat, x, 'logpdf',@betalogpdf)
function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)* 另(x) + (b-1)*log(1-x) - betaln(a,b);

```

\section*{See Also mle}
Purpose Central moment of all orders
Syntax \(\quad\)\begin{tabular}{rl}
\(m\) & \(=\operatorname{moment}(X\), order \()\) \\
\(m\) & \(=\operatorname{moment}(X\), order, \(\operatorname{dim})\)
\end{tabular}

Description

\section*{Remarks}

\section*{Example}

\section*{See Also}
\(m=\) moment ( \(X\), order) returns the central sample moment of \(X\) specified by the positive integer order. For vectors, moment ( \(x\), order) returns the central moment of the specified order for the elements of \(x\). For matrices, moment ( X , order) returns central moment of the specified order for each column. For N-dimensional arrays, moment operates along the first nonsingleton dimension of X .
moment ( X , order, dim) takes the moment along dimension dim of X .
Note that the central first moment is zero, and the second central moment is the variance computed using a divisor of \(n\) rather than \(n-1\), where \(n\) is the length of the vector x or the number of rows in the matrix X .

The central moment of order \(k\) of a distribution is defined as
\[
m_{n}=E(x-\mu)^{k}
\]
where \(E(x)\) is the expected value of \(x\).
```

X = randn([6 5])
X =
1.1650
0.6268 1.7971 -0.6390 0.9846 0.5135
0.0751 0.2641 0.5774 -0.0449 0.3967
0.3516 0.8717 -0.3600 -0.7989 0.7562
-0.6965 -1.4462 -0.1356 -0.7652 0.4005
1.6961 -0.7012 -1.3493 0.8617
m = moment(X,3)
m =
-0.0282 0.0571 0.1253 0.1460 -0.4486

```
kurtosis, mean, skewness, std, var

\section*{Purpose}

Multiple comparison test of means or other estimates
Syntax
```

c = multcompare(stats)
c = multcompare(stats, param1, val1, param2, val2,...)
[c,m] = multcompare(...)
[c,m,h] = multcompare(...)
[c,m,h,gnames] = multcompare(...)

```

\section*{Description}
c = multcompare(stats) performs a multiple comparison test using the
information in the stats structure, and returns a matrix c of pairwise comparison results. It also displays an interactive graph of the estimates with comparison intervals around them. See "Examples" on page 12-332.

In a one-way analysis of variance, you compare the means of several groups to test the hypothesis that they are all the same, against the general alternative that they are not all the same. Sometimes this alternative may be too general. You may need information about which pairs of means are significantly different, and which are not. A test that can provide such information is called a "multiple comparison procedure."

When you perform a simple t-test of one group mean against another, you specify a significance level that determines the cutoff value of the \(t\) statistic. For example, you can specify the value alpha \(=0.05\) to insure that when there is no real difference, you will incorrectly find a significant difference no more than \(5 \%\) of the time. When there are many group means, there are also many pairs to compare. If you applied an ordinary t-test in this situation, the alpha value would apply to each comparison, so the chance of incorrectly finding a significant difference would increase with the number of comparisons. Multiple comparison procedures are designed to provide an upper bound on the probability that any comparison will be incorrectly found significant.

The output c contains the results of the test in the form of a five-column matrix. Each row of the matrix represents one test, and there is one row for each pair of groups. The entries in the row indicate the means being compared, the estimated difference in means, and a confidence interval for the difference.

For example, suppose one row contains the following entries.
\[
\begin{array}{lllll}
2.0000 & 5.0000 & 1.9442 & 8.2206 & 14.4971
\end{array}
\]

These numbers indicate that the mean of group 2 minus the mean of group 5 is estimated to be 8.2206, and a \(95 \%\) confidence interval for the true mean is [1.9442, 14.4971].

In this example the confidence interval does not contain 0.0 , so the difference is significant at the 0.05 level. If the confidence interval did contain 0.0 , the difference would not be significant at the 0.05 level.

The multcompare function also displays a graph with each group mean represented by a symbol and an interval around the symbol. Two means are significantly different if their intervals are disjoint, and are not significantly different if their intervals overlap. You can use the mouse to select any group, and the graph will highlight any other groups that are significantly different from it.
c = multcompare(stats, param1, val1, param2, val2,...) specifies one or more of the parameter name/value pairs described in the following table.
\begin{tabular}{l|l}
\hline Parameter Name & Parameter Values \\
\hline ' alpha' & \begin{tabular}{l} 
Scalar between 0 and 1 that determines the \\
confidence levels of the intervals in the matrix c and \\
in the figure (default is 0.05). The confidence level is \\
\(100(1-\) alpha) \%.
\end{tabular} \\
\hline 'displayopt ' & \begin{tabular}{l} 
Either 'on' (the default) to display a graph of the \\
estimates with comparison intervals around them, or \\
'off' to omit the graph. See "Examples" on \\
page 12-332.
\end{tabular} \\
\hline 'ctype' & \begin{tabular}{l} 
Specifies the type of critical value to use for the \\
multiple comparison. "Values of ctype" on \\
page 12-330 describes the allowed values for \\
'ctype '.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter Name & Parameter Values \\
\hline 'dimension' & \begin{tabular}{l} 
A vector specifying the dimension or dimensions over \\
which the population marginal means are to be \\
calculated. Use only if you create stats with the \\
function anovan. The default is 1 to compute over the \\
first dimension. See "dimension Parameter" on \\
page 12-331 for more information.
\end{tabular} \\
\hline 'estimate' & \begin{tabular}{l} 
Specifies the estimate to be compared. The allowable \\
values of estimate depend on the function that was \\
the source of the stats structure, as described in \\
"Values of estimate" on page 12-331
\end{tabular} \\
\hline
\end{tabular}
[ \(\mathrm{c}, \mathrm{m}]=\) multcompare (...) returns an additional matrix m . The first column of \(m\) contains the estimated values of the means (or whatever statistics are being compared) for each group, and the second column contains their standard errors.
[ \(\mathrm{c}, \mathrm{m}, \mathrm{h}\) ] = multcompare (...) returns a handle h to the comparison graph. Note that the title of this graph contains instructions for interacting with the graph, and the \(x\)-axis label contains information about which means are significantly different from the selected mean. If you plan to use this graph for presentation, you may want to omit the title and the \(x\)-axis label. You can remove them using interactive features of the graph window, or you can use the following commands.
```

title('')
xlabel('')

```
[ \(\mathrm{c}, \mathrm{m}, \mathrm{h}\), gnames] = multcompare(...) returns gnames, a cell array with one row for each group, containing the names of the groups.

\section*{Values of ctype}

The following table describes the allowed values for the parameter 'ctype'.
\begin{tabular}{ll}
\hline Values 'ctype' & Meaning \\
\hline \begin{tabular}{l} 
'hsd ' or \\
'tukey-kramer'
\end{tabular} & \begin{tabular}{l} 
Use Tukey's honestly significant difference criterion. \\
This is the default, and it is based on the Studentized \\
range distribution. It is optimal for balanced one-way
\end{tabular} \\
& \begin{tabular}{l} 
ANOVA and similar procedures with equal sample \\
sizes. It has been proven to be conservative for one-way \\
ANOVA with different sample sizes. According to the \\
unproven Tukey-Kramer conjecture, it is also accurate \\
for problems where the quantities being compared are \\
correlated, as in analysis of covariance with \\
unbalanced covariate values.
\end{tabular} \\
\hline 'lsd' & \begin{tabular}{l} 
Use Tukey's least significant difference procedure. This \\
procedure is a simple t-test. It is reasonable if the \\
preliminary test (say, the one-way ANOVA F statistic) \\
shows a significant difference. If it is used \\
unconditionally, it provides no protection against
\end{tabular} \\
multiple comparisons.
\end{tabular}

\section*{Values of estimate}

The allowable values of the parameter 'estimate ' depend on the function that was the source of the stats structure, according to the following table.
\begin{tabular}{l|l}
\hline Source & Allowable Values of 'estimate' \\
\hline 'anova1' & Ignored. Always compare the group means. \\
\hline 'anova2' & \begin{tabular}{l} 
Either ' column' (the default) or 'row' to compare \\
column or row means.
\end{tabular} \\
\hline 'anovan' & \begin{tabular}{l} 
Ignored. Always compare the population marginal \\
means as specified by the dim argument.
\end{tabular} \\
\hline 'aoctool' & \begin{tabular}{l} 
Either ' slope ', ' intercept', or ' pmm' to compare \\
slopes, intercepts, or population marginal means. If \\
the analysis of covariance model did not include \\
separate slopes, then 'slope' is not allowed. If it did \\
not include separate intercepts, then no comparisons \\
are possible.
\end{tabular} \\
\hline 'friedman' & \begin{tabular}{l} 
Ignored. Always compare average column ranks.
\end{tabular} \\
\hline 'kruskalwallis' & Ignored. Always compare average group ranks. \\
\hline
\end{tabular}

\section*{dimension Parameter}

The dimension parameter is a vector specifying the dimension or dimensions over which the population marginal means are to be calculated.For example, if \(\operatorname{dim}=1\), the estimates that are compared are the means for each value of the first grouping variable, adjusted by removing effects of the other grouping variables as if the design were balanced. If dim = [lllll \(\left.\begin{array}{ll}1 & 3\end{array}\right]\), population marginal means are computed for each combination of the first and third grouping variables, removing effects of the second grouping variable. If you fit a singular model, some cell means may not be estimable and any population marginal means that depend on those cell means will have the value NaN .

Population marginal means are described by Milliken and Johnson (1992) and by Searle, Speed, and Milliken (1980). The idea behind population marginal means is to remove any effect of an unbalanced design by fixing the values of the factors specified by dim, and averaging out the effects of other factors as if
each factor combination occurred the same number of times. The definition of population marginal means does not depend on the number of observations at each factor combination. For designed experiments where the number of observations at each factor combination has no meaning, population marginal means can be easier to interpret than simple means ignoring other factors. For surveys and other studies where the number of observations at each combination does have meaning, population marginal means may be harder to interpret.

\section*{Examples \\ Example 1}

The following example performs a 1-way analysis of variance (ANOVA) and displays group means with their names.
```

load carsmall
[p,t,st] = anova1(MPG,Origin,'off');
[c,m,h,nms] = multcompare(st,'display','off');
[nms num2cell(m)]
ans =
'USA' [21.1328] [0.8814]
'Japan' [31.8000] [1.8206]
'Germany' [28.4444] [2.3504]
'France' [23.6667] [4.0711]
'Sweden' [22.5000] [4.9860]
'Italy' [28] [7.0513]

```
multcompare also displays the following graph of the estimates with comparison intervals around them.


You can click the graphs of each country to compare its mean to those of other countries.

\section*{Example 2}

The following continues the example described in the anova1 reference page, which is related to testing the material strength in structural beams. From the anova1 output you found significant evidence that the three types of beams are not equivalent in strength. Now you can determine where those differences lie. First you create the data arrays and you perform one-way ANOVA.
```

strength = [$$
\begin{array}{llllllllllllllllllllll}{82}&{86}&{79}&{83}&{84}&{85}&{86}&{87}&{74}&{82}&{78}&{75}&{76}&{77}&{79}&{\ldots}\end{array}
$$]
79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};
[p,a,s] = anova1(strength,alloy);

```

Among the outputs is a structure that you can use as input to multcompare.
```

[c,m,h,nms] = multcompare(s);

```
```

[nms num2cell(c)]
ans =
'st' [1] [2] [3.6064] [7] [10.3936]
'al1' [1] [3] [1.6064] [5] [8.3936]
'al2' [2] [3] [-5.6280] [-2] [1.6280]

```
                            Click on the group you want to test


The third row of the output matrix shows that the differences in strength between the two alloys is not significant. A \(95 \%\) confidence interval for the difference is \([-5.6,1.6]\), so you cannot reject the hypothesis that the true difference is zero.

The first two rows show that both comparisons involving the first group (steel) have confidence intervals that do not include zero. In other words, those differences are significant. The graph shows the same information.

See Also
anova1, anova2, anovan, aoctool, friedman, kruskalwallis
[1] Hochberg, Y., and A. C. Tamhane, Multiple Comparison Procedures, Wiley, 1987.
[2] Milliken, G. A., and D. E. Johnson, Analysis of Messy Data, Volume 1: Designed Experiments, Chapman \& Hall, 1992.
[3] Searle, S. R., F. M. Speed, and G. A. Milliken, "Population marginal means in the linear model: an alternative to least squares means," American Statistician, 1980, pp. 216-221.

\section*{Purpose Multivariate normal probability density function (pdf)}
```

Syntax y = mvnpdf(X)
y = mvnpdf(X,mu)
y = mvnpdf(X,mu,SIGMA)

```

Description \(\quad y=m v n p d f(X)\) returns the \(n\)-by-1 vector \(y\), containing the probability density of the multivariate normal distribution with zero mean and identity covariance matrix, evaluated at each row of the n-by-d matrix \(X\). Rows of \(X\) correspond to observations and columns correspond to variables or coordinates.
\(y=m v n p d f(X, m u)\) returns the density of the multivariate normal distribution with mean mu and identity covariance matrix, evaluated at each row of \(X\). mu is a 1-by-d vector, or an n-by-d matrix. If mu is a matrix, the density is evaluated for each row of \(X\) with the corresponding row of mu. mu can also be a scalar value, which mvnpdf replicates to match the size of \(X\).
\(y=m v n p d f(X, m u\), SIGMA \()\) returns the density of the multivariate normal distribution with mean mu and covariance SIGMA, evaluated at each row of \(X\). SIGMA is a d-by-d matrix, or an d-by-d-by-n array, in which case the density is evaluated for each row of \(X\) with the corresponding page of SIGMA, i.e., mvnpdf computes \(y(i)\) using \(X(i,:)\) and SIGMA(:,:,i). Specify [] for mu to use its default value when you want to specify only SIGMA.

If \(X\) is a 1-by-d vector, mvnpdf replicates it to match the leading dimension of mu or the trailing dimension of SIGMA.

\section*{Example}
```

mu = [1 -1];
Sigma = [.9 .4; .4 .3];
X = mvnrnd(mu,Sigma,10);
p = mvnpdf(X,mu,Sigma);

```

See Also mvnrnd, normpdf

\section*{Purpose \\ Random matrices from the multivariate normal distribution}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=m v n r n d(m u\), SIGMA \()\) \\
\(R\) & \(=\operatorname{mvnrnd}(m u\), SIGMA, cases \()\)
\end{tabular}

Description

\section*{Example}
```

mu = [2 3];
sigma = [1 1.5; 1.5 3];
r = mvnrnd(mu,sigma,100);
plot(r(:,1),r(:,2),'+')

```


See Also
lhsnorm, mvnpdf, normrnd

\section*{Purpose \\ Random matrices from the multivariate \(t\) distribution}
\[
\text { Syntax } \quad r=\text { mvtrnd }(C, d f, \text { cases })
\]

Description
\(r=m v t r n d(C, d f\), cases \()\) returns a matrix of random numbers chosen from the multivariate \(t\) distribution, where C is a correlation matrix. df is the degrees of freedom and is either a scalar or is a vector with cases elements. If \(p\) is the number of columns in \(C\), then the output \(r\) has cases rows and \(p\) columns.

Let \(t\) represent a row of \(r\). Then the distribution of \(t\) is that of a vector having a multivariate normal distribution with mean 0 , variance 1 , and covariance matrix \(C\), divided by an independent chi-square random value having df degrees of freedom. The rows of \(r\) are independent.

C must be a square, symmetric and positive definite matrix. If its diagonal elements are not all 1 (that is, if C is a covariance matrix rather than a correlation matrix), mvtrnd computes the equivalent correlation matrix before generating the random numbers.

\section*{Reproducing the Output of mvtrnd}
mvtrnd uses the MATLAB functions rand and randn to generate random numbers. When you call mvtrnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to mvtrnd or any other functions that depend on rand or randn. If you want to reproduce the output of mvtrnd, reset the states of rand and randn to the same fixed values each time you call mvtrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following example depend on the current states of rand and randn. If you run the code in this example, your results may differ from the plot shown here.

Example \(\begin{array}{ll} & \text { sigma }=[10.8 ; 0.81] ; \\ & r=\operatorname{mvtrnd}(\operatorname{sigma}, 3,100) ; \\ & \operatorname{plot}\left(r(:, 1), r(:, 2),+^{\prime}\right)\end{array}\)


\section*{See Also}
mvnrnd, trnd

Purpose
Covariance matrix, ignoring NaNs
Syntax

\section*{Description}

\section*{Example}
```

$C=\operatorname{nancov}(X)$
$C=\operatorname{nancov}(X, Y)$
$C=\operatorname{nancov}(X, Y)$
$C=\operatorname{nancov}(. . ., 1)$
C = nancov(...,'pairwise')

``` to \(X\) and \(Y\), respectively. from a normal distribution. nancov (X). values, even if they are not in column i or \(j\).
\(C=\operatorname{nancov}(X)\), where \(X\) is a vector, returns the sample variance of the values in \(X\), treating NaNs as missing values. If \(X\) is a matrix, in which each row is an observation and each column a variable, nancov \((X)\) is the covariance matrix computing using rows of \(X\) that do not contain any NaN values.
nancov \((X, Y)\), where \(X\) and \(Y\) are vectors of equal length, is equivalent to nancov([X(:) Y(:)]), where \(\mathrm{X}(:)\) and \(\mathrm{Y}(:)\) are column vectors corresponding
nancov \((X)\) or nancov \((X, Y)\) normalizes the result by \(N-1\) where \(N\) is the number of observations after removing missing values. This makes nancov ( \(X\) ) the best unbiased estimate of the covariance matrix if the observations are
nancov \((X, 1)\) or nancov \((X, Y, 1)\) normalizes the result by \(N\). That is, it returns the second moment matrix of the observations about their mean. nancov \((X, Y, 0)\) is the same as nancov \((X, Y)\), and nancov \((X, 0)\) is the same as
\(C=\operatorname{NANCOV}(\ldots\), , pairwise') computes C(i, \(j\) ) using rows with no NaN values in columns i or j . The result may not be a positive definite matrix.
C = NANCOV (...,' complete') is the default, and it omits rows with any NaN

The mean is removed from each column before calculating the result.

The following example generates random data having nonzero covariance between column 4 and the other columns.
```

X = randn(30,4); % uncorrelated data
X(:,4) = sum(x,2); % introduce correlation
X(2,3) = NaN; % introduce one missing value
C = nancov(x) % compute sample covariance

```
See Also cov, var, nanvar

Purpose
Syntax
Description

\section*{Example}

See Also

Maximum ignoring NaNs
```

M = nanmax (A)
$M=\operatorname{nanmax}(A, B)$
M = nanmax (A,[],dim)
[M,ndx] = nanmax(...)

```
\(M=\operatorname{nanmax}(A)\) returns the maximum with NaNs treated as missing. For vectors, nanmax (A) is the largest non-NaN element in A. For matrices, nanmax (A) is a row vector containing the maximum non-NaN element from each column. For N-dimensional arrays, nanmax operates along the first nonsingleton dimension of X .
\(M=\operatorname{nanmax}(A, B)\) returns an array of the same size as \(A\) and \(B\), each of whose entries is the maximum of the corresponding entries of \(A\) or \(B\). A scalar input is expanded to an array of the same size as the other input.
\(M=\operatorname{nanmax}(A,[], \operatorname{dim})\) operates along the dimension dim of \(X\).
[ \(M, n d x\) ] = nanmax (...) also returns the indices of the maximum values in the vector ndx.
```

A = magic(3);
A([1 6 8]) = [NaN NaN NaN]
A =
NaN 1 6
3 NaN
NaN 2
[nmax,maxidx] = nanmax(A)
nmax =
4 6
maxidx =
3 2 1

```
nanmin, nanmean, nanmedian, nanstd, nansum

\section*{Purpose Mean ignoring NaNs}
Syntax
\(y=\) nanmean \((X)\)
\(y=\) nanmean(X,dim)

Description

Example

See Also
\(\mathrm{y}=\) nanmean \((\mathrm{X})\) is the mean computed by treating NaNs as missing values.
For vectors, nanmean ( \(x\) ) is the mean of the non-NaN elements of \(x\). For matrices, nanmean ( X ) is a row vector containing the mean of the non- NaN elements in each column. For N-dimensional arrays, nanmean operates along the first nonsingleton dimension of X .
nanmean ( \(X\), dim) takes the mean along dimension dim of \(X\).
```

m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
m =
NaN 1 6
3 NaN
N NaN 2
nmean = nanmean(m)
nmean =
3.5000 3.0000 4.0000

```
nanmin, nanmax, nanmedian, nanstd, nansum

Purpose

\section*{Syntax \\ \[
\begin{aligned}
& y=\operatorname{nanmedian}(X) \\
& y=\operatorname{nanmedian}(X, \operatorname{dim})
\end{aligned}
\]}

Description

\section*{Example}

\section*{See Also}

Median ignoring NaNs
\(\mathrm{y}=\) nanmedian \((\mathrm{X})\) is the median computed by treating NaNs as missing values.
For vectors, nanmedian ( \(x\) ) is the median of the non-NaN elements of \(x\). For matrices, nanmedian ( X ) is a row vector containing the median of the non-NaN elements in each column of \(X\). For N-dimensional arrays, nanmedian operates along the first nonsingleton dimension of \(x\).
\(\mathrm{y}=\) nanmedian(X, dim) takes the median along the dimension \(\operatorname{dim}\) of X .
```

m = magic(4);
m([1 6 9 11]) = [NaN NaN NaN NaN]
m =
NaN 2 NaN 13
5 NaN 10 8
9 7 NaN 12
4
nmedian = nanmedian(m)
nmedian =
5.0000 7.0000 12.5000 10.0000

```
nanmin, nanmax, nanmean, nanstd, nansum
Purpose Minimum ignoring NaNs
Syntax \(\quad\)\begin{tabular}{ll}
\(M\) & \(=\operatorname{nanmin}(A)\) \\
& \(M=\operatorname{nanmin}(A, B)\) \\
\(M\) & \(=\operatorname{nanmin}(A,[], \operatorname{dim})\) \\
& {\([M, \operatorname{ndx}]=\operatorname{nanmin}(\ldots)\)}
\end{tabular}

Description \(\quad M=\) nanmin \((A)\) is the minimum computed by treating NaNs as missing values. For vectors, \(M\) is the smallest non-NaN element in A. For matrices, \(M\) is a row vector containing the minimum non-NaN element from each column. For N -dimensional arrays, nanmin operates along the first nonsingleton dimension of \(X\).
\(M=\operatorname{nanmin}(A, B)\) returns an array of the same size as \(A\) and \(B\), each of whose entries is the minimum of the corresponding entries of \(A\) or \(B\). A scalar input is expanded to an array of the same size as the other input.
\(M=\) nanmin(A, [],dim) operates along the dimension dim of \(X\).
[ \(M, n d x\) ] \(=\) nanmin(...) also returns the indices of the minimum values in vector \(n d x\).

\section*{Example}
```

A = magic(3);
A([1 6 8 8]) = [NaN NaN NaN]
A =
NaN 1 6
3 NaN
NaN 2
[nmin,minidx] = nanmin(A)
nmin =
3 1 2
minidx =
2 3

```

See Also nanmax, nanmean, nanmedian, nanstd, nansum

\section*{Purpose \\ Standard deviation ignoring NaNs}
```

Syntax
Y = nanstd(X)
Y = nanstd(X,1)
Y = nanstd(X,0)
Y = nanstd(X,flag,dim)

```

\section*{Description}

\section*{Example}
```

m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
m =
NaN 1 6
3 5 NaN
NaN 2
nstd = nanstd(m)
nstd =
0.7071 2.8284 2.8284

```

\footnotetext{
See Also
nanmax, nanmin, nanmean, nanmedian, nansum
}

Purpose
\(\begin{array}{ll}\text { Syntax } & \left.\begin{array}{l}y \\ \\ y\end{array}\right)=\operatorname{nansum}(X) \\ & y=\operatorname{nansum}(X, \operatorname{dim})\end{array}\)
Description

\section*{Example}

\section*{See Also}

Sum ignoring NaNs
\[
Y=\operatorname{nansum}(X, \operatorname{dim})
\] nonsingleton dimension of \(X\).
\(\mathrm{y}=\) nansum \((\mathrm{X})\) is the sum computed by treating NaNs as missing values.
For vectors, nansum ( \(x\) ) is the sum of the non-NaN elements of \(x\). For matrices, nansum ( \(X\) ) is a row vector containing the sum of the non-NaN elements in each column of \(X\). For N-dimensional arrays, nansum operates along the first
\(Y=\) nansum( \(X, \operatorname{dim}\) ) takes the sum along dimension \(\operatorname{dim}\) of \(X\).
```

m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
m =
NaN 1 6
3 NaN
NaN 2
nsum = nansum(m)
nsum =
7 6 8

```
nanmax, nanmin, nanmean, nanmedian, nanstd

\section*{Purpose Variance ignoring NaNs.}
Syntax \(\quad\)\begin{tabular}{rl}
\(Y\) & \(=\operatorname{nanvar}(X)\) \\
\(Y\) & \(=\operatorname{nanvar}(X, 1)\) \\
\(Y\) & \(=\) nanvar \((X, 0)\) \\
\(Y\) & \(=\) nanvar \((X, w)\) \\
\(Y\) & \(=\) nanvar \((X, w\), dim \()\)
\end{tabular}

Description

See Also
var, nanstd, nanmean, nanmedian, nanmin, nanmax, nansum

\section*{Purpose \\ Negative binomial cumulative distribution function (cdf)}
\[
\text { Syntax } \quad Y=\operatorname{nbincdf}(X, R, P)
\]

Description
\(Y=n b i n c d f(X, R, P)\) computes the negative binomial cdf at each of the values in \(X\) using the corresponding parameters in \(R\) and \(P\). \(X, R\), and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y . A scalar input for \(\mathrm{X}, \mathrm{R}\), or P is expanded to a constant array with the same dimensions as the other inputs.

The negative binomial cdf is
\[
y=F(x \mid r, p)=\sum_{i=0}^{x}\binom{r+i-1}{i} p^{r} q^{i} I_{(0,1, \ldots)}(i)
\]

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \(P\) of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbincdf allows \(R\) to be any positive value, including nonintegers. When \(R\) is noninteger, the binomial coefficient in the definition of the cdf is replaced by the equivalent expression
\[
\frac{\Gamma(r+i)}{\Gamma(r) \Gamma(i+1)}
\]

Example
```

x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)

```


See Also
cdf, nbinfit, nbininv, nbinpdf, nbinrnd, nbinstat

\section*{Purpose}

Parameter estimates and confidence intervals for negative binomial data
```

Syntax parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)

```

\section*{Description}

See Also
parmhat \(=\) nbinfit(data) returns the maximum likelihood estimates (MLEs) of the parameters of the negative binomial distribution given the data in the vector data.
[parmhat, parmci] = nbinfit(data,alpha) returns MLEs and 100(1-alpha) percent confidence intervals. By default, alpha \(=0.05\), which corresponds to \(95 \%\) confidence intervals.
[...] = nbinfit(data,alpha,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. You can create options using the function statset. Enter statset('nbinfit') to see the names and default values of the parameters that nbinfit accepts in the options structure. See the reference page for statset for more information about these options.

Note The variance of a negative binomial distribution is greater than its mean. If the sample variance of the data in data is less than its sample mean, nbinfit cannot compute MLEs. You should use the poissfit function instead.

\section*{nbininv}

\section*{Purpose Inverse of the negative binomial cumulative distribution function (cdf)}
\[
\text { Syntax } \quad X=\operatorname{nbininv}(Y, R, P)
\]

Description

\section*{Example}

See Also
icdf, nbincdf, nbinfit, nbinpdf, nbinrnd, nbinstat

\section*{Purpose Negative binomial probability density function}
\[
\text { Syntax } \quad Y=\operatorname{nbinpdf}(X, R, P)
\]

Description
\(Y=\operatorname{nbinpdf}(X, R, P)\) returns the negative binomial pdf at each of the values in \(X\) using the corresponding parameters in \(R\) and \(P\). \(X, R\), and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y . A scalar input for \(\mathrm{X}, \mathrm{R}\), or P is expanded to a constant array with the same dimensions as the other inputs. Note that the density function is zero unless the values in \(X\) are integers.

The negative binomial pdf is
\[
y=f(x \mid r, p)=\binom{r+x-1}{x} p^{r} q^{x} I_{(0,1, \ldots)}(x)
\]

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \(P\) of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbinpdf allows \(R\) to be any positive value, including nonintegers. When \(R\) is noninteger, the binomial coefficient in the definition of the pdf is replaced by the equivalent expression
\[
\frac{\Gamma(r+x)}{\Gamma(r) \Gamma(x+1)}
\]

\section*{Example}
```

x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'Xlim',[-0.5,10.5])

```


See Also nbincdf, nbinfit, nbininv, nbinrnd, nbinstat, pdf

\section*{Purpose \\ Random matrices from a negative binomial distribution}

\author{
Syntax \\ \section*{Description}
}

RND = nbinrnd( \(\mathrm{R}, \mathrm{P}\) )
RND \(=\) nbinrnd( \(R, P, m\) )
RND \(=n b i n r n d(R, P, m, n)\)
RND \(=\) nbinrnd \((R, P)\) is a matrix of random numbers chosen from a negative binomial distribution with parameters \(R\) and \(P\). \(R\) and \(P\) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of RND. A scalar input for R or \(P\) is expanded to a constant array with the same dimensions as the other input.

RND = nbinrnd ( \(\mathrm{R}, \mathrm{P}, \mathrm{m}\) ) generates random numbers with parameters R and P , where \(v\) is a row vector. If \(v\) is a 1-by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.

RND \(=\) nbinrnd ( \(R, P, m, n\) ) generates random numbers with parameters \(R\) and \(P\), where scalars \(m\) and \(n\) are the row and column dimensions of RND.

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \(P\) of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbinrnd allows \(R\) to be any positive value, including nonintegers.

\section*{Reproducing the Output of nbinrnd}
nbinrnd uses the MATLAB functions rand and randn to generate random numbers. When you call nbinrnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to nbinrnd or any other functions that depend on rand or randn. If you want to reproduce the output of nbinrnd, reset the states of rand and randn to the same fixed values each time you call nbinrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

\section*{nbinrnd}

Note The result in the following example depends on the current states of rand and randn. If you run the code in this example, your results may differ from the answer shown here.
\begin{tabular}{ll} 
Example & \begin{tabular}{l} 
Suppose you want to simulate a process \\
How many units might Quality Assuran \\
defective items?
\end{tabular} \\
\(\quad r=\) nbinrnd \((3,0.01,1,6)+3\) \\
& \(r=\) \\
496 & 142
\end{tabular} \(420 \quad 396851 \quad 178\)

See Also
nbincdf, nbinfit, nbininv, nbinpdf, nbinstat

Purpose
Syntax
Description

Mean and variance of the negative binomial distribution
```

[M,V] = nbinstat(R,P)

```
\([M, V]=\) nbinstat \((R, P)\) returns the mean and variance of the negative binomial distribution with parameters \(R\) and \(P\). \(R\) and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(R\) or \(P\) is expanded to a constant array with the same dimensions as the other input.

The mean of the negative binomial distribution with parameters \(r\) and \(p\) is \(r q / p\), where \(q=1-p\). The variance is \(r q / p^{2}\).

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability \(P\) of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbinstat allows \(R\) to be any positive value, including nonintegers.

\section*{Example}
```

p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)
M =
9.0000 18.0000 27.0000 36.0000 45.0000
2.3333
1.0000 2.0000 3.0000 4.0000 5.0000
0.4286
0.1111}00.2222 0.3333 0.4444 0.5556
V =
90.0000 180.0000 270.0000 360.0000 450.0000
7.7778}15.5556 23.3333 31.1111 38.8889
2.0000 4.0000 6.0000 8.0000 10.0000
0.6122 1.2245 1.8367 2.4490 3.0612
0.1235

```

\section*{nbinstat}

\section*{See Also \\ nbincdf, nbinfit, nbininv, nbinpdf, nbinrnd}

\section*{Purpose}

Syntax
Description

\section*{Example}

Noncentral F cumulative distribution function (cdf)
```

P = ncfcdf(X,NU1,NU2,DELTA)

```
\(P=\operatorname{ncfcdf}(X, N U 1, N U 2, D E L T A)\) computes the noncentral \(F \operatorname{cdf}\) at each of the values in X using the corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2, and positive noncentrality parameters in DELTA. NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(P\). A scalar input for \(X\), NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

The noncentral F cdf is
\[
F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) \boldsymbol{I}\left(\left.\frac{v_{1} \cdot x}{v_{2}+v_{1} \cdot x} \right\rvert\, \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
\]
where \(I(x \mid a, b)\) is the incomplete beta function with parameters \(a\) and \(b\).
Compare the noncentral F cdf with \(\delta=10\) to the F cdf with the same number of numerator and denominator degrees of freedom (5 and 20 respectively).
```

x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'--',x,p1,'-')

```


\title{
References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.
}

See Also cdf, ncfpdf, ncfinv, ncfrnd, ncfstat

\section*{Purpose}

Syntax
Description

\section*{Example}

Inverse of the noncentral F cumulative distribution function (cdf)
X = ncfinv( \(\mathrm{P}, \mathrm{NU1}, \mathrm{NU} 2, \mathrm{DELTA})\)
\(X=\) ncfinv( \(P\), NU1, NU2, DELTA \()\) returns the inverse of the noncentral \(F c d f\) with numerator degrees of freedom NU1, denominator degrees of freedom NU2, and positive noncentrality parameter DELTA for the corresponding probabilities in P. P, NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(X\). A scalar input for P, NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

One hypothesis test for comparing two sample variances is to take their ratio and compare it to an \(F\) distribution. If the numerator and denominator degrees of freedom are 5 and 20 respectively, then you reject the hypothesis that the first variance is equal to the second variance if their ratio is less than that computed below.
```

critical = finv(0.95,5,20)
critical =

```
2.7109

Suppose the truth is that the first variance is twice as big as the second variance. How likely is it that you would detect this difference?
```

prob = 1 - ncfcdf(critical,5,20,2)
prob =
0.1297

```

If the true ratio of variances is 2 , what is the typical (median) value you would expect for the F statistic?
```

ncfinv(0.5,5,20,2)
ans =
1.2786

```

References

See Also
icdf, ncfcdf, ncfpdf, ncfrnd, ncfstat

\section*{Purpose}

Syntax
Description

\section*{References}

See Also

Noncentral F probability density function
Y = ncfpdf(X,NU1,NU2,DELTA)
\(Y=n c f p d f(X, N U 1, N U 2, D E L T A)\) computes the noncentral \(F\) pdf at each of the values in X using the corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2, and positive noncentrality parameters in DELTA. X, NU1, N2, and B can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y . A scalar input for \(\mathrm{P}, \mathrm{NU1}\), NU2, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

The F distribution is a special case of the noncentral F where \(\delta=0\). As \(\delta\) increases, the distribution flattens like the plot in the example.

Compare the noncentral F pdf with \(\delta=10\) to the F pdf with the same number of numerator and denominator degrees of freedom ( 5 and 20 respectively).
```

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'--',x,p1,'-')

```

[1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.

\section*{Purpose \\ Random matrices from the noncentral F distribution}
```

Syntax R = ncfrnd(NU1,NU2,DELTA)
R = ncfrnd(NU1,NU2,DELTA,v)
R = ncfrnd(NU1,NU2,DELTA,m,n)

```

Description \(\quad R=n c f r n d(N U 1, N U 2, D E L T A)\) returns a matrix of random numbers chosen from the noncentral \(F\) distribution with parameters NU1, NU2 and DELTA. NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for NU1, NU2, or DELTA is expanded to a constant matrix with the same dimensions as the other inputs.
\(R=n c f r n d(N U 1, N U 2, D E L T A, v)\) returns a matrix of random numbers with parameters NU1, NU2, and DELTA, where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1-by- \(n, R\) is an n-dimensional array.
\(R=n c f r n d(N U 1, N U 2, D E L T A, m, n)\) generates random numbers with parameters NU1, NU2, and DELTA, where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of ncfrnd}
ncfrnd uses the MATLAB functions rand and randn to generate random numbers. When you call ncfrnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to ncfrnd or any other functions that depend on rand or randn. If you want to reproduce the output of ncfrnd, reset the states of rand and randn to the same fixed values each time you call ncfrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following example depend on the current states of rand and randn. If you run the code in this example, your results may differ from the answers shown here.

\section*{Example}

Compute six random numbers from a noncentral F distribution with 10 numerator degrees of freedom, 100 denominator degrees of freedom and a
noncentrality parameter, \(\delta\), of 4.0 . Compare this to the F distribution with the same degrees of freedom.
```

r = ncfrnd(10,100,4,1,6)
r =
2.5995 0.8824 0.8220}101.4485 1.4415 1.4864
r1 = frnd(10,100,1,6)
r1 =
0.9826 0.5911 1.0967 0.9681 2.0096 0.6598

```
References

See Also
ncfcdf, ncfinv, ncfpdf, ncfstat

\section*{Purpose Mean and variance of the noncentral F distribution}

\section*{Syntax \(\quad[M, V]=\) ncfstat \((N U 1, N U 2, D E L T A)\)}

\section*{Description}

\section*{Example}

References

See Also
\([M, V]=\) ncfstat (NU1,NU2, DELTA) returns the mean and variance of the noncentral F pdf with NU1 and NU2 degrees of freedom and noncentrality parameter DELTA. NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(m\) and \(V\). A scalar input for NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral F distribution with parameters \(v_{1}, v_{2}\), and \(\delta\) is
\[
\frac{v_{2}\left(\delta+v_{1}\right)}{v_{1}\left(v_{2}-2\right)}
\]
where \(v_{2}>2\).
The variance is
\[
2\left(\frac{v_{2}}{v_{1}}\right)^{2}\left[\frac{\left(\delta+v_{1}\right)^{2}+\left(2 \delta+v_{1}\right)\left(v_{2}-2\right)}{\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}\right]
\]
where \(v_{2}>4\).
```

[m,v]= ncfstat(10,100,4)
m =
1.4286
v =
0.4252

```
[1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd Edition, John Wiley and Sons, 1993, pp. 73-74.
[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.
ncfcdf, ncfinv, ncfpdf, ncfrnd

\section*{Purpose}

Syntax
Description

\section*{Example}

See Also cdf, nctcdf, nctinv, nctpdf, nctrnd, nctstat
Purpose Inverse of the noncentral T cumulative distribution
\[
\text { Syntax } \quad X=\operatorname{nctinv}(P, N U, D E L T A)
\]

Description

\section*{Example}

References

See Also icdf, nctcdf, nctpdf, nctrnd, nctstat

\section*{Purpose}

Syntax
Description

\section*{Example}

See Also
nctcdf, nctinv, nctrnd, nctstat, pdf

\section*{Purpose Random matrices from noncentral T distribution}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{nctrnd}(V\), DELTA \()\) \\
\(R\) & \(=\operatorname{nctrnd}(V\), DELTA, \(v)\) \\
\(R\) & \(=\operatorname{nctrnd}(V, D E L T A, m, n)\)
\end{tabular}

Description \(\quad R=\) nctrnd \((V, D E L T A)\) returns a matrix of random numbers chosen from the noncentral T distribution with parameters V and DELTA. V and DELTA can be vectors, matrices, or multidimensional arrays. A scalar input for \(V\) or DELTA is expanded to a constant array with the same dimensions as the other input.
\(R=n c t r n d(V, D E L T A, v)\) returns a matrix of random numbers with parameters \(V\) and DELTA, where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=n c t r n d(V, D E L T A, m, n)\) generates random numbers with parameters \(V\) and DELTA, where scalars m and n are the row and column dimensions of R .

\section*{Reproducing the Output of nctrnd}
nctrnd uses the MATLAB functions rand and randn to generate random numbers. When you call nctrnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to nctrnd or any other functions that depend on rand or randn. If you want to reproduce the output of nctrnd, reset the states of rand and randn to the same fixed values each time you call nctrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The result in the following example depends on the current states of rand and randn. If you run the code in these examples, your results may differ from the answer shown here.

Example \(\quad \operatorname{nctrnd}(10,1,5,1)\)
ans =
1.6576
1.0617
1.4491
0.2930
3.6297

\author{
References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd Edition, John Wiley and Sons, 1993, pp. 147-148. \\ [2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, John Wiley and Sons, 1970, pp. 201-219.
}

See Also nctcdf, nctinv, nctpdf, nctstat

\section*{Purpose Mean and variance for the noncentral \(t\) distribution}

\section*{Syntax \(\quad[M, V]=\) nctstat (NU,DELTA)}

Description

\section*{Example}

References

See Also
\([M, V]=\) nctstat (NU, DELTA) returns the mean and variance of the noncentral t pdf with NU degrees of freedom and noncentrality parameter DELTA. NU and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of M and V . A scalar input for NU or DELTA is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral \(t\) distribution with parameters \(v\) and \(\delta\) is
\[
\frac{\delta(v / 2)^{1 / 2} \Gamma((v-1) / 2)}{\Gamma(v / 2)}
\]
where \(v>1\).
The variance is
\[
\frac{v}{(v-2)}\left(1+\delta^{2}\right)-\frac{v}{2} \delta^{2}\left[\frac{\Gamma((v-1) / 2)}{\Gamma(v / 2)}\right]^{2}
\]
where \(v>2\).
```

[m,v] = nctstat(10,1)
m =
1.0837
v =
1.3255

```
[1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd Edition, John Wiley and Sons, 1993, pp. 147-148.
[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, John Wiley and Sons, 1970, pp. 201-219.
nctcdf, nctinv, nctpdf, nctrnd

\section*{Purpose}

Noncentral chi-square cumulative distribution function (cdf)
Syntax
\(P=n c x 2 c d f(X, V, D E L T A)\)
Description

Example

References
\(P=n c x 2 c d f(X, V, D E L T A)\) computes the noncentral chi-square cdf at each of the values in \(X\) using the corresponding degrees of freedom in \(V\) and positive noncentrality parameters in DELTA. \(X\), \(V\), and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(P\). A scalar input for \(\mathrm{X}, \mathrm{V}\), or DELTA is expanded to a constant array with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is
\[
F(x \mid v, \delta)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{-\frac{\delta}{2}}\right) \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
\]
```

x = (0:0.1:10)';
p1 = ncx2cdf(x,4,2);
p = chi2cdf(x,4);
plot(x,p,'--',x,p1,'-')

```

[1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, John Wiley and Sons, 1970, pp. 130-148.
```

See Also
cdf, ncx2inv, ncx2pdf, ncx2rnd, ncx2stat

```

Purpose
\[
\text { Syntax } \quad X=\operatorname{ncx} 2 i n v(P, V, D E L T A)
\]

\section*{Algorithm ncx2inv uses Newton's method to converge to the solution.}

\section*{Example}

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd Edition, John Wiley and Sons, 1993, pp. 50-52.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate Distributions-2, John Wiley and Sons, 1970, pp. 130-148.

See Also icdf, ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat

Purpose Noncentral chi-square probability density function (pdf)
\[
\text { Syntax } \quad Y=\operatorname{ncx} 2 p d f(X, V, \text { DELTA })
\]

Description

\section*{Example}

\section*{References}

See Also ncx2cdf, ncx2inv, ncx2rnd, ncx2stat, pdf

Purpose
Random matrices from the noncentral chi-square distribution
```

Syntax R = ncx2rnd(V,DELTA)
R = ncx2rnd(V,DELTA,v)
R = ncx2rnd(V,DELTA,m,n)

```

Description \(\quad R=n c x 2 r n d(V, D E L T A)\) returns a matrix of random numbers chosen from the non-central chi-square distribution with parameters \(V\) and DELTA. \(V\) and DELTA can be vectors, matrices, or multidimensional arrarys that have the same size, which is also the size of R. A scalar input for \(V\) or DELTA is expanded to a constant array with the same dimensions as the other input.
\(R=n c x 2 r n d(V, D E L T A, v)\) returns a matrix of random numbers with parameters \(V\) and DELTA, where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=n c x 2 r n d(V, D E L T A, m, n)\) generates random numbers with parameters \(V\) and DELTA, where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of ncx2rnd}
ncx2rnd uses the MATLAB function randn to generate random numbers. When you call ncx2rnd, you change the current state of randn, and thereby alter the output of subsequent calls to ncx2rnd or any other functions that depend on randn. If you want to reproduce the output of ncx2rnd, reset the state of randn to the same fixed value each time you call ncx2rnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The result in the following example depends on the current state of randn. If you run the code in this example, your results may differ from the answer shown here.

\section*{Example \(\quad n c x 2 r n d(4,2,6,3)\) \\ ans \(=\)}
\begin{tabular}{lll}
6.8552 & 5.9650 & 11.2961 \\
5.2631 & 4.2640 & 5.9495 \\
9.1939 & 6.7162 & 3.8315 \\
10.3100 & 4.4828 & 7.1653 \\
2.1142 & 1.9826 & 4.6400 \\
3.8852 & 5.3999 & 0.9282
\end{tabular}

\author{
References
}

See Also
ncx2cdf, ncx2inv, ncx2pdf, ncx2stat

\section*{Purpose}

Syntax
Description

\section*{Example}

References

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd

Purpose Nonlinear least-squares regression
```

Syntax beta = nlinfit(X,y,fun,beta0)
[beta,r,J] = nlinfit(X,y,fun,beta0)
[...] = nlinfit(X, y, fun, beta0, options)

```

Description beta \(=\) nlinfit \((X, y\),fun, beta0) estimates the coefficients of a nonlinear regression function using least squares. \(y\) is a vector of response (dependent variable) values. Typically, X is a design matrix of predictor (independent variable) values, with one row for each value in \(y\). However, \(X\) can be any array that fun can accept. fun is a function, specified using the @ sign, of the form
```

yhat = myfun(beta,X)

```
where beta is a coefficient vector. fun returns a vector yhat of fitted y values. beta0 is a vector containing initial values for the coefficients.
[beta, \(r, J]=\) nlinfit(X,y,fun,beta0) returns the fitted coefficients, beta, the residuals, \(r\), and the Jacobian, J. You can use these outputs with nlpredci to produce error estimates on predictions, and with nlparci to produce error estimates on the estimated coefficients.

Note nlintool provides a GUI for performing nonlinear fits and computing confidence intervals.
[...] = nlinfit(X, y, fun, beta0, options) accepts the input argument options, a structure that sets parameters for the algorithm used in nlinfit. You can create options using statset. The fields of options are
- MaxIter - Maximum number of iterations allowed. The default is 100.
- TolFun - Termination tolerance on the residual sum of squares. The defaults is \(1 \mathrm{e}-8\).
- TolX - Termination tolerance on the estimated coefficients beta. The default is \(1 \mathrm{e}-8\).
- Display - Level of display output during estimation. The choices are - 'off' (the default),
- 'iter'
- 'final'
- 'DerivStep ' - Relative difference used in finite difference gradient calculation. May be a scalar, or the same size as the parameter vector beta0. The default is eps^(1/3).
- 'FunValCheck' - Check for invalid values, such as NaN or Inf, from the objective function. Values are 'off' or 'on' (the default).
nlinfit treats NaNs in \(y\) or fun(beta, \(X\) ) as missing data and ignores the corresponding rows.

\section*{Example}

Reference
See Also

Find the coefficients that best fit the data in reaction.mat. The chemistry behind this data set deals with reaction kinetics as a function of the partial pressure of three chemical reactants: hydrogen, n-pentane, and isopentane.

The hougen function uses the Hougen-Watson model for reaction kinetics to return the predicted values of the reaction rate.
```

load reaction
betafit = nlinfit(reactants,rate,@hougen,beta)
betafit =
1.2526
0.0628
0.0400
0.1124
1.1914

```
[1] Seber, G. A. F, and C. J. Wild, Nonlinear Regression, Wiley, 1989.
hougen, nlintool, nlparci, nlpredci

Purpose Fit a nonlinear equation to data and display an interactive graph
Syntax
Description

Example

See Also
```

nlintool(x,y,fun,beta0)
nlintool(x,y,fun,beta0,alpha)
nlintool(x,y,fun,beta0,alpha,'xname','yname')

```
nlintool displays a "vector" of plots, one for each column of the matrix of inputs, \(x\). The response variable, \(y\), is a column vector that matches the number of rows in \(x\).
nlintool ( \(x, y\), fun, beta0) is a prediction plot that provides a nonlinear curve fit to \((x, y)\) data. It plots a \(95 \%\) global confidence interval for predictions as two red curves. beta0 is a vector containing initial guesses for the parameters.
fun is a MATLAB function that returns a vector of fitted \(y\) values. It is of the form
```

 yhat = myfun(beta,x)
    ```
nlintool(x,y,fun, beta0, alpha) plots a 100(1-alpha)\% confidence interval for predictions.

The default value for alpha is 0.05 , which produces \(95 \%\) confidence intervals.
 string matrix 'xname' for the \(x\) variables and the string 'yname' for the \(y\) variable.
nlintool treats NaNs in y or fun(beta, X ) as missing data and ignores the corresponding rows.

See "An Interactive GUI for Nonlinear Fitting and Prediction" on page 5-6 for an example and for details about using the graphical interface.
```

nlinfit, rstool

```

Purpose

\section*{Syntax \\ Description}

Confidence intervals on estimates of parameters in nonlinear models
ci = nlparci(beta,resid,J)
ci = nlparci(beta,resid,J,alpha)
nlparci(beta, resid, J) returns the \(95 \%\) confidence interval ci on the nonlinear least squares parameter estimates beta. Before calling nlparci, use nlinfit to fit a nonlinear regression model and get the coefficient estimates beta, residuals resid, and Jacobian J .
ci = nlparci(beta, resid, J,alpha) returns 100(1-alpha) percent confidence intervals.
nlparci treats \(N a N s\) in resid or \(J\) as missing values, and ignores the corresponding observations.

The confidence interval calculation is valid for systems where the length of resid exceeds the length of beta and \(J\) has full column rank. When \(J\) is ill-conditioned, confidence intervals may be inaccurate.

\section*{Example}

Continuing the example from nlinfit:
```

load reaction
[beta,resid,J] = nlinfit(reactants,rate,'hougen',beta);
ci = nlparci(beta,resid,J)
Ci =
-1.0798 3.3445
-0.0524 0.1689
-0.0437 0.1145
-0.0891 0.2941
-1.1719 3.7321

```

See Also nlinfit, nlintool, nlpredci

\section*{nlpredci}

\section*{Purpose Confidence intervals on predictions of nonlinear models}
```

Syntax ypred = nlpredci(fun,inputs,beta,r,J)
[ypred,delta] = nlpredci(FUN,inputs,beta,r,J)
ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt')

```

Description ypred = nlpredci(FUN,inputs,beta, \(r, J)\) returns the predicted responses, ypred, given the fitted parameters beta, residuals \(r\), and the Jacobian matrix \(J\). inputs is a matrix of values of the independent variables in the nonlinear function.
[ypred,delta] = nlpredci(FUN,inputs, beta, r, J) also returns the half-width, delta, of confidence intervals for the nonlinear least squares predictions. The confidence interval calculation is valid for systems where the length of \(r\) exceeds the length of beta and \(J\) is of full column rank. The interval [ypred-delta, ypred+delta] is a \(95 \%\) non-simultaneous confidence interval for the true value of the function at the specified input values.
```

ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt')

```
controls the type of confidence intervals. The confidence level is
100(1 - alpha)\%. 'simopt' can be 'on' for simultaneous intervals or 'off'
(the default) for non-simultaneous intervals. 'predopt' can be 'curve' (the
default) for confidence intervals for the function value at the inputs, or
' observation' for confidence intervals for a new response value.
nlpredci uses the outputs of nlinfit for its inputs.

\section*{Example Continuing the example from nlinfit, you can determine the predicted} function value at [ 10030080 ] and the half-width of a confidence interval for it.
```

load reaction
[beta,resids,J] = nlinfit(reactants,rate,@hougen,beta);
[ypred,delta] = nlpredci(@hougen,[100 300 80],beta,resids,J)
ypred =
13
delta =
1.4277

```

\author{
See Also \\ nlinfit, nlintool, nlparci
}

\section*{Purpose Normal cumulative distribution function (cdf)}
```

Syntax P = normcdf(X,MU,SIGMA)
[P, PLO, PUP] = normcdf(X, MU, SIGMA, PCOV, alpha)

```

\section*{Description}
normcdf(X,MU,SIGMA) computes the normal cdf at each of the values in X using the corresponding parameters in MU and SIGMA. X, MU, and SIGMA can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in SIGMA must be positive.
[P, PLO, PUP] = normcdf(X, MU, SIGMA, PCOV, alpha) produces confidence bounds for \(P\) when the input parameters MU and SIGMA are estimates. PCOV is the covariance matrix of the estimated parameters. alpha specifies \(100(1-\) alpha \() \%\) confidence bounds. The default value of alpha is 0.05 . PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.

The function normdf computes confidence bounds for P using a normal approximation to the distribution of the estimate
\[
\frac{X-\hat{\mu}}{\hat{\sigma}}
\]
and then transforming those bounds to the scale of the output P. The computed bounds give approximately the desired confidence level when you estimate MU, SIGMA, and PCOV from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The normal cdf is
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^{2}}{2 \sigma^{2}}} d t
\]

The result, \(p\), is the probability that a single observation from a normal distribution with parameters \(\mu\) and \(\sigma\) will fall in the interval \((-\infty x]\).

The standard normal distribution has \(\mu=0\) and \(\sigma=1\).

\section*{Examples}

\section*{See Also}

What is the probability that an observation from a standard normal distribution will fall on the interval \([-11]\) ?
```

p = normcdf([[-1 1]);
p(2) - p(1)
ans =
0.6827

```

More generally, about 68\% of the observations from a normal distribution fall within one standard deviation, \(\sigma\), of the mean, \(\mu\).
cdf, normfit, norminv, normpdf, normplot, normrnd, normspec, normstat

\section*{Purpose Parameter estimates and confidence intervals for normal data}
```

Syntax [muhat, sigmahat] = normfit(DATA)
[muhat,sigmahat,muci,sigmaci] = normfit(DATA)
[muhat,sigmahat,muci,sigmaci] = normfit(DATA,alpha)
[...] = normfit(DATA, alpha, censoring)
[...] = normfit(DATA, alpha, censoring, freq)
[...] = normfit(DATA, alpha, censoring, freq, options)

```

Description [muhat, sigmahat] = normfit (DATA) returns estimates of the mean, \(\mu\), and standard deviation, \(\sigma\), of the normal distribution given the data in DATA.
[muhat, sigmahat,muci, sigmaci] = normfit(DATA) returns 95\% confidence intervals for the parameter estimates on the \(\mu\) and \(\sigma\) parameters in the arrays muci and sigmaci. The first row of muci contains the lower bounds of the confidence intervals for \(\mu\), and the second row contains the upper bounds. The first row of sigmaci contains the lower bounds of the confidence intervals for \(\sigma\), and the second row contains the upper bounds .
[muhat,sigmahat,muci,sigmaci] = normfit(DATA, alpha) returns 100(1 - alpha) \% confidence intervals for the parameter estimates, where alpha is a value in the range [ 01 1] specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to \(95 \%\) confidence intervals.
[...] = normfit(data, alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly. data must be a vector in order to pass in the argument censoring.
[...] = normfit(data, alpha, censoring, freq) accepts a frequency vector, freq, of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.
[...] = evfit(DATA, alpha, censoring, freq, options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates when there is censoring. You can create options using the function statset. Enter
statset('normfit') to see the names and default values of the parameters that normfit accepts in the options structure. See the reference page for statset for more information about these options.

Example

See Also

In this example the data is a two-column random normal matrix. Both columns have \(\mu=10\) and \(\sigma=2\). Note that the confidence intervals below contain the "true values."
```

data = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(data)
mu =
10.1455 10.0527
sigma =
1.9072 2.1256
muci =
9.7652 9.6288
10.5258 10.4766
sigmaci =
1.6745 1.8663
2.2155 2.4693

```
normcdf, norminv, normlike, normpdf, normplot, normrnd, normspec, normstat, mle, statset

\section*{Purpose Inverse of the normal cumulative distribution function (cdf)}
```

Syntax }\quadX=\operatorname{norminv(P,MU,SIGMA)
[X, XLO, XUP] = norminv(P, MU, SIGMA, PCOV, alpha)

```

\section*{Description}
\(X=\) norminv ( \(\mathrm{P}, \mathrm{MU}\), SIGMA) computes the inverse of the normal cdf with parameters MU and SIGMA at the corresponding probabilities in P. P, MU, and SIGMA can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in SIGMA must be positive, and the values in \(P\) must lie in the interval [01].
[X, XLO, XUP] = norminv(P, MU, SIGMA, PCOV, alpha) produces confidence bounds for \(X\) when the input parameters MU and SIGMA are estimates. PCOV is the covariance matrix of the estimated parameters. alpha specifies \(100(1-\) alpha \() \%\) confidence bounds. The default value of alpha is 0.05 . XLO and XUP are arrays of the same size as \(X\) containing the lower and upper confidence bounds.

The function norminv computes confidence bounds for P using a normal approximation to the distribution of the estimate
\[
\hat{\mu}+\hat{\sigma} q
\]
where \(q\) is the Pth quantile from a normal distribution with mean 0 and standard deviation 1 . The computed bounds give approximately the desired confidence level when you estimate MU, SIGMA, and PCOV from large samples, but in smaller samples other methods of computing the confidence bounds may be more accurate.

The normal inverse function is defined in terms of the normal cdf as
\[
x=F^{-1}(p \mid \mu, \sigma)=\{x: F(x \mid \mu, \sigma)=p\}
\]
where
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^{2}}{2 \sigma^{2}}} d t
\]

The result, \(x\), is the solution of the integral equation above where you supply the desired probability, \(p\).

\section*{Examples}

See Also

Find an interval that contains \(95 \%\) of the values from a standard normal distribution.
```

x = norminv([0.025 0.975],0,1)
x =
-1.9600 1.9600

```

Note that the interval \(x\) is not the only such interval, but it is the shortest.
```

xl = norminv([0.01 0.96],0,1)
xl =
-2.3263 1.7507

```

The interval \(x l\) also contains \(95 \%\) of the probability, but it is longer than \(x\). icdf, normfit, normfit, normpdf, normplot, normrnd, normspec, normstat

\section*{Purpose Negative normal log-likelihood function}
```

Syntax nlogL = normlike(params,data)
[nlogL,AVAR] = normlike(params,data)
[...] = normlike(param, data, censoring)
[...] = normlike(param, data, censoring, freq)

```
Description nlogL = normlike (params, data) returns the negative of the normal
log-likelihood function for the parameters params(1) = MU and
params(2) = SIGMA, given the vector data.
[nlogL,AVAR] = normlike(params,data) also returns the inverse of Fisher's information matrix, AVAR. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of AVAR are their asymptotic variances. AVAR is based on the observed Fisher's information, not the expected information.
[...] = normlike(param, data, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = normlike(param, data, censoring, freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value. normlike is a utility function for maximum likelihood estimation.

See Also betalike, gamlike, mle, normfit, wbllike

Purpose
Syntax \(\quad Y=\operatorname{normpdf}(X, M U\), SIGMA \()\)

\section*{Examples}
```

mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)
MLE =
1.5000

```

\section*{See Also}
mvnpdf, normfit, norminv, normplot, normrnd, normspec, normstat, pdf

\section*{normplot}

\section*{Purpose Normal probability plot for graphical normality testing}

\section*{Syntax normplot (X) \\ h = normplot(X)}

Description
normplot (X) displays a normal probability plot of the data in X. For matrix X, normplot displays a line for each column of \(X\).

The plot has the sample data displayed with the plot symbol ' + '.
Superimposed on the plot is a line joining the first and third quartiles of each column of \(X\) (a robust linear fit of the sample order statistics.) This line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.

If the data does come from a normal distribution, the plot will appear linear. Other probability density functions will introduce curvature in the plot.
\(\mathrm{h}=\) normplot \((\mathrm{X})\) returns a handle to the plotted lines.

\section*{Examples}

Generate a normal sample and a normal probability plot of the data.
```

x = normrnd(0,1,50,1);
h = normplot(x);

```


The plot is linear, indicating that you can model the sample by a normal distribution.

See Also
cdfplot, hist, normfit, normfit, norminv, normpdf, normrnd, normspec, normstat

\section*{Purpose Generate random numbers from the normal distribution}
```

Syntax R = normrnd(MU,SIGMA)
R = normrnd(MU,SIGMA,v)
R = normrnd(MU,SIGMA,m,n)

```

Description \(\quad R=\) normrnd(MU,SIGMA) generates normal random numbers with mean MU and standard deviation SIGMA. MU and SIGMA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for MU or SIGMA is expanded to a constant array with the same dimensions as the other input.
\(R=\) normrnd(MU,SIGMA, \(v\) ) generates normal random numbers with parameters MU and SIGMA, where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=\) normrnd(MU,SIGMA, \(m, n\) ) generates normal random numbers with parameters MU and SIGMA, where scalars \(m\) and \(n\) are the row and column dimensions of R .

\section*{Reproducing the Output of normrnd}
normrnd uses the MATLAB function randn to generate random numbers. When you call normrnd, you change the current state of randn, and thereby alter the output of subsequent calls to normrnd or any other functions that depend on randn. If you want to reproduce the output of normrnd, reset the state of randn to the same fixed value each time you call normrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current state of randn. If you run the code in these examples, your results might differ from the answers shown here.

\footnotetext{
Examples \(n 1=\operatorname{normrnd}(1: 6,1 . /(1: 6))\)
}
```

n1 =

```

```

n2 = normrnd(0,1,[1 5])
n2 =
0.0591 1.7971 0.2641 0.8717 -1.4462
n3 = normrnd([1 2 3;4 5 6],0.1,2,3)
n3 =
0.9299 1.9361 2.9640
4.1246 5.0577 5.9864

```

See Also
normfit, normfit, norminv, normpdf, normplot, normspec, normstat

\section*{Purpose Plot normal density between specification limits}
```

Syntax p = normspec(specs, mu, sigma)
[p,h] = normspec(specs, mu, sigma)

```

\section*{Example}

\section*{See Also}
capaplot, disttool, histfit, normfit, normfit, norminv, normpdf, normplot, normrnd, normstat

Purpose

\section*{Syntax}

Description

\section*{Examples}

See Also

Mean and variance for the normal distribution
```

[M,V] = normstat(MU,SIGMA)

```
\([M, V]=\) normstat (MU, SIGMA) returns the mean and variance for the normal distribution with parameters MU and SIGMA. MU and SIGMA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(M\) and \(V\). A scalar input for MU or SIGMA is expanded to a constant array with the same dimensions as the other input.

The mean of the normal distribution with parameters \(\mu\) and \(\sigma\) is \(\mu\), and the variance is \(\sigma^{2}\).
```

n = 1:5;
[m,v] = normstat(n'*n,n'*n)
m =
1
2
3
4
5
v =
1 4
4
9
16
25}10100 225 400 625

```
    normfit, normfit, norminv, normpdf, normplot, normrnd, normspec

\section*{parallelcoords}

Purpose
Parallel coordinates plot for multivariate data

\author{
Syntax
}
```

parallelcoords(X)
parallelcoords(X, ..., 'Standardize', 'on')
parallelcoords(X,, 'Standardize', 'PCA')
parallelcoords(X, ..., 'Standardize', 'PCAStd')
parallelcoords(X, ..., 'Quantile', alpha)
parallelcoords(X, ..., 'Group', group)
parallelcoords(X, ..., 'Labels', labs)
parallelcoords(X, ..., 'PropertyName', PropertyValue, ...)
h = parallelcoords(X, ...)

```

\section*{Description}
parallelcoords (X) creates a parallel coordinates plot of the multivariate data in the \(n\)-by- \(p\) matrix X. Rows of X correspond to observations, columns to variables. A parallel coordinates plot is a tool for visualizing high dimensional data, where each observation is represented by the sequence of its coordinate values plotted against their coordinate indices. parallelcoords treats NaNs in X as missing values and does not plot those coordinate values.
parallelcoords(X, ..., 'Standardize', 'on') scales each column of \(X\) to have mean 0 and standard deviation 1 before making the plot.
parallelcoords(X, ..., 'Standardize', 'PCA') creates a parallel coordinates plot from the principal component scores of \(X\), in order of decreasing eigenvalues. parallelcoords removes rows of \(X\) containing missing values ( NaNs ) for principal components analysis (PCA) standardization.
parallelcoords(X, ..., 'Standardize','PCAStd') creates a parallel coordinates plot using the standardized principal component scores.
parallelcoords (X, ..., 'Quantile', alpha) plots only the median and the alpha and (1-alpha) quantiles of \(f(t)\) at each value of \(t\). This is useful if \(X\) contains many observations.
parallelcoords(X, ..., 'Group', group) plots the data in different groups with different colors. Groups are defined by group, a numeric array containing a group index for each observation. group can also be a character matrix or cell array of strings, containing a group name for each observation.
parallelcoords(X, ..., 'Labels', labs) labels the coordinate tick marks along the horizontal axis using labs, a character array or cell array of strings.
parallelcoords(X, ..., 'PropertyName', PropertyValue, ...) sets properties to the specified property values for all line graphics objects created by parallelcoords.
\(h=\) parallelcoords (X, ...) returns a column vector of handles to the line objects created by parallelcoords, one handle per row of \(x\). If you use the 'Quantile' input parameter, h contains one handle for each of the three lines objects created. If you use both the 'Quantile' and the 'Group' input parameters, h contains three handles for each group.

\section*{Examples}

See Also
\% make a grouped plot of the raw data
load fisheriris
labs = \{'Sepal Length','Sepal Width','Petal Length',...
'Petal Width'\};
parallelcoords(meas, 'group',species, 'labels',labs);
\% plot only the median and quartiles of each group
parallelcoords(meas, 'group',species, 'labels', labs,...
'quantile',.25);
andrewsplot, glyphplot

Purpose Pareto charts for Statistical Process Control
Syntax \begin{tabular}{ll} 
pareto \((y)\) \\
& pareto \((y\), names \()\) \\
& \(h=\operatorname{pareto}(\ldots)\)
\end{tabular}

Description pareto ( \(y\), names) displays a Pareto chart where the values in the vector \(y\) are drawn as bars in descending order. Each bar is labeled with the associated value in the string matrix names. pareto ( \(y\) ) labels each bar with the index of the corresponding element in \(y\).

The line above the bars shows the cumulative percentage.
pareto ( \(y\), names) labels each bar with the row of the string matrix names that corresponds to the plotted element of \(y\).
\(h=p a r e t o(. .\).\() returns a combination of patch and line handles.\)
Example
Create a Pareto chart from data measuring the number of manufactured parts rejected for various types of defects.
```

defects = {'pits';'cracks';'holes';'dents'};
quantity = [$$
\begin{array}{llll}{5 35 19 [;}\end{array}
$$]
pareto(quantity,defects)

```


See Also
bar, capaplot, ewmaplot, hist, histfit, schart, xbarplot

\section*{Purpose}

Principal components analysis (PCA) using the covariance matrix

\author{
Syntax \\ Description
}

\section*{Example}

COEFF = pcacov(V)
[COEFF, latent] = pcacov(V)
[COEFF, latent, explained] = pcacov(V)
COEFF \(=\) pcacov (V) performs principal components analysis on the p-by-p covariance matrix \(V\) and returns the principal component coefficients, also known as loadings. COEFF is a p-by-p matrix, with each column containing coefficients for one principal component. The columns are in order of decreasing component variance.
pcacov does not standardize \(\vee\) to have unit variances. To perform principal components analysis on standardized variables, use the correlation matrix \(R=\) V./(SD*SD')), where SD \(=\operatorname{sqrt}(\operatorname{diag}(\mathrm{V}))\), in place of V . To perform principal components analysis directly on the data matrix, use princomp or pcacov.
[COEFF, latent] \(=\operatorname{pcacov}(V)\) returns latent, a vector containing the principal component variances, that is, the eigenvalues of V .
[COEFF, latent, explained] = pcacov(V) returns explained, a vector containing the percentage of the total variance explained by each principal component.
```

load hald
covx = cov(ingredients);
[COEFF, latent, explained] = pcacov(covx)
COEFF =
0.0678
0.6785 -0.0200 -0.5440 -0.4933
-0.0290
-0.7309 -0.1085 -0.4684 -0.4844
variances =

```
    517.7969
    67.4964
    12.4054
```

 0.2372
 explained =
86.5974
11.2882
2.0747
0.0397

```
\begin{tabular}{ll} 
References & [1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and \\
Sons, 1991.
\end{tabular}
[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002.
[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University Press, 1988.
[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.
See Also
barttest, biplot, factoran, pcares, princomp

\section*{Purpose \\ Residuals from a principal components analysis}
```

Syntax

```
Description

\section*{Example}

This example shows the drop in the residuals from the first row of the Hald data as the number of component dimensions increases from one to three.
```

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);
r11 = r1(1,:)
r11 =
2.0350 2.8304 -6.8378 3.0879
r21 = r2(1,:)
r21 =
-2.4037 2.6930 -1.6482 2.3425
r31 = r3(1,:)
r31 =

```
\[
\begin{array}{llll}
0.2008 & 0.1957 & 0.2045 & 0.1921
\end{array}
\]

References

See Also
factoran, pcacov, princomp

\section*{Purpose}

Syntax
Description

Examples

See Also

Probability density function (pdf) for a specified distribution
Y = pdf('name', X,A1,A2,A3)
pdf('name', \(\mathrm{X}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3)\) returns a matrix of densities, where 'name' is a string containing the name of the distribution. X is a matrix of values, and A1, A2, and A3 are matrices of distribution parameters. Depending on the distribution, some of the parameters may not be necessary.

Vector or matrix inputs for X, A1, A2, and A3 must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.
pdf is a utility routine allowing access to all the pdfs in the Statistics Toolbox using the name of the distribution as a parameter. See "Overview of the Distributions" on page 2-45 for the list of available distributions.
```

p = pdf('Normal',-2:2,0,1)
p =
0.0540 0.2420 0.3989 0.2420 0.0540
p = pdf('Poisson',0:4,1:5)
p =
0.3679 0.2707 0.2240

```
betapdf, binopdf, cdf, chi2pdf, exppdf, fpdf, gampdf, geopdf, hygepdf, lognpdf, nbinpdf, ncfpdf, nctpdf, ncx2pdf, normpdf, poisspdf, raylpdf, tpdf, unidpdf, unifpdf, wblpdf

\section*{Purpose Pairwise distance between observations}
```

Syntax Y = pdist(X)
Y = pdist(X,distance)
Y = pdist(X,distfun)
Y = pdist(X,'minkowski',p)

```

Description \(\quad Y=\) pdist \((X)\) computes the Euclidean distance between pairs of objects in \(n\)-by- \(p\) data matrix X . Rows of X correspond to observations; columns correspond to variables. Y is a row vector of length \((n-1) \cdot n / 2\), corresponding to the \((n-1) \cdot n / 2\) pairs of observations in X. The distances are arranged in the order \((1,2),(1,3), \ldots,(1, n),(2,3), \ldots,(2, n), \ldots, \ldots,(n-1, n) . Y\) is commonly used as a dissimilarity matrix in clustering or multidimensional scaling.

To save space and computation time, Y is formatted as a vector. However, you can convert this vector into a square matrix using the squareform function so that element \(i, j\) in the matrix, where \(i<j\), corresponds to the distance between objects \(i\) and \(j\) in the original data set.
\(Y=\) pdist (X,distance) computes the distance between objects in the data matrix, \(X\), using the method specified by distance, where distance can be any of the following character strings that identify ways to compute the distance.
\begin{tabular}{ll} 
'euclidean' & Euclidean distance (default) \\
'seuclidean' & \begin{tabular}{l} 
Standardized Euclidean distance. Each coordinate in the \\
sum of squares is inverse weighted by the sample \\
variance of that coordinate.
\end{tabular} \\
'mahalanobis' & \begin{tabular}{l} 
Mahalanobis distance
\end{tabular} \\
'cityblock' & City Block metric \\
'minkowski' & Minkowski metric \\
'cosine' & \begin{tabular}{l} 
One minus the cosine of the included angle between \\
points (treated as vectors)
\end{tabular} \\
'correlation' & \begin{tabular}{l} 
One minus the sample correlation between points \\
(treated as sequences of values).
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
'spearman ' & \begin{tabular}{l} 
One minus the sample Spearman's rank correlation \\
between observations, treated as sequences of values
\end{tabular} \\
'hamming ' & \begin{tabular}{l} 
Hamming distance, the percentage of coordinates that \\
differ
\end{tabular} \\
'jaccard' & \begin{tabular}{l} 
One minus the Jaccard coefficient, the percentage of \\
nonzero coordinates that differ
\end{tabular} \\
'chebychev ' & \begin{tabular}{l} 
Chebychev distance (maximum coordinate difference)
\end{tabular}
\end{tabular}
\(Y\) = pdist(X,@distfun) accepts a function handle to a distance function of the form
\[
d=\operatorname{distfun}(u, v)
\]
which takes as arguments a 1-by-p vector \(u\), corresponding to a single row of \(X\), and an m-by-p matrix \(V\), corresponding to multiple rows of \(X\). distfun must accept a matrix \(V\) with an arbitrary number of rows. distfun must return an \(m\)-by- 1 vector of distances \(d\), whose kth element is the distance between \(u\) and V(k,:).

Parameterizing Functions Called by Functions, in the online MATLAB documentation, explains how to provide the additional parameters to the distance function, if necessary.
\(Y=\operatorname{pdist}(X\), 'minkowski',\(p)\) computes the distance between objects in the data matrix, \(X\), using the Minkowski metric. p is the exponent used in the Minkowski computation which, by default, is 2 .

\section*{Mathematical Definitions of Methods}

Given an \(m\)-by- \(n\) data matrix X , which is treated as \(m\) (1-by-n) row vectors \(x_{1}\), \(x_{2}, \ldots, x_{m}\), the various distances between the vector \(x_{r}\) and \(x_{s}\) are defined as follows:
- Euclidean distance
\[
d_{r s}^{2}=\left(x_{r}-x_{s}\right)\left(x_{r}-x_{s}\right)^{\prime}
\]
- Standardized Euclidean distance

\section*{pdist}
\[
d_{r s}^{2}=\left(x_{r}-x_{s}\right) D^{-1}\left(x_{r}-x_{s}\right)^{\prime}
\]
where \(D\) is the diagonal matrix with diagonal elements given by \(v_{j}^{2}\), which denotes the variance of the variable \(X_{j}\) over the \(m\) objects.
- Mahalanobis distance
\[
d_{r s}^{2}=\left(x_{r}-x_{s}\right) V^{-1}\left(x_{r}-x_{s}\right)^{\prime}
\]
where \(V\) is the sample covariance matrix.
- City Block metric
\[
d_{r s}=\sum_{j=1}^{n}\left|x_{r j}-x_{s j}\right|
\]
- Minkowski metric
\[
d_{r s}=\left\{\sum_{j=1}^{n}\left|x_{r j}-x_{s j}\right|^{p}\right\}^{\frac{1}{p}}
\]

Notice that for the special case of \(p=1\), the Minkowski metric gives the City Block metric, and for the special case of \(p=2\), the Minkowski metric gives the Euclidean distance.
- Cosine distance
\[
d_{r s}=\left(1-x_{r} x^{\prime}{ }_{s} /\left(x_{r}^{\prime}{ }_{r} x_{r}\right)^{\frac{1}{2}}\left(x_{s}^{\prime} x_{s}\right)^{\frac{1}{2}}\right)
\]
- Correlation distance
\[
d_{r s}=1-\frac{\left(x_{r}-\bar{x}_{r}\right)\left(x_{s}-\bar{x}_{s}\right)^{\prime}}{\left[\left(x_{r}-\bar{x}_{r}\right)\left(x_{r}-\bar{x}_{r}\right)^{\prime}\right]^{\frac{1}{2}}\left[\left(x_{s}-\bar{x}_{s}\right)\left(x_{s}-\bar{x}_{s}\right)^{\prime}\right]^{\frac{1}{2}}}
\]
where
\[
\bar{x}_{r}=\frac{1}{n} \sum_{j} x_{r j} \text { and } \bar{x}_{s}=\frac{1}{n} \sum_{j} x_{s j}
\]
- Hamming distance
\[
d_{r s}=\left(\#\left(x_{r j} \neq x_{s j}\right) / n\right)
\]
- Jaccard distance
\[
d_{r s}=\frac{\#\left[\left(x_{r j} \neq x_{s j}\right) \wedge\left(\left(x_{r j} \neq 0\right) \vee\left(x_{s j} \neq 0\right)\right)\right]}{\#\left[\left(x_{r j} \neq 0\right) \vee\left(x_{s j} \neq 0\right)\right]}
\]

\section*{Examples}
```

X = [1 2; 1 3; 2 2; 3 1]
X =
1 2
1 3
2 2
3 1
Y = pdist(X,'mahal')
Y =
2.3452 2.0000 2.3452 1.2247 2.4495 1.2247
Y = pdist(X)
Y =
1.0000 1.0000 2.2361 1.4142 2.8284 1.4142
squareform(Y)
ans =

| 0 | 1.0000 | 1.0000 | 2.2361 |
| :---: | ---: | ---: | ---: |
| 1.0000 | 0 | 1.4142 | 2.8284 |
| 1.0000 | 1.4142 | 0 | 1.4142 |
| 2.2361 | 2.8284 | 1.4142 | 0 |

```

See Also
cluster, clusterdata, cmdscale, cophenet, dendrogram, inconsistent, linkage, silhouette, squareform

Purpose All permutations
Syntax \(\quad P=\operatorname{perms}(v)\)
Description
\(P=\operatorname{perms}(v)\) where \(v\) is a row vector of length \(n\), creates a matrix whose rows consist of all possible permutations of the \(n\) elements of \(v\). The matrix \(P\) contains \(n\) ! rows and \(n\) columns.
perms is only practical when \(n\) is less than 8 or 9 .

\section*{Example}
ans \(=\)
\(6 \quad 4 \quad 2\)
\(6 \quad 2 \quad 4\)
\(4 \quad 6 \quad 2\)
\(4 \quad 2 \quad 6\)
\(2 \quad 4 \quad 6\)
264

\section*{Purpose Poisson cumulative distribution function (cdf)}
\[
\text { Syntax } \quad P=\operatorname{poisscdf}(X, L A M B D A)
\]
poisscdf ( \(X\), LAMBDA) computes the Poisson cdf at each of the values in \(X\) using the corresponding parameters in LAMBDA. \(X\) and LAMBDA can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in LAMBDA must be positive.

The Poisson cdf is
\[
p=F(x \mid \lambda)=e^{-\lambda} \sum_{i=0}^{\operatorname{floor}(x)} \frac{\lambda^{i}}{i!}
\]

For example, consider a Quality Assurance department that performs random tests of individual hard disks. Their policy is to shut down the manufacturing process if an inspector finds more than four bad sectors on a disk. What is the probability of shutting down the process if the mean number of bad sectors ( \(\lambda\) ) is two?
```

probability = 1 - poisscdf(4,2)
probability =
0.0527

```

About \(5 \%\) of the time, a normally functioning manufacturing process will produce more than four flaws on a hard disk.

Suppose the average number of flaws \((\lambda)\) increases to four. What is the probability of finding fewer than five flaws on a hard drive?
```

probability = poisscdf(4,4)
probability =
0.6288

```

This means that this faulty manufacturing process continues to operate after this first inspection almost \(63 \%\) of the time.

\author{
See Also \\ cdf, poissfit, poissinv, poisspdf, poissrnd, poisstat
}

\section*{Purpose}

Parameter estimates and confidence intervals for Poisson data

\section*{Syntax}

\section*{Description}

\section*{Example}

\section*{See Also}
```

lambdahat = poissfit(DATA)
[lambdahat,lambdaci] = poissfit(DATA)
[lambdahat,lambdaci] = poissfit(DATA,alpha)

```
poissfit (DATA) returns the maximum likelihood estimate (MLE) of the parameter of the Poisson distribution, \(\lambda\), given the data DATA.
[lambdahat,lambdaci] = poissfit(DATA) also gives \(95 \%\) confidence intervals in lamdaci.
[lambdahat, lambdaci] = poissfit(DATA,alpha) gives 100(1 - alpha)\% confidence intervals. For example alpha \(=0.001\) yields \(99.9 \%\) confidence intervals.

The sample average is the MLE of \(\lambda\).
\[
\hat{\lambda}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\]
```

r = poissrnd(5,10,2);
[l,lci] = poissfit(r)
l =
7.4000 6.3000
lci =
5.8000 4.8000
9.1000 7.9000

```
betafit, binofit, expfit, gamfit, poisscdf, poissinv, poisspdf, poissrnd, poisstat, unifit, wblfit

\section*{poissinv}

Purpose Inverse of the Poisson cumulative distribution function (cdf)
\[
\text { Syntax } \quad X=\operatorname{poissinv}(P, L A M B D A)
\]

Description poissinv( \(P\), LAMBDA) returns the smallest value \(X\) such that the Poisson cdf evaluated at \(X\) equals or exceeds P. \(P\) and LAMBDA can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input.

\section*{Examples}

If the average number of defects \((\lambda)\) is two, what is the 95 th percentile of the number of defects?
```

poissinv(0.95,2)
ans =

```

5
What is the median number of defects?
```

median_defects = poissinv(0.50,2)
median_defects =
2

```

\section*{See Also}
icdf, poisscdf, poissfit, poisspdf, poissrnd, poisstat

\section*{Purpose}

\section*{Syntax \(\quad Y=\) poisspdf \((X, L A M B D A)\)}

\section*{Examples}

A computer hard disk manufacturer has observed that flaws occur randomly in the manufacturing process at the average rate of two flaws in a 4 Gb hard disk and has found this rate to be acceptable. What is the probability that a disk will be manufactured with no defects?

In this problem, \(\lambda=2\) and \(x=0\).
```

p = poisspdf(0,2)
p =
0.1353

```

\section*{See Also}
pdf, poisscdf, poissfit, poissinv, poissrnd, poisstat

\section*{Purpose Random numbers from the Poisson distribution}
\[
\text { Syntax } \quad \begin{aligned}
R & =\text { poissrnd }(\text { LAMBDA }) \\
& R=\text { poissrnd }(\text { LAMBDA }, v) \\
& R=\text { poissrnd }(\text { LAMBDA }, m, n)
\end{aligned}
\]

Description \(\quad R=\) poissrnd (LAMBDA) generates Poisson random numbers with mean LAMBDA. LAMBDA can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of LAMBDA.
\(R=\) poissrnd(LAMBDA, \(m\) ) generates Poisson random numbers with mean LAMBDA, where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=p o i s s r n d(L A M B D A, m, n)\) generates Poisson random numbers with mean LAMBDA, where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of poissrnd}
poissrnd uses the MATLAB functions rand and randn to generate random numbers. When you call poissrnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to poissrnd or any other functions that depend on rand or randn. If you want to reproduce the output of poissrnd, reset the states of rand and randn to the same fixed values each time you call poissrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current states of rand and randn. If you run the code in these examples, your results may differ from the answers shown here.

\section*{Examples}

Generate a random sample of 10 pseudo-observations from a Poisson distribution with \(\lambda=2\).
```

lambda = 2;
random_sample1 = poissrnd(lambda,1,10)

```
```

random_sample1 =
1
random_sample2 = poissrnd(lambda,[[1 10])
random_sample2 =
1
random_sample3 = poissrnd(lambda(ones(1,10)))
random_sample3 =
3 2 1 1 1 1 0

```

\section*{See Also}
poisscdf, poissfit, poissinv, poisspdf, poisstat

\section*{poisstat}

Purpose Mean and variance for the Poisson distribution
\begin{tabular}{|c|c|}
\hline Syntax & \[
\begin{aligned}
& \text { M = poisstat(LAMBDA) } \\
& {[M, V]=\text { poisstat(LAMBDA) }}
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Description} & M = poisstat(LAMBDA) returns the m parameter LAMBDA. The size of \(M\) is th \\
\hline & [M, V] = poisstat(LAMBDA) also retu distribution. \\
\hline & For the Poisson distribution with par equal to \(\lambda\). \\
\hline \multirow[t]{8}{*}{Examples} & Find the mean and variance for the \\
\hline & [m,v] = poisstat([1 2; 3 4]) \\
\hline & m = \\
\hline & 12 \\
\hline & 34 \\
\hline & \(\mathrm{v}=\) \\
\hline & 12 \\
\hline & 34 \\
\hline
\end{tabular}

See Also
poisscdf, poissfit, poissinv, poisspdf, poissrnd

\section*{Purpose}

Polynomial evaluation and confidence interval estimation

\section*{Syntax}

\section*{Description}

\section*{Examples}
[Y,DELTA] = polyconf(p,X,S)
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] \(=\) polyconf( \(\mathrm{p}, \mathrm{X}, \mathrm{S}, \mathrm{al} \mathrm{pha})\)
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] = polyconf( \(\mathrm{p}, \mathrm{X}, \mathrm{S}\) ) uses the optional output S generated by polyfit to give \(95 \%\) prediction intervals \(Y \pm\) DELTA for future observations at \(X\). This assumes the errors in the data input to polyfit are independent normal with constant variance.
[Y,DELTA] = polyconf(p,x,S,alpha) gives 100(1-alpha)\% prediction intervals. For example, alpha \(=0.1\) yields \(90 \%\) intervals.

If \(p\) is a vector whose elements are the coefficients of a polynomial in descending powers, such as those output from polyfit, then polyconf \((p, X)\) is the value of the polynomial evaluated at \(X\). If \(X\) is a matrix or vector, the polynomial is evaluated at each of the elements.

This example gives predictions and \(90 \%\) prediction intervals for computing time for LU factorizations of square matrices with 100 to 200 columns.
```

n = [100 100:20:200];
for i = n
A = rand(i,i);
tic
B = lu(A);
t(ceil((i-80)/20)) = toc;
end
[p,S] = polyfit(n(2:7),t,3);
[time,delta_t] = polyconf(p,n(2:7),S,0.1)
time =
0.0829
delta_t =
0.0064

```

\section*{Purpose Polynomial curve fitting}

Syntax \(\quad p=\operatorname{polyfit}(x, y, n)\)
[p,S] = polyfit( \(x, y, n\) )
[ \(p, S, m u\) ] \(=\) polyfit \((x, y, n)\)
Description \(\quad p=\operatorname{polyfit}(x, y, n)\) finds the coefficients of a polynomial \(p(x)\) of degree \(n\) that fits the data, \(p(x(i))\) to \(y(i)\), in a least squares sense. The result \(p\) is a row vector of length \(n+1\) containing the polynomial coefficients in descending powers:
\[
p(x)=p_{1} x^{n}+p_{2} x^{n-1}+\ldots+p_{n} x+p_{n+1}
\]
\([p, s]=\operatorname{polyfit}(x, y, n)\) returns the polynomial coefficients \(p\) and a structure \(S\) for use with polyval to obtain error estimates or predictions. S contains fields for the triangular factor ( R ) from a QR decomposition of the Vandermonde matrix of \(x\), the degrees of freedom (df), and the norm of the residuals (normr). If the data is random, an estimate of the covariance matrix of \(p\) is (Rinv*Rinv')*normr \({ }^{\wedge} 2 / d f\), where Rinv is the inverse of \(R\).
[ \(p, s, m u]=\) polyfit \((x, y, n)\) finds the coefficients of a polynomial in
\[
\hat{x}=\frac{x-\mu_{1}}{\mu_{2}}
\]
where \(\mu_{1}=\operatorname{mean}(x)\) and \(\mu_{2}=\operatorname{std}(x)\). mu is the two-element vector [ \(\mu_{1}, \mu_{2}\) ]. This centering and scaling transformation improves the numerical properties of both the polynomial and the fitting algorithm.
The polyfit function is part of the standard MATLAB language.

\section*{Example}

Fitting a random data set to a first-order polynomial:
```

[p,S] = polyfit(1:10,[1:10] + normrnd(0,1,1,10),1)
p =
1.1433-0.7868
S =
R: [2x2 double]
df: 8
normr: 2.3773

```

\author{
See Also \\ polyval, polytool, polyconf
}

Purpose Interactive plot for prediction of fitted polynomials
```

Syntax polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha,xname,yname)
h = polytool(...)

```

Description

\section*{Algorithm}
polytool fits by least-squares using the regression model
\[
\begin{aligned}
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{n} x_{i}^{n}+\varepsilon_{i} \\
& \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \quad \forall i \\
& \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i, j
\end{aligned}
\]

Purpose

\section*{Syntax \\ Description}

\section*{Examples}

\section*{See Also}

Polynomial evaluation
\[
\begin{aligned}
& Y=\operatorname{polyval}(p, X) \\
& {[Y, \operatorname{DELTA}]=\operatorname{polyval}(p, X, S)}
\end{aligned}
\]
\(Y=\) polyval \((p, X)\) returns the predicted value of a polynomial given its coefficients, \(p\), at the values in \(X\).
[Y,DELTA] = polyval( \(\mathrm{p}, \mathrm{X}, \mathrm{S}\) ) uses the optional output S generated by polyfit to generate error estimates, \(Y \pm\) DELTA. If the errors in the data input to polyfit are independent normal with constant variance, \(Y \pm\) DELTA contains at least \(50 \%\) of future observations at \(X\).

If \(p\) is a vector whose elements are the coefficients of a polynomial in descending powers, then polyval \((p, X)\) is the value of the polynomial evaluated at \(X\). If \(X\) is a matrix or vector, the polynomial is evaluated at each of the elements.

The polyval function is part of the standard MATLAB language.
Simulate the function \(y=x\), adding normal random errors with a standard deviation of 0.1. Then use polyfit to estimate the polynomial coefficients. Note that predicted \(Y\) values are within DELTA of the integer \(X\) in every case.
```

[p,S] = polyfit(1:10,(1:10) + normrnd(0,0.1,1,10),1);
X = magic(3);
[Y,D] = polyval(p,X,S)
Y =
8.0696 1.0486 6.0636
3.0546 5.0606 7.0666
4.0576 9.0726 2.0516
D =
0.0889 0.0951 0.0861
0.0889 0.0861 0.0870
0.0870 0.0916 0.0916

```
polyfit, polytool, polyconf

\section*{prctile}

Purpose Percentiles of a sample
Syntax
\(Y=\operatorname{prctile}(X, p)\)
\(Y=\operatorname{prctile}(X, p, d i m)\)

Description

\section*{Examples}
```

x = (1:5)'*(1:5)
x =
1
2 4 4 6 8 10
3
4
5
y = prctile(x,[25 50 75])
y =
1.7500 3.5000 5.2500 7.0000 8.7500
3.0000 6.0000 9.0000 12.0000 15.0000
4.2500 8.5000 12.7500 17.0000 21.2500

```

Purpose
Syntax

Description

Principal components analysis (PCA)
```

COEFF = princomp(X)
[COEFF,SCORE,latent,tsquare] = princomp(X)
[...] = princomp(X, 'econ')

```

COEFF \(=\) princomp (X) performs principal components analysis on the \(n\)-by- \(p\) data matrix \(X\), and returns the principal component coefficients, also known as loadings. Rows of X correspond to observations, columns to variables. COEFF is a \(p\)-by- \(p\) matrix, each column containing coefficients for one principal component. The columns are in order of decreasing component variance.
princomp centers \(X\) by subtracting off column means, but does not rescale the columns of \(X\). To perform principal components analysis with standardized variables, that is, based on correlations, use princomp (zscore (X) ). To perform principal components analysis directly on a covariance or correlation matrix, use pcacov.
[COEFF, SCORE] = princomp(X) returns SCORE, the principal component scores; that is, the representation of \(X\) in the principal component space. Rows of SCORE correspond to observations, columns to components.
[COEFF, SCORE, latent] = princomp(X) returns latent, a vector containing the eigenvalues of the covariance matrix of \(x\).
[COEFF, SCORE,latent,tsquare] = princomp(X) returns tsquare, which contains Hotelling's \(\mathrm{T}^{2}\) statistic for each data point.

The scores are the data formed by transforming the original data into the space of the principal components. The values of the vector latent are the variance of the columns of SCORE. Hotelling's \(\mathrm{T}^{2}\) is a measure of the multivariate distance of each observation from the center of the data set.

When \(n<=p, \operatorname{SCORE}(:, n: p)\) and latent \((n: p)\) are necessarily zero, and the columns of \(\operatorname{COEFF}(:, n: p)\) define directions that are orthogonal to \(X\).
[...] = princomp(X, 'econ') returns only the elements of latent that are not necessarily zero, and the corresponding columns of COEFF and SCORE, that is, when \(n<=p\), only the first \(n-1\). This can be significantly faster when \(p\) is much larger than \(n\).

\section*{princomp}

Example

Reference

See Also

Compute principal components for the ingredients data in the Hald data set, and the variance accounted for by each component.
```

load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent
pc =
0.0678
0.6785 -0.0200 -0.5440 -0.4933
-0.0290 0.7553 0.4036 -0.5156
-0.7309 -0.1085 -0.4684 -0.4844
latent =
517.7969
67.4964
12.4054
0.2372

```
[1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons, 1991, p. 592.
[2] Jolliffe, I. T., Principal Component Analysis, 2nd edition, Springer, 2002.
[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University Press, 1988.
[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.
barttest, biplot, canoncorr, factoran, pcacov, pcares

Purpose
Syntax

\section*{Description}

\section*{See Also}

Probability plot
```

probplot(Y)
probplot('distname', Y)
probplot(Y, cens, req)
probplot(ax, Y)
probplot(...,'noref')
probplot(ax, fun, params)
h = probplot(...)

```
probplot ( Y ) produces a normal probability plot comparing the distribution of the data \(Y\) to the normal distribution. \(Y\) can be a single vector, or a matrix with a separate sample in each column. The plot includes a reference line useful for judging whether the data follow a normal distribution.
probplot('distname', Y) creates a probability plot for the specified distribution.
probplot(Y, cens, freq) or probplot('distname', Y, cens, freq) requires a vector \(Y\). cens is a vector of the same size as \(Y\) and contains 1 for observations that are right-censored and 0 for observations that are observed exactly. freq is a vector of the same size as Y , containing integer frequencies for the corresponding elements in \(Y\).
probplot (ax, Y ) takes a handle ax to an existing probability plot, and adds additional lines for the samples in Y . ax is a handle for a set of axes.
probplot(...,'noref') omits the reference line.
probplot(ax, fun, params) takes a function fun and a set of parameters, params, and adds fitted lines to the axes specified by ax. fun is a function to compute a cdf function, and is specified with @, for example, @weibcdf. params is the set of parameters required to evaluate fun, and is specified as a cell array or vector. The function must accept a vector of \(X\) values as its first argument, then the optional parameters, and must return a vector of cdf values evaluated at \(X\).
\(\mathrm{h}=\mathrm{probplot}(\ldots)\) returns handles to the plotted lines.
normplot, ecdf

\section*{procrustes}

Purpose Procrustes analysis
```

Syntax d = procrustes(X,Y)
[d,Z] = procrustes(X,Y)
[d,Z,transform] = procrustes(X,Y)

```

Description \(\quad d=\operatorname{procrustes}(X, Y)\) determines a linear transformation (translation, reflection, orthogonal rotation, and scaling) of the points in matrix \(Y\) to best conform them to the points in matrix \(X\). The goodness-of-fit criterion is the sum of squared errors. procrustes returns the minimized value of this dissimilarity measure in \(d\). \(d\) is standardized by a measure of the scale of \(X\), given by
```

sum(sum((X-repmat(mean(X,1),\operatorname{size(X,1),1)).^2,1))}

```
i.e., the sum of squared elements of a centered version of \(X\). However, if \(X\) comprises repetitions of the same point, the sum of squared errors is not standardized.
\(X\) and \(Y\) must have the same number of points (rows), and procrustes matches the ith point in \(Y\) to the ith point in \(X\). Points in \(Y\) can have smaller dimension (number of columns) than those in \(X\). In this case, procrustes adds columns of zeros to \(Y\) as necessary.
\([d, Z]=\) procrustes \((X, Y)\) also returns the transformed \(Y\) values.
[d,Z,transform] = procrustes \((X, Y)\) also returns the transformation that maps \(Y\) to \(Z\). transform is a structure with fields:
c Translation component
T Orthogonal rotation and reflection component
b Scale component

That is, \(Z=\) transform.b * \(Y\) * transform. \(T+\) transform.c.

\section*{Examples}

This example creates some random points in two dimensions, then rotates, scales, translates, and adds some noise to those points. It then uses procrustes to conform \(Y\) to \(X\), and plots the original \(X\) and \(Y\), and the transformed \(Y\).
X = normrnd(0,1,[10 2]);
```

S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
Y = normrnd(0.5*X*S + 2,0.05,size(X));
[d,Z,tr] = procrustes(X,Y);
plot(X(:,1),X(:,2),'rx',...
Y(:,1),Y(:, 2),'b.',...
Z(:,1),Z(:,2),'bx');

```

References

See Also cmdscale, factoran

\section*{qqplot}

Purpose Quantile-quantile plot of two samples
Syntax \(\quad\)\begin{tabular}{ll} 
& qqplot \((X)\) \\
& qqplot \((X, Y)\) \\
& qqplot \((X, Y\), pvec \()\) \\
& \(h=\operatorname{qqplot}(\ldots)\)
\end{tabular}

Description

\section*{Examples}
qqplot ( \(X\) ) displays a quantile-quantile plot of the sample quantiles of \(X\) versus theoretical quantiles from a normal distribution. If the distribution of \(X\) is normal, the plot will be close to linear.
qqplot ( \(X, Y\) ) displays a quantile-quantile plot of two samples. If the samples do come from the same distribution, the plot will be linear.

For matrix \(X\) and \(Y\), qqplot displays a separate line for each pair of columns. The plotted quantiles are the quantiles of the smaller data set.

The plot has the sample data displayed with the plot symbol ' + '. Superimposed on the plot is a line joining the first and third quartiles of each distribution (this is a robust linear fit of the order statistics of the two samples). This line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.

Use qqplot ( \(\mathrm{X}, \mathrm{Y}, \mathrm{pvec}\) ) to specify the quantiles in the vector pvec.
\(h=q q p l o t(X, Y, p v e c)\) returns handles to the lines in \(h\).
Generate two normal samples with different means and standard deviations. Then make a quantile-quantile plot of the two samples.
```

x = normrnd(0,1,100,1);
y = normrnd(0.5,2,50,1);
qqplot(x,y);

```


See Also normplot

\section*{quantile}

\section*{Purpose \\ Quantiles of a sample}
Syntax \(\quad\)\begin{tabular}{l}
\(Y=\) quantile \((X, p)\) \\
\\
\\
\(Y=q u a n t i l e(X, p, \operatorname{dim})\)
\end{tabular}

Description

\section*{Examples}

See Also prctile, iqr, median

\section*{Purpose \\ Gamma distributed random numbers and arrays (unit scale)}

\section*{Syntax \\ Description}
\(Y=\) randg
\(Y=\operatorname{randg}(A)\)
\(Y=\operatorname{randg}(A, M)\)
\(Y=\operatorname{randg}(A, M, N, \ldots)\)
\(Y=\operatorname{randg}(A,[M, N, \ldots])\)
\(Y=\) randg returns a scalar random value chosen from a gamma distribution with unit scale and shape.
\(Y=\) randg ( \(A\) ) returns a matrix of random values chosen from gamma distributions with unit scale. \(Y\) is the same size as \(A\), and randg generates each element of \(Y\) using a shape parameter equal to the corresponding element of \(A\).
\(Y=r a n d g(A, M)\) returns an \(M\)-by-M matrix of random values chosen from gamma distributions with shape parameters A. A is either an M-by-M matrix or a scalar. If A is a scalar, randg uses that single shape parameter value to generate all elements of \(Y\).
\(Y=\operatorname{randg}(A, M, N, \ldots)\) or \(Y=\operatorname{randg}(A,[M, N, \ldots])\) returns an M-by-N-by-... array of random values chosen from gamma distributions with shape parameters A. A is either an M-by-N-by-... array or a scalar.
randg produces pseudorandom numbers using the MATLAB functions rand and randn. The sequence of numbers generated is determined by the states of both generators. To create reproducible output from randg, set the states of both rand and randn to a fixed pair of values before calling randg. For example,
```

rand('state',j);
randn('state',s);
r = randg(1,[10,1]);

```
always generates the same 10 values. You can also use the MATLAB generators by calling rand and randn with the argument 'seed '. Calling randg changes the current states of rand and randn and therefore alters the outputs of subsequent calls to those functions.

To generate gamma random numbers and specify both the scale and shape parameters, you should call gamrand rather than calling randg directly.
References [1] Marsaglia, G., and Tsang, W. W., "A Simple Method for Generating Gamma Variables," ACM Transactions on Mathematical Software, Vol. 26, 2000, pp. 363-372.
See Also gamrnd

\section*{Purpose}

Syntax \(\quad y=\) random('name' \(, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~m}, \mathrm{n})\)
Description

\section*{Examples}

See Also
Random numbers from a specified distribution some of the parameters may not be necessary. available distributions.
```

rn = random('Normal', 0,1,2,4)
rn =
1.1650 0.0751 -0.6965 0.0591
0.6268 0.3516 1.6961 1.7971
rp = random('Poisson',1:6,1,6)
rp =
0

```
\(\mathrm{y}=\) random('name' \(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~m}, \mathrm{n})\) returns a matrix of random numbers, where 'name' is a string containing the name of the distribution, and A1, A2, and A3 are matrices of distribution parameters. Depending on the distribution

Vector or matrix inputs must all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.

The last two parameters, \(d\) and \(e\), are the size of the matrix \(y\). If the distribution parameters are matrices, then these parameters are optional, but they must match the size of the other matrix arguments (see second example).
random is a utility routine allowing you to access all the random number generators in the Statistics Toolbox using the name of the distribution as a parameter. See "Overview of the Distributions" on page 2-45 for the list of
betarnd, binornd, cdf, chi2rnd, exprnd, frnd, gamrnd, geornd, hygernd, icdf, lognrnd, nbinrnd, ncfrnd, nctrnd, ncx2rnd, normrnd, pdf, poissrnd, raylrnd, trnd, unidrnd, unifrnd, wblrnd
Purpose Random sample, with or without replacement
Syntax \(\quad\)\begin{tabular}{rl}
\(y\) & \(=\operatorname{randsample}(n, k)\) \\
\(y\) & \(=\operatorname{randsample}(\) population,\(k)\) \\
\(y\) & \(=\operatorname{ransample}(\ldots, \operatorname{replace})\) \\
\(y\) & \(=\operatorname{randsample}(\ldots, t r u e, w)\)
\end{tabular}

Description

Example

See Also
rand, randperm

Purpose

\section*{Syntax \\ randtool}

Description randtool sets up a graphic user interface for exploring the effects of changing parameters and sample size on the histogram of random samples from the supported probability distributions. See "Random Sample Generation Demo" on page 2-4 for detailed information about the demo.

\section*{See Also}
Purpose Sample range
Syntax \(\quad\)\begin{tabular}{rl}
\(y\) & \(=\operatorname{range}(X)\) \\
\(y\) & \(=\operatorname{range}(X, \operatorname{dim})\)
\end{tabular}

Description

\section*{Example}

\section*{See Also}
std, iqr, mad

\section*{Purpose Wilcoxon rank sum test for equal medians}
```

Syntax h = ranksum(x,y)
[p,h] = ranksum(x,y)
[p,h] = ranksum(x,y,'alpha',alpha)
[p,h,stats] = ranksum(...)

```

\section*{Description}
\(h=r a n k s u m(x, y)\) performs a two-sided rank sum test of the hypothesis that two independent samples, in the vectors \(x\) and \(y\), come from distributions with equal medians, and returns the \(p\)-value from the test. \(p\) is the probability of observing the given result, or one more extreme, by chance if the null hypothesis is true, i.e., the medians are equal. Small values of \(p\) cast doubt on the validity of the null hypothesis. The two sets of data are assumed to come from continuous distributions that are identical except possibly for a location shift, but are otherwise arbitrary. \(x\) and \(y\) can be different lengths.

The Wilcoxon rank sum test is equivalent to the Mann-Whitney U test.
\([p, h]=\operatorname{ranksum}(x, y)\) returns the result of the hypothesis test, performed at the 0.05 significance level, in h . If \(\mathrm{h}=0\), then the null hypothesis, i.e., medians are equal, cannot be rejected at the \(5 \%\) level. If \(h=1\), then the null hypothesis can be rejected at the 5\% level.
[p,h] = ranksum(x,y,'alpha',alpha) returns the result of the hypothesis test performed at the significance level alpha.
[p,h] = ranksum(...,'method', method) computes the p-value using an exact algorithm, if you set method to 'exact ' or a normal approximation, if you set method to 'approximate'.

If you omit this argument, ranksum uses the exact method for small samples and the approximate method for larger samples.
[p,h,stats] = ranksum(...) returns stats, a structure with one or two fields. The field 'ranksum' contains the value of the rank sum statistic. If the sample size is large, then \(p\) is calculated using a normal approximation and the field 'zval' contains the value of the normal (Z) statistic.

\section*{Example}

References

See Also kruskalwallis, signrank, signtest, ttest2 shift of 0.25 .
```

x = unifrnd(0,1,10,1);
y = unifrnd(.25,1.25,15,1);
[p,h] = ranksum(x,y,0.05)
p =
0.0375
h =
1

``` 1985. 1973.

This example tests the hypothesis of equal medians for two independent unequal-sized samples. The theoretical distributions are identical except for a
[1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker,
[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley,

Purpose

\section*{Syntax}

Description

Rayleigh cumulative distribution function (cdf)
\(P=\operatorname{raylcdf}(X, B)\)
\(P\) = raylcdf( \(X, B\) ) computes the Rayleigh cdf at each of the values in \(X\) using the corresponding parameters in \(B\). \(X\) and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for \(X\) or \(B\) is expanded to a constant array with the same dimensions as the other input.

The Rayleigh cdf is
\[
y=F(x \mid b)=\int_{0}^{x} \frac{t}{b^{2}} e^{\left(\frac{-t^{2}}{2 b^{2}}\right)} d t
\]
\[
\begin{aligned}
& x=0: 0.1: 3 ; \\
& p=\operatorname{raylcdf}(x, 1) ; \\
& \operatorname{plot}(x, p)
\end{aligned}
\]

[1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd edition, Wiley, 1993, pp. 134-136.

See Also
cdf, raylinv, raylpdf, raylrnd, raylstat

Purpose Parameter estimates and confidence intervals for Rayleigh data
\begin{tabular}{ll} 
Syntax & raylfit(data, alpha) \\
{\([\) phat, pci] \(=\) raylfit(data, alpha) }
\end{tabular}

Description

See Also
raylcdf, raylinv, raylpdf, raylrnd, raylstat, mle

Purpose

\section*{Syntax \\ \(X=\operatorname{raylinv}(P, B)\)}

Description

\section*{Example}

See Also dimensions as the other input.
\[
\begin{aligned}
& x=\operatorname{raylinv}(0.9,1) \\
& x= \\
& 2.1460
\end{aligned}
\]

Inverse of the Rayleigh cumulative distribution function
\(X=\) raylinv \((P, B)\) returns the inverse of the Rayleigh cumulative distribution function with parameter \(B\) at the corresponding probabilities in P. P and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for \(P\) or \(B\) is expanded to a constant array with the same
icdf, raylcdf, raylpdf, raylrnd, raylstat

\section*{Purpose Rayleigh probability density function}

\section*{Syntax \\ Y = raylpdf( \(X, B\) )}

Description
\(Y=\) raylpdf( \(X, B\) ) computes the Rayleigh pdf at each of the values in \(X\) using the corresponding parameters in \(B . X\) and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(Y\). A scalar input for \(X\) or \(B\) is expanded to a constant array with the same dimensions as the other input.

The Rayleigh pdf is
\[
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
\]

\section*{Example}
\[
\begin{aligned}
& x=0: 0.1: 3 ; \\
& p=\operatorname{raylpdf}(x, 1) ; \\
& \operatorname{plot}(x, p)
\end{aligned}
\]


\section*{See Also}
pdf, raylcdf, raylinv, raylrnd, raylstat

Purpose
Random matrices from the Rayleigh distribution
\[
\text { Syntax } \quad \begin{aligned}
R & =\operatorname{raylrnd}(B) \\
& R=\operatorname{raylnd}(B, v) \\
& R=\operatorname{raylrnd}(B, m, n)
\end{aligned}
\]

\section*{Description}

\section*{Example}
\(R=r a y l r n d(B)\) returns a matrix of random numbers chosen from the Rayleigh distribution with parameter B. B can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of \(B\).
\(R=\) raylrnd \((B, v)\) returns a matrix of random numbers chosen from the Rayleigh distribution with parameter \(B\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is \(1-b y-n, R\) is an n -dimensional array.
\(R=\operatorname{raylrnd}(B, m, n)\) returns a matrix of random numbers chosen from the Rayleigh distribution with parameter \(B\), where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of raylrnd}
raylrnd uses the MATLAB function randn to generate random numbers. When you call raylrnd, you change the current state of randn, and thereby alter the output of subsequent calls to raylrnd or any other functions that depend on randn. If you want to reproduce the output of raylrnd, reset the state of randn to the same fixed value each time you call raylrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The result in the following example depends on the current state of randn. If you run the code in this example, your results may differ from the answer shown here.
```

$r=r a y l r n d(1: 5)$
$r=$
$\begin{array}{lllll}1.7986 & 0.8795 & 3.3473 & 8.9159 & 3.5182\end{array}$

```

\section*{raylrnd}

\section*{See Also}
random, raylcdf, raylinv, raylpdf, raylstat

Purpose Mean and variance for the Rayleigh distribution
\begin{tabular}{ll} 
Syntax & \(M=\operatorname{raylstat}(B)\) \\
& {\([M, V]=\operatorname{raylstat}(B)\)}
\end{tabular}

Description
\([\mathrm{M}, \mathrm{V}]=\) raylstat (B) returns the mean and variance of the Rayleigh distribution with parameter \(B\).

The mean of the Rayleigh distribution with parameter \(b\) is \(b \sqrt{\pi / 2}\) and the variance is
\[
\frac{4-\pi}{2} b^{2}
\]

\section*{Example}
\[
\begin{aligned}
& {[m n, v]=\text { raylstat }(1)} \\
& m n= \\
& 1.2533 \\
& v= \\
& 0.4292
\end{aligned}
\]

See Also
raylcdf, raylinv, raylpdf, raylrnd

Purpose Residual case order plot

\section*{Syntax rcoplot(r,rint)}

Description

\section*{Example}

\section*{See Also}
rcoplot ( \(r\), rint) displays an errorbar plot of the confidence intervals on the residuals from a regression. The residuals appear in the plot in case order. Inputs \(r\) and rint are outputs from the regress function.
```

X = [ones(10,1) (1:10)'];
y = X * [10;1] + normrnd(0,0.1,10,1);
[b,bint,r,rint] = regress(y,x,0.05);
rcoplot(r,rint);

```


The figure shows a plot of the residuals with error bars showing 95\% confidence intervals on the residuals. All the error bars pass through the zero line, indicating that there are no outliers in the data.

Purpose

\section*{Syntax}

Description

\section*{Example}

Add a polynomial curve to the current plot
\[
h=\operatorname{refcurve}(p)
\]
refcurve adds a graph of the polynomial \(p\) to the current axes. The function for a polynomial of degree \(n\) is:
\(y=p_{1} x^{n}+p_{2} x^{(n-1)}+\ldots+p_{n} x+p_{n+1}\)
Note that \(p_{1}\) goes with the highest order term.
\(h=\) refcurve \((p)\) returns the handle to the curve.
Plot data for the height of a rocket against time, and add a reference curve showing the theoretical height (assuming no air friction). The initial velocity of the rocket is \(100 \mathrm{~m} / \mathrm{sec}\).
```

h = [85 162 230 289 339 381 413 437 452 458 456 440 400 356];
plot(h,'+')
refcurve([-4.9 100 0])

```


\section*{See Also}

\section*{Purpose Add a reference line to the current axes}
```

Syntax refline(slope,intercept)
refline(slope)
h = refline(slope,intercept)
refline

```

\section*{Description}

\section*{Example}

\section*{See Also}
refline(slope, intercept) adds a reference line with the given slope and intercept to the current axes.
refline(slope), where slope is a two-element vector, adds the line
\[
y=\text { slope(2) }+ \text { slope(1)*x }
\]
to the figure.
\(\mathrm{h}=\) refline(slope, intercept) returns the handle to the line.
refline with no input arguments superimposes the least squares line on each line object in the current figure (except LineStyles ' - ', '--',' - ' '). This behavior is equivalent to lsline.
```

y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
plot(y,'+')
refline(0,3)

```

lsline, polyfit, polyval, refcurve

\section*{Purpose}

Syntax

Description

Multiple linear regression
```

b = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X,alpha)

```
\(b=r e g r e s s(y, x)\) returns the least squares fit of \(y\) on \(X\) by solving the linear model
\[
\begin{aligned}
& y=X \beta+\varepsilon \\
& \varepsilon \sim N\left(0, \sigma^{2} I\right)
\end{aligned}
\]
for \(\beta\), where:
- \(y\) is an \(n\)-by- 1 vector of observations
- \(X\) is an \(n\)-by- \(p\) matrix of regressors
- \(\beta\) is a \(p\)-by- 1 vector of parameters
- \(\varepsilon\) is an \(n\)-by- 1 vector of random disturbances
[b,bint, \(r\), rint, stats] = regress \((y, X)\) returns an estimate of \(\beta\) in \(b, a 95 \%\) confidence interval for \(\beta\) in the \(p\)-by- 2 vector bint. The residuals are returned in \(r\) and a \(95 \%\) confidence interval for each residual is returned in the \(n\)-by- 2 vector rint. The vector stats contains the \(R^{2}\) statistic along with the \(F\) and \(p\) values for the regression.
[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1 - alpha)\% confidence intervals for bint and rint. For example, alpha \(=0.2\) gives \(80 \%\) confidence intervals.

X should include a column of ones so that the model contains a constant term. The F statistic and p value are computed under the assumption that the model contains a constant term, and they are not correct for models without a constant. The R -square value is one minus the ratio of the error sum of squares to the total sum of squares. This value can be negative for models without a constant, which indicates that the model is not appropriate for the data.

If the columns of \(X\) are linearly dependent, regress sets the maximum possible number of elements of \(B\) to zero to obtain a basic solution, and returns zeros in elements of bint corresponding to the zero elements of \(B\).
regress treats NaNs in X or y as missing values, and removes them.

\section*{Examples}

Suppose the true model is
\[
\begin{gathered}
y=10+x+\varepsilon \\
\varepsilon \sim N(0,0.01 I)
\end{gathered}
\]
where \(I\) is the identity matrix.
```

X = [ones(10,1) (1:10)']
X =
1
1 2
1 3
1 4
1 5
1}
1 7
1}
1 9
10
y = X * [10;1] + normrnd(0,0.1,10,1)
y =
11.1165
12.0627
13.0075
14.0352
14.9303
16.1696
17.0059
18.1797
19.0264
20.0872
[b,bint] = regress(y,X,0.05)
b =
10.0456
1.0030

```
```

bint =
9.9165 10.1747
0.9822 1.0238

```

Compare b to [10 1]'. Note that bint includes the true model values.
Reference
[1] Chatterjee, S., and A. S. Hadi. "Influential Observations, High Leverage Points, and Outliers in Linear Regression," Statistical Science, 1986, pp. 379416.

\section*{Purpose \\ Regression diagnostics for linear models}
```

Syntax
regstats(responses, DATA)
regstats(responses, DATA, model)
stats = regstats(...)
stats = regstats(responses,data,model,whichstats)

```

\section*{Description}
regstats(responses, data) fits a multiple linear regression of the measurements in the vector, responses, on the values in the matrix, DATA. By default, regstats uses a linear additive model with a constant term. With this syntax, the function creates a graphical user interface (GUI) that displays a list of diagnostic statistics, as shown in the following figure.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{- Regstats Export to Workspace} & - - 미 \(x\) \\
\hline \(\Gamma \mathrm{Q}\) from QR Decomposition & Q & \\
\hline \(\Gamma \mathrm{R}\) from QR Decomposition & R & \\
\hline \(\ulcorner\) Coefficients & beta & \\
\hline \(\Gamma\) Coefficient Covariance & covb & \\
\hline \(\square\) Fitted Values & yhat & \\
\hline \(\lceil\) Residuals & \(r\) & \\
\hline \(\square\) Mean Square Error & mse & \\
\hline \(\lceil\mathrm{R}\)-square statistic & rsquare & \\
\hline \(\lceil\) Adjusted R -square Statistic & adirsquare & \\
\hline \(\Gamma\) Leverage & leverage & \\
\hline \(\ulcorner\) Hat Matrix & hatmat & \\
\hline \(\ulcorner\) Delete-1 Variance & 82i & \\
\hline \(\lceil\) Delete-1 Coetficients & beta_i & \\
\hline \(\Gamma\) Standardized Residuals & standres & \\
\hline \(\Gamma\) Studentized Residuals & studres & \\
\hline \(\Gamma\) Change in Beta & difbetas & \\
\hline \(\square\) Change in Fitted Value & difft & \\
\hline \(\Gamma\) Scaled Change in Fit & difits & \\
\hline \(\Gamma\) Change in Covariance & covratio & \\
\hline \(\Gamma\) Cook's Distance & cookd & \\
\hline \(\Gamma \mathrm{t}\) Statistics & 1 stat & \\
\hline 「Fstatistic & fstat & \\
\hline OK Cancel & Help & \\
\hline
\end{tabular}

When you select the check boxes, corresponding to the statistics you want to compute, and click \(\mathbf{O K}\), regstats returns the selected statistics as variables in the MATLAB workspace. The names of the variables are displayed on the right-hand side of the GUI. For example, if you select Coefficients in the GUI, as shown in the following figure, regstats returns the regression coefficients in the variable beta.

regstats(responses, data, model) enables you to specify the order of the regression model. model can be one of the following strings
'linear' Includes constant and linear terms (default).
'interaction' Includes constant, linear, and cross product terms.
'quadratic' Includes interactions and squared terms.
' purequadratic' Includes constant, linear, and squared terms.

Alternatively, model can be a matrix of model terms as accepted by the x2fx function. See x2fx for a description of this matrix and for a description of the order in which terms appear. You can use this matrix to specify other models including ones without a constant term.
stats \(=\) regstats (...) creates an output structure stats, whose fields contain all the diagnostic statistics for the regression. This syntax does not open the GUI. The following table lists the fields of stats:
'Q' \(Q\) from the QR decomposition of the design matrix, which contains the values of the model terms for each observation
'R' \(\quad\) from the QR decomposition of the design matrix
'beta' Regression coefficients
'covb ' Covariance of regression coefficients
'yhat \(\quad\) Fitted values of the response data
'r' Residuals
'mse' Mean squared error
\begin{tabular}{ll} 
'rsquare' & R-square statistic \\
'adjrsquare' & Adjusted R-square statistic \\
'leverage' & Leverage \\
'hatmat' & Hat (projection) matrix \\
's2_i' & Delete-1 variance \\
'beta_i' & Delete-1 coefficients \\
'standres' & Standardized residuals \\
'studres' & Studentized residuals \\
'dfbetas' & Scaled change in regression coefficients \\
'dffit' & Change in fitted values \\
'dffits' & Scaled change in fitted values \\
'covratio' & Change in covariance \\
'cookd' & Cook's distance \\
'tstat' & t statistics for coefficients \\
'fstat' & F statistic
\end{tabular}

Note that the fields names of stats correspond to the names of the variables returned to the MATLAB workspace when you use the GUI. For example, stats. beta corresponds to the variable beta that is returned when you select Coefficients in the GUI and click OK.
stats \(=\) regstats(responses, DATA, model, whichstats) returns only the statistics that you specify in whichstats. whichstats can be a single name such as 'leverage' or a cell array of names such as \{'leverage' 'standres' 'studres'\}. Set whichstats to 'all' to return all of the statistics.

The F statistic and its p -value are computed under the assumption that the model contains a constant term. They are not correct for models without a constant. The R -square value is one minus the ratio of the error sum of squares to the total sum of squares. This value can be negative for models without a constant, which indicates that the model is not appropriate for the data.

\section*{Example}

The following commands load the array hald and open the regstats GUI using the data in hald.
```

load hald
regstats(heat,ingredients,'linear');

```

Select Fitted Values and Residuals in the GUI.


Click OK to export the fitted values and residuals to the MATLAB workspace as variables named yhat and \(r\), respectively. The following commands create a scatter plot of yhat and \(r\).
```

scatter(yhat,r)
xlabel('Fitted Values'); ylabel('Residuals');

```


Alternatively, you can create the same plot, without using the regstats GUI, by entering the following commands.
```

whichstats = {'yhat','r'};
stats = regstats(heat,ingredients,'linear', whichstats)
stats =
source: ''
yhat: [13x1 double]
r: [13x1 double]
scatter(stats.yhat,stats.r)
xlabel('Fitted Values'); ylabel('Residuals');

```

The output stats contains the fields yhat and \(r\), corresponding to setting
```

whichstats = {'yhat','r'};

```
stats. yhat and stats. \(r\) are the same as the workspace variables yhat and \(r\), respectively, created by the GUI.

\section*{Algorithm}

The usual regression model is \(y=X \beta+\varepsilon\), where:
- \(y\) is an \(n\)-by- 1 vector of responses
- \(X\) is an \(n\)-by- \(p\) design matrix
- \(\beta\) is an \(p\)-by- 1 vector of parameters
- \(\varepsilon\) is an \(n\)-by- 1 vector of random disturbances

The standard textbook equation for the least squares estimator of \(\beta\) is
\[
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\]

However, this definition has poor numeric properties. Particularly dubious is the computation of \(\left(X^{\prime} X^{-1}\right.\), which is both expensive and imprecise.

Let \(X=Q * R\) where \(Q\) and \(R\) come from a \(Q R\) Decomposition of \(X . Q\) is orthogonal and \(R\) is triangular. Numerically stable MATLAB code for \(\beta\) is
```

beta = R\(Q'*y);

```

\section*{Regression Diagnostics}

This section describes the diagnostic statistics provided by regstats for evaluating multiple linear regression. Many regression diagnostics can be easily calculated using the QR decomposition of X .

The following sections describe the diagnostics supplied by regstats:
- "QR Decomposition (Q)"
- "QR Decomposition (R)"
- "Regression Coefficients"
- "Fitted Values of the Response"
- "Residuals"
- "Mean Squared Error"
- "R-Square Statistic"
- "Adjusted R-Square Statistic"
- "Covariance Matrix of Estimated Coefficients"
- "Hat (Projection) Matrix"
- "Leverage"
- "Delete-1 Variance"
- "Delete-1 Coefficients"
- "Standardized Residuals"
- "Studentized Residuals"
- "Scaled Change in Regression Coefficients"
- "Change in Fitted Values"
- "Scaled Change in Fitted Values"
- "Change in Covariance"
- "Cook's Distance"
- "Student's t statistics"
- "F statistic"

\section*{QR Decomposition (Q)}
\(Q\) is the first matrix from the \(Q R\) Decomposition of \(X\).
\[
[Q, R]=\operatorname{qr}(X, 0)
\]

This is the so-called economy-sized \(Q R\) decomposition. \(Q\) is \(n-b y-p\), and its columns are orthogonal. That is, \(Q^{\prime *} \mathrm{Q}=\mathrm{I}\) (the identity matrix).

\section*{QR Decomposition (R)}
\(R\) is the second matrix from the \(Q R\) Decomposition of \(X\).
\[
[Q, R]=\operatorname{qr}(X, 0)
\]

This is the economy-sized QR decomposition. R is p-by-p and triangular. This makes solving linear systems simple.

\section*{Regression Coefficients}

The least squares estimator for the regression coefficients is
```

beta = R\(Q'*y)

```

If you only want the coefficients and do not need to use \(Q\) and \(R\) later, then
```

beta = X\y

```
is the simplest code.

\section*{Fitted Values of the Response}

Substituting the least squares estimator for beta into the model equation (leaving out the error term e) gives the fitted values.
```

yhat = X*beta = X*(R$Q'*y))
```
yhat is an \(n$-by- 1 vector of fitted (or predicted) values of $y$.

## Residuals

The residuals are simply the observed values minus the fitted (or predicted) values.

$$
r=y-y h a t
$$

$r$ is an $n$-by- 1 vector, the same size as $y$.

## Mean Squared Error

The mean squared error is an estimator of the variance of the random disturbances e. This variance is assumed to be constant for all observations.

```
mse = r'*r./(n-p)
```

where

- $r$ is the vector of residuals.
- $n$ is the number of observations.
- $p$ is the number of unknown coefficients.


## R-Square Statistic

The R-square statistic is

```
rsquare = 1 - sse/sst
```

where

- sse $=$ norm( $r$ ). ${ }^{\wedge} 2$, where $r$ is the vector of residuals.
- sst $=$ norm(y - mean(y)).^2


## Adjusted R-Square Statistic

The adjusted $R$-square statistic is

```
adjrsquare = 1 - (1-rsquare)* (n/(n-p))
```

where

- rsquare is the R -square statistic.
- $n$ is the number of observations.
- $p$ is the number of unknown coefficients.


## Covariance Matrix of Estimated Coefficients

The covariance matrix for the estimated coefficients is a p-by-p matrix. Its diagonal elements are the variances of the individual coefficients in beta.

```
Rinv = R \ eye(p); % inverse of R
XtXinv = Rinv*Rinv'; % equivalent to inv(X'*X)
covb = XtXinv*mse;
```

covb is proportional to $\operatorname{inv}\left(\mathrm{X}^{\prime} * X\right)$, but the above calculation involving $R$ is faster and more stable.

## Hat (Projection) Matrix

The hat matrix is an n-by-n matrix that projects the vector of observations, $y$, onto the vector of fitted values yhat.

```
hatmat = Q*Q'
yhat = hatmat*y
```


## Leverage

Leverage is a measure of the effect of a particular observation on the fitted regression, due to the position of that observation in the space of the predictor variables, $X$. In general, the more extreme a point is in the predictor space, the more leverage it has.

```
leverage = diag(hatmat) = diag(Q*Q')
```

leverage is an $n$-by- 1 vector containing the leverages of each observation. It is the diagonal of the hat matrix.

## Delete-1 Variance

The delete- 1 variance is an n-by- 1 vector. Each element contains the mean squared error of the regression obtained by deleting the corresponding observation.

```
s2_i = ((n-p)*mse - r.*r./(1-h))./(n-p-1)
```

where

- $n$ is the number of observations.
- $p$ is the number of unknown coefficients.
- mse is the mean squared error.
- $r$ is the vector of residuals.
- $h$ is the leverage vector.


## Delete-1 Coefficients

The delete- 1 coefficients is a p-by-n matrix. Each column contains the coefficients of the regression obtained by deleting the corresponding observation.

```
b_i(:,j) = beta - Rinv*(Q(j,:) .* r(j)./(1-h(j)))'
```

where

- Rinv is the inverse of the R matrix.
- $r$ is the vector of residuals.
- $h$ is the leverage vector.


## Standardized Residuals

The standardized residuals are the raw residuals, normalized by an estimate of their standard deviation.

```
standres = r ./ sqrt(mse*(1-h))
```

where

- $r$ is the vector of residuals.
- mse is the mean squared error.
- $h$ is the leverage vector.


## Studentized Residuals

The studentized residuals are the raw residuals, normalized by an independent estimate of their standard deviation.

```
studres = r ./ sqrt(s2_i*(1-h))
```

where

- $r$ is the vector of residuals.
- s2_i is the delete-1 variance.
- $h$ is the leverage vector.


## Scaled Change in Regression Coefficients

The scaled change in regression coefficients is a p-by-n matrix. Each column contains the scaled change in the estimated coefficients, beta, caused by deleting the corresponding observation.

```
d = sqrt(diag(Rinv*Rinv'));
dfbetas(:,j) = (beta - b_i(:,j)) ./ (sqrt(s2_i(j).*d(j))
```

where

- Rinv is the inverse of the R matrix.
- b_i is the matrix of delete- 1 coefficients.
- s2_i is the vector of delete-1 variances.


## Change in Fitted Values

The change in fitted values is an n-by- 1 vector. Each element contains the change in a fitted value caused by deleting the corresponding observation.

```
dffit = r .* (h./(1-h))
```

where

- $r$ is the vector of residuals.
- $h$ is the leverage vector.


## Scaled Change in Fitted Values

The scaled change in fitted values is an n-by-1 vector. Each element contains the change in a fitted value caused by deleting the corresponding observation, scaled by the standard error.

```
dffits = studres .* sqrt(h./(1-h))
```

where

- studres is the vector of studentized residuals.
- h is the leverage vector.


## Change in Covariance

The change in covariance is an n-by- 1 vector. Each element is the ratio of the generalized variance of the estimated coefficients when the corresponding element is deleted, to the generalized variance of the coefficients using all the data.

```
covr = 1 ./ ((((n-p-1+studres.*studres)./(n-p)).^p).*(1-h))
```

where

- $n$ is the number of observations.
- p is the number of unknown coefficients.
- studres is the vector of studentized residuals.
- $h$ is the leverage vector.


## Cook's Distance

Cook's distance is an n-by-1 vector. Each element is the normalized change in the vector of fitted values, yhat, due to the deletion of the corresponding observation.

```
cookd = r .* r .* (h./(1-h).^2)./(p*mse)
```

where

- $r$ is the vector of residuals.
- $h$ is the leverage vector.
- mse is the mean squared error.
- $p$ is the number of unknown coefficients.


## Student's $\dagger$ statistics

The Student's t statistics output is a structure containing t statistics and related information. The structure contains the following fields:

- beta - Regression coefficient estimates
- se - Standard errors for the regression coefficient estimates
- t - t statistics for the regression coefficient estimates, each one for a test that the corresponding coefficient is zero
- dfe - Degrees of freedom for error
- pval - p-values for each t statistic, which is calculated by the following code:

```
 beta = R\(Q'*y)
```

    se = sqrt(diag(covb))
    \(\mathrm{t}=\) beta ./ se
    dfe \(=n-p\)
    pval \(=2 *(t c d f(-a b s(t), d f e))\)
    
## F statistic

The F statistic output is a structure containing an F statistic and related information. The structure contains the following fields:

- sse - Error sum of squares
- ssr - Regression sum of squares
- dfe - Error degrees of freedom
- dfr - Regression degrees of freedom
- $f-F$ statistic value, for a test that all regression coefficients other than the constant term are zero
- pval — p-value for the F statistic, which is calculated by the following code:
sse $=$ norm(r).^2
ssr = norm(yfit - mean(yfit)).^2
dfe $=n-p$
$\mathrm{dfr}=\mathrm{p}-1$
$f=(s s r / d f r) /(s s e / d f e)$
pval = 1 - fcdf(f, dfr, dfe)

Reference

See Also
[1] Belsley, D. A., E. Kuh, and R. E. Welsch, Regression Diagnostics, Wiley, 1980.
[2] Chatterjee, S., and A. S. Hadi, "Influential Observations, High Leverage Points, and Outliers in Linear Regression," Statistical Science, 1986, pp. 379416.
[3] Cook, R. D., and S. Weisberg, Residuals and Influence in Regression, Wiley, 1982.
[4] Goodall, C. R., "Computation using the QR decomposition," Statistical Computing, ed. C. R. Rao, Handbook in Statistics, Volume 9. Elsevier/North-Holland, 1993.
leverage, stepwise, regress

## Purpose Parameter estimate for ridge regression

$$
\text { Syntax } \quad \begin{array}{ll}
b 1 & =\operatorname{ridge}(y, x, k) \\
b 0 & =\operatorname{ridge}(y, x, k, 0)
\end{array}
$$

Description

## Example

b1 = ridge $(\mathrm{y}, \mathrm{X}, \mathrm{k})$ returns the vector b1 of regression coefficients for the linear model $y=X \beta+\varepsilon$, obtained by performing ridge regression of the response vector $y$ on the predictors $X$ using ridge parameter $k$. The matrix $X$ should not contain a column of ones. The results are computed after centering and scaling the $X$ columns so they have mean 0 and standard deviation 1 . If y is an $n$-by- 1 vector of observations, X is an $n$-by- $p$ matrix, and $k$ is a scalar, the result b 1 is a column vector with $p$ elements. If k has m elements, b 1 is $\mathrm{p}-\mathrm{by}-\mathrm{m}$. The ridge estimator of $\beta$ is $b_{1}=\left(X_{1}^{T} X_{1}+k I\right)^{-1} X_{1} y$, where $X_{1}$ is a centered and scaled version of $X$. bO $=$ ridge ( $y, x, k, 0$ ) performs the regression without centering and scaling. The result bo has $p+1$ coefficients, with the first being the constant term. ridge ( $y, X, k, 1$ ) is the same as ridge $(y, x, k)$.

The relationship between b1 and b0 is given by

```
bO = [mean(y)-mean(X)*t; t]
```

where

$$
\mathrm{t}=\mathrm{b} 1 . / \operatorname{std}(\mathrm{x}, 0,1)
$$

When $\mathrm{k}=0$, the result b (either b0 or b1) is the least squares estimator. For increasing $k$, the bias of $b$ increases, but the variance of $b$ falls. For poorly conditioned $x$, the drop in the variance more than compensates for the bias.

This example creates a ridge trace (a plot of the coefficients as a function of the ridge parameter) for the Hald data.

```
load hald
k = 0:.01:1;
b = ridge(heat, ingredients, k);
plot(k, b');
xlabel('Ridge parameter'); ylabel('Standardized coef.');
title('Ridge trace for Hald Data')
legend('x1','x2','x3','x4');
```



See Also
regress, stepwise

## Purpose Demo of robust regression

| Syntax | robustdemo <br> robustdemo $(X, Y)$ |
| :--- | :--- |
| Description | robustdemo demonstrates robust regression and ordinary least squares <br> regression on a sample data set. The function creates a figure window <br> containing a scatter plot of sample data vectors $X$ and $Y$, along with two fitted <br> lines calculated using least squares and the robust bisquare method. The <br> bottom of the figure shows the equations of the lines and the estimated error <br> standard deviations for each fit. If you use the left mouse button to select an <br> point and move it to a new location, both fits will update. If you hold down the <br> right mouse button over any point, the point will be labeled with the leverage <br> of that point on the least squares fit, and the weight of that point in the robust <br> fit. |
| robustdemo $(X, Y)$ performs the same demonstration using the $X$ and $Y$ values <br> that you specify. |  |
| Example | See "Robust Regression" on page 4-55 and "Robust Fitting Demo" on page 4-57. |
| See Also robustfit, leverage |  |

## Purpose Robust linear regression

Syntax $\quad$| $b=$ robustfit $(X, Y)$ |  |
| ---: | :--- |
| $[b, s t a t s]$ | $=\operatorname{robustfit}(X, Y)$ |
| $[b, s t a t s]$ | $=\operatorname{robustfit}\left(X, Y,,^{\prime} w f u n '\right.$, tune, 'const' $)$ |

Description $\quad b=$ robustfit $(X, Y)$ uses robust linear regression to fit $Y$ as a function of the columns of $X$, and returns the vector $b$ of coefficient estimates. The robustfit function uses an iteratively reweighted least squares algorithm, with the weights at each iteration calculated by applying the bisquare function to the residuals from the previous iteration. This algorithm gives lower weight to points that do not fit well. The results are less sensitive to outliers in the data as compared with ordinary least squares regression. robustfit prepends a column of ones to $X$ to account for a constant term.
[b,stats] = robustfit( $\mathrm{X}, \mathrm{Y}$ ) also returns a stats structure with the following fields:

| Field | Description |
| :--- | :--- |
| stats.ols_s | Sigma estimate (rmse) from least squares fit |
| stats.robust_s | Robust estimate of sigma |
| stats.mad_s | Estimate of sigma computed using the median <br> absolute deviation of the residuals from their median; <br> used for scaling residuals during the iterative fitting |
| stats.s | Final estimate of sigma, the larger of robust_s and a <br> weighted average of ols_s and robust_s |
| stats.se | Standard error of coefficient estimates |
| stats.t | Ratio of b to stats.se |
| stats.p | p-values for stats.t |
| stats.coeffcorr | Estimated correlation of coefficient estimates |
| stats.w | Vector of weights for robust fit |
| stats.h | Vector of leverage values for least squares fit |


| Field (Continued) | Description (Continued) |
| :--- | :--- |
| stats.dfe | Degrees of freedom for error |
| stats.R | R factor in QR decomposition of $X$ matrix |

The robustfit function estimates the variance-covariance matrix of the coefficient estimates as $V=\operatorname{inv}\left(X^{\prime *} X\right) *$ stats. $s^{\wedge} 2$. The standard errors and correlations are derived from $V$.
[b,stats] = robustfit(X,Y,'wfun',tune, 'const') specifies a weight function, a tuning constant, and the presence or absence of a constant term. The weight function 'wfun' can be any of the names listed in the following table.

| Weight Function | Meaning | Tuning Constant |
| :---: | :---: | :---: |
| 'andrews ' | $w=(a b s(r)<p i) . * \sin (r) . / r$ | 1.339 |
| 'bisquare' | $w=(\operatorname{abs}(r)<1) \cdot *\left(1-r \cdot{ }^{\wedge} 2\right) . \wedge 2$ | 4.685 |
| 'cauchy ' | $w=1 . /(1+r . \wedge 2)$ | 2.385 |
| 'fair' | $w=1 . /(1+\operatorname{abs}(r))$ | 1.400 |
| 'huber ${ }^{\prime}$ | $w=1 . / \max (1, \operatorname{abs}(r))$ | 1.345 |
| 'logistic' | $w=\tanh (r) . / r$ | 1.205 |
| 'talwar' | $w=1 *(\operatorname{abs}(r)<1)$ | 2.795 |
| 'welsch' | $w=\exp (-(r . \wedge 2))$ | 2.985 |

The value $r$ in the weight function expression is equal to

```
resid/(tune*s*sqrt(1-h))
```

where resid is the vector of residuals from the previous iteration, tune is the tuning constant, h is the vector of leverage values from a least squares fit, and $s$ is an estimate of the standard deviation of the error term.

$$
s=M A D / 0.6745
$$

The quantity MAD is the median absolute deviation of the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal distribution. If there are $p$ columns in the X matrix (including the constant term, if any), the smallest $p-1$ absolute deviations are excluded when computing their median.

In addition to the function names listed above, 'wfun' can be 'ols' to perform unweighted ordinary least squares.

The argument tune overrides the default tuning constant from the table. A smaller tuning constant tends to downweight large residuals more severely, and a larger tuning constant downweights large residuals less severely. The default tuning constants, shown in the table, yield coefficient estimates that are approximately $95 \%$ as efficient as least squares estimates, when the response has a normal distribution with no outliers. The value of 'const' can be 'on' (the default) to add a constant term or 'off' to omit it. If you want a constant term, you should set 'const' to ' on ' rather than adding a column of ones to your X matrix.

As an alternative to specifying one of the named weight functions shown above, you can write your own weight function that takes a vector of scaled residuals as input and produces a vector of weights as output. You can specify 'wfun' using @ (for example, @myfun) or as an inline function.
robustfit treats NaNs in $X$ or $Y$ as missing values, and removes them.

## Example

Let's see how a single erroneous point affects least squares and robust fits. First you generate a simple data set following the equation $y=10-2^{*} x$ plus some random noise. Then you change one $y$ value to simulate an outlier that could be an erroneous measurement.

```
x = (1:10)';
y = 10-2*x + randn(10,1);
y(10) = 0;
```

you use both ordinary least squares and robust fitting to estimate the equations of a straight line fit.

```
bls = regress(y,[ones(10,1) x])
```

```
bls =
 8.6305
 -1.4721
brob = robustfit(x,y)
brob =
 10.5089
 -1.9844
```

A scatter plot with both fitted lines shows that the robust fit (solid line) fits most of the data points well but ignores the outlier. The least squares fit (dotted line) is pulled toward the outlier.

```
scatter(x,y)
hold on
plot(x,bls(1)+bls(2)*x,'g:')
plot(x,brob(1)+brob(2)*x,'r-')
```



## References

[1] DuMouchel, W.H., and F. L. O'Brien, "Integrating a Robust Option into a Multiple Regression Computing Environment," Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface, Alexandria, VA: American Statistical Association, 1989.

## robustfit

[2] Holland, P. W., and R. E. Welsch, "Robust Regression Using Iteratively Reweighted Least-Squares," Communications in Statistics: Theory and Methods, A6, 1977, pp. 813-827.
[3] Huber, P. J., Robust Statistics, Wiley, 1981.
[4] Street, J. O., R. J. Carroll, and D. Ruppert, "A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares," The American Statistician, 42, 1988, pp. 152-154.

See Also regress, robustdemo

## Purpose

Rotation of factor analysis or principal components analysis loadings

Syntax<br>\section*{Description}

```
B = rotatefactors(A)
B = rotatefactors(A, 'Method', 'orthomax', 'Coeff', gamma)
B = rotatefactors(A, 'Method', 'procrustes', 'Target', target)
B = rotatefactors(A, 'Method', 'pattern', 'Target', target)
B = rotatefactors(A, 'Method', 'promax')
[B, T] = rotatefactors(A, ...)
```

$B=\operatorname{rotatefactors}(A)$ rotates the $d$-by-m loadings matrix $A$ to maximize the varimax criterion, and returns the result in $B$. Rows of $A$ and $B$ correspond to variables and columns correspond to factors, for example, the (i, j)th element of A is the coefficient for the i-th variable on the j-th factor. The matrix A usually contains principal component coefficients created with princomp or pcacov, or factor loadings estimated with factoran.
$B=\operatorname{rotatefactors}(A, \quad$ Method', 'orthomax', 'Coeff', gamma) rotates $A$ to maximize the orthomax criterion with the coefficient gamma, i.e., $B$ is the orthogonal rotation of $A$ that maximizes

```
sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)
```

The default value of 1 for gamma corresponds to varimax rotation. Other possibilities include gamma $=0, m / 2$, and $d(m-1) /(d+m-2)$, corresponding to quartimax, equamax, and parsimax. You can also supply the strings 'varimax', 'quartimax', 'equamax', or 'parsimax' for the 'method' parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or 'parsimax', then additional parameters are

- 'Normalize' - Flag indicating whether the loadings matrix should be row-normalized for rotation. If ' on' (the default), rows of A are normalized prior to rotation to have unit Euclidean norm, and unnormalized after rotation. If 'off', the raw loadings are rotated and returned.
- 'Reltol' - Relative convergence tolerance in the iterative algorithm used to find T. The default is sqrt (eps).
- 'Maxit' - Iteration limit in the iterative algorithm used to find T. The default is 250.

B = rotatefactors(A, 'Method', 'procrustes', 'Target', target) performs an oblique procrustes rotation of A to the $d$-by- $m$ target loadings matrix target.
$B=$ rotatefactors $(A$, 'Method', 'pattern', 'Target', target) performs an oblique rotation of the loadings matrix A to the $d$-by- $m$ target pattern matrix target, and returns the result in B. target defines the "restricted" elements of $B$, i.e., elements of $B$ corresponding to zero elements of target are constrained to have small magnitude, while elements of B corresponding to nonzero elements of target are allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is 'Type', the type of rotation. If 'Type' is 'orthogonal', the rotation is orthogonal, and the factors remain uncorrelated. If 'Type' is 'oblique' (the default), the rotation is oblique, and the rotated factors might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has $m$ columns, then for orthogonal rotation, the jth column of target must contain at least $m-j$ zeros. For oblique rotation, each column of target must contain at least $m-1$ zeros.
$B=$ rotatefactors(A, 'Method', 'promax') rotates A to maximize the promax criterion, equivalent to an oblique Procrustes rotation with a target created by an orthomax rotation. Use the four orthomax parameters to control the orthomax rotation used internally by promax.

An additional parameter for 'promax' is 'Power', the exponent for creating promax target matrix. 'Power' must be 1 or greater. The default is 4 .
$[B, T\}=$ rotatefactors $(A, \ldots)$ returns the rotation matrix $T$ used to create $B$, that is, $B=A * T$. $\operatorname{inv}\left(T^{\prime *} T\right)$ is the correlation matrix of the rotated factors. For orthogonal rotation, this is the identity matrix, while for oblique rotation, it has unit diagonal elements but nonzero off-diagonal elements.

## Examples

```
X = randn(100,10);
L = princomp(X);
% Default (normalized varimax) rotation of the first three
% components from a PCA.
[L1,T] = rotatefactors(L(:,1:3));
```

```
% Equamax rotation of the first three components from a PCA.
[L2, T] = rotatefactors(L(:,1:3),'method','equamax');
% Promax rotation of the first three factors from an FA.
L = factoran(X,3,'Rotate','none');
L3, T] = rotatefactors(L,'method','promax','power',2);
% Pattern rotation of the first three factors from an FA.
Tgt = [1 1 1 1 1 1 0 1 0 1; 0 0 0 1 1 1 0 0 0; 1 0 0 1 0 1 1 1 1]';
[L4,T] = rotatefactors(L,'method','pattern','target',Tgt);
inv(T'*T) % the correlation matrix of the rotated factors
```


## References

See Also
[1] Harman, H. H., Modern Factor Analysis, 3rd edition, University of Chicago Press, 1976.
[2] Lawley, D. N. and A. E. Maxwell, A. E., Factor Analysis as a Statistical Method, 2nd edition, American Elsevier Publishing, 1971.
biplot, factoran, princomp, pcacov, procrustes

Purpose D-optimal design of experiments - row exchange algorithm
Syntax settings = rowexch(nfactors, nruns)
[settings, X] = rowexch(nfactors, nruns)
[settings,X] = rowexch(nfactors,nruns,'model')
[settings, X] = rowexch(...,'param1',value1,'param2', value2,...)
settings = rowexch(nfactors, nruns) generates the factor settings matrix, settings, for a D-Optimal design using a linear additive model with a constant term. settings has nruns rows and nfactors columns.
[settings, X ] = rowexch(nfactors, nruns) also generates the associated matrix $X$ of term settings, often called the design matrix.
[settings, X] = rowexch(nfactors, nruns,'model') produces a design for fitting a specified regression model. The input, 'model', can be one of these strings:

| 'linear' | Includes constant and linear terms (the default) |
| :--- | :--- |
| 'interaction' | Includes constant, linear, and cross product terms. |
| 'quadratic' | Includes interactions plus squared terms. |
| 'purequadratic' | Includes constant, linear and squared terms. |
|  |  |
| [settings, X$]=$ rowexch(..., 'param1' ', value1, ' param2 ' , value2, $\ldots$ ) <br> provides more control over the design generation through a set of <br> parameter/value pairs. Valid parameters are: |  |

'display' Either 'on ' or 'off' to control display of iteration counter. The default is ' on '.
'init' Initial design as an nruns-by-nfactors matrix. The default is a randomly selected set of points.
'maxiter' Maximum number of iterations. The default is 10 .

Example

This example illustrates that the D-optimal design for three factors in eight runs, using an interactions model, is a two level full-factorial design.

```
s = rowexch(3,8,'interaction')
S =
\begin{tabular}{lll}
-1 & -1 & 1
\end{tabular}
\begin{tabular}{lll}
1 & -1 & -1
\end{tabular}
1 \begin{tabular}{lll}
1 & -1 & 1
\end{tabular}
-1
-1 1 1
 1 1 1
-1 1 -1
 1 1 -1
```


## Algorithm

See Also bbdesign, candexch, candgen, ccdesign, cordexch, x2fx
The rowexch function searches for a D-optimal design using a row-exchange algorithm. It first generates a candidate set of points that are eligible to be included in the design, and then iteratively exchanges design points for candidate points in an attempt to reduce the variance of the coefficients that would be estimated using this design. If you need to use a candidate set that differs from the default one, call the candgen and candexch functions in place of rowexch.
Purpose Demo of design of experiments and surface fitting

## Syntax rsmdemo

Description rsmdemo creates a GUI that simulates a chemical reaction. To start, you have a budget of 13 test reactions. Try to find out how changes in each reactant affect the reaction rate. Determine the reactant settings that maximize the reaction rate. Estimate the run-to-run variability of the reaction. Now run a designed experiment using the model pop-up. Compare your previous results with the output from response surface modeling or nonlinear modeling of the reaction. The GUI has the following elements:

- A Run button to perform one reactor run at the current settings
- An Export button to export the $x$ and $y$ data to the base workspace
- Three sliders with associated data entry boxes to control the partial pressures of the chemical reactants: Hydrogen, n-Pentane, and Isopentane
- A text box to report the reaction rate
- A text box to keep track of the number of test reactions you have left

Example See "Design of Experiments Demo" on page 10-10.
See Also
rstool, nlintool, cordexch

## Purpose

Interactive fitting and visualization of a response surface

Syntax<br>Description

rstool(X,Y)
rstool(X,Y,model)
rstool(X,Y,model,alpha, 'xname', 'yname')
rstool (X,Y) opens an interactive GUI for fitting and visualizing a polynomial
response surface for a response variable $Y$ as a function of the multiple predictor variables in $X$. Columns of $X$ correspond to variables, rows to observations. Y can be a vector, corresponding to a single response, or a matrix, with columns corresponding to multiple responses. Y must have as many elements (or rows if it is a matrix) as $X$ has rows. rstool displays a family of plots, one for each combination of $X$ and $Y$ columns. The plots show $95 \%$ global confidence intervals for the predictions as two red curves.
rstool ( $x, y$, model) enables you to control the initial regression model, where model can be one of the following strings:

- 'linear ' includes constant and first-order terms only
- 'purequadratic' includes constant, linear and squared terms
- 'interaction ' includes constant, linear, and cross-product terms
- 'quadratic' includes interactions and squared terms

Alternatively, model can be a matrix of model terms as accepted by the x2fx function. See x2fx for a description of this matrix and for a description of the order in which terms appear.
rstool(x,y,model, alpha) plots 100(1-alpha)\% global confidence interval for predictions as two red curves. For example, alpha $=0.01$ gives $99 \%$ confidence intervals.
rstool(x,y,model, alpha, 'xname', 'yname') labels the X and Y axes using the names contained in the character arrays 'xname' and 'yname'. 'xname' and 'yname' can also be cell arrays of strings.

Drag the dashed blue reference line and watch the predicted values update simultaneously. Alternatively, you can get a specific prediction by typing the value of $x$ into an editable text field. Use the pop-up menu to interactively
change the model. Click the Export button to move specified variables to the base workspace.
Example See "Quadratic Response Surface Models" on page 4-42.

See Also nlintool, x2fx

## Purpose <br> Chart of standard deviation for Statistical Process Control

\author{

## Description

}

Syntax schart(DATA, conf)
schart(DATA, conf, specs)
schart(DATA, conf, specs)
[outliers,h] = schart(DATA,conf,specs)
schart (data) displays an $S$ chart of the grouped responses in DATA. The rows of DATA contain replicate observations taken at a given time. The rows must be in time order. The graph contains the sample standard deviation $s$ for each group, a center line at the average $s$ value, and upper and lower control limits. The limits are placed at a three-sigma distance on either side of the center line, where sigma is an estimate of the standard deviation of $s$. If the process is in control, fewer than 3 out of 1000 observations would be expected to fall outside the control limits by random chance. So, if you observe points outside the limits, you can take this as evidence that the process is not in control.
schart (DATA, conf) allows control of the confidence level of the upper and lower plotted control limits. The default conf $=0.9973$ produces three-sigma limits.

```
norminv(1 - (1-.9973)/2)
ans =
 3
```

To get $k$-sigma limits, use the expression 1-2*(1-normodf(k)). For example, the correct conf value for 2 -sigma limits is 0.9545 , as shown below.

```
k = 2;
1-2*(1-normcdf(k))
ans =
 0.9545
```

schart (DATA, conf, specs) plots the specification limits in the two element vector specs.
[outliers, h ] = schart(data, conf, specs) returns outliers, a vector of indices to the rows where the mean of DATA is out of control, and $h$, a vector of handles to the plotted lines.

## schart

## Example

Reference

See Also

This example plots an $S$ chart of measurements on newly machined parts, taken at one hour intervals for 36 hours. Each row of the runout matrix contains the measurements for 4 parts chosen at random. The values indicate, in thousandths of an inch, the amount the part radius differs from the target radius.

```
load parts
schart(runout)
```



All points are within the control limits, so the variability within subgroups is consistent with what would be expected by random chance. There is no evidence that the process is out of control.
[1] Montgomery, D., Introduction to Statistical Quality Control, John Wiley and Sons, 1991. p. 235.
capaplot, ewmaplot, histfit, xbarplot

## Purpose <br> Wilcoxon signed rank test for zero median

```
Syntax \(\quad p=\operatorname{signrank}(x)\)
\(\mathrm{p}=\) signrank(\(\mathrm{x}, \mathrm{m}\))
\(\mathrm{p}=\) signrank(x,y)
[\(\mathrm{p}, \mathrm{h}\)] = signrank(...)
[p,h] = signrank(...,'alpha',alpha)
[p,h] = signrank(...,'method', method)
[p,h,stats] = signrank(...)
```


## Description

$\mathrm{p}=$ signrank ( x ) performs a two-sided signed rank test of the hypothesis that the data in the vector $x$ come from a distribution whose median (and mean, if it exists) is zero, and returns the p-value from the test. $p$ is the probability of observing the given result $x$, or one more extreme, by chance if the null hypothesis is true, i.e., the median is zero. Small values of $p$ cast doubt on the validity of the null hypothesis. The data are assumed to come from a continuous distribution, symmetric about its median.
$p=$ signrank ( $x, m$ ) performs a two-sided test of the hypothesis that the data in the vector x come from a distribution whose median is $\mathrm{m} . \mathrm{m}$ must be a scalar.
$\mathrm{p}=$ signrank( $\mathrm{x}, \mathrm{y}$ ) performs a paired, two-sided test of the hypothesis that the difference between the matched samples in the vectors $x$ and $y$ comes from a distribution whose median is zero. The differences $x-y$ are assumed to come from a continuous distribution, symmetric about its median. $x$ and $y$ must be the same length.

Note A hypothesis of zero median for $\mathrm{x}-\mathrm{y}$ is not equivalent to a hypothesis of equal median for x and y . The signrank function tests the former, not the latter.
[ $\mathrm{p}, \mathrm{h}]=$ signrank(...) returns the result of the hypothesis test, performed at the $5 \%$ significance level, in $h$. If $h=0$, then the null hypothesis, i.e., the median is zero, cannot be rejected at the $5 \%$ level. If $h=1$, then the null hypothesis can be rejected at the $5 \%$ level.

## signrank

[p,h] = signrank(...,'alpha', alpha) returns the result of the hypothesis test performed at the significance level alpha.
[p,h] = signrank(...,'method', method) computes the p-value using an exact algorithm, if you set method to ' exact ' or a normal approximation, if you set method to 'approximate'. If you omit this option, signrank uses an exact method for small samples and the approximation for large samples.
[p,h,stats] = signrank(...) returns stats, a structure with one or two fields. The field 'signedrank' contains the value of the signed rank statistic. If the sample size is large, then $p$ is calculated using a normal approximation and the field 'zval' contains the value of the normal $(Z)$ statistic.

## Example

References

See Also

This example tests the hypothesis of zero median for the difference between two paired samples. The difference between the before and after samples has a symmetric distribution with zero median.

```
before = lognrnd(2,.25,10,1);
after = before + trnd(2,10,1);
[p,h] = signrank(before,after,0.05)
p =
 0.5566
h =
 0
```

[1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker, 1985.
[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 1973.

```
ranksum, ttest, ztest
```

Purpose
Syntax

## Description

Sign test for zero median

```
p = signtest(x)
```

p = signtest(x)
p = signtest(x,m)
p = signtest(x,m)
p = signtest(x,y)
p = signtest(x,y)
[p,h] = signtest(...)
[p,h] = signtest(...)
[p,h] = signtest(...,'alpha', alpha)
[p,h] = signtest(...,'alpha', alpha)
[p,h] = signtest(...,'method', method)
[p,h] = signtest(...,'method', method)
[p,h,stats] = signtest(...)

```
[p,h,stats] = signtest(...)
```

$p=$ signtest ( $x$ ) performs a two-sided sign test of the hypothesis that the data in the vector $x$ come from a distribution whose median is zero, and returns the $p$-value from the test. $p$ is the probability of observing the given result $x$, or a more extreme result, by chance if the null hypothesis is true, i.e., the median is zero. Small values of $p$ cast doubt on the validity of the null hypothesis. The data are assumed to come from an arbitrary continuous distribution.
$p=$ signtest ( $x, m$ ) performs a two-sided test of the hypothesis that the data in the vector x come from a distribution whose median is $\mathrm{m} . \mathrm{m}$ must be a scalar.
$p=$ signtest $(x, y)$ performs a paired, two-sided test of the hypothesis that the difference between the matched samples in the vectors $x$ and $y$ comes from a distribution whose median is zero. The differences $x-y$ are assumed to come from an arbitrary continuous distribution. $x$ and $y$ must be the same length.

Note A hypothesis of zero median for $x-y$ is not equivalent to a hypothesis of equal median for $x$ and $y$. The signtest function tests the former, not the latter.
[ $\mathrm{p}, \mathrm{h}$ ] = signtest(...) returns the result of the hypothesis test, performed at the $5 \%$ significance level, in h . If $\mathrm{h}=0$, then the null hypothesis, i.e., the median is zero, cannot be rejected at the $5 \%$ level. If $h=1$, then the null hypothesis can be rejected at the $5 \%$ level.
[p,h] = signtest(...,'alpha', alpha) returns the result of the hypothesis test performed at the significance level alpha.
[p,h] = signtest(...,'method', method) computes the p-value using an exact algorithm, if you set method to 'exact', or a normal approximation, if you set method to 'approximate '. If you omit this option, signtest uses the exact method for small samples and the approximation for large samples.
[p,h,stats] = signtest(...) returns stats, a structure with one or two fields. The field 'sign' contains the value of the sign statistic. If the sample size is large, then $p$ is calculated using a normal approximation, and the field 'zval' contains the value of the normal (Z) statistic.

## Example

References

See Also

This example tests the hypothesis of zero median for the difference between two paired samples. The difference between the before and after samples has a distribution with zero median.

```
before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);
[p,h] = signtest(before,after,0.05)
p =
 0.3438
h =
 0
```

[1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker, 1985.
[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 1973.

```
ranksum, signrank, ttest, ztest
```

Purpose
Syntax

Description

Silhouette plot for clustered data

```
silhouette(X,clust)
s = silhouette(X,clust)
[s,h] = silhouette(X,clust)
[...] = silhouette(X,clust,distance)
[...] = silhouette(X,clust,distfun,p1,p2,...)
```

silhouette (X, clust) plots cluster silhouettes for the n-by-p data matrix $X$, with clusters defined by clust. Rows of $X$ correspond to points, columns correspond to coordinates. clust can be a numeric vector containing a cluster index for each point, or a character matrix or cell array of strings containing a cluster name for each point. silhouette treats NaNs or empty strings in clust as missing values, and ignores the corresponding rows of X . By default, silhouette uses the squared Euclidean distance between points in $X$.
$\mathrm{s}=$ silhouette(X, clust) returns the silhouette values in the $n$-by- 1 vector s , but does not plot the cluster silhouettes.
[s,h] = silhouette(X, clust) plots the silhouettes, and returns the silhouette values in the $n$-by- 1 vector $s$, and the figure handle in $h$.
[...] = silhouette(X, clust,distance) plots the silhouettes using the inter-point distance measure specified in distance. Choices for distance are:

| 'Euclidean' | Euclidean distance |
| :--- | :--- |
| 'sqEuclidean' | Squared Euclidean distance (default) |
| 'cityblock' | Sum of absolute differences, i.e., L1 |
| 'cosine' | One minus the cosine of the included angle between <br> points (treated as vectors) |
| 'correlation' | One minus the sample correlation between points <br> (treated as sequences of values) |
| 'Hamming' | Percentage of coordinates that differ |

```
'Jaccard' Percentage of non-zero coordinates that differ
Vector A numeric distance matrix in upper triangular vector
 form, such as is created by pdist. X is not used in this
 case, and can safely be set to [].
[...] = silhouette(X, clust,distfun, p1, p2, ...) accepts a distance
function of the form
\[
d=\operatorname{distfun}(X 0, X, p 1, p 2, \ldots)
\]
```

where $X 0$ is a 1-by-p point, $X$ is an $n$-by-p matrix of points, and $p 1, p 2, \ldots$ are optional additional arguments. The function distfun returns an $n$-by- 1 vector d of distances between X0 and each point (row) in X. The arguments p1, p2,... are passed directly to the function distfun.

## Remarks

## Examples

References

See Also
dendrogram, kmeans, linkage, pdist

Purpose

## Syntax <br> y = skewness(X) <br> y = skewness (X,flag)

Description

## Remarks

## Example

Sample skewness distribution) is zero.

$$
y=\frac{E(x-\mu)^{3}}{\sigma^{3}}
$$ the expected value of the quantity $t$.

$y=$ skewness $(X)$ returns the sample skewness of $X$. For vectors, skewness ( $x$ ) is the skewness of the elements of $x$. For matrices, skewness $(X)$ is a row vector containing the sample skewness of each column. For N -dimensional arrays, skewness operates along the first nonsingleton dimension of $X$.
$y=$ skewness (X,flag) specifies whether to correct for bias (flag $=0$ ) or not (flag = 1, the default). When $X$ represents a sample from a population, the skewness of $X$ is biased; that is, it will tend to differ from the population skewness by a systematic amount that depends on the size of the sample. You can set flag $=0$ to correct for this systematic bias.
skewness ( $\mathrm{X}, \mathrm{flag}, \mathrm{dim}$ ) takes the skewness along dimension $\operatorname{dim}$ of X .
skewness treats NaNs as missing values and removes them.
Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the data are spread out more to the left of the mean than to the right. If skewness is positive, the data are spread out more to the right. The skewness of the normal distribution (or any perfectly symmetric

The skewness of a distribution is defined as
where $\mu$ is the mean of $x, \sigma$ is the standard deviation of $x$, and $E(t)$ represents
$X=\operatorname{randn}\left(\left[\begin{array}{llll}5 & 4\end{array}\right]\right)$
$X=$

1.1650

0.6268

0.0751
0.0591

```
 \(0.3516 \quad 0.2641 \quad-0.6390 \quad-1.2704\)
 \(\begin{array}{llll}-0.6965 & 0.8717 & 0.5774 & 0.9846\end{array}\)
y = skewness(X)
\(y=\)
 \(-0.2933 \quad 0.0482 \quad 0.2735 \quad 0.4641\)
```

See Also kurtosis, mean, moment, std, var

## Purpose

## Syntax

Description

Reformat a distance matrix between upper triangular and square form

```
Z = squareform(y)
y = squareform(Z)
Z = squareform(y, 'tovector')
Y = squareform(Z, 'tomatrix')
```

$Z=$ squareform(y), where $y$ is a vector as created by the pdist function, converts y into a square, symmetric format $Z$, in which $Z(i, j)$ denotes the distance between the ith and $j$ th objects in the original data.
$y=$ squareform( $Z$ ), where $Z$ is a square, symmetric matrix with zeros along the diagonal, creates a vector $y$ containing the $Z$ elements below the diagonal. $y$ has the same format as the output from the pdist function.
$Z=$ squareform(y, 'tovector') forces squareform to treat $y$ as a vector.
$Y=$ squareform(Z, 'tomatrix') forces squareform to treat $Z$ as a matrix.
The last two formats are useful if the input has a single element, so that it is ambiguous whether the input is a vector or square matrix.

## Example

```
y = 1:6
y =
 1 2 3 3 4 5 6
X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0]
X =
 0 1 2 3
 1}004
 2 4 0 6
 3 5 0,
```

Then squareform(y) $=X$ and squareform $(X)=y$.

## squareform

## See Also <br> pdist

## Purpose

Syntax<br>Description

## Examples

Get parameter values from a statistics options structure

```
val = statget(options,'param')
val = statget(options,'param',default)
```

val = statget(options, 'param') returns the value of the specified parameter in the statistics options structure options. If the parameter is not defined in options, statget returns []. You need to type only enough leading characters to define the parameter name uniquely. Case is ignored for parameter names.
val = statget(options,'param',default) returns default if the specified parameter is not defined in the optimization options structure options.

This statement returns the value of the Display statistics options parameter from the structure called my_options.

```
val = statget(my_options,'Display')
```

This statement returns the value of the Display statistics options parameter from the structure called my_options (as in the previous example) except that if the Display parameter is not defined, it returns the value 'final'.

```
optnew = statget(my_options,'Display','final');
```


## See Also

## Purpose Create or edit a statistics options structure

```
Syntax
```

```
options = statset('param1',value1,'param2',value2,...)
```

options = statset('param1',value1,'param2',value2,...)
statset
statset
options = statset
options = statset
options = statset(statfun)
options = statset(statfun)
options = statset(oldopts,'param1',value1,...)
options = statset(oldopts,'param1',value1,...)
options = statset(oldopts,newopts)

```
options = statset(oldopts,newopts)
```

Description
options = statset('param1', value1,'param2', value2,...) creates an
options structure called options, which you can pass as an input argument to
other statistics functions, such as distribution fitting functions, that use
iterative algorithms to maximize or minimize a statistical fitting criterion. You
can use the options argument to override the default parameters for these
algorithms. You specify the value of a parameter using a name/value pair,
'param', value, where 'param' is the name of the parameter and value is its
value. Parameters that you do not specify are set to []. If you pass options as
an input to one of these functions, the function uses the parameter values you
specify and uses its default value for any parameter that you do not specify.
You only need to type only enough leading characters to define the parameter
name uniquely. Case is ignored for parameter names.
statset with no input or output arguments displays a complete list of parameters with their valid values.
options = statset (with no input arguments) creates an options structure options where all fields are set to [].
options $=$ statset(statfun) creates an options structure options with all parameter names and default values relevant to the statistics function statfun. You can specify statfun either as a string, such as 'evfit', or as a function handle, such as @evfit.
options = statset(oldopts, 'param1', value1, ...) creates a copy of oldopts, modifying the specified parameters with the specified values.
options = statset(oldopts, newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any parameters in


#### Abstract

newopts with nonempty values overwrite the corresponding old parameters in oldopts.

Parameters The following table lists the valid parameters for the options structure, their meanings, and their allowed values. You can also view these parameters and allowed values by typing statset at the command line.


| Parameter | Meaning | Allowed Value |
| :---: | :---: | :---: |
| DerivStep | Relative difference used in finitedifferencederivative calculations. May be a scalar or the same size as the parameter vector. | Positive scalar or vector |
| Display | Amount of information displayed by the algorithm | - 'off' - displays no information <br> - 'final'- displays the final output <br> - 'notify'- displays output only if the algorithm fails to converge |
| FunValCheck | Check for invalid values, such as NaN or Inf, from the objective function | - 'off' <br> - 'on' |
| GradObject | Objective function can return a gradient vector as a second output. | - 'off' <br> - 'on |
| MaxFunEvals | Maximum number of objective function evaluations allowed | Positive integer |
| MaxIter | Maximum number of iterations allowed | Positive integer |


| Parameter | Meaning (Continued) | Allowed Value (Continued) |
| :--- | :--- | :--- |
| TolBnd | Parameter bound tolerance | Positive scalar |
| TolFun | Termination tolerance for <br> the objective function value | Positive scalar |
| TolX | Termination tolerance for <br> the parameters | Positive scalar |

## Examples

Suppose you want to change the default parameters for the function evfit, which fits data to an extreme value distribution. To see the defaults for evfit, enter
statset('evfit')
ans $=$
Display: 'off'
MaxFunEvals: []
MaxIter: []
TolBnd: []
TolFun: []
TolX: 1.0000e-006
GradObj: []
DerivStep: []
FunValCheck: []

Note that the only parameters evfit uses are Display and TolX. To change the value of TolX to $1 \mathrm{e}-8$, enter

```
my_opts = statset('TolX',1e-8)
my_opts =
 Display: []
 MaxFunEvals: []
 MaxIter: []
 TolBnd: []
 TolFun: []
 TolX: 1.0000e-008
 GradObj: []
```


## DerivStep: []

FunValCheck: []
When you pass my_opts into evfit with the command
evfit(data, [], [], [], my_opts)
evfit uses its default value 'notify' for Display and overrides the default value of TolX with 1e-8.

See the reference page for evfit for more information about its syntax.
See Also evfit, factoran, gamfit, lognfit, nbinfit, normfit, statget

## Purpose Standard deviation of a sample

## Syntax <br> $y=\operatorname{std}(X)$

Description

## Examples <br> In each column, the expected value of y is one.

```
x = normrnd(0,1,100,6);
y = std(x)
y =
 0.9536 1.0628 1.0860 0.9927 0.9605 1.0254
y = std(-1:2:1)
y =
 1.4142
```

See Also ..... cov, var

## Purpose <br> Syntax <br> Description

Interactive environment for stepwise regression
stepwise ( $\mathrm{X}, \mathrm{y}$ )
stepwise ( $\mathrm{X}, \mathrm{y}$, inmodel, penter, premove)
stepwise ( $\mathrm{X}, \mathrm{y}$ ) displays an interactive tool for creating a regression model to predict the vector $y$, using a subset of the predictors given by columns of the matrix X. Initially, no predictors are included in the model, but you can click predictors to switch them into and out of the model.

For each predictor in the model, the interactive tool plots the predictor's least squares coefficient as a blue filled circle. For each predictor not in the model, the interactive tool plots a filled red circle to indicate the coefficient the predictor would have if you add it to the model. Horizontal bars in the plot indicate $90 \%$ confidence intervals (colored) and $95 \%$ confidence intervals (black).
stepwise ( $\mathrm{X}, \mathrm{y}$, inmodel, penter, premove) specifies the initial state of the model and the confidence levels to use. inmodel is either a logical vector, whose length is the number of columns in $X$, or a vector of indices, whose values range from 1 to the number of columns in $X$, specifying the predictors that are included in the initial model. The default is to include no columns of $X$. penter specifies the maximum $p$-value that a predictor can have for the interactive tool to recommend adding it to the model. The default value of penter is 0.05 . premove specifies the minimum p-value that a predictor can have for the interactive tool to recommend removing it from the model. The default value of premove is 0.10.

The interactive tool treats a NaN in either $X$ or y as a missing value. The tool does not use rows containing missing values in the fit.

Examples See "Quadratic Response Surface Models" on page 4-42 and "Stepwise Regression Demo" on page 4-45.

Reference

See Also regress, rstool, stepwisefit

## Purpose

Fit regression model using stepwise regression

Syntax<br>Description

```
b = stepwisefit(X,y)
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...)
[...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...)
```

b = stepwisefit( $\mathrm{X}, \mathrm{y}$ ) uses stepwise regression to model the response variable $y$ as a function of the predictor variables represented by the columns of the matrix $X$. The result is a vector $b$ of estimated coefficient values for all columns of $X$. The $b$ value for a column not included in the final model is the coefficient that you would obtain by adding that column to the model.
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...) returns the following additional results:

- se is a vector of standard errors for $b$.
- pval is a vector of $p$-values for testing whether $b$ is 0 .
- inmodel is a logical vector, whose length equals the number of columns in $X$, specifying which predictors are in the final model. A 1 in position j indicates that the jth predictor is in the final model; a 0 indicates that the corresponding predictor in not in the final model.
- stats is a structure containing additional statistics.
- nextstep is the recommended next step - either the index of the next predictor to move in or out, or 0 if no further steps are recommended.
- history is a structure containing information about the history of steps taken.
[...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...) specifies one or more of the name/value pairs described in the following table.

| Parameter Name | Parameter Value |
| :--- | :--- |
| 'inmodel' | Logical vector specifying the predictors to include in <br> the initial fit. The default is a vector of all zeros, <br> specifying no predictors. |
| 'penter' | Maximum p-value for a predictor to be added. The <br> default is 0.05. |
| 'premove' | Minimum p-value for a predictor to be removed. The <br> default is 0.10. |
| 'display' | 'on' displays information about each step. <br> 'off ' omits the information. |
| 'maxiter' | Maximum number of steps to take (default is no <br> maximum) |
| 'keep' | Logical vector specifying the predictors to keep in <br> their initial state. The default is a vector of all zeros, <br> specifying no predictors. |
| 'scale' | 'on' scales each column of X by its standard <br> deviation before fitting. <br> 'off ' does not scale (the default). |

## Example

```
load hald
 stepwisefit(ingredients, heat, 'penter', .08)
 Initial columns included: none
 Step 1, added column 4, p=0.000576232
 Step 2, added column 1, p=1.10528e-006
 Step 3, added column 2, p=0.0516873
 Step 4, removed column 4, p=0.205395
 Final columns included: 1 2
```

```
ans =
 'Coeff' 'Std.Err.' 'Status' 'P'
 [1.4683] [0.1213] 'In' [2.6922e-007]
 [0.6623] [0.0459] 'In' [5.0290e-008]
 [0.2500] [0.1847] 'Out' [0.2089]
 [-0.2365] [0.1733] 'Out' [0.2054]
ans =
 1.4683
 0.6623
 0.2500
 -0.2365
```

See Also
addedvarplot, regress, rstool, stepwise

Purpose Interactive contour plot
Syntax
surfht ( $Z$ )
surfht( $x, y, z$ )

Description
surfht $(Z)$ is an interactive contour plot of the matrix $Z$ treating the values in $Z$ as height above the plane. The $x$-values are the column indices of $Z$ while the $y$-values are the row indices of $Z$.
surfht ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) where x and y are vectors specify the $x$ and $y$-axes on the contour plot. The length of $x$ must match the number of columns in $Z$, and the length of $y$ must match the number of rows in $Z$.

There are vertical and horizontal reference lines on the plot whose intersection defines the current $x$-value and $y$-value. You can drag these dotted white reference lines and watch the interpolated $z$-value (at the top of the plot) update simultaneously. Alternatively, you can get a specific interpolated $z$-value by typing the $x$-value and $y$-value into editable text fields on the $x$-axis and $y$-axis respectively.

## Purpose <br> Frequency table

| Syntax | TABLE $=$ tabulate $(x)$ |
| :--- | :--- |
|  | tabulate $(x)$ |

## Description

## Example

## See Also <br> pareto

 each value.TABLE = tabulate (x) takes a vector $x$ and returns a matrix, TABLE. The first column of TABLE contains the unique values of $x$. The second contains the number of instances of each value. The last column contains the percentage of

TABLE $=$ tabulate (ARRAY), where ARRAY is a character array or a cell array of strings, returns TABLE as a cell array. The first column contains the unique string values in ARRAY. The other two columns contain the same information as for a vector input.
tabulate with no output arguments displays a formatted table in the command window.

```
tabulate([[1
 Value Count Percent
 1 16.67%
 1 16.67%
 3 16.67%
 4 50.00%
```


## tblread

Purpose Read tabular data from the file system

```
Syntax
[data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread('filename')
[data,varnames,casenames] = tblread('filename','delimiter')
```

Description [data, varnames, casenames] = tblread displays the File Open dialog box for interactive selection of the tabular data file. The file format has variable names in the first row, case names in the first column and data starting in the ( 2,2 ) position.
[data, varnames,casenames] = tblread(filename) allows command line specification of the name of a file in the current directory, or the complete path name of any file.
[data,varnames,casenames] = tblread(filename,'delimiter') reads from the file using 'delimiter' as the delimiting character. The following table lists the accepted character values for 'delimiter' and their equivalent string values.

| Character | String |
| :--- | :--- |
| ' ' | 'space' |
| '\t' | 'tab' |
| ',' | 'comma' |
| ';' | 'semi' |
| '।' | 'bar' |

The default value of 'delimiter' is 'space'.
tblread returns the data read in three values.

| Return Value | Description |
| :--- | :--- |
| data | Numeric matrix with a value for each variable-case pair. |
| varnames | String matrix containing the variable names in the first <br> row. |
| casenames | String matrix containing the names of each case in the <br> first column. |

## Example

[data, varnames,casenames] = tblread('sat.dat')
data =
$470 \quad 530$
520480
varnames =
Male
Female
casenames =
Verbal
Quantitative
See Also caseread, tblwrite, tdfread

## Purpose Writes tabular data to the file system

```
Syntax tblwrite(data,'varnames','casenames')
tblwrite(data,'varnames','casenames','filename')
tblwrite(data,'varnames','casenames','filename','delimiter')
```

Description tblwrite (data, 'varnames', 'casenames ') displays the File Open dialog box for interactive specification of the tabular data output file. The file format has variable names in the first row, case names in the first column and data starting in the ( 2,2 ) position.
'varnames' is a string matrix containing the variable names. 'casenames' is a string matrix containing the names of each case in the first column. data is a numeric matrix with a value for each variable-case pair.
tblwrite(data, 'varnames','casenames','filename') specifies a file in the current directory, or the complete path name of any file in the string 'filename'.
tblwrite(data, 'varnames', 'casenames','filename','delimiter') writes to the file using 'delimiter' as the delimiting character. The following table lists the accepted character values for 'delimiter' and their equivalent string values.

| Character | String |
| :--- | :--- |
| ' ' | 'space' |
| '\t' | 'tab' |
| ',' | 'comma' |
| ';' | 'semi' |
| '\|' | 'bar' |

The default value of 'delimiter' is 'space'.
ExampleSee AlsoContinuing the example from tblread:
tblwrite(data,varnames, casenames,'sattest.dat') type sattest.dat

|  | Male | Female |
| :--- | :--- | :--- |
| Verbal | 470 | 530 |
| Quantitative | 520 | 480 |

casewrite, tblread

## Purpose Student's t cumulative distribution function (cdf)

## Syntax <br> $P=\operatorname{tcdf}(X, V)$

Description
$P=\operatorname{tcdf}(X, V)$ computes Student's $t c d f$ at each of the values in $X$ using the corresponding degrees of freedom in $V$. $X$ and $V$ can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The t cdf is

$$
p=F(x \mid v)=\int_{-\infty}^{x} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{t^{2}}{v}\right)^{\frac{v+1}{2}}} d t
$$

The result, $p$, is the probability that a single observation from the $t$ distribution with $v$ degrees of freedom will fall in the interval $(-\infty x]$.

## Examples

Suppose 10 samples of Guinness beer have a mean alcohol content of $5.5 \%$ by volume and the standard deviation of these samples is $0.5 \%$. What is the probability that the true alcohol content of Guinness beer is less than $5 \%$ ?

```
t = (5.0 - 5.5) / 0.5;
probability = tcdf(t,10 - 1)
probability =
 0.1717
```

See Also cdf, tinv, tpdf, trnd, tstat

## Purpose

Read file containing tab-delimited numeric and text values

## Syntax <br> Description

## Example

```
type sat2.dat
Test,Gender,Score
Verbal,Male,470
Verbal,Female,530
Quantitative,Male,520
Quantitative,Female,480
tdfread('sat2.dat',',')
 Name Size Bytes Class
```


## tdfread

| Gender | $4 \times 6$ | 48 char array |
| :--- | :--- | :--- |
| Score | $4 \times 1$ | 32 double array |
| Test | $4 \times 12$ | 96 char array |
|  |  |  |
| Grand total is 76 elements using 176 bytes |  |  |

## See Also <br> tblread

## Purpose

## Syntax

Description

## Examples

See Also icdf, tcdf, tpdf, trnd, tstat

## Purpose Student's t probability density function (pdf)

## Syntax <br> $Y=\operatorname{tpdf}(X, V)$

Description
$Y=\operatorname{tpdf}(X, V)$ computes Student's $t$ pdf at each of the values in $X$ using the corresponding degrees of freedom in $V$. $X$ and $V$ can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

Student's t pdf is

$$
y=f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
$$

The mode of the t distribution is at $x=0$. This example shows that the value of the function at the mode is an increasing function of the degrees of freedom.

```
tpdf(0,1:6)
ans =
 0.3183 0.3536
```

The $t$ distribution converges to the standard normal distribution as the degrees of freedom approaches infinity. How good is the approximation for $v=30$ ?

```
difference = tpdf(-2.5:2.5,30) - normpdf(-2.5:2.5)
difference =
 0.0035 -0.0006 -0.0042 -0.0042 -0.0006 0.0035
```

See Also
pdf, tcdf, tinv, trnd, tstat

## Purpose

## Syntax

## Description

Show classification or regression tree graphically

```
treedisp(T)
treedisp(T,'param1',val1,'param2',val2,...)
```

treedisp $(T)$ takes as input a decision tree $T$ as computed by the treefit function, and displays it in a figure window. Each branch in the tree is labeled with its decision rule, and each terminal node is labeled with the predicted value for that node.

For each branch node, the left child node corresponds to the points that satisfy the condition, and the right child node corresponds to the points that do not satisfy the condition.

The Click to display pop-up menu at the top of the figure enables you to display more information about each node:

Identity The node number, whether the node is a branch or a leaf, and the rule that governs the node

Variable ranges The range of each of the predictor variables for that node

Node statistics Descriptive statistics for the observations falling into this node

After you select the type of information you want, click on any node to display the information for that node.

The Pruning level spin button displays the number of levels that have been cut from the tree, and the number of levels in the unpruned tree. For example, 1 of 6 indicates that the unpruned tree has six levels, and that one level has been cut from the tree. Use the spin button to change the pruning level.
treedisp(T,'param1', val1,' param2', val2,...) specifies optional parameter name-value pairs. Valid parameters are:

| 'names ' | A cell array of names for the predictor variables, in the <br> order in which they appear in the $X$ matrix from which the <br> tree was created (see treefit) |
| :--- | :--- |
| 'prunelevel' | Initial pruning level to display |

## treedisp

## Examples

Create and graph classification tree for Fisher's iris data. The names in this example are abbreviations for the column contents (sepal length, sepal width, petal length, and petal width).

```
load fisheriris;
t = treefit(meas,species);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});
```



See Also treefit, treeprune, treetest

Purpose
Syntax

Description

Fit a tree-based model for classification or regression

```
T = treefit(X,y)
T = treefit(X,y,'param1',val1,'param2',val2,...)
```

$T=\operatorname{treefit}(X, y)$ creates a decision tree $T$ for predicting response $y$ as a function of predictors $X$. $X$ is an $n$-by-m matrix of predictor values. $y$ is either a vector of $n$ response values (for regression), or a character array or cell array of strings containing $n$ class names (for classification). Either way, $T$ is a binary tree where each non-terminal node is split based on the values of a column of $X$.

T = treefit (X,y,'param1', val1,'param2', val2, ...) specifies optional parameter name-value pairs. Valid parameters are

For all trees:
'catidx' Vector of indices of the columns of $x$. treefit treats these columns as unordered categorical values.
'method' Either 'classification' (default if y is text) or 'regression' (default if y is numeric)
'splitmin' A number n such that impure nodes must have n or more observations to be split (default 10)
'prune' 'on' (default) to compute the full tree and a sequence of pruned subtrees, or 'off' for the full tree without pruning

For classification trees only:
'cost ' p-by-p matrix $C$, where $p$ is the number of distinct response values or class names in the input y. $C(i, j)$ is the cost of classifying a point into class $i$ if its true class is $j$ (default has $C(i, j)=1$ if $i \sim=j$, and $C(i, j)=0$ if $i=j$ ). $C$ can also be a structure $S$ with two fields: S .group containing the group names, and S.cost containing a matrix of cost values.

## treefit

| 'splitcriterion' | Criterion for choosing a split: either 'gdi' (default) for <br> Gini's diversity index, 'twoing' for the twoing rule, or |
| :--- | :--- |
| 'deviance' for maximum deviance reduction |  |

## Examples

## References

See Also

Create a classification tree for Fisher's iris data.

```
load fisheriris;
t = treefit(meas,species);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});
```


[1] Breiman, L., Classification and Regression Trees, Chapman \& Hall, Boca Raton, 1993.

```
treedisp, treetest
```

12-524

Purpose
Syntax

Description

## Examples

Produce a sequence of subtrees by pruning

```
T2 = treeprune(T1,'level',level)
T2 = treeprune(T1,'nodes',nodes)
T2 = treeprune(T1)
```

T2 = treeprune(T1, 'level',level) takes a decision tree T1 as created by the treefit function, and a pruning level, and returns the decision tree T2 pruned to that level. The value level $=0$ means no pruning. Trees are pruned based on an optimal pruning scheme that first prunes branches giving less improvement in error cost.

T2 = treeprune(T1, 'nodes', nodes) prunes the nodes listed in the nodes vector from the tree. Any T1 branch nodes listed in nodes become leaf nodes in T2, unless their parent nodes are also pruned. The treedisp function can display the node numbers for any node you select.

T2 = treeprune (T1) returns the decision tree T2 that is the same as T1, but with the optimal pruning information added. This is useful only if you created T1 by pruning another tree, or by using the treefit function with pruning set 'off'. If you plan to prune a tree multiple times, it is more efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes into leaf nodes, and removing the leaf nodes under the original branch.

Display the full tree for Fisher's iris data, as well as the next largest tree from the optimal pruning sequence.

```
load fisheriris;
t = treefit(meas,species,'splitmin',5);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});
```



```
t1 = treeprune(t,'level',1);
treedisp(t1,'names',{'SL' 'SW' 'PL' 'PW'});
```

| Click to display: Identity | $\checkmark$ | Magnification: | 100\% | $\checkmark$ | Pruning level: | 0 of 3 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


See Also treefit, treetest, treedisp

Purpose Compute error rate for tree
Syntax

## Description

```
cost = treetest(T,'resubstitution')
cost = treetest(T,'test',X,y)
cost = treetest(T,'crossvalidate',X,y)
[cost,secost,ntnodes,bestsize] = treetest(...)
[...] = treetest(...,'param1',val1,'param2',val2,...)
```

cost = treetest(T, 'resubstitution') computes the cost of the tree T using a resubstitution method. $T$ is a decision tree as created by the treefit function. The cost of the tree is the sum over all terminal nodes of the estimated probability of that node times the node's cost. If T is a classification tree, the cost of a node is the sum of the misclassification costs of the observations in that node. If T is a regression tree, the cost of a node is the average squared error over the observations in that node. cost is a vector of cost values for each subtree in the optimal pruning sequence for $T$. The resubstitution cost is based on the same sample that was used to create the original tree, so it underestimates the likely cost of applying the tree to new data.
cost $=$ treetest ( T, 'test', $\mathrm{X}, \mathrm{y}$ ) uses the predictor matrix X and response y as a test sample, applies the decision tree $T$ to that sample, and returns a vector cost of cost values computed for the test sample. $X$ and $y$ should not be the same as the learning sample, which is the sample that was used to fit the tree T .
cost $=$ treetest ( T, 'crossvalidate' $\mathrm{X}, \mathrm{y}$ ) uses 10 -fold cross-validation to compute the cost vector. $X$ and $y$ should be the learning sample, which is the sample that was used to fit the tree T. The function partitions the sample into 10 subsamples, chosen randomly but with roughly equal size. For classification trees, the subsamples also have roughly the same class proportions. For each subsample, treetest fits a tree to the remaining data and uses it to predict the subsample. It pools the information from all subsamples to compute the cost for the whole sample.
[cost, secost, ntnodes, bestlevel] = treetest(...) also returns the vector secost containing the standard error of each cost value, the vector ntnodes containing number of terminal nodes for each subtree, and the scalar bestlevel containing the estimated best level of pruning. bestlevel $=0$
means no pruning, i.e., the full unpruned tree. The best level is the one that produces the smallest tree that is within one standard error of the minimum-cost subtree.
[...] = treetest(...,'param1',val1,'param2',val2,...) specifies optional parameter name-value pairs chosen from the following:
'nsamples' The number of cross-validations samples (default 10).
'treesize' Either 'se' (default) to choose the smallest tree whose cost is within one standard error of the minimum cost, or 'min' to choose the minimal cost tree.

## Examples

Find the best tree for Fisher's iris data using cross-validation. The solid line shows the estimated cost for each tree size, the dashed line marks 1 standard error above the minimum, and the square marks the smallest tree under the dashed line.

```
% Start with a large tree.
load fisheriris;
t = treefit(meas,species','splitmin',5);
% Find the minimum-cost tree.
[c,s,n,best] = treetest(t,'cross',meas,species);
tmin = treeprune(t,'level',best);
% Plot smallest tree within 1 std. error of minimum cost tree.
[mincost,minloc] = min(c);
plot(n,c,'b-o', n,c+s,'r:', n(best+1),c(best+1),'bs',...
 n,(mincost+s(minloc))*ones(size(n)),'k--');
xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')
```



See Also treefit, treedisp

Purpose
Compute fitted value for decision tree applied to data

```
Syntax YFIT = treeval(T,X)
YFIT = treeval(T,X,subtrees)
[YFIT,NODE] = treeval(...)
[YFIT,NODE,CNAME] = treeval(...)
```


## Description

## Examples

YFIT $=$ treeval $(T, X)$ takes a classification or regression tree $T$ as produced by the treefit function, and a matrix $X$ of predictor values, and produces a vector YFIT of predicted response values. For a regression tree, YFIT ( j ) is the fitted response value for a point having the predictor values $\mathrm{X}(\mathrm{j},: \mathrm{i})$. For a classification tree, $\operatorname{YFIT}(\mathrm{j})$ is the class number into which the tree would assign the point with data $X(\mathrm{j},:)$. To convert the number into a class name, use the third output argument, cname (below).

YFIT = treeval( $T, X$, subtrees) takes an additional vector subtrees of pruning levels, with 0 representing the full, unpruned tree. T must include a pruning sequence as created by the treefit or prunetree function. If subtree has $k$ elements and $X$ has n rows, then the output YFIT is an n-by-k matrix, with the j th column containing the fitted values produced by the subtrees ( j ) subtree. subtrees must be sorted in ascending order.
[YFIT, NODE] = treeval(...) also returns an array NODE of the same size as YFIT containing the node number assigned to each row of X. The treedisp function can display the node numbers for any node you select.
[YFIT, NODE, CNAME] = treeval(...) is valid only for classification trees. It returns a cell array CNAME containing the predicted class names.

Find the predicted classifications for Fisher's iris data.

```
load fisheriris;
t = treefit(meas,species); % Create decision tree
sfit = treeval(t,meas); % Find assigned class numbers
sfit = t.classname(sfit); % Get class names
mean(strcmp(sfit,species)) % Compute proportion correctly
 % classified
ans =
 0.9800
```


## See Also

treefit, treeprune, treetest

Purpose

## Syntax <br> Description

## Remarks

## Examples

Mean of a sample of data excluding extreme values
$\mathrm{m}=$ trimmean (X, percent)
$\mathrm{m}=$ trimmean $(\mathrm{X}$, percent, dim)
$m=$ trimmean( $X$, percent) calculates the mean of a sample $X$ excluding the highest and lowest (percent/2)\% of the observations. For a vector input, $m$ is the trimmed mean of $X$. For a matrix input, $m$ is a row vector containing the trimmed mean of each column of $X$. For N -dimensional arrays, trimmean operates along the first nonsingleton dimension of $X$. percent is a scalar between 0 and 100.
trimmean ( X , percent, dim) takes the trimmed mean along dimension dim of X .
The trimmed mean is a robust estimate of the location of a sample. If there are outliers in the data, the trimmed mean is a more representative estimate of the center of the body of the data than the mean. However, if the data is all from the same probability distribution, then the trimmed mean is less efficient than the sample mean as an estimator of the location of the data.

This example shows a Monte Carlo simulation of the efficiency of the $10 \%$ trimmed mean relative to the sample mean for normal data.

```
x = normrnd(0,1,100,100);
m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2
efficiency =
 0.9702
```

See Also
mean, median, geomean, harmmean

## Purpose Random numbers from Student's t distribution

$$
\text { Syntax } \quad \begin{aligned}
R & =\operatorname{trnd}(V) \\
R & =\operatorname{trnd}(V, m) \\
R & =\operatorname{trnd}(V, m, n)
\end{aligned}
$$

Description $\quad R=$ trnd $(V)$ generates random numbers from Student's $t$ distribution with $V$ degrees of freedom. $V$ can be a vector, a matrix, or a multidimensional array. The size of $R$ is the size of $V$.
$R=t r n d(V, m)$ generates random numbers from Student's $t$ distribution with $V$ degrees of freedom, where $v$ is a row vector. If $v$ is a 1 -by- 2 vector, $R$ is a matrix with $v(1)$ rows and $v(2)$ columns. If $v$ is 1 -by- $n, R$ is an $n$-dimensional array.
$R=\operatorname{trnd}(V, m, n)$ generates random numbers from Student's $t$ distribution with $V$ degrees of freedom, where scalars $m$ and $n$ are the row and column dimensions of $R$.

## Reproducing the Output of trnd

trnd uses the MATLAB functions rand and randn to generate random numbers. When you call trnd, you change the current states of rand and randn, and thereby alter the output of subsequent calls to trnd or any other functions that depend on rand or randn. If you want to reproduce the output of trnd, reset the states of rand and randn to the same fixed values each time you call trnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand or randn, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current states of rand and randn. If you run the code in these examples, your results may differ from the answers shown here.

## Examples

```
noisy = trnd(ones(1,6))
noisy =
 19.7250
```

```
numbers = trnd(1:6,[1 6])
numbers =
 -1.9500 -0.9611 -0.9038 0.0754 0.9820
numbers = trnd(3,2,6)
numbers =
 -0.3177 -0.0812 -0.6627 0.1905 -1.5585 -0.0433
 0.2536}00.5502 0.8646 0.8060 -0.5216 0.0891
```

See Also
tcdf, tinv, tpdf, tstat

## Purpose Mean and variance for the Student's t distribution

## Syntax $\quad[M, V]=\operatorname{tstat}(N U)$

Description

Examples
[M,V] = tstat(NU) returns the mean and variance for Student's t distribution with parameters specified by NU. M and $V$ are the same size as NU.

The mean of the Student's $t$ distribution with parameter $v$ is zero for values of $v$ greater than 1 . If $v$ is one, the mean does not exist. The variance for values of $v$ greater than 2 is $v /(v-2)$.

Find the mean and variance for 1 to 30 degrees of freedom.

| $\mathrm{m}=$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| NaN 0 | 00 | 00 |  |  |
| 00 | 00 | 0 |  |  |
| 00 | 00 | 0 |  |  |
| 00 | 00 | 0 |  |  |
| 00 | 00 | 0 |  |  |
| 00 | 00 | 0 |  |  |
| $\mathrm{v}=$ |  |  |  |  |
| NaN | 1.4000 | 1.1818 | 1.1176 | 1.0870 |
| NaN | 1.3333 | 1.1667 | 1.1111 | 1.0833 |
| 3.0000 | 1.2857 | 1.1538 | 1.1053 | 1.0800 |
| 2.0000 | 1.2500 | 1.1429 | 1.1000 | 1.0769 |
| 1.6667 | 1.2222 | 1.1333 | 1.0952 | 1.0741 |
| 1.5000 | 1.2000 | 1.1250 | 1.0909 | 1.0714 |

Note that the variance does not exist for one and two degrees of freedom.
See Also
tcdf, tinv, tpdf, trnd

Purpose
Hypothesis testing for a single sample mean

## Syntax <br> Description

h = ttest $(x)$
h = ttest $(x, m)$
h = ttest $(x, y)$
h = ttest(x,m,alpha)
h = ttest(x,m,alpha,tail)
h = ttest(x,m,alpha,tail,dim)
[h,p,ci] = ttest(...)
[h, p,ci,stats] = ttest(...)
$h=t t e s t(x)$ performs a t-test of the hypothesis that the data in the vector $x$ comes from a distribution with mean zero, and returns the result of the test in h . $\mathrm{h}=0$ indicates that the null hypothesis (mean is zero) cannot be rejected at the $5 \%$ significance level. $h=1$ indicates that the null hypothesis can be rejected at the $5 \%$ level. The data are assumed to come from a normal distribution with unknown variance.
$x$ can also be a matrix or an N-D array. For matrices, ttest performs separate $t$-tests along each column of $x$ and returns a vector of results. For N-D arrays, ttest works along the first nonsingleton dimension of $x$.
$h=\operatorname{ttest}(x, m)$ performs at-test of the hypothesis that the data in the vector $x$ comes from a distribution with mean $m$.
$\mathrm{h}=\mathrm{ttest}(\mathrm{x}, \mathrm{y})$ performs a paired t-test of the hypothesis that two matched (or paired) samples in the vectors $x$ and $y$ come from distributions with equal means. The difference $x-y$ is assumed to come from a normal distribution with unknown variance. $x$ and $y$ must be vectors of the same length, or arrays of the same size.
$\mathrm{h}=\mathrm{ttest}(. . .$, alpha) performs the test at the significance level ( $100 * \mathrm{alpha}$ )\%. For example, if alpha $=0.01$, and the result h is 1 , you can reject the null hypothesis at the significance level 0.01 . If h is 0 , you cannot reject the null hypothesis at the alpha level of significance.
$\mathrm{h}=\mathrm{ttest}(. .$. ,alpha, tail) performs the test against the alternative hypothesis specified by tail. There are three options for tail:

- 'both' - Mean is not 0 (or m) (two-tailed test). This is the default.
- 'right ' - Mean is greater than 0 (or m) (right-tailed test).
- 'left' - Mean is less than 0 (or m) (left-tailed test).
[h,p,ci,stats] = ttest(...) returns a structure with the following fields:
- 'tstat' - Value of the test statistic
- 'df'— Degrees of freedom of the test
- 'sd' - Estimated population standard deviation. For a paired test, this is the standard deviation of $x-y$.

Output p is the p -value associated with the t -statistic

$$
T=\frac{\bar{x}-m}{s / \sqrt{n}}
$$

wheres is the sample standard deviation and $n$ is the number of observations in the sample. $p$ is the probability that the value of the $t$-statistic is equal to or more extreme than the observed value by chance, under the null hypothesis that the mean of $x$ is equal to $m$.
ci is a 1-alpha confidence interval for the true mean.
h = ttest(..., alpha, tail, dim) performs the test along dimension dim of the input $x$ array. For a matrix $x$, dim=1 computes the $t$-test for each column (along the first dimension), and dim=2 computes the t-test for each row. By default, ttest works along the first nonsingleton dimension, so it treats a single-row input as a row vector.

## Example

This example generates 100 normal random numbers with theoretical mean 0 and standard deviation 1 . The observed mean and standard deviation are different from their theoretical values, of course, so you test the hypothesis that there is no true difference.

Here is a normal random number generator test:

```
x = normrnd(0,1,1,100);
[h,p,ci] = ttest(x,0)
h =
 0
```

```
p =
 0.4474
ci =
 -0.1165 0.2620
```

The result $\mathrm{h}=0$ means that you cannot reject the null hypothesis. The significance level is 0.4474 , which means that by chance you would have observed values of T more extreme than the one in this example in 45 of 100 similar experiments. A $95 \%$ confidence interval on the mean is
[-0.1165 0.2620], which includes the theoretical (and hypothesized) mean of zero.

## Purpose Hypothesis testing for the difference in means of two samples

```
Syntax [h,significance,ci] = ttest2(x,y)
[h,significance,ci] = ttest2(x,y,alpha)
[h,significance,ci,stats] = ttest2(x,y,alpha)
[...] = ttest2(x,y,alpha,tail)
[...] = ttest2(x,y,alpha,tail,'unequal')
[...] = ttest2(x,y,alpha,tail,'unequal',dim)
```

Description $\quad h=$ ttest2 $(x, y)$ performs a t-test to determine whether two samples from a normal distribution ( $x$ and $y$ ) could have the same mean when the standard deviations are unknown but assumed equal. The vectors $x$ and $y$ can have different lengths.
$x$ and y can also be matrices or N-D arrays. For matrices, ttest2 performs separate t-tests along each column and returns a vector of results. $x$ and $y$ must have the same number of columns. For N-D arrays, ttest2 works along the first nonsingleton dimension. $x$ and $y$ must have the same size along all the remaining dimensions.

The result, $h$, is 1 if you can reject the null hypothesis that the means are equal at the 0.05 significance level and 0 otherwise.
significance is the p -value associated with the t -statistic

$$
T=\frac{\bar{x}-\bar{y}}{s \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

where $s$ is the pooled sample standard deviation and $n$ and $m$ are the numbers of observations in the $x$ and $y$ samples. significance is the probability that the observed value of T could be as large or larger by chance under the null hypothesis that the mean of $x$ is equal to the mean of $y$.
ci is a $95 \%$ confidence interval for the true difference in means.
[h, significance, ci] = ttest2 ( $x, y$, alpha) gives control of the significance level alpha. For example, if alpha $=0.01$, and the result, $h$, is 1 , you can reject the null hypothesis at the significance level 0.01 . ci in this case is a 100(1-alpha)\% confidence interval for the true difference in means.
[h, significance, ci, stats] = ttest2(x,y,alpha) returns a structure stats with the following three fields:

- tstat - Value of the test statistic
- df — Degrees of freedom of the test
- 'sd' - Pooled estimate of the population standard deviation in the equal variance case, or a vector containing the unpooled estimates of the population standard deviations in the unequal variance case
[...] = ttest2(x,y,alpha, tail) allows specification of one- or two-tailed tests, where tail is a flag that specifies one of three alternative hypotheses:
- tail $=$ 'both' specifies the alternative $\mu_{x} \neq \mu_{y}$ (default).
- tail $=$ 'right' specifies the alternative $\mu_{x}>\mu_{y}$.
- tail $=$ 'left' specifies the alternative $\mu_{x}<\mu_{y}$.
[...] = ttest2(x,y,alpha,tail, 'unequal') performs the test assuming that the two samples come from normal distributions with unknown and possibly unequal variances. This is known as the Behrens-Fisher problem. ttest2 uses Satterthwaite's approximation for the effective degrees of freedom.
[...] = ttest2(..., dim) performs the test along dimension dim of the input $x$ and $y$ arrays. For matrix inputs, dim=1 computes the t-test for each column (along the first dimension), and dim=2 computes the t-test for each row. By default, ttest2 works along the first nonsingleton dimension, so it treats single-row inputs as row vectors.


## Examples

This example generates 100 normal random numbers with theoretical mean 0 and standard deviation 1. You then generate 100 more normal random numbers with theoretical mean $1 / 2$ and standard deviation 1 . The observed means and standard deviations are different from their theoretical values, of course. You test the hypothesis that there is no true difference between the two means. Notice that the true difference is only one-half of the standard deviation of the individual observations, so you are trying to detect a signal that is only one-half the size of the inherent noise in the process.

```
x = normrnd(0,1,100,1);
y = normrnd(0.5,1,100,1);
```

```
[h,significance,ci] = ttest2(x,y)
h =
 1
significance =
 0.0017
ci =
 -0.7352 -0.1720
```

The result $\mathrm{h}=1$ means that you can reject the null hypothesis. The significance is 0.0017 , which means that by chance you would have observed values of $t$ more extreme than the one in this example in only 17 of 10,000 similar experiments! A 95\% confidence interval on the mean is [-0.7352-0.1720], which includes the theoretical (and hypothesized) difference of -0.5 .

## Purpose <br> Discrete uniform cumulative distribution (cdf) function

## Syntax <br> $P=\operatorname{unidcdf}(X, N)$

Description

## Examples

What is the probability of drawing a number 20 or less from a hat with the numbers from 1 to 50 inside?

```
probability = unidcdf(20,50)
probability =
 0.4000
```

See Also
cdf, unidinv, unidpdf, unidrnd, unidstat

## unidinv

## Purpose Inverse of the discrete uniform cumulative distribution function

$$
\text { Syntax } \quad X=\operatorname{unidinv}(P, N)
$$

Description

## Examples

See Also icdf, unidcdf, unidpdf, unidrnd, unidstat numbers 1 through $N$ inside.

```
x = unidinv(0.7,20)
x =
 14
y = unidinv(0.7 + eps,20)
y =
 1 5
``` step.
icdf, unidcdf, unidpdf, unidrnd, unidstat
\(X=\) unidinv ( \(P, N\) ) returns the smallest positive integer \(X\) such that the discrete uniform cdf evaluated at \(X\) is equal to or exceeds \(P\). You can think of \(P\) as the probability of drawing a number as large as \(X\) out of a hat with the
\(P\) and \(N\) can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(X\). A scalar input for \(N\) or \(P\) is expanded to a constant array with the same dimensions as the other input. The values in \(P\) must lie on the interval [01] and the values in \(N\) must be positive integers.

A small change in the first parameter produces a large jump in output. The cdf and its inverse are both step functions. The example shows what happens at a

\section*{Purpose Discrete uniform probability density function (pdf)}

\section*{Syntax \\ Y = unidpdf(X,N)}

Description

\section*{Examples}

See Also
unidpdf( \(X, N\) ) computes the discrete uniform pdf at each of the values in \(X\) using the corresponding parameters in \(N . X\) and \(N\) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(N\) must be positive integers.

The discrete uniform pdf is
\[
y=f(x \mid N)=\frac{1}{N} I_{(1, \ldots, N)}(x)
\]

You can think of \(y\) as the probability of observing any one number between 1 and \(n\).

For fixed n , the uniform discrete pdf is a constant.
```

y = unidpdf(1:6,10)
y =
0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

```

Now fix \(x\), and vary \(n\).
```

likelihood = unidpdf(5,4:9)

```
likelihood =
\(0 \quad 0.2000\)
0.1667
0.1429
0.1250
0.1111
pdf, unidcdf, unidinv, unidrnd, unidstat

\section*{unidrnd}

\section*{Purpose Random numbers from the discrete uniform distribution}
\[
\text { Syntax } \quad \begin{aligned}
R & =\operatorname{unidrnd}(N) \\
& R=\operatorname{unidrnd}(N, v) \\
& R=\operatorname{unidrnd}(N, m, n)
\end{aligned}
\]

Description The discrete uniform distribution arises from experiments equivalent to drawing a number from one to \(N\) out of a hat.
\(R=\) unidrnd( \(N\) ) generates discrete uniform random numbers with maximum \(N\). The parameters in \(N\) must be positive integers. \(N\) can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of \(N\).
\(R=\) unidrnd( \(N, v\) ) generates discrete uniform random numbers with maximum \(N\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=\) unidrnd( \(N, m, n\) ) generates discrete uniform random numbers with maximum \(N\), where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of unidrnd}
unidrnd uses the MATLAB function rand to generate random numbers. When you call unidrnd, you change the current state of rand, and thereby alter the output of subsequent calls to unidrnd or any other functions that depend on rand. If you want to reproduce the output of unidrnd, reset the state of rand to the same fixed value each time you call unidrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The result in the following example depends on the current state of rand. If you run the code in this example, your results may differ from the answer shown here.

Example
In the Massachusetts lottery, a player chooses a four digit number. Generate random numbers for Monday through Saturday.
```

numbers = unidrnd(10000,1,6) - 1

```
```

numbers =
2189 470 6788 6792 9346

```

See Also unidcdf, unidinv, unidpdf, unidstat

Purpose Mean and variance for the discrete uniform distribution

\section*{Syntax \\ [M, V] = unidstat( N )}

Description

Examples

See Also
unidcdf, unidinv, unidpdf, unidrnd

\section*{Purpose}

Syntax
Description

\section*{Examples}

\section*{See Also}

Continuous uniform cumulative distribution function (cdf)
\(P=\operatorname{unifcdf}(X, A, B)\)
\(P=\) unifcdf( \(X, A, B\) ) computes the uniform cdf at each of the values in \(X\) using the corresponding parameters in \(A\) and \(B\) (the minimum and maximum values, respectively). \(X\), \(A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.

The uniform cdf is
\[
p=F(x \mid a, b)=\frac{x-a}{b-a} I_{[a, b]}(x)
\]

The standard uniform distribution has \(\mathrm{A}=0\) and \(\mathrm{B}=1\).
What is the probability that an observation from a standard uniform distribution will be less than 0.75 ?
```

probability = unifcdf(0.75)
probability =
0.7500

```

What is the probability that an observation from a uniform distribution with \(a=-1\) and \(b=1\) will be less than 0.75 ?
    probability \(=\operatorname{unifcdf}(0.75,-1,1)\)
    probability =
        0.8750
cdf, unifinv, unifit, unifpdf, unifrnd, unifstat

\section*{Purpose Inverse continuous uniform cumulative distribution function (cdf)}

\section*{Syntax \(\quad X=\operatorname{unifinv}(P, A, B)\)}

Description

Examples

See Also
icdf, unifcdf, unifit, unifpdf, unifrnd, unifstat

\section*{Purpose}

Parameter estimates for uniformly distributed data
```

Syntax [ahat,bhat] = unifit(DATA)
[ahat,bhat,ACI,BCI] = unifit(DATA)
[ahat,bhat,ACI,BCI] = unifit(DATA,alpha)

```

Description

\section*{Example}

\section*{See Also}
[ahat, bhat] = unifit(DATA) returns the maximum likelihood estimates (MLEs) of the parameters of the uniform distribution given the data in DATA.
[ahat, bhat, ACI, BCI ] = unifit(DATA) also returns 95\% confidence intervals, ACI and BCI, which are matrices with two rows. The first row contains the lower bound of the interval for each column of the matrix DATA. The second row contains the upper bound of the interval.
[ahat,bhat, ACI, BCI] = unifit(DATA, alpha) enables you to control of the confidence level alpha. For example, if alpha \(=0.01\) then ACI and BCI are \(99 \%\) confidence intervals.
```

r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)
ahat =
10.0154 10.0060
bhat =
11.9989 11.9743
aci =
9.9551 9.9461
10.0154 10.0060
bci =
11.9989 11.9743
12.0592 12.0341

```
betafit, binofit, expfit, gamfit, normfit, poissfit, unifcdf, unifinv,
unifpdf, unifrnd, unifstat, wblfit

Purpose Continuous uniform probability density function (pdf)
\[
\text { Syntax } \quad Y=\operatorname{unifpdf}(X, A, B)
\]

Description

Examples

See Also
\(Y=\) unifpdf( \(X, A, B\) ) computes the continuous uniform pdf at each of the values in \(X\) using the corresponding parameters in \(A\) and \(B . X, A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in B must be greater than those in A.

The continuous uniform distribution pdf is
\[
y=f(x \mid a, b)=\frac{1}{b-a} I_{[a, b]}(x)
\]

The standard uniform distribution has \(\mathrm{A}=0\) and \(\mathrm{B}=1\).
For fixed \(a\) and \(b\), the uniform pdf is constant.
```

x = 0.1:0.1:0.6;
y = unifpdf(x)
y =
1 1 1 1 1 1 1

```

What if x is not between a and b ?
\[
\begin{aligned}
& y=\operatorname{unifpdf}(-1,0,1) \\
& y= \\
& 0
\end{aligned}
\]
pdf, unifcdf, unifinv, unifrnd, unifstat

Purpose
Random numbers from the continuous uniform distribution
```

Syntax R = unifrnd(A,B)
R = unifrnd(A,B,m)
R = unifrnd(A,B,m,n)

```

Description \(\quad R=\) unifrnd \((A, B)\) generates uniform random numbers with parameters \(A\) and \(B\). Vector or matrix inputs for \(A\) and \(B\) must have the same size, which is also the size of \(R\). A scalar input for \(A\) or \(B\) is expanded to a constant matrix with the same dimensions as the other input.
\(R=\) unifrnd \((A, B, m)\) generates uniform random numbers with parameters \(A\) and \(B\), where \(m\) is a 1-by- 2 vector that contains the row and column dimensions of \(R\).
\(R=\) unifrnd \((A, B, m, n)\) generates uniform random numbers with parameters \(A\) and \(B\), where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

\section*{Reproducing the Output of unifrnd}
unifrnd uses the MATLAB function rand to generate random numbers. When you call unifrnd, you change the current state of rand, and thereby alter the output of subsequent calls to unifrnd or any other functions that depend on rand. If you want to reproduce the output of unifrnd, reset the state of rand to the same fixed value each time you call unifrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current state of rand. If you run the code in these examples, your results may differ from the answers shown here.
```

random = unifrnd(0,1:6)
random =
0.2190

```
```

random = unifrnd(0,1:6,[11 6])
random =
0.5194 1.6619 0.1037 0.2138 2.6485 4.0269
random = unifrnd(0,1,2,3)
random =
0.0077 0.0668 0.6868
0.3834 0.4175 0.5890

```

\section*{See Also}
unifcdf, unifinv, unifpdf, unifstat

Purpose

\section*{Syntax}

Description

\section*{Examples}

See Also

Mean and variance for the continuous uniform distribution
```

[M,V] = unifstat(A,B)

```
\([\mathrm{M}, \mathrm{V}]=\) unifstat \((\mathrm{A}, \mathrm{B})\) returns the mean and variance for the continuous uniform distribution with parameters specified by A and B. Vector or matrix inputs for \(A\) and \(B\) must have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(A\) or \(B\) is expanded to a constant matrix with the same dimensions as the other input.

The mean of the continuous uniform distribution with parameters \(a\) and \(b\) is \((a+b) / 2\), and the variance is \((b-a)^{2} / 12\).
```

a = 1:6;
b = 2.*a;
[m,v] = unifstat(a,b)
m =
1.5000}30.0000 4.5000 6.0000 7.5000 9.0000
v =
0.0833 0.3333 0.7500 1.3333 2.0833 3.0000

```
unifcdf, unifinv, unifpdf, unifrnd

\section*{Purpose Variance of a sample}

\section*{Syntax}
\(\mathrm{y}=\operatorname{var}(\mathrm{X})\)
\(y=\operatorname{var}(X, 1)\)
\(y=\operatorname{var}(X, w)\)
var(X,w,dim)

\section*{Description}

\section*{Examples}
```

x = [-1 1];
w = [1 3];
v1 = var(x)
v1 =
2
v2 = var(x,1)
v2 =
1

```
```

v3 = var(x,w)
v3 =
0.7500

```

See Also cov, std

\section*{Purpose Weibull cumulative distribution function (cdf)}
```

Syntax P = wblbcdf(X, A, B)
[P, PLO, PUP] = wblcdf(X, A, B, PCOV, alpha)

```

\section*{Examples}

What is the probability that a value from a Weibull distribution with parameters \(a=0.15\) and \(b=0.8\) is less than 0.5 ?
```

probability = wblcdf(0.5, 0.15, 0.8)
probability =

```

\subsection*{0.9272}

How sensitive is this result to small changes in the parameters?
```

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = wblcdf(0.5, A, B)
probability =

0.7484	0.7198	0.6991
0.7758	0.7411	0.7156
0.8022	0.7619	0.7319

```

See Also
cdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd, wblstat

\section*{Purpose Parameter estimates and confidence intervals for Weibull data}
```

Syntax parmhat = wblfit(data)
[parmhat, parmci] = wblfit(data)
[parmhat, parmci] = wblfit(data, alpha)
[...] = wblfit(data, alpha, censoring)
[...] = wblfit(data, alpha, censoring, freq)
[...] = wblfit(data, alpha, censoring, freq, options)

```

\section*{Description parmhat = wblfit(data) returns the maximum likelihood estimates, parmhat,} of the parameters of the Weibull distribution given the values in the vector data, which must be positive. parmhat is a two-element row vector: parmhat (1) estimates the Weibull parameter \(a\), and parmhat (2) estimates the Weibull parameter \(b\), in the pdf
\[
y=f(x \mid a, b)=b a^{-b} x^{b-1} e^{-\left(\frac{x}{a}\right)^{b}} I_{(0, \infty)}(x)
\]
[parmhat, parmci] = wblfit(data) returns \(95 \%\) confidence intervals for the estimates of \(a\) and \(b\) in the 2-by-2 matrix parmci. The first row contains the lower bounds of the confidence intervals for the parameters, and the second row contains the upper bounds of the confidence intervals.
[parmhat, parmci] = wblfit(data, alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates.
[...] = wblfit(data, alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = wblfit(data, alpha, censoring, freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the corresponding elements in data, but can contain any non-negative values. Pass in [ ] for alpha, censoring, or freq to use their default values.
[...] = wblfit(..., options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. You can create options using the function statset. Enter statset ('wblfit') to see the names and default values of the
parameters that lognfit accepts in the options structure. See the reference page for statset for more information about these options.

\section*{Example}
```

data = wblrnd(0.5,0.8,100,1);
[parmhat, parmci] = wblfit(data)
parmhat =
0.5861 0.8567
parmci =
0.4606 0.7360
0.7459 0.9973

```

See Also wblcdf, wblinv, wbllike, wblpdf, wblrnd, wblstat, mle, statset

\section*{Purpose Inverse of the Weibull cumulative distribution function}
```

Syntax $\quad X=\operatorname{wblbinv}(P, A, B)$
[X, XLO, XUP] = wblinv(P, A, B, PCOV, alpha)

```

\section*{Description}

\section*{Examples}

The lifetimes (in hours) of a batch of light bulbs has a Weibull distribution with parameters \(a=200\) and \(b=6\). What is the median lifetime of the bulbs?
```

life = wblinv(0.5, 200, 6)

```
life =
188.1486

What is the 90th percentile?
```

life = wblinv(0.9, 200, 6)
life =

```
229.8261

See Also
wblcdf, wblfit, wbllike, wblpdf, wblrnd, wblstat, icdf

\section*{wbllike}

\section*{Purpose Weibull negative log-likelihood function}
```

Syntax nlogL = wbllike(params, data)
[nlogL, AVAR] = wbllike(params,data)
[...] = wbllike(params, data, censoring)
[...] = wbllike(params, data, censoring, freq)

```

This example continues the example from wblfit.
```

 r = wblrnd(0.5,0.8,100,1);
 [logL, AVAR] = wbllike(wblfit(r),r)
    ```
```

logL =
47.3349
AVAR =
0.0048 0.0014
0.0014 0.0040

```
```

Reference
See Also
[1] Patel, J.K., C. H. Kapadia, and D. B. Owen, Handbook of Statistical Distributions, Marcel-Dekker, 1976.
See Also betalike, gamlike, mle, normlike, wblcdf, wblfit, wblinv, wblpdf, wblrnd, wblstat

```

\section*{wblpdf}

\section*{Purpose Weibull probability density function (pdf)}

\section*{Syntax \\ \(\mathrm{Y}=\mathrm{wblpdf}(\mathrm{X}, \mathrm{A}, \mathrm{B})\)}

Description

\section*{Examples}

Reference

See Also
\(Y=\) wblpdf( \(X, A, B\) ) computes the Weibull pdf at each of the values in \(X\) using the corresponding parameters in \(A\) and \(B . X, A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The parameters in \(A\) and \(B\) must be positive.

The Weibull pdf is
\[
=f(x \mid a, b)=b a^{-b} x^{b-1} e^{-\left(\frac{x}{a}\right)^{b}} I_{(0, \infty)}(x)
\]

Some references refer to the Weibull distribution with a single parameter. This corresponds to wblpdf with \(A=1\).

The exponential distribution is a special case of the Weibull distribution.
```

lambda = 1:6;
y = wblpdf(0.1:0.1:0.6,lambda,1)
y =
0.9048
y1 = exppdf(0.1:0.1:0.6, lambda)
y1 =
0.9048

```
[1] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag, 1986.
pdf, wblcdf, wblfit, wblinv, wbllike, wblplot, wblrnd, wblstat

\section*{Purpose}

\section*{Syntax \\ wblplot(X) \\ h = wblplot(X)}

Description

\section*{Example}

Weibull probability plot plot.
wblplot ( X ) displays a Weibull probability plot of the data in X . If X is a matrix, wblplot displays a plot for each column.
\(\mathrm{h}=\mathrm{wblplot}(\mathrm{X})\) returns handles to the plotted lines.
The purpose of a Weibull probability plot is to graphically assess whether the data in \(X\) could come from a Weibull distribution. If the data are Weibull the plot will be linear. Other distribution types might introduce curvature in the
```

 r = wblrnd(1.2,1.5,50,1);
 wblplot(r)
    ```


See Also
normplot, wblcdf, wblfit, wblinv, wbllike, wblpdf, wblrnd, wblstat

\section*{Purpose Random numbers from the Weibull distribution}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{wblrnd}(A, B)\) \\
\(R\) & \(=\operatorname{wblrnd}(A, B, v)\) \\
\(R\) & \(=\operatorname{wblrnd}(A, B, m, n)\)
\end{tabular}

Description \(\quad R=\) wblrnd \((A, B)\) generates Weibull random numbers with parameters \(A\) and \(B\). The input arguments \(A\) and \(B\) can be either scalars or matrices. \(A\) and \(B\), can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other input.
\(R=\) wblrnd \((A, B, v)\) generates Weibull random numbers with parameters \(A\) and \(B\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1 -by- \(n, R\) is an \(n\)-dimensional array.
\(R=\) wblrnd \((A, B, m, n)\) generates Weibull random numbers with parameters \(A\) and \(B\), where scalars \(m\) and \(n\) are the row and column dimensions of \(R\).

Devroye [1] refers to the Weibull distribution with a single parameter; this is wblrnd with \(\mathrm{A}=1\).

\section*{Reproducing the Output of wblrnd}
wblrnd uses the MATLAB function rand to generate random numbers. When you call wblrnd, you change the current state of rand, and thereby alter the output of subsequent calls to wblrnd or any other functions that depend on rand. If you want to reproduce the output of wblrnd, reset the state of rand to the same fixed value each time you call wblrnd. For an example of how to do this, and a list of the Statistics Toolbox functions that depend on rand, see "Reproducing the Output of Random Number Functions" on page 2-46.

Note The results in the following examples depend on the current state of rand. If you run the code in these examples, your results might differ from the answers shown here.

Examples \(\quad n 1=\) wblrnd \((0.5: 0.5: 2,0.5: 0.5: 2)\)

12-568
```

n1 =
0.0178 0.0860 2.5216 0.9124
n2 = wblrnd(1/2,1/2,[1 6])
n2 =
0.0046 1.7214 2.2108 0.0367 0.0531 0.0917

```

\section*{Reference [1] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag, 1986.}

\section*{See Also \\ wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblstat}

\section*{wblstat}

\section*{Purpose Mean and variance for the Weibull distribution}

\section*{Syntax \\ [M,V] = wblstat(A,B)}

Description

\section*{Examples}
```

[m,v] = wblstat(1:4,1:4)

```
m =
\(1.0000 \quad 1.7725 \quad 2.6789 \quad 3.6256\)
v =
\(\begin{array}{llll}1.0000 & 0.8584 & 0.9480 & 1.0346\end{array}\)
wblstat(0.5, 0.7)
ans =
0.6329

See Also wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd

Purpose
Syntax \(\quad \begin{array}{ll}W & =\text { wishrnd }(\text { SIGMA }, d f) \\ & W=\text { wishrnd }(\text { SIGMA }, d f, D) \\ {[W, D]=\text { wishrnd (SIGMA, df) }}\end{array}\)
Description

See Also iwishrnd

\section*{Purpose Transform a matrix of variable values to a design matrix of term values}

\section*{Syntax \(\quad D=x 2 f x(X)\) \\ D \(=x 2 f x(X\), 'model')}

Description
\(D=x 2 f x(X)\) takes a matrix \(X\) of variable values system inputs and computes a matrix \(D\) of term values for a linear additive model with a constant term. Often the \(X\) matrix represents settings of factors in an experimental design, and these represent the inputs of a system being modeled. D is known as a design matrix.

D = x2fx(X,'model') allows control of the regression model. 'model' can be one of these strings:
\begin{tabular}{ll} 
'linear' & Constant and linear terms (the default) \\
'interaction' & Includes constant, linear, and cross-product terms \\
'quadratic' & Includes interactions and squared terms \\
'purequadratic' & Includes constant, linear, and squared terms
\end{tabular}

Alternatively, model can be a matrix of terms. In this case, each row of model represents one term. The value in a column is the exponent to which the same column in \(X\) for that term is raised, \(D(i, j)=\operatorname{prod}\left(x(i,:) .^{\wedge} \operatorname{model}(j,:)\right)\). This allows for models with polynomial terms of arbitrary degree. A row of all zeros represents the constant term, so you can omit the constant by not including such a row.

The order of columns for a quadratic model is
1 Constant term
2 Linear terms (the input \(X\) columns \(1,2, \ldots, k\) )
3 Interaction terms formed by taking pairwise products of \(X\) columns (1,2), \((1,3), \ldots,(1, k),(2,3), \ldots,(k-1, k)\)
4 Squared terms in the order \(1,2, \ldots, k\)
Other string options for the 'model' parameter use a subset of these terms but keep them in this order.
\(x 2 f x\) is a utility function for rstool, regstats, and cordexch.

\section*{Examples}

See Also

Example 1.
```

x = [1 2 3;4 5 6]';
model = 'quadratic';
D = x2fx(x,model)
D =

1	1	4	4	1	16
1	2	5	10	4	25
1	3	6	18	9	36

```

This example specifies a model by name. Let \(x_{1}\) be the first column of x and \(x_{2}\) be the second. Then the first column of \(D\) is the constant term, the second column is \(x_{1}\), the third column is \(x_{2}\), the fourth column is \(x_{1} x_{2}\), the fifth column is \(x_{1}{ }^{2}\), and the last column is \(x_{2}{ }^{2}\).

\section*{Example 2.}
```

x = [1 10; 2 20; 3 10; 40 20; 5 15; 6 15];
model = [0 0; 1 0; 0 1; 1 1; 2 0];
D = x2fx(x, model)
D =
1
1
1
1
1
1

```

This example specifies a model as a matrix. Let \(x_{1}\) be the first column of x and \(x_{2}\) be the second. Then the columns of D are defined by the rows of model in the following order: constant term, \(x_{1}, x_{2}, x_{1} x_{2}\), and \(x_{1}{ }^{2}\). The fourth row of model is [ 11 1], so it defines the term \(x_{1} x_{2}\) as the product of \(x_{1}\) to the first power and \(x_{2}\) to the first power. The fifth row of model is [20], so it defines \(x_{1}{ }^{2}\) as the product of \(x_{1}\) to the second power and \(x_{2}\) to the zeroth power.

\section*{xbarplot}

Purpose
X-bar chart for Statistical Process Control
```

Syntax xbarplot(DATA)
xbarplot(DATA,conf)
xbarplot(DATA,conf,specs,'sigmaest')
[outlier,h] = xbarplot(...)

```

Description xbarplot (DATA) displays an \(x\)-bar chart of the grouped responses in DATA. The rows of DATA contain replicate observations taken at a given time, and must be in time order. The graph contains the sample mean \(\bar{x}\) for each group, a center line at the average \(\bar{x}\) value, and upper and lower control limits. The limits are placed at a three-sigma distance on either side of the center line, where sigma is an estimate of the standard deviation of \(\bar{x}\). If the process is in control, fewer than 3 out of 1000 observations would be expected to fall outside the control limits by random chance. So if you observe points outside the limits, you can take this as evidence that the process is not in control.
xbarplot (DATA, conf) allows control of the confidence level of the upper and lower plotted confidence limits. The default conf \(=0.9973\) produces three-sigma limits.
```

norminv(1 - (1-.9973)/2)
ans =
3

```

To get \(k\)-sigma limits, use the expression 1-2*(1-normcdf(k)). For example, the correct conf value for 2 -sigma limits is 0.9545 , as shown below.
```

k = 2;
1-2*(1-normcdf(k))
ans =
0.9545

```
xbarplot(DATA, conf, specs) plots the specification limits in the two element vector specs.
xbarplot (DATA, conf, specs, 'sigmaest') specifies how xbarplot should estimate the standard deviation. Acceptable values are:
- 's ' - use the average of the group standard deviations (default)
- 'v' - use the square root of a pooled variance estimate
- ' \(r\) ' - use the average range with each group; requires 25 or fewer observations per group
[outlier, h] = xbarplot(DATA, conf, specs) returns outlier, a vector of indices to the rows where the mean of DATA is out of control, and \(h\), a vector of handles to the plotted lines.

\section*{Example}

See Also
capaplot, histfit, ewmaplot, schart
Purpose Standardized Z score

\section*{Syntax \(\quad z=\) zscore \((D)\)}

Description \(\quad Z=z s c o r e(D)\) returns the deviation of each column of \(D\) from its mean, normalized by its standard deviation. This is known as the Z score of D .

For column vector V , the Z score is \(\mathrm{Z}=(\mathrm{V}\)-mean \((\mathrm{V})) . /\) std \((\mathrm{V})\).

Purpose
Hypothesis testing for the mean of one sample with known variance

\section*{Syntax \\ Description}
h = ztest(x,m,sigma)
h = ztest(x,m,sigma,alpha)
h = ztest(x,m,sigma,alpha,tail)
h = ztest(x,m,sigma,alpha,tail,dim)
[h,sig,ci,zval] = ztest(...)
h = ztest(x,m, sigma) performs a Z test at significance level 0.05 to
determine whether a sample \(x\) from a normal distribution with standard deviation sigma could have mean \(m\).
\(x\) can also be a matrix or an N-D array. For matrices, ztest performs separate \(Z\) tests along each column of \(x\) and returns a vector of results. For N-D arrays, ztest works along the first nonsingleton dimension of \(x\).
\(h=t t e s t(x, m)\) performs a \(Z\) test of the hypothesis that the data in the vector
h = ztest(x,m,sigma, alpha) gives control of the significance level alpha. For example, if alpha \(=0.01\) and the result is \(h=1\), you can reject the null hypothesis at the significance level 0.01 . If \(h=0\), you cannot reject the null hypothesis at the alpha level of significance.
[h,sig,ci] = ztest(x,m,sigma, alpha, tail) allows specification of one- or two-tailed tests, where tail is a flag that specifies one of three alternative hypotheses:
- tail \(=\) 'both' specifies the alternative \(\bar{x} \neq m\) (default).
- tail \(=\) 'right' specifies the alternative \(\bar{x}>m\).
- tail = 'left' specifies the alternative \(\bar{x}<m\).
\(z v a l\) is the value of the Z statistic
\[
z=\frac{\bar{x}-m}{\sigma / \sqrt{n}}
\]
where \(n\) is the number of observations in the sample.
sig is the probability that the observed value of \(Z\) could be as large or larger by chance under the null hypothesis that the mean of \(x\) is equal to \(m\).
ci is a 1-alpha confidence interval for the true mean.
\(\mathrm{h}=\) ztest(..., alpha, tail, dim) performs the test along dimension dim of the input \(x\) array. For a matrix \(x\), dim=1 computes the \(Z\) test for each column (along the first dimension), and dim=2 computes the Z test for each row. By default, ztest works along the first nonsingleton dimension, so it treats a single-row input as a row vector.

\section*{Example}

This example generates 100 normal random numbers with theoretical mean 0 and standard deviation 1 . The observed mean and standard deviation are different from their theoretical values, of course. You test the hypothesis that there is no true difference.
```

x = normrnd(0,1,100,1);
m = mean(x)
m =
0.0727
[h,sig,ci] = ztest(x,0,1)
h =
0
sig =
0.4669
ci =
-0.1232 0.2687

```

The result, \(\mathrm{h}=0\), means that you cannot reject the null hypothesis. The significance level is 0.4669 , which means that by chance you would have observed values of Z more extreme than the one in this example in 47 of 100 similar experiments. A \(95 \%\) confidence interval on the mean is [-0.1232 0.2687], which includes the theoretical (and hypothesized) mean of zero.

\section*{Selected Bibliography}

\section*{Recommended Reading}
[1] Atkinson, A. C., and A. N. Donev, Optimum Experimental Designs, Oxford University Press, 1992.
[2] Bates, D. M., and D. G. Watts, Nonlinear Regression Analysis and Its Applications, Wiley, 1988.
[3] Box, G. E. P., W. G. Hunter, and J. S. Hunter, Statistics for Experimenters. Wiley-Interscience, 1978.
[4] Box, G. E. P., and N. R. Draper, Empirical Model-Building and Response Surfaces, Wiley, 1987.
[5] Breiman, L., J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, Wadsworth, 1984.
[6] Bulmer, M. G., Principles of Statistics, Dover, 1979.
[7] Bury, K., Statistical Distributions in Engineering, Cambridge University Press, 1999.
[8] Collett, D., Modelling Binary Data, Chapman \& Hall, 2002.
[9] Dobson, A. J., An Introduction to Generalized Linear Models, Chapman \& Hall, 1990.
[10] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag, 1986.
[11] Draper, N. R., and H. Smith, Applied Regression Analysis, Wiley-Interscience, 1998.
[12] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis, Cambridge University Press, 1998.
[13] Efron, B., and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman \& Hall, 1993.
[14] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Wiley-Interscience, 2000.
[15] Gibbons, J. D., Nonparametric Statistical Inference, Marcel Dekker, 1985.
[16] Gonick, L., and W. Smith, The Cartoon Guide to Statistics, Harper Collins, 1992.
[17] Hald, A., Statistical Theory with Engineering Applications, Wiley, 1960.
[18] Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer, 2001.
[19] Hogg, R. V., and J. Ledolter, Engineering Statistics, MacMillan, 1987.
[20] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 1999.
[21] Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Volume 1, Wiley-Interscience, 1993.
[22] Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Volume 2, Wiley-Interscience, 1994.
[23] Johnson, N. L., S. Kotz, and N. Balakrishnan, Discrete Multivariate Distributions, Wiley-Interscience, 1997.
[24] Johnson, N. L., N. Balakrishnan, and S. Kotz, Continuous Multivariate Distributions, Volume 1, Wiley-Interscience, 2000.
[25] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete Distributions, Wiley-Interscience, 1993.
[26] Krzanowski, W. J., Principles of Multivariate Analysis: A User's Perspective, Oxford University Press, 1988.
[27] Lawless, J. F., Statistical Models and Methods for Lifetime Data, Wiley-Interscience, 2002.
[28] Mardia, K. V., J. T. Kent, and J. M. Bibby, Multivariate Analysis, Academic Press, 1980.
[29] Martinez, W. L., and A. R. Martinez, Computational Statistics with MATLAB, Chapman \& Hall/CRC, 2002.
[30] McCullagh, P., and J. A. Nelder, Generalized Linear Models, Chapman \& Hall, 1990.
[31] Meeker, W. Q., and Escobar, L. A., Statistical Methods for Reliability Data, Wiley, 1998.
[32] Montgomery, D. C., Design and Analysis of Experiments, Wiley, 2001.
[33] Rice, J. A., Mathematical Statistics and Data Analysis, Duxbury Press, 1994.
[34] Seber, G. A. F., Linear Regression Analysis, Wiley-Interscience, 2003.
[35] Seber, G. A. F., Multivariate Observations, Wiley, 1984.
[36] Seber, G. A. F., and C. J. Wild, Nonlinear Regression, Wiley-Interscience, 2003.
[37] Snedecor, G. W., and W. G. Cochran, Statistical Methods, Iowa State Press, 1989.
[38] Vellemen, P. F., and D. C. Hoaglin, Application, Basics, and Computing of Exploratory Data Analysis, Duxbury Press, 1981.
[39] Wild, C. J., and G. A. F. Seber, Chance Encounters: A First Course in Data Analysis and Inference, Wiley, 1999.

\section*{Other References Cited}
[40] Bernoulli, J., Ars Conjectandi, Thurnisius, Basel, 1713.
[41] Chatterjee, S., and A. S. Hadi, "Influential Observations, High Leverage Points, and Outliers in Linear Regression," Statistical Science, 1:379-416, 1986.
[42] Moore, J., Total Biochemical Oxygen Demand of Dairy Manures, Ph.D. thesis, University of Minnesota, Department of Agricultural Engineering, 1975.
[43] Poisson, S. D., Recherches sur la Probabilité des Jugements en Matière Criminelle et en Matière Civile, Précédées des Regles Générales du Calcul des Probabilités, Bachelier, Imprimeur-Libraire pour les Mathematiques, Paris, 1837.
[44] "Student," "On the Probable Error of the Mean," Biometrika, 6:1-25, 1908.
[45] Weibull, W., "A Statistical Theory of the Strength of Materials," Ingeniors Vetenskaps Akademiens Handlingar, Stockholm: Royal Swedish Institute for Engineering Research, No. 151, 1939.

\section*{A}
absolute deviation 3-4
addedvarplot 12-23
additive effects 4-8
alternative hypothesis 6-3
analysis of variance 2-62
multivariate 7-24
N-way 4-11
one-way 4-3
two-way 4-8
andrewsplot 12-25
ANOVA 4-2
anova1 12-27
anova2 12-33
anovan 12-37
aoctool 12-46
aoctool demo 4-25
average linkage 12-288

\section*{B}
bacteria counts 4-3
barttest 12-49
baseball odds 12-60, 12-63
bbdesign 12-50
Bera-Jarque. See Jarque-Bera
Bernoulli random variables 12-65
beta distribution 2-48
betacdf 12-51
betafit 12-52
betainv 12-54
betalike 12-55
betapdf 12-56
betarnd 12-57

\section*{betastat 12-59}
binocdf 12-60

\section*{binofit 12-61}
binoinv 12-63
binomial distribution 2-50
negative. See also negative binomial distribuiton
binopdf 12-64
binornd 12-65
binostat 12-67
biplot 12-68
bootstrap 12-70
bootstrap sampling 3-17
box plots 8-3
Box-Behnken designs 10-9
generating 12-50
boxplot 12-74

\section*{C}
candexch 12-79
candgen 12-81
canoncorr 12-82
capability studies 9-5
capable 12-85
capaplot 12-87
casenames
reading from file 12-89
writing to file 12-90
caseread 12-89
casewrite 12-90
ccdesign 12-91
cdf
definition 2-7
functions 12-4
cdf 12-93
cdfplot 12-94
central composite designs 10-8
generating 12-91
Central Limit Theorem 2-74
centroid linkage 12-289
Chatterjee and Hadi example 4-35
chi2cdf 12-96
chi2inv 12-97
chi2pdf 12-98
chi2rnd 12-99
chi2stat 12-101
chi-square distributions 2-52
circuit boards 12-64
City Block metric
in cluster analysis 12-412
classical multidimensional scaling 7-53
cmdscale function 12-110
overview 7-53
reconstructing a map 7-60
simple example 7-54
classification trees 5-8
functions 12-19
See also decision trees
classify 12-102
cluster 12-105
cluster analysis 7-30
functions 12-17
hierarchical clustering 7-30
K-means clustering 7-46
cluster tree creation 12-287
from data 12-107
from linkage output 12-105
cluster trees
inconsistency coefficient 12-255
plotting 12-130
clusterdata 12-107
cmdscale 12-110
coin 12-202
combnk 12-112
comparisons, multiple 4-5
complete linkage 12-288
confidence intervals
hypothesis tests 6-3
nonlinear regression 5-5
control charts 9-2
EWMA charts 9-4
S charts 9-3
Xbar charts 9-2
cophenet 12-113
cophenetic correlation coefficient 12-113
defined 7-37
cordexch 12-115
corr 12-117
corrcoef 12-119
correlation coefficients 12-119
cov 12-122
Cp index 9-5, 12-85
Cpk index 9-5, 12-85
crosstab 12-123
cumulative distribution function (cdf) 2-7
empirical 3-15
functions 12-4
graphing an estimate 8-8
curve fitting
polynomials
demo 4-36

\section*{Index-2}

\section*{D}
data partitioning
K-means clustering 7-46
data sets
statistical examples 12-21
daugment 12-125
dcovary 12-127
decision trees 5-8
computing error rate 12-528
computing response values 12-531
creating 12-523
creating subtrees 12-525
displaying 12-521
example 5-8
fitting 12-523
functions 12-19
pruning 12-525
demos
design of experiments 10-10
list of 12-20
dendrogram 12-130, 12-310
density estimation
ksdensity function 12-269
descriptive statistics 3-1
functions 12-10
design of experiments 10-1
Box-Behnken designs 10-9
central composite designs 10-8
D-optimal designs 10-18
fractional factorial designs 10-6
full factorial designs 10-4
functions 12-15
response surface designs 10-8
dimension reduction
common factor analysis 12-161
PCA from covariance matrix 12-405
PCA from raw data matrix 12-429

PCA residuals 12-407
discrete uniform distribution 2-55
dissimilarity matrix
creating 7-31
distance matrix
creating 7-31
distribution fitting tool 2-13
distribution testing
functions 12-19
distributions
probability 2-1
supported 2-45
visualizing 2-3
disttool 12-133
disttool demo 2-3
DOE. See design of experiments
D-optimal designs 10-18
creating from candidate set 12-79
generating candidate set \(12-81\)
dummyvar 12-134

\section*{E}
ecdf 12-135
ecdfhist 12-137
efinv 12-143
empirical cumulative distribution function 3-15
ecdf function 12-135
erf 2-74
error function 2-74
errorbar 12-139
Euclidean distance
in cluster analysis 12-411
evcdf 12-140
evfit 12-141
evlike 12-144
evpdf \(12-145\)

Index-3
evrnd 12-146
evstat 12-147
EWMA charts 9-4
ewmaplot 12-148
expcdf 12-150
expfit 12-152
expinv 12-154
explike 12-156
exponential distribution 2-56
exppdf 12-157
exprnd 12-158
expstat 12-160
extrapolated 12-434
extreme value distribution 2-58

\section*{F}

F distributions 2-61
F statistic 4-36
factor analysis
maximum likelihood 12-161
factoran 12-161
factorial designs
fractional 10-6
full 10-4
generating fractional 12-176
generating full 12-189
fcdf 12-172
ff2n 12-173
file I/O functions 12-20
finv 12-174
floppy disks 12-248
fpdf 12-175
fracfact 12-176
fractional factorial designs 10-6
generating 12-176
friedman 12-180

Friedman's test 4-60
frnd 12-184
fstat 12-186
fsurfht 12-187
full factorial designs 10-4
generating 12-189
fullfact 12-189
furthest neighbor linkage 12-288

\section*{G}
gamcdf 12-190
gamfit 12-192
gaminv 12-194
gamlike 12-196
gamma distribution 2-64
gampdf 12-198
gamrnd 12-199
gamstat 12-201
Gaussian 12-231
geocdf 12-202
geoinv 12-203
geomean 12-204
geometric distribution 2-66
geopdf 12-205
geornd 12-206
geostat 12-208
gline 12-209
glmdemo 12-210
glmdemo demo 4-54
glmfit 12-211
glmval 12-216
glyphplot 12-218
gname 12-222
gplotmatrix 12-224
group mean clusters, plot 7-29
grouped plot matrix 7-24

\section*{Index-4}
grpstats 12-227
gscatter 12-228
Guinness beer 2-79, 12-516

\section*{H}
harmmean 12-230
hat matrix 4-34
hidden Markov models 11-1
example 11-4
functions 12-20
hierarchical clustering 7-30
basic procedure 7-31
computing inconsistency coefficient 12-255
creating cluster tree 12-287
creating clusters 7-42
creating clusters from data 12-107
creating clusters from linkage output 12-105
depth of comparison 7-38
determining proximity \(12-410\)
evaluating cluster formation 12-113
finding dissimilarities betwen objects 7-38
finding similarities beween objects 7-31
grouping objects 7-34
inconsistency coefficient 12-255
plotting cluster trees 12-130
hierarchiical clustering
cophenetic correlation coefficient 12-113
hist 12-231
hist3 12-232
histfit 12-235
hmmdecode 12-236
hmmestimate 12-238
hmmgenerate 12-240
hmmtrain 12-242
hmmviterbi 12-245
Hotelling's T squared 7-11
hougen 12-247
Hougen-Watson model 5-2
hygecdf 12-248
hygeinv 12-249
hygepdf 12-250
hygernd 12-251
hygestat 12-253
hypergeometric distribution 2-67
hypotheses 2-62
hypothesis tests 6-1
functions 12-19

\section*{I}
icdf 12-254
incomplete beta function 2-48
incomplete gamma function 2-64
inconsistency coefficient 12-255
inconsistent 12-255
inspector 12-415
interaction 4-8
interpolated 12-510
interquartile range (iqr) 3-4
inverse cdf 2-7
inverse cumulative distribution functions 12-7
iqr 12-257
iwishrnd 12-258

\section*{J}

Jarque-Bera test 12-259
jbtest 12-259
KKaplan-Meier cumulative distribution function12-135
kernel bandwidth 3-12
kernel smoothing function 3-14
K-means clustering 7-46
cluster separation 7-47
creating clusters 12-261
example 7-47
local minima 7-51
number of clusters 7-49
overview 7-46
silhouette plot 12-493
kmeansdata partitioning
K-means clustering 12-261
kruskalwallis 12-265
Kruskal-Wallis test 4-59
ksdensity 12-269
kstest 12-272
kstest2 12-277
kurtosis 12-280

\section*{L}
latin hypercube sample 12-283
normal distribution 12-284
leverage 12-282
lhsdesign 12-283
lhsnorm 12-284
light bulbs, life of 12-154
likelihood function 12-56
Lilliefors test 6-5
lillietest 12-285
linear models 4-1
functions 12-14
generalized 4-50
linear transformation

Procrustes 12-432
linkage 12-287
logncdf 12-291
lognfit 12-293
logninv 12-295
lognlike 12-297
lognormal distribution 2-69
lognpdf 12-298
lognrnd 12-299
lognstat 12-301
lottery 12-546
lsline 12-302
LU factorizations 12-423

\section*{M}
mad 12-303
mahal 12-305
Mahalanobis distance 12-305
in cluster analysis 12-412
MANOVA 7-24
manova1 12-306
manovacluster 12-310
Markov chains 11-6
maximum likelihood
factor analysis 12-161
MDS
See also multidimensional scaling
mdscale 12-312
mean 2-11
of probability distribution 2-11
mean 12-315
Mean Squares (MS) 12-27
measures of
central tendency 3-2
dispersion 3-4
median 12-316

\section*{Index-6}
metric multidimensional scaling
See also classical multidimensional scaling
Minkowski metric
in cluster analysis 12-412
mle 12-317
mlecov 12-323
models
linear 4-1
nonlinear 5-1
moment 12-326
moments of distribution
functions 12-10
Monte Carlo simulation 12-257
multcompare 12-327
multidimensional arrays
classical (metric) scaling 12-110
multidimensional scaling (MDS)
classical (metric) 7-53
multiple linear regression 4-33
multivariate analysis of variance 7-24
example 7-24
multivariate statistics 7-1
analysis of variance 7-24
cluster analysis 7-30
functions 12-17
hierarchical clustering 7-30
K-means clustering 7-46
Principal Components Analysis 7-2
mvnpdf 12-336
mvnrnd 12-337
mvtrnd 12-339

\section*{N}
nancov 12-341
nanmax 12-343
nanmean 12-344
nanmedian 12-345
nanmin 12-346
NaNs 3-6
nanstd 12-347
nansum 12-349
nanvar 12-350
nbincdf 12-351
nbinfit 12-353
nbininv 12-354
nbinpdf 12-355
nbinrnd 12-357
nbinstat 12-359
ncfcdf 12-361
ncfinv 12-363
ncfpdf 12-365
ncfrnd 12-366
ncfstat 12-368
nctcdf 12-369
nctinv 12-370
nctpdf 12-371
nctrnd 12-372
nctstat 12-374
ncx2cdf 12-375
ncx2inv 12-377
ncx2pdf 12-378
ncx2rnd 12-379
ncx2stat 12-381
nearest neighbor linkage 12-288
negative binomial distribution 2-70
confidence intervals 12-353
cumulative distribution function (cdf) 12-351
definition 2-71
inverse cumulative distribution function (cdf) 12-354
mean and variance \(12-359\)
modeling number of auto accidents 2-71
nbincdf function 12-351
nbininv function 12-354
nbinpdf function 12-355
parameter estimates 12-353
probability density function (pdf) 12-355
random matrices 12-357
Newton's method 12-194
nlinfit 12-382
nlintool 12-384
nlintool demo 5-6
nlparci 12-385
nlpredci 12-386
noncentral F distribution 2-63
nonlinear regression
functions 12-15
nonlinear regression models 5-1
nonparametric testing
functions 12-19
normal distribution 2-73
normal probability plots 8-2, 8-4
normalizing a dataset 7-32
using zscore 12-576
normcdf 12-388
normdemo 12-400
normfit 12-390
norminv 12-392
normlike 12-394
normpdf 12-395
normplot 12-396
normrnd 12-398
normstat 12-401
notation, mathematical conventions 1-6
null 6-3
null hypothesis 6-3

\section*{0}
one-way analysis of variance (ANOVA) 4-2
options parameters
possible values 12-501
outliers 3-2

\section*{P}
parallelcoords 12-402
parameter estimation
functions 12-4
pareto 12-404
Pascal, Blaise 2-50
PCA. See Principal Components Analysis
pcacov 12-405
pcares 12-407
pdf
definition 2-6
functions 12-6
pdf 12-409
pdist 12-410
percentiles 3-10
perms 12-414
plots 3-10
plotting
statistical functions 12-12
poisscdf 12-415
poissfit 12-417
poissinv 12-418
Poisson distribution 2-76
poisspdf 12-419
poissrnd 12-420
poisstat 12-422
polyconf 12-423
polyfit 12-424
polynomials
curve fitting demo 4-36
polytool 12-426
polytool demo 4-36

\section*{Index-8}
polyval 12-427
popcorn 12-35, 12-182
prctile 12-428
Principal Components Analysis (PCA) 7-2
component scores 7-6
component variances 7-10
Hotelling's T squared 7-11
principal components 7-6
quality of life example 7-3
Scree plot 7-10
princomp 12-429
probability density estimation 3-12
comparing estimates 3-15
function 12-269
kernel bandwidth 3-12
kernel smoothing functioon 3-14
probability density function (pdf)
definition 2-6
functions 12-6
probability distribution
mean and variance 2-11
probability distributions 2-1
demo 2-3
functions 12-2
probplot 12-431
process control
statistical 9-1
procrustes 12-432
Procrustes Analysis 12-432
p-value 4-10, 6-3

\section*{Q}
qqplot 12-434
QR decomposition 4-33
quality assurance \(12-64\)
quantile-quantile plots 8-2, 8-6

\section*{R}
random 12-439
random number generation 2-9
direct 2-9
functions 12-7
inverted 2-9
rejection 2-10
random numbers 2-9
random sample generation
demo 2-4
random samples
inverse Wishart 12-258
latin hypercube 12-283
latin hypercube with normal distribution 12-284
Wishart 12-571
randsample 12-440
randtool 12-441
randtool demo 2-4
range 12-442
ranksum 12-443
raylcdf \(\mathbf{1 2 - 4 4 5}\)
raylfit 12-446
raylinv 12-447
raylpdf \(\mathbf{1 2 - 4 4 8}\)
raylrnd \(\mathbf{1 2 - 4 4 9}\)
raylstat 12-451
rcoplot 12-452
reconstruction
map from inter-city distances 7-60
refcurve 12-453
references A-1
refline \(\mathbf{1 2 - 4 5 4}\)
regress 12-455

\section*{Index-9}
regression 2-62
nonlinear 5-1
robust 4-55
stepwise 4-45
regression trees 5-8
functions 12-19
See also decision trees
regstats 12-458
relative efficiency 12-257
residuals 4-36
response surface designs 10-8
Response Surface Methodology (RSM) 4-42
respoonse surface designs
Box-Behnken 10-9
central composite 10-8
ridge 12-471
robust 3-2
robust linear fit 12-434
robustdemo demo 4-57
robustdemo function 12-473
robustfit 12-474
rotatefactors 12-479
rowexch 12-482
rsmdemo 12-484
rsmdemo demo 10-10
R-square 4-36
rstool 12-485
rstool demo 4-42

\section*{S}

S charts 9-3
scaling arrays
classical multidimensional 12-110
scatter plots 8-10
grouped 7-24
schart 12-487

Scree plot 7-10
segmentation analysis 7-30
significance level 6-3
signrank 12-489
signtest 12-491
silhouette 12-493
similarity matrix
creating 7-31
simulation 12-257
single linkage 12-288
skewness 8-3
skewness 12-495
squareform 12-497
standard normal 12-395
Standardized Euclidean distance in cluster analysis 12-411
statget 12-499
statistical plots 8-1
Statistical Process Control 9-1
capability studies 9-5
control charts 9-2
functions 12-12
statistical references A-1
statistically significant 12-27, 12-265, 12-306
statset 12-500
stepwise 4-45, 12-506
stepwise regression 4-45
stepwisefit 12-507
Sum of Squares (SS) 12-27
surfht 12-510
symmetric 12-190

\section*{T}
t distributions 2-79
noncentral 2-80

Index-10
tab-delimited data
reading from file 12-517
tabular data
reading from file 12-512
tabulate 12-511
taxonomy analysis 7-30
tblread 12-512
tblwrite 12-514
tcdf 12-516
tdfread 12-517
tinv 12-519
tpdf 12-520
treefit 12-523
treeprune 12-525
trees
See also decision trees
See also decision trees
treeshow 12-521
treetest 12-528
treeval 12-531
trimmean 12-533
trnd 12-534
tstat 12-536
ttest 12-537
ttest2 12-540
two-way ANOVA 4-8

\section*{U}
unbiased 12-556
unidcdf 12-543
unidinv 12-544
unidpdf 12-545
unidrnd 12-546
unidstat 12-548
unifcdf 12-549
unifinv 12-550
unifit 12-551
uniform distribution 2-82
unifpdf 12-552
unifrnd 12-553
unifstat 12-555

\section*{V}
var 12-556
variance 2-11
of probability distribution 2-11

\section*{W}
ward linkage 12-289
wblcdf 12-558
wblfit 12-560
wblinv 12-562
wbllike 12-564
wblpdf 12-566
wblplot 12-567
wblrnd 12-568
wblstat 12-570
Weibull distribution 2-83
Weibull probability plots 8-7
Weibull, Waloddi 2-83
whiskers 8-3
Wishart random matrix 12-571
inverse 12-258
wishrnd 12-571

\section*{X}
x2fx 12-572
Xbar charts 9-2
xbarplot 12-574

\section*{Z \\ zscore 12-576 \\ ztest 12-577}

\section*{Index-12}```


[^0]:    format short g

[^1]:    See Also

[^2]:    'type' Either 'inscribed', 'circumscribed', or 'faced'
    'blocksize' Maximum number of points allowed in a block.

