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Introduction

What Is the Statistics Toolbox? (p. 1-2) Lists statistical tasks supported by the toolbox, and 
explains the role of functions and graphical tools.

Primary Topic Areas (p. 1-3) Lists the statistical topics addressed in the toolbox and 
covered in this book.

Random Number Generators in the 
Statistics Toolbox (p. 1-5)

Tells you how to duplicate the results shown in examples 
that generate data using random numbers.

Mathematical Notation (p. 1-6) Describes mathematical notation used in this guide.



1 Introduction

1-2

What Is the Statistics Toolbox?
The Statistics Toolbox, for use with MATLAB®, is a collection of statistical tools 
built on the MATLAB numeric computing environment. The toolbox supports 
a wide range of common statistical tasks, from random number generation, to 
curve fitting, to design of experiments and statistical process control. The 
toolbox provides two categories of tools:

• Building-block probability and statistics functions

• Graphical, interactive tools

The first category of tools is made up of functions that you can call from the 
command line or from your own applications. Many of these functions are 
MATLAB M-files, series of MATLAB statements that implement specialized 
statistics algorithms. You can view the MATLAB code for these functions using 
the statement

type function_name

You can change the way any toolbox function works by copying and renaming 
the M-file, then modifying your copy. You can also extend the toolbox by adding 
your own M-files.

Secondly, the toolbox provides a number of interactive tools that let you access 
many of the functions through a graphical user interface (GUI). Together, the 
GUI-based tools provide an environment for polynomial fitting and prediction, 
as well as probability function exploration. 
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Primary Topic Areas
The Statistics Toolbox has more than 200 M-files, supporting work in these 
topical areas:

Probability Distributions
The Statistics Toolbox supports 20 probability distributions. For each 
distribution there are five associated functions. They are

• Probability density function (pdf)

• Cumulative distribution function (cdf)

• Inverse of the cumulative distribution function

• Random number generator

• Mean and variance as a function of the parameters

For most distributions, the Statistics Toolbox also provides functions for 
computing parameter estimates and confidence intervals.

Descriptive Statistics
The Statistics Toolbox provides functions for describing the features of a data 
sample. These descriptive statistics include measures of location and spread, 
percentile estimates and functions for dealing with data having missing 
values.

Linear Models
In the area of linear models, the Statistics Toolbox supports one-way, two-way, 
and higher-way analysis of variance (ANOVA), analysis of covariance 
(ANOCOVA), multiple linear regression, stepwise regression, response surface 
prediction, ridge regression, and one-way multivariate analysis of variance 
(MANOVA). It supports nonparametric versions of one- and two-way ANOVA. 
It also supports multiple comparisons of the estimates produced by ANOVA 
and ANOCOVA functions.

Nonlinear Models
For nonlinear models, the Statistics Toolbox provides functions for parameter 
estimation, interactive prediction and visualization of multidimensional 
nonlinear fits, and confidence intervals for parameters and predicted values. It 
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provides functions for using classification and regression trees to approximate 
regression relationships.

Hypothesis Tests
The Statistics Toolbox also provides functions that do the most common tests 
of hypothesis — t-tests, Z-tests, nonparametric tests, and distribution tests.

Multivariate Statistics
The Statistics Toolbox supports methods in multivariate statistics, including 
principal components analysis, factor analysis, one-way multivariate analysis 
of variance, cluster analysis, and classical multidimensional scaling.

Statistical Plots
The Statistics Toolbox adds box plots, normal probability plots, Weibull 
probability plots, control charts, and quantile-quantile plots to the arsenal of 
graphs in MATLAB. There is also extended support for polynomial curve fitting 
and prediction. There are functions to create scatter plots or matrices of scatter 
plots for grouped data, and to identify points interactively on such plots. There 
is a function to interactively explore a fitted regression model.

Statistical Process Control (SPC)
For SPC, the Statistics Toolbox provides functions for plotting common control 
charts and performing process capability studies.

Design of Experiments (DOE)
The Statistics Toolbox supports full and fractional factorial designs, response 
surface designs, and D-optimal designs. There are functions for generating 
designs, augmenting designs, and optimally assigning units with fixed 
covariates.

Hidden Markov Models
The Statistics Toolbox provides functions for analyzing hidden Markov models 
— models in which you do not know all the state information. These include 
functions for generating random data, calculating the most probable state 
sequence for an observed sequence, estimating model parameters, calculating 
posterior state probabilities, and calculating maximum likelihood estimates for 
parameters.
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Random Number Generators in the Statistics Toolbox
The Statistics Toolbox contains a number of functions, such as random number 
generators, that return random output. These functions use the MATLAB 
functions rand and randn to generate their output. If you want to make the 
output for any of these functions reproducible, you must set the states for rand 
and randn each time you call the function. See “Reproducing the Output of 
Random Number Functions” on page 2-46 for more information.

Note  Prior to Version 5, MATLAB employed a different random number 
generator, which used the syntax 'seed' instead of 'state'. Although use of 
the 'seed' syntax is backward compatible in MATLAB Version 7, you should 
use the 'state' syntax instead. 
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Mathematical Notation
This manual and the Statistics Toolbox functions use the following 
mathematical notation conventions.

β Parameters in a linear model.

E(x) Expected value of x. 

f(x|a,b) Probability density function. x is the independent variable; 
a and b are fixed parameters.

F(x|a,b) Cumulative distribution function.

I([a, b]) or 
I[a, b]

Indicator function. In this example the function takes the 
value 1 on the closed interval from a to b and is 0 
elsewhere.

p and q p is the probability of some event. 
q is the probability of ~p, so q = 1-p.

E x( ) tf t( ) td∫=
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Probability Distributions

Introduction (p. 2-2) Introduces the concept of a probability distribution and 
discusses the difference between continuous and discrete 
distributions.

Displaying Probability Distributions 
and Random Samples (p. 2-3)

Describes tools for displaying probability distributions 
and creating histograms of random samples.

Overview of the Functions (p. 2-6) Discusses the five functions that the Statistics Toolbox 
provides for each distribution: probability density 
function (pdf), cumulative distribution function (cdf), 
inverse cumulative distribution function, random number 
generator, and mean and variance as a function of the 
distribution parameters.

Distribution Fitting Tool (p. 2-13) Describes the Distribution Fitting Tool, a GUI for fitting 
distributions to data.

Overview of the Distributions (p. 2-45) Lists and discusses the probability distributions that the 
Statistics Toolbox supports.
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Introduction
Probability distributions arise from experiments where the outcome is subject 
to chance. The nature of the experiment dictates which probability 
distributions may be appropriate for modeling the resulting random outcomes. 
There are two types of probability distributions – continuous and discrete.

Suppose you are studying a machine that produces videotape. One measure of 
the quality of the tape is the number of visual defects per hundred feet of tape. 
The result of this experiment is an integer, since you cannot observe 1.5 
defects. To model this experiment you should use a discrete probability 
distribution. 

A measure affecting the cost and quality of videotape is its thickness. Thick 
tape is more expensive to produce, while variation in the thickness of the tape 
on the reel increases the likelihood of breakage. Suppose you measure the 
thickness of the tape every 1000 feet. The resulting numbers can take a 
continuum of possible values, which suggests using a continuous probability 
distribution to model the results. 

Using a probability model does not allow you to predict the result of any 
individual experiment but you can determine the probability that a given 
outcome will fall inside a specific range of values.

Continuous (data) Continuous (statistics) Discrete

Beta Chi-square Binomial

Exponential Noncentral Chi-square Discrete Uniform

Extreme Value

Gamma F Geometric

Lognormal Noncentral F Hypergeometric

Normal t Negative Binomial

Rayleigh Noncentral t Poisson

Uniform

Weibull
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Displaying Probability Distributions and Random Samples
The Statistics Toolbox provides two demos for visualizing probability 
distributions and graphing random data:

• The probability distribution demo enables you to create interactive plots of 
probability distributions.

• The random sample generation demo enables you to generate random 
samples from specified distributions and create histograms of the data.

Probability Distributions Demo
The probability distributions demo creates interactive plots of probability 
distributions. It provides a graphic environment for developing an intuitive 
understanding of probability distributions.

You can run this tool by typing disttool at the command line. You can also run 
it from the Demos tab in the Help browser.

Function type 
list

cdf or pdf 
function

Draggable 
vertical 
reference line

Parameter value

Distribution

Function value

x value

Parameter control

Draggable 
horizontal 
reference line

Upper and 
lower 
parameter 
bounds
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Start by selecting a distribution. Then choose the function type: probability 
density function (pdf) or cumulative distribution function (cdf). 

Once the plot displays, you can 

• Calculate a new function value by typing a new x value in the text box on the 
x-axis, dragging the vertical reference line, or clicking in the figure where 
you want the line to be. The new function value displays in the text box to 
the left of the plot. 

• For cdf plots, find critical values corresponding to a specific probability by 
typing the desired probability in the text box on the y-axis or by dragging the 
horizontal reference line. 

• Use the controls at the bottom of the window to set parameter values for the 
distribution and to change their upper and lower bounds.

Random Sample Generation Demo
The random sample generation demo is a graphical environment that 
generates random samples from specified probability distributions and 
displays the samples as histograms. You can use randtool to explore the 
effects of changing parameters and sample size on the samples. 

You can run this tool by typing randtool at the command line. You can also run 
it from the Demos tab in the Help browser.
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Start by selecting a distribution. Then enter the desired sample size. 

You can also

• Use the controls at the bottom of the window to set parameter values for the 
distribution and to change their upper and lower bounds. 

• Draw another sample from the same distribution, with the same size and 
parameters.

• Export the current sample to your workspace. A dialog box enables you to 
provide a name for the sample.

Parameter value Draw again 
from the 
same 
distribution

Parameter control

Histogram

Upper and 
lower 
parameter 
bounds

Sample 
size

Distributions 
pop-up

Export to 
workspace
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Overview of the Functions
The Statistics Toolbox provides five functions for each distribution. They are 
discussed in the following sections:

• “Probability Density Function (pdf)” on page 2-6

• “Cumulative Distribution Function (cdf)” on page 2-7

• “Inverse Cumulative Distribution Function” on page 2-7

• “Random Number Generator” on page 2-9

• “Mean and Variance as a Function of Parameters” on page 2-11

Probability Density Function (pdf)
The probability density function (pdf) has a different meaning depending on 
whether the distribution is discrete or continuous.

For discrete distributions, the pdf is the probability of observing a particular 
outcome. In the videotape example, the probability that there is exactly one 
defect in a given hundred feet of tape is the value of the pdf at 1.

Unlike discrete distributions, the pdf of a continuous distribution at a value is 
not the probability of observing that value. For continuous distributions the 
probability of observing any particular value is zero. To get probabilities you 
must integrate the pdf over an interval of interest. For example the probability 
of the thickness of a videotape being between one and two millimeters is the 
integral of the appropriate pdf from one to two.

A pdf has two theoretical properties:

• The pdf is zero or positive for every possible outcome.

• The integral of a pdf over its entire range of values is one.

A pdf is not a single function. Rather a pdf is a family of functions characterized 
by one or more parameters. Once you choose (or estimate) the parameters of a 
pdf, you have uniquely specified the function.

The pdf function call has the same general format for every distribution in the 
Statistics Toolbox. The following commands illustrate how to call the pdf for 
the normal distribution.

x = [-3:0.1:3];
f = normpdf(x,0,1);
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The variable f contains the density of the normal pdf with parameters µ=0 and 
σ=1 at the values in x. The first input argument of every pdf is the set of values 
for which you want to evaluate the density. Other arguments contain as many 
parameters as are necessary to define the distribution uniquely. The normal 
distribution requires two parameters; a location parameter (the mean, µ) and 
a scale parameter (the standard deviation, σ).

Cumulative Distribution Function (cdf)
If f is a probability density function for random variable X, the associated 
cumulative distribution function (cdf) F is 

The cdf of a value x, F(x), is the probability of observing any outcome less than 
or equal to x.

A cdf has two theoretical properties:

• The cdf ranges from 0 to 1.

• If y > x, then the cdf of y is greater than or equal to the cdf of x.

The cdf function call has the same general format for every distribution in the 
Statistics Toolbox. The following commands illustrate how to call the cdf for the 
normal distribution.

x = [-3:0.1:3];
p = normcdf(x,0,1);

The variable p contains the probabilities associated with the normal cdf with 
parameters µ=0 and σ=1 at the values in x. The first input argument of every 
cdf is the set of values for which you want to evaluate the probability. Other 
arguments contain as many parameters as are necessary to define the 
distribution uniquely.

Inverse Cumulative Distribution Function
The inverse cumulative distribution function returns critical values for 
hypothesis testing given significance probabilities. To understand the 

F x( ) P X x≤( ) f t( ) td
∞–

x

∫= =
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relationship between a continuous cdf and its inverse function, try the 
following.

x = [-3:0.1:3];
xnew = norminv(normcdf(x,0,1),0,1);

How does xnew compare with x? Conversely, try this.

p = [0.1:0.1:0.9];
pnew = normcdf(norminv(p,0,1),0,1);

How does pnew compare with p?

Calculating the cdf of values in the domain of a continuous distribution returns 
probabilities between zero and one. Applying the inverse cdf to these 
probabilities yields the original values. 

For discrete distributions, the relationship between a cdf and its inverse 
function is more complicated. It is likely that there is no x value such that the 
cdf of x yields p. In these cases the inverse function returns the first value x 
such that the cdf of x equals or exceeds p. Try this.

x = [0:10];
y = binoinv(binocdf(x,10,0.5),10,0.5);

How does x compare with y? 

The commands below illustrate the problem with reconstructing the 
probability p from the value x for discrete distributions.

p = [0.1:0.2:0.9];
pnew = binocdf(binoinv(p,10,0.5),10,0.5)

pnew =

    0.1719    0.3770    0.6230    0.8281    0.9453

The inverse function is useful in hypothesis testing and production of 
confidence intervals. Here is the way to get a 99% confidence interval for a 
normally distributed sample.

p = [0.005 0.995];
x = norminv(p,0,1)
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This returns

x =

   -2.5758    2.5758

The variable x contains the values associated with the normal inverse function 
with parameters µ=0 and σ=1 at the probabilities in p. The difference 
p(2)-p(1) is 0.99. Thus, the values in x define an interval that contains 99% 
of the standard normal probability. 

The inverse function call has the same general format for every distribution in 
the Statistics Toolbox. The first input argument of every inverse function is the 
set of probabilities for which you want to evaluate the critical values. Other 
arguments contain as many parameters as are necessary to define the 
distribution uniquely.

Random Number Generator
The methods for generating random numbers from any distribution all start 
with uniform random numbers. Once you have a uniform random number 
generator, you can produce random numbers from other distributions either 
directly or by using inversion or rejection methods, described below. See 
“Syntax for Random Number Functions” on page 2-10 for details on using 
generator functions.

Direct
Direct methods flow from the definition of the distribution. 

As an example, consider generating binomial random numbers. You can think 
of binomial random numbers as the number of heads in n tosses of a coin with 
probability p of a heads on any toss. If you generate n uniform random numbers 
and count the number that are less than p, the result is binomial with 
parameters n and p.

Inversion
The inversion method works due to a fundamental theorem that relates the 
uniform distribution to other continuous distributions.

If F is a continuous distribution with inverse F -1, and U is a uniform random 
number, then F -1(U) has distribution F.
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So, you can generate a random number from a distribution by applying the 
inverse function for that distribution to a uniform random number. 
Unfortunately, this approach is usually not the most efficient.

Rejection
The functional form of some distributions makes it difficult or time consuming 
to generate random numbers using direct or inversion methods. Rejection 
methods can sometimes provide an elegant solution in these cases.

Suppose you want to generate random numbers from a distribution with pdf f. 
To use rejection methods you must first find another density, g, and a 
constant, c, so that the inequality below holds

 

for all .

You then generate the random numbers you want using the following steps:

1 Generate a random number x from distribution G with density g.

2 Form the ratio .

3 Generate a uniform random number u.

4 If the product of u and r is less than one, return x.

5 Otherwise repeat steps one to three.

For efficiency you need a cheap method for generating random numbers 
from G, and the scalar c should be small. The expected number of iterations 
is c.

Syntax for Random Number Functions
You can generate random numbers from each distribution. This function 
provides a single random number or a matrix of random numbers, depending 
on the arguments you specify in the function call.

For example, here is the way to generate random numbers from the beta 
distribution. Four statements obtain random numbers: the first returns a 

f x( ) cg x( )≤

x

r cg x( )
f x( )

--------------=
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single number, the second returns a 2-by-2 matrix of random numbers, and the 
third and fourth return 2-by-3 matrices of random numbers.

a = 1;
b = 2;
c = [.1 .5; 1 2];
d = [.25 .75; 5 10];
m = [2 3];
nrow = 2;
ncol = 3;

r1 = betarnd(a,b)
r1 =

    0.4469

r2 = betarnd(c,d)
r2 =

    0.8931    0.4832
    0.1316    0.2403

r3 = betarnd(a,b,m)
r3 =

    0.4196    0.6078    0.1392
    0.0410    0.0723    0.0782

r4 = betarnd(a,b,nrow,ncol)
r4 =

    0.0520    0.3975    0.1284
    0.3891    0.1848    0.5186

Mean and Variance as a Function of Parameters
The mean and variance of a probability distribution are generally simple 
functions of the parameters of the distribution. The Statistics Toolbox 
functions ending in 'stat' all produce the mean and variance of the desired 
distribution for the given parameters.
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The example below shows a contour plot of the mean of the Weibull distribution 
as a function of the parameters.

x = (0.5:0.1:5);
y = (1:0.04:2);
[X,Y] = meshgrid(x,y);
Z = wblstat(X,Y);
[c,h] = contour(x,y,Z,[0.4 0.6 1.0 1.8]);
clabel(c);

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

 0.4

 0.6

 1

 1.8



Distribution Fitting Tool

2-13

Distribution Fitting Tool
The Distribution Fitting Tool is a graphical user interface (GUI) for fitting 
univariate distributions to data. This section describes how to use the 
Distribution Fitting Tool and covers the following topics:

• “Main Window of the Distribution Fitting Tool” on page 2-13

• “Example: Fitting a Distribution” on page 2-16

• “Creating and Managing Data Sets” on page 2-20

• “Creating a New Fit” on page 2-24

• “Displaying Results” on page 2-28

• “Managing Fits” on page 2-30

• “Evaluating Fits” on page 2-31

• “Excluding Data” on page 2-34

• “Saving and Loading Sessions” on page 2-39

• “Generating an M-File to Fit and Plot Distributions” on page 2-39

• “Using Custom Distributions” on page 2-41

• “Additional Distributions Available in the Distribution Fitting Tool” on 
page 2-41

Main Window of the Distribution Fitting Tool
To open the Distribution Fitting Tool, enter the command

dfittool

The following figure shows the main window of the Distribution Fitting Tool.
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Display Type
The Display Type field specifies the type of plot displayed in the main window. 
Each type corresponds to a probability function, for example, a probability 
density function. The following display types are available: 

• Density (PDF) — Displays a probability density function (PDF) plot for the 
fitted distribution. 

• Cumulative probability (CDF) — Displays a cumulative probability plot of 
the data. 

• Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot.

• Survivor function — Displays a survivor function plot of the data.

• Cumulative hazard — Displays a cumulative hazard plot of the data.

Import data from the 
workspace

Create a new fit

Exclude items from a fit

Manage multiple fits

Evaluate a distribution at 
selected points

Select type of distribution for 
probability plot

Select type of display

Display pane

Task buttons
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“Display Type” on page 2-28 provides more information about the available 
display types.

Task Buttons
The task buttons enable you to perform the tasks necessary to fit distributions 
to data. Each button opens a new window in which you perform the task. The 
buttons include

• Data — Import and manage data sets. See “Creating and Managing Data 
Sets” on page 2-20.

• New Fit — Create new fits. See “Creating a New Fit” on page 2-24.

• Manage Fits — Manage existing fits. See “Managing Fits” on page 2-30.

• Evaluate — Evaluate fits at any points you choose. See “Evaluating Fits” on 
page 2-31.

• Exclude — Create rules specifying which values to exclude when fitting a 
distribution. See “Excluding Data” on page 2-34.

Display Pane
The display pane displays plots of the data sets and fits you create. Whenever 
you make changes in one of the task windows, the results are updated in the 
display pane. 

Menu Options
The Distribution Fitting Tool menus contain items that enable you to do the 
following: 

• Save and load sessions — see “Saving and Loading Sessions” on page 2-39.

• Generate an M-file with which you can fit distributions to data and plot the 
results independently of the Distribution Fitting Tool. See “Generating an 
M-File to Fit and Plot Distributions” on page 2-39.

• Define and import custom distributions — see “Using Custom Distributions” 
on page 2-41.
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Example: Fitting a Distribution
This section presents an example that illustrates how to use the Distribution 
Fitting Tool. The example involves the following steps:

• “Create Random Data for the Example” on page 2-16

• “Import Data into the Distribution Fitting Tool” on page 2-16

• “Create a New Fit” on page 2-18

Create Random Data for the Example
To try the example, first generate some random data to which you will fit a 
distribution. The following command generates a vector data, of length 100, 
whose entries are random numbers from a normal distribution with mean.36 
and standard deviation 1.4.

data = normrnd(.36, 1.4, 100, 1);

Import Data into the Distribution Fitting Tool
To import the vector data into the Distribution Fitting Tool, click the Data 
button in main window. This opens the window shown in the following figure.

Select data

Type name for data set
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The Data field displays all numeric arrays in the MATLAB workspace. Select 
data from the drop-down list, as shown in the following figure. 

This displays a histogram of the data in the Data preview pane. 

In the Data set name field, type a name for the data set, such as My data, and 
click Create Data Set to create the data set. The main window of the 
Distribution Fitting Tool now displays a larger version of the histogram in the 
Data preview pane, as shown in the following figure.

Histogram of the Data
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Note  Because the example uses random data, you might see a slightly 
different histogram if you try this example for yourself.

Create a New Fit
To fit a distribution to the data, click New Fit in the main window of the 
Distribution Fitting Tool. This opens the window shown in the following figure.

To fit a normal distribution, the default entry of the Distribution field, to My 
data,

• Enter a name for the fit, such as My fit, in the Fit name field.

Specify distribution type

Select data



Distribution Fitting Tool

2-19

• Select My data from the drop-down list in the Data field.

• Click Apply.

The Results pane displays the mean and standard deviation of the normal 
distribution that best fits My data, as shown in the following figure.

The main window of the Distribution Fitting Tool displays a plot of the normal 
distribution with this mean and standard deviation, as shown in the following 
figure.

Plot of the Distribution and Data
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Creating and Managing Data Sets
This section describes how create and manage data sets. To begin, click the 
Data button in the main window of the Distribution Fitting Tool to open the 
Data window shown in the following figure.

Importing Data
The Import workspace vectors pane enables you to create a data set by 
importing a vector from the MATLAB workspace. The following sections 
describe the fields of the Import workspace vectors pane.

Data. The drop-down list in the Data field contains the names of all matrices 
and vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace. 
Select the array containing the data you want to fit. The actual data you import 
must be a vector. If you select a matrix in the Data field, the first column of the 
matrix is imported by default. To select a different column or row of the matrix, 
click Select Column or Row. This displays the matrix in the Array Editor, 
where you can select a row or column by highlighting it with the mouse.

Alternatively, you can enter any valid MATLAB expression in the Data field.
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When you select a vector in the Data field, a histogram of the data is displayed 
in the Data preview pane. 

Censoring. If some of the points in the data set are censored, enter a Boolean 
vector, of the same size as the data vector, specifying the censored entries of the 
data. A 1 in the censoring vector specifies that the corresponding entry of the 
data vector is censored, while a 0 specifies that the entry is not censored. If you 
enter a matrix, you can select a column or row by clicking Select Column or 
Row. If you do not want to censor any data, leave the Censoring field blank.

Frequency. Enter a vector of positive integers of the same size as the data vector 
to specify the frequency of the corresponding entries of the data vector. For 
example, a value of 7 in the 15th entry of frequency vector specifies that there 
are 7 data points corresponding to the value in the 15th entry of the data 
vector. If all entries of the data vector have frequency 1, leave the Frequency 
field blank.

Data name. Enter a name for the data set you import from the workspace, such 
as My_data. 

As an example, if you create the vector data described in “Example: Fitting a 
Distribution” on page 2-16, and select it in the Data field, the upper half of the 
Data window appears as in the following figure.

After you have entered the information in the preceding fields, click Create 
Data Set to create the data set My data. 

Managing Data Sets
The Manage data sets pane enables you to view and manage the data sets you 
create. When you create a data set, its name appears in the Data sets list. The 
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following figure shows the Manage data sets pane after creating the data set 
My data.

For each data set in the Data sets list, you can

• Select the Plot check box to display a plot of the data in the main 
Distribution Fitting Tool window. See “Histogram of the Data” on page 2-17 
for an example. When you create a new data set, Plot is selected by default. 
Clearing the Plot check box removes the data from the plot in the main 
window. You can specify the type of plot displayed in the Display Type field 
in the main window. See “Display Type” on page 2-28.

• If Plot is selected, you can also select Bounds to display confidence interval 
bounds for the plot in the main window. These bounds are pointwise 
confidence bounds around the empirical estimates of these functions. The 
bounds are only displayed when you set Display Type in the main window 
to one of the following:

- Cumulative probability (CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density 
(PDF), quantile (inverse CDF), or probability plots. Clearing the Bounds check 
box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, the following buttons are enabled: 

• View — Displays the data in a table in a new window.

• Set Bin Rules — Defines the histogram bins used in a density (PDF) plot. 
See “Setting Bin Rules” on page 2-23.

• Rename — Renames the data set.
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• Delete — Deletes the data set.

Setting Bin Rules
To set bin rules for the histogram of a data set, click Set Bin Rules. This opens 
the dialog box shown in the following figure.

You can select from the following rules:

• Freedom-Diaconis rule — Algorithm that chooses bin widths and locations 
automatically, based on the sample size and the spread of the data. This rule, 
which is the default, is suitable for many kinds of data

• Scott rule — Algorithm intended for data that are approximately normal. 
The algorithm chooses bin widths and locations and locations automatically 

• Number of bins — Enter the number of bins. All bins have equal widths.

• Bins centered on integers — Specifies bins centered on integers.

• Bin width — Enter the width of each bin. If you select this option, you can 
make the following choices:

- Automatic bin placement — Places the edges of the bins at integer 
multiples of the Bid width.

- Bin boundary at — Enter a scalar to specify the boundaries of the bins. 
The boundary of each bin is equal to this scalar plus an integer multiple of 
the Bin width.
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The Set Bin Width Rules dialog box also provides the following options:

• Apply to all existing data sets — When selected, the rule is applied to all 
data sets. Otherwise, the rule is only applied to the data set currently 
selected in the Data window.

• Save as default — When selected, the current rule is applied to any new 
data sets that you create. You can also set default bin width rules by 
selecting Set Default Bin Rules from the Tools menu in the main window.

Creating a New Fit
This section describes how to create a new fit. To begin, click the New Fit 
button at the top of the main window to open a New Fit window. If you created 
the data set My data, as described in “Example: Fitting a Distribution” on 
page 2-16, My data appears in the Data field, as shown in the following figure. 
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Fit Name
Enter a name for the fit in the Fit name field.

Data
The Data field contains a drop-down list of the data sets you have created. 
Select the data set to which you want to fit a distribution.

Distribution
Select the type of distribution you want to fit in the Distribution drop-down 
list. “Available Distributions” on page 2-26 lists the available distributions. 

Note  Only the distributions that apply to the values of the selected data set 
are displayed in the Distribution field. For example, positive distributions 
are not displayed when the data include values that are zero or negative.

You can specify either a parametric or a nonparametric distribution. When you 
select a parametric distribution from the drop-down list, a description of its 
parameters is displayed in the pane below Exclusion Rule. The Distribution 
Fitting Tool estimates these parameters to fit the distribution to the data set. 
When you select Nonparametric fit, options for the fit appear in the pane, as 
described in “Options for Nonparametric Fits” on page 2-27.

Exclusion Rule
You can specify a rule to exclude some the data in the Exclusion rule field. You 
can create an exclusion rule by clicking Exclude in the main window of the 
Distribution Fitting Tool. “Excluding Data” on page 2-34.

Apply the New Fit
Click Apply to fit the distribution. For a parametric fit, the Results pane 
displays the values of the estimated parameters. For a nonparametric fit, the 
the Results pane displays information about the fit. 

When you click Apply, the main window of Distribution Fitting Tool displays 
a plot of the distribution, along with the corresponding data. “Plot of the 
Distribution and Data” on page 2-19 shows the main window when you fit a 
normal distribution to My data.
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Note  When you click Apply, the title of the window changes to Edit Fit. You 
can now make changes to the fit you just created and click Apply again to 
save them. After closing the Edit Fit window, you can reopen it from the Fit 
Manager window at any time to edit the fit.

Available Distributions
This section lists the distributions available in the Distribution Fitting Tool. 
Most of these distributions are supported by Statistics Toolbox functions. You 
can use these to fit distributions at the command line. For these distributions, 
the corresponding command-line functions are also listed. Distributions that 
do not have corresponding command-line functions are described in 
“Additional Distributions Available in the Distribution Fitting Tool” on 
page 2-41. You can fit these distributions from the command line using the 
functions mle, cdf, icdf, and pdf.

Nonparametric. Fits a nonparametric model using kernel smoothing with the 
function ksdensity. “Options for Nonparametric Fits” on page 2-27 describes 
the available options.

Beta. Fits a beta distribution using the function betafit. See “Beta 
Distribution” on page 2-48.

Birnbaum-Saunders. Fits a Birnbaum-Saunders distribution. See 
“Birnbaum-Saunders Distribution” on page 2-42.

Exponential. Fits an exponential distribution using the function expfit. See 
“Exponential Distribution” on page 2-56. 

Extreme Value. Fits an extreme value distribution using the function evfit. See 
“Extreme Value Distribution” on page 2-58.

Gamma. Fits a gamma distribution using the function gamfit. See “Gamma 
Distribution” on page 2-64.

Inverse Gaussian. Fits an inverse Gaussian distribution. See “Inverse Gaussian 
Distribution” on page 2-42.
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Log-Logistic. Fits a log-logistic distribution. See “Log-Logistic Distribution” on 
page 2-42.

Logistic. Fits a logistic distribution. See “Logistic Distribution” on page 2-42.

Lognormal. Fits a lognormal distribution using the function lognfit. See 
“Lognormal Distribution” on page 2-69.

Nakagami. Fits a Nakagami distribution. See “Nakagami Distribution” on 
page 2-42.

Normal. Fits a normal distribution using the function normfit. See “Normal 
Distribution” on page 2-73.

Rayleigh. Fits a Rayleigh distribution using the function raylfit. See 
“Rayleigh Distribution” on page 2-78.

Rician. Fits a Rician distribution. See “Rician Distribution” on page 2-43.

t Location-scale. Fits a t location-scale distribution. See “t Location-Scale 
Distribution” on page 2-43.

Weibull. Fits a Weibull distribution using the function wblfit. See “Weibull 
Distribution” on page 2-83.

Options for Nonparametric Fits
When you select Non-parametric in the Distribution field, a set of options 
appears in the pane below Exclusion rule, as shown in the following picture.

The options for nonparametric distributions are

• Kernel — Type of kernel function to use. The options are 
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- Normal
- Box
- Triangle
- Epanechnikov

• Bandwidth — The bandwidth of the kernel smoothing window. Select auto 
for a default value that is optimal for estimating normal densities. This value 
is displayed in the Fit results pane after you click Apply. Select specify and 
enter a smaller value to reveal features such as multiple modes or a larger 
value to make the fit smoother.

• Domain — The allowed x-values for the density. The options are

- unbounded — The density extends over the whole real line.

- positive — The density is restricted to positive values.

- specify — Enter lower and upper bounds for the domain of the density.

When you select positive or specify, the nonparametric fit has zero 
probability outside the specified domain.

Displaying Results
This section explains the different ways to display results in the main window 
of the Distribution Fitting Tool. The main window displays plots of 

• The data sets for which you select Plot in the Data window.

• The fits for which you select Plot in the Fit Manager window.

• Confidence bounds for 

- Data sets for which you select Bounds in the Data window.

- Fits for which you select Bounds in the Fit Manager 

Display Type
The Display Type field in the main window specifies the type of plot displayed. 
Each type corresponds to a probability function, for example, a probability 
density function. The following display types are available:

• Density (PDF) — Displays a probability density function (PDF) plot for the 
fitted distribution. The main window displays data sets using a probability 
histogram, in which the height of each rectangle is the fraction of data points 
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that lie in the bin divided by the width of the bin. This makes the sum of the 
areas of the rectangles equal to 1.

• Cumulative probability (CDF) — Displays a cumulative probability plot of 
the data. The main window displays data sets using a cumulative probability 
step function. The height of each step is the cumulative sum of the heights of 
the rectangles in the probability histogram. 

• Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot of the data. You can specify 
the type of distribution used to construct the probability plot in the 
Distribution field, which is only available when you select Probability 
plot. The choices for the distribution are 

- Exponential

- Extreme value

- Logistic

- Log-Logistic

- Lognormal

- Normal

- Rayleigh

- Weibull

In addition to these choices, you can create a probability plot against a 
parametric fit that you create in the New Fit panel. These fits are added 
at the bottom of the Distribution drop-down list when you create them.

• Survivor function — Displays a survivor function plot of the data.

• Cumulative hazard — Displays a cumulative hazard plot of the data.

Note  Some of these distributions are not available if the plotted data 
includes 0 or negative values.

Confidence Bounds
You can display confidence bounds for data sets and fits, provided that you set 
Display Type to Cumulative probability (CDF), Survivor function, 
Cumulative hazard, or Quantile for fits only.
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• To display bounds for a data set, select Bounds next to the data set in the 
Data sets pane of the Data window.

• To display bounds for a fit, select Bounds next to the fit in the Fit Manager 
window. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the 
View menu in the main window and choose from the options.

Managing Fits
This section describes how to manage fits that you have created. To begin, click 
the Manage Fits button in the main window of the Distribution Fitting Tool. 
This opens the Fit Manager window as shown in the following figure.

The Table of fits displays a list of the fits you create. 

Plot
Select Plot to display a plot of the fit in the main window of the Distribution 
Fitting Tool. When you create a new fit, Plot is selected by default. Clearing 
the Plot check box removes the fit from the plot in the main window.
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Bounds
If Plot is selected, you can also select Bounds to display confidence bounds in 
the plot. The bounds are displayed when you set Display Type in the main 
window to one of the following:

• Cumulative probability (CDF)
• Quantile (inverse CDF)
• Survivor function
• Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density 
(PDF) or probability plots. In addition, bounds are not supported for 
nonparametric fits and some parametric fits.

Clearing the Bounds check box removes the confidence intervals from the plot 
in the main window.

When you select a fit in the Table of fits, the following buttons are enabled 
below the table: 

• New Fit — Opens a New Fit window.

• Copy — Creates a copy of the selected fit.

• Edit — Opens an Edit Fit window, where you can edit the fit. 

Note  You can only edit the currently selected fit in the Edit Fit window. To 
edit a different fit, select it in the Table of fits and click Edit to open another 
Edit Fit window.

• Delete — Deletes the selected fit.

Evaluating Fits
The Evaluate window enables you to evaluate any fit at whatever points you 
choose. To open the window, click the Evaluate button in the main window of 
the Distribution Fitting Tool. The following figure shows the Evaluate 
window.
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The Evaluate window contains the following items:

• Fit pane — Displays the names of existing fits. Select one or more fits that 
you want to evaluate. You can select multiple fits by pressing the Ctrl button 
and clicking the names of the fits with the mouse.

• Function — Select the type of probability function you want to evaluate for 
the fit. The available functions are

- Density (PDF) — Computes a probability density function. 

- Cumulative probability (CDF) — Computes a cumulative probability 
function. 

- Quartile (inverse CDF) — Computes a quantile (inverse CDF) function.

- Survivor function — Computes a survivor function.

- Cumulative hazard — Computes a cumulative hazard function.

- Hazard rate — Computes the hazard rate.

• At x = — Enter a vector of points at which you want to evaluate the 
distribution function. If you Function to Quantile (inverse CDF), the field 
name changes to At p = and you enter a vector of probability values.
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• Compute confidence bounds — Select this box to compute confidence 
bounds for the selected fits. The check box is only enabled if you set Function 
to one of the following:
- Cumulative probability (CDF)
- Quantile (inverse CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot compute confidence bounds for 
nonparametric fits and for some parametric fits. In these cases, the tool 
returns NaN for the bounds.

• Level — Set the level for the confidence bounds.

• Plot function — Select this box to display a plot of the distribution function, 
evaluated at the points you enter in the At x = field, in a new window.

Note  The settings for Compute confidence bounds, Level, and Plot 
function do not affect the plots that are displayed in the main window of the 
Distribution Fitting Tool. The settings only apply to plots you create by 
clicking Plot function in the Evaluate window.

Click Apply to apply these settings to the selected fit. The following figure 
shows the results of evaluating the cumulative density function for the fit My 
fit, created in “Example: Fitting a Distribution” on page 2-16, at the points in 
the vector -3: 0.5: 3.
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The window displays the following values in the columns of the table to the 
right of the Fit pane:

• X — The entries of the vector you enter in At x = field

• Y — The corresponding values of the CDF at the entries of X

• LB — The lower bounds for the confidence interval, if you select Compute 
confidence bounds

• UB — The upper bounds for the confidence interval, if you select Compute 
confidence bounds

To save the data displayed in the Evaluate window, click Export to 
Workspace. This saves the values in the table to a matrix in the MATLAB 
workspace.

Excluding Data
To exclude values from fit, click the Exclude button in the main window of the 
Distribution Fitting Tool. This opens the Exclude window, in which you can 
create rules for excluding specified values. You can use these rules to exclude 
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data when you create a new fit in the New Fit window. The following figure 
shows the Exclude window.

The following sections describe how to create an exclusion rule.

Exclusion Rule Name
Enter a name for the exclusion rule in the Exclusion rule name field.

Exclude Sections
In the Exclude sections pane, you can specify bounds for the excluded data: 

• In the Lower limit: exclude Y drop-down list, select <= or < from the 
drop-down list and enter a scalar in the field to the right. This excludes 
values that are either less than or equal to or less than that scalar, 
respectively.

• In the Upper limit: exclude Y drop-down list, select >= or > from the 
drop-down list and enter a scalar in the field to the right to exclude values 
that are either greater than or equal to or greater than the scalar, 
respectively.
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The following diagram illustrates the values that are excluded by lower and 
upper limits.

Exclude Graphically
The Exclude Graphically button enables you to define the exclusion rule by 
displaying a plot of the values in a data set and selecting the bounds for the 
excluded data with the mouse. For example, if you created the data set My data, 
described in “Creating and Managing Data Sets” on page 2-20, select it from 
the drop-down list next to Exclude graphically and then click the Exclude 
graphically button. This displays the values in My data in a new window as 
shown in the following figure.

Lower limit: exclude Y

Excluded section

Upper limit: exclude Y

Excluded sectionIncluded data
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To set a lower limit for the boundary of the excluded region, click Add Lower 
Limit. This displays a vertical line on the left side of the plot window. Move the 
line with the mouse to the point you where you want the lower limit, as shown 
in the following figure.

Moving the vertical line changes the value displayed in the Lower limit: 
exclude data field in the Exclude window, as shown in the following figure.  

The value displayed corresponds to the x-coordinate of the vertical line. 

Similarly, you can set the upper limit for the boundary of the excluded region 
by clicking Add Upper Limit and moving the vertical line that appears at the 
right side of the plot window. After setting the lower and upper limits, click 
Close and return to the Exclude window. 
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Create Exclusion Rule
Once you have set the lower and upper limits for the boundary of the excluded 
data, click Create Exclusion Rule to create the new rule. The name of the new 
rule now appears in the Existing exclusion rules pane.

When you select an exclusion rule in the Existing exclusion rules pane, the 
following buttons are enabled:

• Copy — Creates a copy of the rule, which you can then modify. To save the 
modified rule under a different name, click Create Exclusion Rule.

• View — Opens a new window in which you can see which data points are 
excluded by the rule. The following figure shows a typical example.

The shaded areas in the plot graphically display which data points are 
excluded. The table to the right lists all data points. The shaded rows 
indicate excluded points:

• Rename — Renames the rule

• Delete — Deletes the rule

Once you define an exclusion rule, you can use it when you fit a distribution to 
your data. The rule does not exclude points from the display of the data set.
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Saving and Loading Sessions
This section explains how to save your work in the current Distribution Fitting 
Tool session and then load it in a subsequent session, so that you can continue 
working where you left off.

Saving a Session
To save the current session, select Save Session from the File menu in the 
main window. This opens a dialog box that prompts you to enter a filename, 
such as my_session.dfit, for the session. Clicking Save saves the following 
items created in the current session:

• Data sets

• Fits

• Exclusion rules

• Plot settings

• Bin width rules

Loading a Session
To load a previously saved session, select Load Session from the File menu in 
the main window and enter the name of a previously saved session. Clicking 
Open restores the information from the saved session to the current session of 
the Distribution Fitting Tool.

Generating an M-File to Fit and Plot Distributions
The Generate M-file option in the File menu enables you to create an M-file 
that 

• Fits the distributions used in the current session to any data vector in the 
MATLAB workspace.

• Plots the data and the fits.

After you end the current session, you can use the M-file to create plots in a 
standard MATLAB figure window, without having to reopen the Distribution 
Fitting Tool. 

As an example, assuming you created the fit described in “Creating a New Fit” 
on page 2-24, do the following steps:
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1 Select Generate M-file from the File menu 

2 Save the M-file as normal_fit.m in a directory on the MATLAB path. 

You can then apply the function normal_fit to any vector of data in the 
MATLAB workspace. For example, the following commands

new_data = normrnd(4.1, 12.5, 100, 1);
normal_fit(new_data)
legend('New Data', 'My fit')

fit a normal distribution to a data set and generate a plot of the data and the fit.

Note  By default, the M-file labels the data in the legend using the same 
name as the data set in the Distribution Fitting Tool. You can change the label 
using the legend command, as illustrated by the preceding example.
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Using Custom Distributions
This section explains how to use custom distributions with the Distribution 
Fitting Tool.

Defining Custom Distributions
To define a custom distribution, select Define Custom Distribution from the 
File menu. This opens an M-file template in the MATLAB editor. You then edit 
this M-file so that it computes the distribution you want.

The template includes example code that computes the Laplace distribution, 
beginning at the lines

% ---------------------------------------------------------
% ---- Remove the following return statement to define the 
% ---- Laplace distributon
% ---------------------------------------------------------
return

To use this example, simply delete the command return and save the M-file. If 
you save the template in a directory on the MATLAB path, under its default 
name dfittooldists.m, the Distribution Fitting Tool reads it in automatically 
when you start the tool. You can also save the template under a different name, 
such as laplace.m, and then import the custom distribution as described in the 
following section. 

Importing Custom Distributions
To import a custom distribution, select Import Custom Distributions from 
the File menu. This opens a dialog box in which you can select the M-file that 
defines the distribution. For example, if you created the file laplace.m, as 
described in the preceding section, you can enter laplace.m and select Open in 
the dialog box. The Distribution field of the New Fit window now contains the 
option Laplace.

Additional Distributions Available in the 
Distribution Fitting Tool
This section describes the distributions that are available in the Distribution 
Fitting Tool, but which have no corresponding command-line functions. For a 
complete list of the distributions you can use with the Distribution Fitting Tool, 
see “Available Distributions” on page 2-26. 
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Birnbaum-Saunders Distribution
The Birnbaum-Saunders distribution has the density function

with scale parameter β > 0 and shape parameter γ > 0, for x > 0. 

If x has a Birnbaum-Saunders distribution with parameters β and γ, then

has a standard normal distribution.

Inverse Gaussian Distribution
The inverse Gaussian distribution has the density function

Log-Logistic Distribution
The variable x has a log logistic distribution with location parameter µ and 
scale parameter σ > 0 if ln x has a logistic distribution with parameters µ and σ.

Logistic Distribution
The logistic distribution has the density function

with location parameter µ and scale parameter σ > 0, for all real x.

Nakagami Distribution
The Nakagami distribution has the density function
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with shape parameter µ and scale parameter ω > 0, for x > 0. If x has a 
Nakagami distribution with parameters µ and ω, then x2 has a gamma 
distribution with shape parameter µ and scale parameter ω/µ.

Rician Distribution
The Rician distribution has the density function

with noncentrality parameter  and scale parameter σ > 0, for x > 0.  is 
the zero-order modified Bessel function of the first kind. If x has a Rician 
distribution with parameters s and σ, then  has a noncentral chi-square 
distribution with two degrees of freedom and noncentrality parameter .

t Location-Scale Distribution
The t location-scale distribution has the density function

with location parameter µ, scale parameter σ > 0, and shape parameter ν > 0. 
If x has a t location-scale distribution, with parameters µ, σ, and ν, then 

has a Student’s t distribution with ν degrees of freedom.

Using the Distributions with Command-Line Functions
You can specify the distributions described in this section when using the 
functions mle, cdf, icdf, and pdf. To do so, set the first argument of the 
function to one of the following distribution names:

• 'birnbaumsaunders'
• 'inversegaussian'
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• 'loglogistic'
• 'nakagami'
• 'rician'
• 'tlocationscale'
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Overview of the Distributions
The following sections describe the probability distributions that are available 
using functions at the command line. For additional distributions that are only 
available through the Distribution Fitting Tool, see “Additional Distributions 
Available in the Distribution Fitting Tool” on page 2-41:

• “Reproducing the Output of Random Number Functions” on page 2-46

• “Beta Distribution” on page 2-48

• “Binomial Distribution” on page 2-50

• “Chi-Square Distribution” on page 2-52

• “Noncentral Chi-Square Distribution” on page 2-53

• “Discrete Uniform Distribution” on page 2-55

• “Exponential Distribution” on page 2-56

• “Extreme Value Distribution” on page 2-58

• “F Distribution” on page 2-61

• “Noncentral F Distribution” on page 2-63

• “Gamma Distribution” on page 2-64

• “Geometric Distribution” on page 2-66

• “Hypergeometric Distribution” on page 2-67

• “Lognormal Distribution” on page 2-69

• “Negative Binomial Distribution” on page 2-70

• “Normal Distribution” on page 2-73

• “Poisson Distribution” on page 2-76

• “Rayleigh Distribution” on page 2-78

• “Student’s t Distribution” on page 2-79

• “Noncentral t Distribution” on page 2-80

• “Uniform (Continuous) Distribution” on page 2-82

• “Weibull Distribution” on page 2-83
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Reproducing the Output of Random Number 
Functions
The Statistics Toolbox contains functions that generate random samples from 
the distributions described in this section. These functions use the MATLAB 
functions rand and/or randn to generate their output. If you want to reproduce 
the exact output for any of these functions, you must set the state for rand 
and/or randn each time you call the function. For example, the following code 
sets the states for rand and randn:

state = 137;
rand('state', state);
randn('state', state);

If you execute this code with any fixed value for state, before calling one of the 
random number functions, the function always returns the same output. You 
might want to save these commands in an M-file script called initstate.m. 
Then, instead of three separate commands, you need only enter initstate.

The following table lists the random number functions and indicates their 
dependencies on rand and randn. To reproduce the output of a function in the 
left-hand column, set the states of the functions listed in the right-hand column
.

Random Number Functions Dependencies on rand, 
randn

betarnd rand, randn

binornd rand

chi2rnd rand, randn

exprnd rand

evrnd rand

frnd rand, randn

gamrnd rand

geornd rand

hygernd rand
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iwishrnd rand, randn

lognrnd randn

mvnrnd randn

mvtrnd rand, randn

nbinrnd rand, randn

ncfrnd rand, randn

nctrnd rand, randn

ncx2rnd randn

normrnd randn

poissrnd rand, randn

raylrnd randn

trnd rand, randn

unidrnd rand

unifrnd rand

wblrnd rand

wblrnd rand

wishrnd rand, randn

Random Number Functions Dependencies on rand, 
randn
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Beta Distribution
The following sections provide an overview of the beta distribution.

Background on the Beta Distribution
The beta distribution describes a family of curves that are unique in that they 
are nonzero only on the interval (0 1). A more general version of the function 
assigns parameters to the end-points of the interval.

The beta cdf is the same as the incomplete beta function.

The beta distribution has a functional relationship with the t distribution. If Y 
is an observation from Student’s t distribution with ν degrees of freedom, then 
the following transformation generates X, which is beta distributed.

If , then .

The Statistics Toolbox uses this relationship to compute values of the t cdf and 
inverse function as well as generating t distributed random numbers.

Definition of the Beta Distribution
The beta pdf is

where B( · ) is the Beta function. The indicator function I(0,1)(x) ensures that 
only values of x in the range (0 1) have nonzero probability.

Parameter Estimation for the Beta Distribution
Suppose you are collecting data that has hard lower and upper bounds of zero 
and one respectively. Parameter estimation is the process of determining the 
parameters of the beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The 
likelihood has the same form as the beta pdf. But for the pdf, the parameters 
are known constants and the variable is x. The likelihood function reverses the 
roles of the variables. Here, the sample values (the x’s) are already observed. 
So they are the fixed constants. The variables are the unknown parameters. 
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Maximum likelihood estimation (MLE) involves calculating the values of the 
parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the 
parameters of the beta distribution. Here is an example using random numbers 
from the beta distribution with a = 5 and b = 0.2.

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat =
    4.5330    0.2301

pci =
    2.8051    0.1771
    6.2610    0.2832

The MLE for parameter a is 4.5330, compared to the true value of 5. The 95% 
confidence interval for a goes from 2.8051 to 6.2610, which includes the true 
value.

Similarly the MLE for parameter b is 0.2301, compared to the true value of 0.2. 
The 95% confidence interval for b goes from 0.1771 to 0.2832, which also 
includes the true value. In this made-up example you know the “true value.” In 
experimentation you do not. 

Example and Plot of the Beta Distribution
The shape of the beta distribution is quite variable depending on the values of 
the parameters, as illustrated by the plot below.
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The constant pdf (the flat line) shows that the standard uniform distribution is 
a special case of the beta distribution.

Binomial Distribution
The following sections provide an overview of the binomial distribution.

Background of the Binomial Distribution
The binomial distribution models the total number of successes in repeated 
trials from an infinite population under the following conditions:

• Only two outcomes are possible on each of n trials.

• The probability of success for each trial is constant.

• All trials are independent of each other.

James Bernoulli [40] derived the binomial distribution in 1713. Earlier, Blaise 
Pascal had considered the special case where p = 1/2.

Definition of the Binomial Distribution
The binomial pdf is

where  and .

The binomial distribution is discrete. For zero and for positive integers less 
than n, the pdf is nonzero.

Parameter Estimation for the Binomial Distribution
Suppose you are collecting data from a widget manufacturing process, and you 
record the number of widgets within specification in each batch of 100. You 
might be interested in the probability that an individual widget is within 
specification. Parameter estimation is the process of determining the 
parameter, p, of the binomial distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The 
likelihood has the same form as the binomial pdf above. But for the pdf, the 
parameters (n and p) are known constants and the variable is x. The likelihood 
function reverses the roles of the variables. Here, the sample values (the x’s) 
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are already observed. So they are the fixed constants. The variables are the 
unknown parameters. MLE involves calculating the value of p that give the 
highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the 
parameters of the binomial distribution. Here is an example using random 
numbers from the binomial distribution with n = 100 and p = 0.9.

r = binornd(100,0.9)

r =
    88

[phat, pci] = binofit(r,100)

phat =
    0.8800

pci =
    0.7998
    0.9364

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The 95% 
confidence interval for p goes from 0.7998 to 0.9364, which includes the true 
value. In this made-up example you know the “true value” of p. In 
experimentation you do not.

Example and Plot of the Binomial Distribution
The following commands generate a plot of the binomial pdf for n = 10 and 
p = 1/2.

x = 0:10;
y = binopdf(x,10,0.5);
plot(x,y,'+')
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Chi-Square Distribution
The following sections provide an overview of the χ2 distribution.

Background of the Chi-Square Distribution
The χ2 distribution is a special case of the gamma distribution where b = 2 in 
the equation for gamma distribution below.

The χ2 distribution gets special attention because of its importance in normal 
sampling theory. If a set of n observations is normally distributed with 
variance σ2, and s2 is the sample standard deviation, then

The Statistics Toolbox uses the above relationship to calculate confidence 
intervals for the estimate of the normal parameter σ2 in the function normfit.
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Definition of the Chi-Square Distribution
The χ2 pdf is

where Γ( · ) is the Gamma function, and ν is the degrees of freedom.

Example and Plot of the Chi-Square Distribution
The χ2 distribution is skewed to the right especially for few degrees of freedom 
(ν). The plot shows the χ2 distribution with four degrees of freedom.

x = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)

Noncentral Chi-Square Distribution
The following sections provide an overview of the noncentral χ2 distribution.

Background of the Noncentral Chi-Square Distribution
The χ2 distribution is actually a simple special case of the noncentral 
chi-square distribution. One way to generate random numbers with a χ2 
distribution (with ν degrees of freedom) is to sum the squares of ν standard 
normal random numbers (mean equal to zero.) 

What if the normally distributed quantities have a mean other than zero? The 
sum of squares of these numbers yields the noncentral chi-square distribution. 
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The noncentral chi-square distribution requires two parameters; the degrees of 
freedom and the noncentrality parameter. The noncentrality parameter is the 
sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and 
signal processing. The literature in these areas may refer to it as the Ricean or 
generalized Rayleigh distribution.

Definition of the Noncentral Chi-Square Distribution
There are many equivalent formulas for the noncentral chi-square distribution 
function. One formulation uses a modified Bessel function of the first kind. 
Another uses the generalized Laguerre polynomials. The Statistics Toolbox 
computes the cumulative distribution function values using a weighted sum of 
χ2 probabilities with the weights equal to the probabilities of a Poisson 
distribution. The Poisson parameter is one-half of the noncentrality parameter 
of the noncentral chi-square.

where δ is the noncentrality parameter.

Example of the Noncentral Chi-Square Distribution
The following commands generate a plot of the noncentral chi-square pdf.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'--',x,p1,'-')
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Discrete Uniform Distribution
The following sections provide an overview of the discrete uniform distribution.

Background of the Discrete Uniform Distribution
The discrete uniform distribution is a simple distribution that puts equal 
weight on the integers from one to N.

Definition of the Discrete Uniform Distribution
The discrete uniform pdf is

Example and Plot of the Discrete Uniform Distribution
As for all discrete distributions, the cdf is a step function. The plot shows the 
discrete uniform cdf for N = 10.

x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])
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To pick a random sample of 10 from a list of 553 items:

numbers = unidrnd(553,1,10)

numbers =

293   372     5   213    37   231   380   326   515   468

Exponential Distribution
The following sections provide an overview of the exponential distribution.

Background of the Exponential Distribution
Like the chi-square distribution, the exponential distribution is a special case 
of the gamma distribution (obtained by setting a = 1)

where Γ( · ) is the Gamma function.

The exponential distribution is special because of its utility in modeling events 
that occur randomly over time. The main application area is in studies of 
lifetimes. 

Definition of the Exponential Distribution
The exponential pdf is
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Parameter Estimation for the Exponential Distribution
Suppose you are stress testing light bulbs and collecting data on their lifetimes. 
You assume that these lifetimes follow an exponential distribution. You want 
to know how long you can expect the average light bulb to last. Parameter 
estimation is the process of determining the parameters of the exponential 
distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The 
likelihood has the same form as the exponential pdf above. But for the pdf, the 
parameters are known constants and the variable is x. The likelihood function 
reverses the roles of the variables. Here, the sample values (the x’s) are already 
observed. So they are the fixed constants. The variables are the unknown 
parameters. MLE involves calculating the values of the parameters that give 
the highest likelihood given the particular set of data.

The function expfit returns the MLEs and confidence intervals for the 
parameters of the exponential distribution. Here is an example using random 
numbers from the exponential distribution with µ = 700.

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)

muhat =

  672.8207

muci =

  547.4338
  810.9437

The MLE for parameter µ is 672, compared to the true value of 700. The 95% 
confidence interval for µ goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of µ so it is nice to have a 
confidence interval on the parameter to give a range of likely values. 

Example and Plot of the Exponential Distribution
For exponentially distributed lifetimes, the probability that an item will 
survive an extra unit of time is independent of the current age of the item. The 
example shows a specific case of this special property.
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l = 10:10:60;
lpd = l+0.1;
deltap = (expcdf(lpd,50)-expcdf(l,50))./(1-expcdf(l,50))

deltap =
    0.0020    0.0020    0.0020    0.0020    0.0020    0.0020

The following commands generate a plot of the exponential pdf with its 
parameter (and mean), µ, set to 2.

x = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)

Extreme Value Distribution
The following sections provide an overview of the extreme value distribution.

Background of the Extreme Value Distribution
Extreme value distributions are often used to model the smallest or largest 
value among a large set of independent, identically distributed random values 
representing measurements or observations. The extreme value distribution 
used in the Statistics Toolbox is appropriate for modeling the smallest value 
from a distribution whose tails decay exponentially fast, for example, the 
normal distribution. It can also model the largest value from a distribution, 
such as the normal or exponential distributions, by using the negative of the 
original values.

For example, the values generated by the following code have approximately 
an extreme value distribution.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5



Overview of the Distributions

2-59

xmin = min(randn(1000,5), [], 1);
negxmax = -max(randn(1000,5), [], 1);

Although the extreme value distribution is most often used as a model for 
extreme values, you can also use it as a model for other types of continuous 
data. For example, extreme value distributions are closely related to the 
Weibull distribution. If T has a Weibull distribution, then log(T) has a type 1 
extreme value distribution.

Definition of the Extreme Value Distribution
The probability density function for the extreme value distribution with 
location parameter µ and scale parameter σ is

If T has a Weibull distribution with parameters a and b, as described in 
“Weibull Distribution” on page 2-83, then log T has an extreme value 
distribution with parameters µ = log a and σ = 1/b.

Parameter Estimation for the Extreme Value Distribution
The function evfit returns the maximum likelihood estimates (MLEs) and 
confidence intervals for the parameters of the extreme value distribution. The 
following example shows how to fit some sample data using evfit, including 
estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch of 
1000 from a manufacturing process. If you believe that the sizes are 
independent within and between each batch, you can fit an extreme value 
distribution to measurements of the minimum diameter from a series of eight 
experimental batches. The following code returns the MLEs of the distribution 
parameters as parmhat and the confidence intervals as the columns of parmci.

x = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83]; 
[parmhat, parmci] = evfit(x)

parmhat =
20.2506    0.8223
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parmci = 
19.644 0.49861 
20.857 1.3562 

You can find mean and variance of the extreme value distribution with these 
parameters using the function evstat.

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))

meanfit = 
19.776 

varfit = 
1.1123

Plot of the Extreme Value Distribution
The following code generates a plot of the pdf for the extreme value 
distribution.

t = [-5:.01:2];
y = evpdf(t);
plot(t, y)
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The extreme value distribution is skewed to the left, and its general shape 
remains the same for all parameter values. The location parameter, mu, shifts 
the distribution along the real line, and the scale parameter, sigma, expands or 
contracts the distribution. This example plots the probability function for 
different combinations of mu and sigma.

x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', x,evpdf(x,0,2),':', 
x,evpdf(x,-2,4),'-.');
legend({'mu = 2, sigma = 1' 'mu = 0, sigma = 2' 'mu = -2,'...
'sigma = 4'},2)
xlabel('x')
ylabel('f(x|mu,sigma')

F Distribution
The following sections provide an overview of the F distribution.
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Background of the F distribution
The F distribution has a natural relationship with the chi-square distribution. 
If χ1 and χ2 are both chi-square with ν1 and ν2 degrees of freedom respectively, 
then the statistic F below is F distributed.

The two parameters, ν1 and ν2, are the numerator and denominator degrees of 
freedom. That is, ν1 and ν2 are the number of independent pieces of information 
used to calculate χ1 and χ2, respectively.

Definition of the F distribution
The pdf for the F distribution is

where Γ( · ) is the Gamma function.

Example and Plot of the F distribution
The most common application of the F distribution is in standard tests of 
hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers and 
is skewed to the right.

x = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)
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Noncentral F Distribution
The following sections provide an overview of the noncentral F distribution.

Background of the Noncentral F Distribution
As with the χ2 distribution, the F distribution is a special case of the noncentral 
F distribution. The F distribution is the result of taking the ratio of two χ2 
random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable 
divided by its degrees of freedom, the resulting distribution is the noncentral 
F distribution.

The main application of the noncentral F distribution is to calculate the power 
of a hypothesis test relative to a particular alternative. 

Definition of the Noncentral F Distribution
Similar to the noncentral χ2 distribution, the toolbox calculates noncentral 
F distribution probabilities as a weighted sum of incomplete beta functions 
using Poisson probabilities as the weights.

I(x|a,b) is the incomplete beta function with parameters a and b, and δ is the 
noncentrality parameter.
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Example and Plot of the Noncentral F Distribution
The following commands generate a plot of the noncentral F pdf.

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p  = fpdf(x,5,20);
plot(x,p,'--',x,p1,'-')

Gamma Distribution
The following sections provide an overview of the gamma distribution.

Background of the Gamma Distribution
The gamma distribution is a family of curves based on two parameters. The 
chi-square and exponential distributions, which are children of the gamma 
distribution, are one-parameter distributions that fix one of the two gamma 
parameters.

The gamma distribution has the following relationship with the incomplete 
Gamma function.

For b = 1 the functions are identical.

When a is large, the gamma distribution closely approximates a normal 
distribution with the advantage that the gamma distribution has density only 
for positive real numbers. 
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Definition of the Gamma Distribution
The gamma pdf is

where Γ( · ) is the Gamma function. 

Parameter Estimation for the Gamma Distribution
Suppose you are stress testing computer memory chips and collecting data on 
their lifetimes. You assume that these lifetimes follow a gamma distribution. 
You want to know how long you can expect the average computer memory chip 
to last. Parameter estimation is the process of determining the parameters of 
the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The 
likelihood has the same form as the gamma pdf above. But for the pdf, the 
parameters are known constants and the variable is x. The likelihood function 
reverses the roles of the variables. Here, the sample values (the x’s) are already 
observed. So they are the fixed constants. The variables are the unknown 
parameters. MLE involves calculating the values of the parameters that give 
the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the 
parameters of the gamma distribution. Here is an example using random 
numbers from the gamma distribution with a = 10 and b = 5.

lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)

phat =

   10.9821    4.7258

pci =

    7.4001    3.1543
   14.5640    6.2974

Note phat(1) =  and phat(2) = . The MLE for parameter a is 10.98, 
compared to the true value of 10. The 95% confidence interval for a goes from 
7.4 to 14.6, which includes the true value.
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Similarly the MLE for parameter b is 4.7, compared to the true value of 5. The 
95% confidence interval for b goes from 3.2 to 6.3, which also includes the true 
value.

In the life tests you do not know the true value of a and b so it is nice to have a 
confidence interval on the parameters to give a range of likely values. 

Example and Plot of the Gamma Distribution
In the example the gamma pdf is plotted with the solid line. The normal pdf has 
a dashed line type.

x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'-',x,y1,'-.')

Geometric Distribution
The following sections provide an overview of the geometric distribution.

Background of the Geometric Distribution
The geometric distribution is discrete, existing only on the nonnegative 
integers. It is useful for modeling the runs of consecutive successes (or failures) 
in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure 
in an independent succession of tests where each test results in success or 
failure. 
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Definition of the Geometric Distribution
The geometric pdf is

where q = 1 – p.

Example and Plot of the Geometric Distribution
Suppose the probability of a five-year-old battery failing in cold weather is 0.03. 
What is the probability of starting 25 consecutive days during a long cold snap?

1 - geocdf(25,0.03)

ans =

    0.4530

The plot shows the cdf for this scenario.

x = 0:25;
y = geocdf(x,0.03);
stairs(x,y)

Hypergeometric Distribution
The following sections provide an overview of the hypergeometric distribution.

Background of the Hypergeometric Distribution
The hypergeometric distribution models the total number of successes in a 
fixed size sample drawn without replacement from a finite population.
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The distribution is discrete, existing only for nonnegative integers less than the 
number of samples or the number of possible successes, whichever is greater. 
The hypergeometric distribution differs from the binomial only in that the 
population is finite and the sampling from the population is without 
replacement. 

The hypergeometric distribution has three parameters that have direct 
physical interpretations. M is the size of the population. K is the number of 
items with the desired characteristic in the population. n is the number of 
samples drawn. Sampling “without replacement” means that once a particular 
sample is chosen, it is removed from the relevant population for all subsequent 
selections.

Definition of the Hypergeometric Distribution
The hypergeometric pdf is

Example and Plot of the Hypergeometric Distribution
The plot shows the cdf of an experiment taking 20 samples from a group of 1000 
where there are 50 items of the desired type.

x = 0:10;
y = hygecdf(x,1000,50,20);
stairs(x,y)
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Lognormal Distribution
The following sections provide an overview of the lognormal distribution.

Background of the Lognormal Distribution
The normal and lognormal distributions are closely related. If X is distributed 
lognormal with parameters µ and σ2, then lnX is distributed normal with 
parameters µ and σ2. 

The lognormal distribution is applicable when the quantity of interest must be 
positive, since lnX exists only when the random variable X is positive. 
Economists often model the distribution of income using a lognormal 
distribution. 

Definition of the Lognormal Distribution
The lognormal pdf is

Example and Plot of the Lognormal Distribution
Suppose the income of a family of four in the United States follows a lognormal 
distribution with µ = log(20,000) and σ2 = 1.0. Plot the income density.

x = (10:1000:125010)';
y = lognpdf(x,log(20000),1.0);
plot(x,y)
set(gca,'xtick',[0 30000 60000 90000 120000])
set(gca,'xticklabel',str2mat('0','$30,000','$60,000',...

'$90,000','$120,000'))
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Negative Binomial Distribution
The following sections provide an overview of the negative binomial 
distribution. 

• “Background of the Negative Binomial Distribution” on page 2-70

• “Definition of the Negative Binomial Distribution” on page 2-71

• “Parameter Estimation for the Negative Binomial Distribution” on page 2-71

• “Example and Plot of the Negative Binomial Distribution” on page 2-73

Background of the Negative Binomial Distribution
In its simplest form, the negative binomial distribution models the number of 
successes before a specified number of failures is reached in an independent 
series of repeated identical trials. It can also be thought of as modeling the total 
number of trials required before a specified number of successes, thus 
motivating its name as the inverse of the binomial distribution. Its parameters 
are the probability of success in a single trial, , and the number of failures, . 
A special case of the negative binomial distribution, when , is the 
geometric distribution (also known as the Pascal distribution), which models 
the number of successes before the first failure.

More generally, the  parameter can take on noninteger values. This form of 
the negative binomial has no interpretation in terms of repeated trials, but, 
like the Poisson distribution, it is useful in modeling count data. It is, however, 
more general than the Poisson, because the negative binomial has a variance 
that is greater than its mean, often making it suitable for count data that do 
not meet the assumptions of the Poisson distribution. In the limit, as the 

0       $30,000 $60,000 $90,000 $120,000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

p r
r 1=

r



Overview of the Distributions

2-71

parameter  increases to infinity, the negative binomial distribution 
approaches the Poisson distribution.

Definition of the Negative Binomial Distribution
When the  parameter is an integer, the negative binomial pdf is 

where . When  is not an integer, the binomial coefficient in the 
definition of the pdf is replaced by the equivalent expression 

Parameter Estimation for the Negative Binomial Distribution
Suppose you are collecting data on the number of auto accidents on a busy 
highway, and would like to be able to model the number of accidents per day. 
Because these are count data, and because there are a very large number of 
cars and a small probability of an accident for any specific car, you might think 
to use the Poisson distribution. However, the probability of having an accident 
is likely to vary from day to day as the weather and amount of traffic change, 
and so the assumptions needed for the Poisson distribution are not met. In 
particular, the variance of this type of count data sometimes exceeds the mean 
by a large amount. The data below exhibit this effect: most days have few or no 
accidents, and a few days have a large number. 

accident = [2  3  4  2  3  1  12  8  14  31  23  1  10  7  0];
mean(accident)
ans =
       8.0667

var(accident)
ans =
       79.352

The negative binomial distribution is more general than the Poisson, and is 
often suitable for count data when the Poisson is not. The function nbinfit 
returns the maximum likelihood estimates (MLEs) and confidence intervals for 
the parameters of the negative binomial distribution. Here are the results from 
fitting the accident data: 

r
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[phat,pci] = nbinfit(accident)
phat =
        1.006      0.11088
pci =
     0.015286   0.00037634
       1.9967      0.22138

It is difficult to give a physical interpretation in this case to the individual 
parameters. However, the estimated parameters can be used in a model for the 
number of daily accidents. For example, a plot of the estimated cumulative 
probability function shows that while there is an estimated 10% chance of no 
accidents on a given day, there is also about a 10% chance that there will be 20 
or more accidents. 

plot(0:50,nbincdf(0:50,phat(1),phat(2)),'.-');
xlabel('Accidents per Day')
ylabel('Cumulative Probability')
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Example and Plot of the Negative Binomial Distribution
The negative binomial distribution can take on a variety of shapes ranging 
from very skewed to nearly symmetric. This example plots the probability 
function for different values of r, the desired number of successes: .1, 1, 3, 6.

x = 0:10;
plot(x,nbinpdf(x,.1,.5),'s-', ...
     x,nbinpdf(x,1,.5),'o-', ...
     x,nbinpdf(x,3,.5),'d-', ...
     x,nbinpdf(x,6,.5),'^-');
legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})
xlabel('x')
ylabel('f(x|r,p')

Normal Distribution
The following sections provide an overview of the normal distribution.

Background of the Normal Distribution
The normal distribution is a two parameter family of curves. The first 
parameter, µ, is the mean. The second, σ, is the standard deviation. The 
standard normal distribution (written Φ(x)) sets µ to 0 and σ to 1.
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Φ(x) is functionally related to the error function, erf.

The first use of the normal distribution was as a continuous approximation to 
the binomial.

The usual justification for using the normal distribution for modeling is the 
Central Limit Theorem, which states (roughly) that the sum of independent 
samples from any distribution with finite mean and variance converges to the 
normal distribution as the sample size goes to infinity.

Definition of the Normal Distribution
The normal pdf is

Parameter Estimation for the Normal Distribution
To use statistical parameters such as mean and standard deviation reliably, 
you need to have a good estimator for them. The maximum likelihood estimates 
(MLEs) provide one such estimator. However, an MLE might be biased, which 
means that its expected value of the parameter might not equal the parameter 
being estimated. For example, an MLE is biased for estimating the variance of 
a normal distribution. An unbiased estimator that is commonly used to 
estimate the parameters of the normal distribution is the minimum variance 
unbiased estimator (MVUE). The MVUE has the minimum variance of all 
unbiased estimators of a parameter.

The MVUEs of parameters µ and σ2 for the normal distribution are the sample 
average and variance. The sample average is also the MLE for µ. The following 
are two common formulas for the variance. 

erf x( ) 2Φ x 2( ) 1–=
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σ 2π
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where 

Equation 1 is the maximum likelihood estimator for σ2, and equation 2 is the 
MVUE.

As an example, suppose you want to estimate the mean, µ, and the variance, 
σ2, of the heights of all 4th grade children in the United States.The function 
normfit returns the MVUE for µ, the square root of the MVUE for σ2, and 
confidence intervals for µ and σ2. Here is a playful example modeling the 
heights in inches of a randomly chosen 4th grade class.

height = normrnd(50,2,30,1); % Simulate heights.
[mu,s,muci,sci] = normfit(height)

mu =
   50.2025

s =
    1.7946

muci =
   49.5210
   50.8841

sci =
    1.4292
    2.4125

Note that s^2 is the MVUE of the variance.

s^2

ans =
    3.2206

2)     s2 1
n 1–
------------- xi x–( )2
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n

∑=

x
xi
n
----
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n
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Example and Plot of the Normal Distribution
The plot shows the bell curve of the standard normal pdf, with µ = 0 and σ = 1.

Poisson Distribution
The following sections provide an overview of the Poisson distribution.

Background of the Poisson Distribution
The Poisson distribution is appropriate for applications that involve counting 
the number of times a random event occurs in a given amount of time, distance, 
area, etc. Sample applications that involve Poisson distributions include the 
number of Geiger counter clicks per second, the number of people walking into 
a store in an hour, and the number of flaws per 1000 feet of video tape.

The Poisson distribution is a one parameter discrete distribution that takes 
nonnegative integer values. The parameter, λ, is both the mean and the 
variance of the distribution. Thus, as the size of the numbers in a particular 
sample of Poisson random numbers gets larger, so does the variability of the 
numbers.

As Poisson [43] showed, the Poisson distribution is the limiting case of a 
binomial distribution where N approaches infinity and p goes to zero while 
Np = λ.

The Poisson and exponential distributions are related. If the number of counts 
follows the Poisson distribution, then the interval between individual counts 
follows the exponential distribution.
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Definition of the Poisson Distribution
The Poisson pdf is

Parameter Estimation for the Poisson Distribution
The MLE and the MVUE of the Poisson parameter, λ, is the sample mean. The 
sum of independent Poisson random variables is also Poisson distributed with 
the parameter equal to the sum of the individual parameters. The Statistics 
Toolbox makes use of this fact to calculate confidence intervals on λ. As λ gets 
large the Poisson distribution can be approximated by a normal distribution 
with µ = λ and σ2 = λ. The Statistics Toolbox uses this approximation for 
calculating confidence intervals for values of λ greater than 100.

Example and Plot of the Poisson Distribution
The plot shows the probability for each nonnegative integer when λ = 5.

x = 0:15;
y = poisspdf(x,5);
plot(x,y,'+')
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Rayleigh Distribution
The following sections provide an overview of the Rayleigh distribution.

Background of the Rayleigh Distribution
The Rayleigh distribution is a special case of the Weibull distribution. If A and 
B are the parameters of the Weibull distribution, then the Rayleigh 
distribution with parameter  is equivalent to the Weibull distribution with 
parameters  and .

If the component velocities of a particle in the x and y directions are two 
independent normal random variables with zero means and equal variances, 
then the distance the particle travels per unit time is distributed Rayleigh.

Definition of the Rayleigh Distribution
The Rayleigh pdf is

Parameter Estimation for the Rayleigh Distribution
The raylfit function returns the MLE of the Rayleigh parameter. This 
estimate is

Example and Plot of the Rayleigh Distribution
The following commands generate a plot of the Rayleigh pdf.

x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)
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Student’s t Distribution
The following sections provide an overview of Student’s t distribution. 

Background of Student’s t Distribution
The t distribution is a family of curves depending on a single parameter ν (the 
degrees of freedom). As ν goes to infinity, the t distribution converges to the 
standard normal distribution.

W. S. Gossett [44] discovered the distribution through his work at the Guinness 
brewery. At that time, Guinness did not allow its staff to publish, so Gossett 
used the pseudonym Student.

If x and s are the mean and standard deviation of an independent random 
sample of size n from a normal distribution with mean µ and σ2 = n, then

Definition of Student’s t Distribution
Student’s t pdf is
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where Γ( · ) is the Gamma function. 

Example and Plot of Student’s t Distribution
The plot compares the t distribution with ν = 5 (solid line) to the shorter tailed, 
standard normal distribution (dashed line).

x = -5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
plot(x,y,'-',x,z,'-.')

Noncentral t Distribution
The following sections provide an overview of the noncentral t distribution.

Background of the Noncentral t Distribution
The noncentral t distribution is a generalization of the familiar Student’s t 
distribution. Recall that the ordinary Student’s t distribution is defined as 
follows. If and s are the sample mean and standard deviation of an 
independent random sample of size n from a normal distribution with mean µ0 
and standard deviation σ, then

where ν = n - 1, has the ordinary Student's t distribution with ν degrees of 
freedom. 
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Now, suppose that the true mean of the distribution of x is µ, rather than the 
hypothesized value µ0. Then the ratio on the right-hand side of the preceding 
equation has a noncentral t distribution with a noncentrality parameter δ 
equal to 

δ is the normalized difference between the true mean and the hypothesized 
mean.

The noncentral t distribution enables you to determine the probability of 
detecting a difference between µ and µ0 in a t test. This probability is the power 
of the test. The power increases as the difference µ- µ0 increases, and also as 
the sample size increases. 

Definition of the Noncentral t Distribution
The most general representation of the noncentral t distribution is quite 
complicated. Johnson and Kotz [22] give a formula for the probability that a 
noncentral t variate falls in the range [-t, t].

I(x|a,b) is the incomplete beta function with parameters a and b, δ is the 
noncentrality parameter, and ν is the degrees of freedom.

Example and Plot of the Noncentral t Distribution
The following commands generate a plot of the noncentral t pdf.

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'--',x,p1,'-')
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Uniform (Continuous) Distribution
The following sections provide an overview of the uniform distribution.

Background of the Uniform Distribution
The uniform distribution (also called rectangular) has a constant pdf between 
its two parameters a (the minimum) and b (the maximum). The standard 
uniform distribution (a = 0 and b = 1) is a special case of the beta distribution, 
obtained by setting both of its parameters to 1.

The uniform distribution is appropriate for representing the distribution of 
round-off errors in values tabulated to a particular number of decimal places.

Definition of the Uniform Distribution
The uniform cdf is

Parameter Estimation for the Uniform Distribution
The sample minimum and maximum are the MLEs of a and b respectively.

Example and Plot of the Uniform Distribution
The example illustrates the inversion method for generating normal random 
numbers using rand and norminv. Note that the MATLAB function, randn, 
does not use inversion since it is not efficient for this case.
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u = rand(1000,1);
x = norminv(u,0,1);
hist(x)

Weibull Distribution
The following sections provide an overview of the Weibull distribution.

Background of the Weibull Distribution
Waloddi Weibull [45] offered the distribution that bears his name as an 
appropriate analytical tool for modeling the breaking strength of materials. 
Current usage also includes reliability and lifetime modeling. The Weibull 
distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If 
f(t) and F(t) are the pdf and cdf of a distribution, then the hazard rate is

Substituting the pdf and cdf of the exponential distribution for f(t) and F(t) 
above yields a constant. The example below shows that the hazard rate for the 
Weibull distribution can vary.

Definition of the Weibull Distribution
The Weibull pdf is
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Parameter Estimation for the Weibull Distribution
Suppose you want to model the tensile strength of a thin filament using the 
Weibull distribution. The function wblfit gives maximum likelihood estimates 
and confidence intervals for the Weibull parameters.

strength = wblrnd(0.5,2,100,1); % Simulated strengths.
[p,ci] = wblfit(strength)

p =
0.4715    1.9811

ci =

    0.4248    1.7067
    0.5233    2.2996

The default 95% confidence interval for each parameter contains the true 
value.

Example and Plot of the Weibull Distribution
The exponential distribution has a constant hazard function, which is not 
generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull 
(solid line) distributions having the same mean life. The Weibull hazard rate 
here increases with age (a reasonable assumption).

t = 0:0.1:4.5;
h1 = exppdf(t,0.6267) ./ (1-expcdf(t,0.6267));
h2 = wblpdf(t,2,2) ./ (1-wblcdf(t,2,2));
plot(t,h1,'--',t,h2,'-')
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3 

Descriptive Statistics

Measures of Central Tendency 
(Location) (p. 3-2)

Describes how to calculate measures of central tendency, 
such as mean and median.

Measures of Dispersion (p. 3-4) Describes how to calculate measures of dispersion, such 
as variance and standard deviation.

Functions for Data with Missing 
Values (NaNs) (p. 3-6)

Describes tools for analyzing data that has missing 
values

Function for Grouped Data (p. 3-8) Explains how to use the grpstats function to group 
subsets of data in order to analyze them.

Percentiles and Graphical Descriptions 
(p. 3-10)

Describes how to analyze and estimate data distributions 
empirically.

The Bootstrap (p. 3-17) Describes how to implement the bootstrap procedure.
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Measures of Central Tendency (Location)
The purpose of measures of central tendency is to locate the data values on the 
number line. Another term for these statistics is measures of location.

The table gives the function names and descriptions.

The average is a simple and popular estimate of location. If the data sample 
comes from a normal distribution, then the sample average is also optimal 
(MVUE of µ). 

Unfortunately, outliers, data entry errors, or glitches exist in almost all real 
data. The sample average is sensitive to these problems. One bad data value 
can move the average away from the center of the rest of the data by an 
arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to 
outliers. The median is the 50th percentile of the sample, which will only 
change slightly if you add a large perturbation to any value. The idea behind 
the trimmed mean is to ignore a small percentage of the highest and lowest 
values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to 
outliers. They are useful when the sample is distributed lognormal or heavily 
skewed.

Measures of Location

geomean Geometric mean

harmmean Harmonic mean

mean Arithmetic average (in MATLAB)

median 50th percentile (in MATLAB)

trimmean Trimmed mean
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The following example shows the behavior of the measures of location for a 
sample with one outlier.

x = [ones(1,6) 100]

x =
     1     1     1     1     1     1   100

locate = [geomean(x) harmmean(x) mean(x) median(x)... 
trimmean(x,25)]

locate =
    1.9307    1.1647   15.1429    1.0000    1.0000

You can see that the mean is far from any data value because of the influence 
of the outlier. The median and trimmed mean ignore the outlying value and 
describe the location of the rest of the data values.
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Measures of Dispersion
The purpose of measures of dispersion is to find out how spread out the data 
values are on the number line. Another term for these statistics is measures of 
spread.

The table gives the function names and descriptions. 

The range (the difference between the maximum and minimum values) is the 
simplest measure of spread. But if there is an outlier in the data, it will be the 
minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that 
are optimal for normally distributed samples. The sample variance is the 
MVUE of the normal parameter σ2. The standard deviation is the square root 
of the variance and has the desirable property of being in the same units as the 
data. That is, if the data is in meters, the standard deviation is in meters as 
well. The variance is in meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data 
value that is separate from the body of the data can increase the value of the 
statistics by an arbitrarily large amount.

The Mean Absolute Deviation (MAD) is also sensitive to outliers. But the MAD 
does not move quite as much as the standard deviation or variance in response 
to bad data.

The Interquartile Range (IQR) is the difference between the 75th and 25th 
percentile of the data. Since only the middle 50% of the data affects this 
measure, it is robust to outliers. 

Measures of Dispersion

iqr Interquartile Range

mad Mean Absolute Deviation

range Range

std Standard deviation (in MATLAB)

var Variance (in MATLAB)
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The following example shows the behavior of the measures of dispersion for a 
sample with one outlier.

x = [ones(1,6) 100]

x =
     1     1     1     1     1     1   100

stats = [iqr(x) mad(x) range(x) std(x)]

stats =
         0   24.2449   99.0000   37.4185
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Functions for Data with Missing Values (NaNs)
Most real-world data sets have one or more missing elements. It is convenient 
to code missing entries in a matrix as NaN (Not a Number).

Here is a simple example.

m = magic(3);
m([1 5]) = [NaN NaN]

m =
NaN 1 6
3 NaN 7
4 9 2

Any arithmetic operation that involves the missing values in this matrix yields 
NaN, as below.

sum(m)

ans =
NaN NaN  15

Removing cells with NaN would destroy the matrix structure. Removing whole 
rows that contain NaN would discard real data. Instead, the Statistics Toolbox 
has a variety of functions that are similar to other MATLAB functions, but that 
treat NaN values as missing and therefore ignore them in the calculations.

nansum(m)

ans =
     7    10    13

NaN Functions

nanmax Maximum ignoring NaNs

nanmean Mean ignoring NaNs

nanmedian Median ignoring NaNs

nanmin Minimum ignoring NaNs
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In addition, other Statistics Toolbox functions operate only on the numeric 
values, ignoring NaNs. These include iqr, kurtosis, mad, prctile, range, 
skewness, and trimmean.

nanstd Standard deviation ignoring NaNs

nansum Sum ignoring NaNs

NaN Functions
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Function for Grouped Data
As you saw in the previous section, the descriptive statistics functions can 
compute statistics on each column in a matrix. Sometimes, however, you may 
have your data arranged differently so that measurements appear in one 
column or variable, and a grouping code appears in a second column or 
variable. Although the MATLAB syntax makes it simple to apply functions to 
a subset of an array, in this case it is simpler to use the grpstats function.

The grpstats function can compute the mean, standard error of the mean, and 
count (number of observations) for each group defined by one or more grouping 
variables. If you supply a significance level, it also creates a graph of the group 
means with confidence intervals.

As an example, load the larger car data set. You can look at the average value 
of MPG (miles per gallon) for cars grouped by org (location of the origin of the 
car). 

load carbig
grpstats(MPG,org,0.05)
ans =
       20.084
       27.891
       30.451
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You can also get the complete set of statistics for MPG grouped by three 
variables: org, cyl4 (the engine has four cylinders or not), and when (when the 
car was made).

[m,s,c,n] = grpstats(MPG,{org cyl4 when});
[n num2cell([m s c])]

ans = 

  'USA'       'Other'    'Early'    [14.896]    [0.33306]    [77]
  'USA'       'Other'    'Mid'      [17.479]    [0.30225]    [75]
  'USA'       'Other'    'Late'     [21.536]    [0.97961]    [25]
  'USA'       'Four'     'Early'    [23.333]    [0.87328]    [12]
  'USA'       'Four'     'Mid'      [27.027]    [0.75456]    [22]
  'USA'       'Four'     'Late'     [29.734]    [0.71126]    [38]
  'Europe'    'Other'    'Mid'      [  17.5]    [ 0.9478]    [ 4]
  'Europe'    'Other'    'Late'     [30.833]    [ 3.1761]    [ 3]
  'Europe'    'Four'     'Early'    [24.714]    [0.73076]    [21]
  'Europe'    'Four'     'Mid'      [26.912]    [ 1.0116]    [26]
  'Europe'    'Four'     'Late'     [  35.7]    [ 1.4265]    [16]
  'Japan'     'Other'    'Early'    [    19]    [0.57735]    [ 3]
  'Japan'     'Other'    'Mid'      [20.833]    [0.92796]    [ 3]
  'Japan'     'Other'    'Late'     [  26.5]    [ 2.0972]    [ 4]
  'Japan'     'Four'     'Early'    [26.083]    [ 1.1772]    [12]
  'Japan'     'Four'     'Mid'      [  29.5]    [0.86547]    [25]
  'Japan'     'Four'     'Late'     [  35.3]    [0.68346]    [32]
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Percentiles and Graphical Descriptions
Trying to describe a data sample with two numbers, a measure of location and 
a measure of spread, is frugal but may be misleading. Here are some other 
approaches:

• “Percentiles” on page 3-10

• “Probability Density Estimation” on page 3-12

• “Empirical Cumulative Distribution Function” on page 3-15

Percentiles
Another option is to compute a reasonable number of the sample percentiles. 
This provides information about the shape of the data as well as its location 
and spread.

The example shows the result of looking at every quartile of a sample 
containing a mixture of two distributions.

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p;y]

z =
         0   25.0000   50.0000   75.0000  100.0000
    1.5172    4.6842    5.6706    6.1804    7.6035

Compare the first two quantiles to the rest.

The box plot is a graph for descriptive statistics. The following graph is a box 
plot of the preceding data.

boxplot(x)
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The long lower tail and plus signs show the lack of symmetry in the sample 
values. For more information on box plots, see “Statistical Plots” on page 8-1.

The histogram is a complementary graph.

hist(x)
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Probability Density Estimation
You can also describe a data sample by estimating its density in a 
nonparametric way. The ksdensity function does this by using a kernel 
smoothing function and an associated bandwidth to estimate the density. 

This example uses the carsmall data set to estimate the probability density of 
the MPG (miles per gallon) measurements for 94 cars. It uses the default 
kernel function, a normal distribution, and its default bandwidth.

cars = load('carsmall','MPG','Origin'); 
MPG = cars.MPG; 
Origin = cars.Origin; 
[f,x] = ksdensity(MPG); 
plot(x,f); 
title('Density estimate for MPG') 

Kernel Bandwidth
The choice of kernel bandwidth controls the smoothness of the probability 
density curve. The following graph shows the density estimate for the same 
mileage data using different bandwidths. The default bandwidth is in blue and 
looks like the preceding graph. Estimates for smaller and larger bandwidths 
are in red and green. 
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The first call to ksdensity returns the default bandwidth, u, of the kernel 
smoothing function. Subsequent calls modify this bandwidth.

[f,x,u] = ksdensity(MPG);
plot(x,f)
title('Density estimate for MPG')
hold on
[f,x] = ksdensity(MPG,'width',u/3);
plot(x,f,'r');
[f,x] = ksdensity(MPG,'width',u*3);
plot(x,f,'g');
legend('default width','1/3 default','3*default')
hold off

The default bandwidth seems to be doing a good job — reasonably smooth, but 
not so smooth as to obscure features of the data. This bandwidth is the one that 
is theoretically optimal for estimating densities for the normal distribution. 

The green curve shows a density with the kernel bandwidth set too high. This 
curve smooths out the data so much that the end result looks just like the 
kernel function. The red curve has a smaller bandwidth and is rougher-looking 
than the blue curve. It may be too rough, but it does provide an indication that 
there might be two major peaks rather than the single peak of the blue curve. 
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A reasonable choice of width might lead to a curve that is intermediate between 
the red and blue curves. 

Kernel Smoothing Function
You can also specify a kernel function by supplying either the function name or 
a function handle. The four preselected functions, 'normal', 'epanechnikov', 
'box', and 'triangle', are all scaled to have standard deviation equal to 1, so 
they perform a comparable degree of smoothing. 

Using default bandwidths, you can now plot the same mileage data, using each 
of the available kernel functions.

hname = {'normal' 'epanechnikov' 'box' 'triangle'};
hold on;
colors = {'r' 'b' 'g' 'm'};
for j=1:4
    [f,x] = ksdensity(MPG,'kernel',hname{j});
    plot(x,f,colors{j});
end
legend(hname{:});
hold off

The density estimates are roughly comparable, but the box kernel produces a 
density that is rougher than the others. 
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Usefulness of Smooth Density Estimates
In addition to the aesthetic appeal of the smooth density estimate, there are 
other appeals as well. While it is difficult to overlay two histograms to compare 
them, you can easily overlay smooth density estimates. For example, the 
following graph shows the MPG distributions for cars from different countries 
of origin. 

Empirical Cumulative Distribution Function
The ksdensity function described in the last section produces an empirical 
version of a probability density function (pdf). That is, instead of selecting a 
density with a particular parametric form and estimating the parameters, it 
produces a nonparametric density estimate that tries to adapt itself to the 
data.

Similarly, it is possible to produce an empirical version of the cumulative 
distribution function (cdf). The ecdf function computes this empirical cdf. It 
returns the values of a function  such that  represents the proportion of 
observations in a sample less than or equal to .

The idea behind the empirical cdf is simple. It is a function that assigns 
probability  to each of  observations in a sample. Its graph has a 
stair-step appearance. If a sample comes from a distribution in a parametric 
family (such as a normal distribution), its empirical cdf is likely to resemble the 
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parametric distribution. If not, its empirical distribution still gives an estimate 
of the cdf for the distribution that generated the data.

The following example generates 20 observations from a normal distribution 
with mean 10 and standard deviation 2. You can use ecdf to calculate the 
empirical cdf and stairs to plot it. Then you overlay the normal distribution 
curve on the empirical function.

x = normrnd(10,2,20,1);[f,xf] = ecdf(x);
stairs(xf,f)
xx=linspace(5,15,100);
yy = normcdf(xx,10,2);
hold on; plot(xx,yy,'r:'); hold off
legend('Empirical cdf','Normal cdf',2)

The empirical cdf is especially useful in survival analysis applications. In such 
applications the data may be censored, that is, not observed exactly. Some 
individuals may fail during a study, and you can observe their failure time 
exactly. Other individuals may drop out of the study, or may not fail until after 
the study is complete. The ecdf function has arguments for dealing with 
censored data.
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The Bootstrap
In recent years the statistical literature has examined the properties of 
resampling as a means to acquire information about the uncertainty of 
statistical estimators.

The bootstrap is a procedure that involves choosing random samples with 
replacement from a data set and analyzing each sample the same way. 
Sampling with replacement means that every sample is returned to the data set 
after sampling. So a particular data point from the original data set could 
appear multiple times in a given bootstrap sample. The number of elements in 
each bootstrap sample equals the number of elements in the original data set. 
The range of sample estimates you obtain enables you to establish the 
uncertainty of the quantity you are estimating.

Here is an example taken from Efron and Tibshirani [13] comparing Law 
School Admission Test (LSAT) scores and subsequent law school grade point 
average (GPA) for a sample of 15 law schools.

load lawdata
plot(lsat,gpa,'+')
lsline
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The least squares fit line indicates that higher LSAT scores go with higher law 
school GPAs. But how certain is this conclusion? The plot provides some 
intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the corrcoef 
function.

rhohat = corrcoef(lsat,gpa)

rhohat =

    1.0000    0.7764
    0.7764    1.0000

Now you have a number, 0.7764, describing the positive connection between 
LSAT and GPA, but though 0.7764 may seem large, you still do not know if it 
is statistically significant.

Using the bootstrp function you can resample the lsat and gpa vectors as 
many times as you like and consider the variation in the resulting correlation 
coefficients.

Here is an example.

rhos1000 = bootstrp(1000,'corrcoef',lsat,gpa);

This command resamples the lsat and gpa vectors 1000 times and computes 
the corrcoef function on each sample. Here is a histogram of the result.

hist(rhos1000(:,2),30)
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Nearly all the estimates lie on the interval [0.4 1.0].

This is strong quantitative evidence that LSAT and subsequent GPA are 
positively correlated. Moreover, this evidence does not require any strong 
assumptions about the probability distribution of the correlation coefficient.
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4 

Linear Models

Introduction (p. 4-2) Introduces the concept of a linear model.

One-Way Analysis of Variance 
(ANOVA) (p. 4-3)

Describes how to perform one-way analysis of variance. 

Two-Way Analysis of Variance 
(ANOVA) (p. 4-8)

Describes how to perform two-way analysis of variance.

N-Way Analysis of Variance (p. 4-11) Describes how to perform analysis of variance with more 
than two factors.

ANOVA with Random Effects (p. 4-18) Describes how to perform analysis of variance with 
random effects.

Analysis of Covariance (p. 4-25) Describes how to perform analysis of covariance.

Multiple Linear Regression (p. 4-33) Describes how to perform multiple linear regression.

Quadratic Response Surface Models 
(p. 4-42)

Describes how to analyze quadratic response surface 
models.

Stepwise Regression (p. 4-45) Describes an interactive tool for performing stepwise 
regression.

Generalized Linear Models (p. 4-50) Describes how to analyze generalized linear models.

Robust and Nonparametric Methods 
(p. 4-55)

Describes robust and nonparametric methods.



4 Linear Models

4-2

Introduction
Linear models represent the relationship between a continuous response 
variable and one or more predictor variables (either continuous or categorical) 
in the form

where:

• y is an n-by-1 vector of observations of the response variable. 

• X is the n-by-p design matrix determined by the predictors.

• β is a p-by-1 vector of parameters.

• ε is an n-by-1 vector of random disturbances, independent of each other and 
usually having a normal distribution.

MATLAB uses this general form of the linear model to solve a variety of specific 
regression and analysis of variance (ANOVA) problems. For example, for 
polynomial and multiple regression problems, the columns of X are predictor 
variable values or powers of such values. For one-way, two-way, and 
higher-way ANOVA models, the columns of X are dummy (or indicator) 
variables that encode the predictor categories. For analysis of covariance 
(ANOCOVA) models, X contains values of a continuous predictor and codes for 
a categorical predictor.

Note  See Chapter 5, “Nonlinear Regression Models” for information on 
fitting nonlinear models.

y Xβ ε+=
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One-Way Analysis of Variance (ANOVA)
The purpose of one-way ANOVA is to find out whether data from several 
groups have a common mean. That is, to determine whether the groups are 
actually different in the measured characteristic. 

One-way ANOVA is a simple special case of the linear model. The one-way 
ANOVA form of the model is

where:

• yij is a matrix of observations in which each column represents a different 
group.

• α.j is a matrix whose columns are the group means. (The “dot j” notation 
means that α applies to all rows of the jth column. That is, the value αij is 
the same for all i.)

• εij is a matrix of random disturbances.

The model assumes that the columns of y are a constant plus a random 
disturbance. You want to know if the constants are all the same.

The following sections explore one-way ANOVA in greater detail:

• “Example: One-Way ANOVA” on page 4-3

• “Multiple Comparisons” on page 4-5

Example: One-Way ANOVA
The data below comes from a study by Hogg and Ledolter [19] of bacteria 
counts in shipments of milk. The columns of the matrix hogg represent 
different shipments. The rows are bacteria counts from cartons of milk chosen 
randomly from each shipment. Do some shipments have higher counts than 
others?

load hogg
hogg

hogg =

    24    14    11     7    19

yij α.j εij+=
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    15     7     9     7    24
    21    12     7     4    19
    27    17    13     7    15
    33    14    12    12    10
    23    16    18    18    20

[p,tbl,stats] = anova1(hogg);
p

p =
   1.1971e-04

The standard ANOVA table has columns for the sums of squares, degrees of 
freedom, mean squares (SS/df), F statistic, and p-value.

You can use the F statistic to do a hypothesis test to find out if the bacteria 
counts are the same. anova1 returns the p-value from this hypothesis test. 

In this case the p-value is about 0.0001, a very small value. This is a strong 
indication that the bacteria counts from the different tankers are not the same. 
An F statistic as extreme as the observed F would occur by chance only once in 
10,000 times if the counts were truly equal.

The p-value returned by anova1 depends on assumptions about the random 
disturbances εij in the model equation. For the p-value to be correct, these 
disturbances need to be independent, normally distributed, and have constant 
variance. See “Robust and Nonparametric Methods” on page 4-55 for a 
nonparametric function that does not require a normal assumption.

You can get some graphical assurance that the means are different by looking 
at the box plots in the second figure window displayed by anova1. Note however 



One-Way Analysis of Variance (ANOVA)

4-5

that the notches are used for a comparison of medians, not a comparison of 
means. For more information on this display, see “Box Plots” in Chapter 8.

Multiple Comparisons
Sometimes you need to determine not just whether there are any differences 
among the means, but specifically which pairs of means are significantly 
different. It is tempting to perform a series of t tests, one for each pair of means, 
but this procedure has a pitfall.

In a t test, you compute a t statistic and compare it to a critical value. The 
critical value is chosen so that when the means are really the same (any 
apparent difference is due to random chance), the probability that the t 
statistic will exceed the critical value is small, say 5%. When the means are 
different, the probability that the statistic will exceed the critical value is 
larger.

In this example there are five means, so there are 10 pairs of means to compare. 
It stands to reason that if all the means are the same, and if there is a 5% 
chance of incorrectly concluding that there is a difference in one pair, then the 
probability of making at least one incorrect conclusion among all 10 pairs is 
much larger than 5%.

Fortunately, there are procedures known as multiple comparison procedures 
that are designed to compensate for multiple tests. 
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Example: Multiple Comparisons
You can perform a multiple comparison test using the multcompare function 
and supplying it with the stats output from anova1.

[c,m] = multcompare(stats)

c =
    1.0000    2.0000    2.4953   10.5000   18.5047
    1.0000    3.0000    4.1619   12.1667   20.1714
    1.0000    4.0000    6.6619   14.6667   22.6714
    1.0000    5.0000   -2.0047    6.0000   14.0047
    2.0000    3.0000   -6.3381    1.6667    9.6714
    2.0000    4.0000   -3.8381    4.1667   12.1714
    2.0000    5.0000  -12.5047   -4.5000    3.5047
    3.0000    4.0000   -5.5047    2.5000   10.5047
    3.0000    5.0000  -14.1714   -6.1667    1.8381
    4.0000    5.0000  -16.6714   -8.6667   -0.6619

m =
   23.8333    1.9273
   13.3333    1.9273
   11.6667    1.9273
    9.1667    1.9273
   17.8333    1.9273

The first output from multcompare has one row for each pair of groups, with an 
estimate of the difference in group means and a confidence interval for that 
group. For example, the second row has the values

1.0000    3.0000    4.1619   12.1667   20.1714

indicating that the mean of group 1 minus the mean of group 3 is estimated to 
be 12.1667, and a 95% confidence interval for this difference is 
[4.1619, 20.1714]. This interval does not contain 0, so you can conclude that the 
means of groups 1 and 3 are different.

The second output contains the mean and its standard error for each group.

It is easier to visualize the difference between group means by looking at the 
graph that multcompare produces.
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The graph shows that group 1 is significantly different from groups 2, 3, and 4. 
By using the mouse to select group 4, you can determine that it is also 
significantly different from group 5. Other pairs are not significantly different. 
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Two-Way Analysis of Variance (ANOVA)
The purpose of two-way ANOVA is to find out whether data from several 
groups have a common mean. One-way ANOVA and two-way ANOVA differ in 
that the groups in two-way ANOVA have two categories of defining 
characteristics instead of one.

Suppose an automobile company has two factories, and each factory makes the 
same three models of car. It is reasonable to ask if the gas mileage in the cars 
varies from factory to factory as well as from model to model. There are two 
predictors, factory and model, to explain differences in mileage.

There could be an overall difference in mileage due to a difference in the 
production methods between factories. There is probably a difference in the 
mileage of the different models (irrespective of the factory) due to differences 
in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps because 
of a superior production line), but not be different from the other factory for 
other models. This effect is called an interaction. It is impossible to detect an 
interaction unless there are duplicate observations for some combination of 
factory and car model. 

Two-way ANOVA is a special case of the linear model. The two-way ANOVA 
form of the model is

where, with respect to the automobile example above:

•  is a matrix of gas mileage observations (with row index i, column 
index j, and repetition index k).

•  is a constant matrix of the overall mean gas mileage.

•  is a matrix whose columns are the deviations of each car’s gas mileage 
(from the mean gas mileage ) that are attributable to the car’s model. All 
values in a given column of  are identical, and the values in each row 
of  sum to 0.

•  is a matrix whose rows are the deviations of each car’s gas mileage (from 
the mean gas mileage ) that are attributable to the car’s factory. All values 
in a given row of  are identical, and the values in each column of  sum 
to 0.

yijk µ α.j βi. γij εijk+ + + +=

yijk

µ
α.j

µ
α.j

α.j
βi.

µ
βi. βi.
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•  is a matrix of interactions. The values in each row of  sum to 0, and the 
values in each column of  sum to 0.

•  is a matrix of random disturbances. 

The next section provides an example of a two-way analysis.

Example: Two-Way ANOVA
The purpose of the example is to determine the effect of car model and factory 
on the mileage rating of cars.

load mileage
mileage

mileage =

   33.3000   34.5000   37.4000
   33.4000   34.8000   36.8000
   32.9000   33.8000   37.6000
   32.6000   33.4000   36.6000
   32.5000   33.7000   37.0000
   33.0000   33.9000   36.7000

cars = 3;
[p,tbl,stats] = anova2(mileage,cars);
p

p =
    0.0000    0.0039    0.8411

There are three models of cars (columns) and two factories (rows). The reason 
there are six rows in mileage instead of two is that each factory provides three 
cars of each model for the study. The data from the first factory is in the first 
three rows, and the data from the second factory is in the last three rows. 

The standard ANOVA table has columns for the sums of squares, 
degrees-of-freedom, mean squares (SS/df), F statistics, and p-values.

γij γij
γij

εijk
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You can use the F statistics to do hypotheses tests to find out if the mileage is 
the same across models, factories, and model-factory pairs (after adjusting for 
the additive effects). anova2 returns the p-value from these tests. 

The p-value for the model effect is zero to four decimal places. This is a strong 
indication that the mileage varies from one model to another. An F statistic as 
extreme as the observed F would occur by chance less than once in 10,000 times 
if the gas mileage were truly equal from model to model. If you used the 
multcompare function to perform a multiple comparison test, you would find 
that each pair of the three models is significantly different.

The p-value for the factory effect is 0.0039, which is also highly significant. 
This indicates that one factory is out-performing the other in the gas mileage 
of the cars it produces. The observed p-value indicates that an F statistic as 
extreme as the observed F would occur by chance about four out of 1000 times 
if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models. The 
p-value, 0.8411, means that the observed result is quite likely (84 out 100 
times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random 
disturbances εijk in the model equation. For the p-values to be correct these 
disturbances need to be independent, normally distributed, and have constant 
variance. See “Robust and Nonparametric Methods” on page 4-55 for 
nonparametric methods that do not require a normal distribution.

In addition, anova2 requires that data be balanced, which in this case means 
there must be the same number of cars for each combination of model and 
factory. The next section discusses a function that supports unbalanced data 
with any number of predictors.
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N-Way Analysis of Variance
You can use N-way ANOVA to determine if the means in a set of data differ 
when grouped by multiple factors. If they do differ, you can determine which 
factors or combinations of factors are associated with the difference.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, the 
model can be written 

In this notation parameters with two subscripts, such as (αβ)ij., represent the 
interaction effect of two factors. The parameter (αβγ)ijk represents the 
three-way interaction. An ANOVA model can have the full set of parameters or 
any subset, but conventionally it does not include complex interaction terms 
unless it also includes all simpler terms for those factors. For example, one 
would generally not include the three-way interaction without also including 
all two-way interactions.

The anovan function performs N-way ANOVA. Unlike the anova1 and anova2 
functions, anovan does not expect data in a tabular form. Instead, it expects a 
vector of response measurements and a separate vector (or text array) 
containing the values corresponding to each factor. This input data format is 
more convenient than matrices when there are more than two factors or when 
the number of measurements per factor combination is not constant.

The following examples explore anovan in greater detail:

• “Example: N-Way ANOVA with Small Data Set” on page 4-11

• “Example: N-Way ANOVA with Large Data Set” on page 4-13

Example: N-Way ANOVA with Small Data Set
Consider the following two-way example using anova2.

m = [23 15 20;27 17 63;43 3 55;41 9 90]
m =
    23    15    20
    27    17    63
    43     3    55
    41     9    90

yijkl µ α.j . βi.. γ..k αβ( )ij. αγ( )i.k βγ( ).jk αβγ( )ijk ε+ + + + ijkl+ + + +=
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anova2(m,2)

ans =
    0.0197    0.2234    0.2663

The factor information is implied by the shape of the matrix m and the number 
of measurements at each factor combination (2). Although anova2 does not 
actually require arrays of factor values, for illustrative purposes you could 
create them as follows.

cfactor = repmat(1:3,4,1)

cfactor =

     1     2     3
     1     2     3
     1     2     3
     1     2     3

rfactor = [ones(2,3); 2*ones(2,3)]

rfactor =

     1     1     1
     1     1     1
     2     2     2
     2     2     2

The cfactor matrix shows that each column of m represents a different level of 
the column factor. The rfactor matrix shows that the top two rows of m 
represent one level of the row factor, and bottom two rows of m represent a 
second level of the row factor. In other words, each value m(i,j) represents an 
observation at column factor level cfactor(i,j) and row factor level 
rfactor(i,j).

To solve the above problem with anovan, you need to reshape the matrices m, 
cfactor, and rfactor to be vectors.

m = m(:);
cfactor = cfactor(:);
rfactor = rfactor(:);

[m cfactor rfactor]
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ans =

    23     1     1
    27     1     1
    43     1     2
    41     1     2
    15     2     1
    17     2     1
     3     2     2
     9     2     2
    20     3     1
    63     3     1
    55     3     2
    90     3     2

anovan(m,{cfactor rfactor},2)

ans =

    0.0197
    0.2234
    0.2663

Example: N-Way ANOVA with Large Data Set
The previous example used anova2 to study a small data set measuring car 
mileage. This example illustrates how to analyze a larger set of car data with 
mileage and other information on 406 cars made between 1970 and 1982. First, 
load the data set and look at the variable names.

load carbig
whos

  Name               Size         Bytes  Class

  Acceleration     406x1           3248  double array
  Cylinders        406x1           3248  double array
  Displacement     406x1           3248  double array
  Horsepower       406x1           3248  double array
  MPG              406x1           3248  double array
  Model            406x36         29232  char array
  Model_Year       406x1           3248  double array
  Origin           406x7           5684  char array
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  Weight           406x1           3248  double array
  cyl4             406x5           4060  char array
  org              406x7           5684  char array
  when             406x5           4060  char array

The example focusses on four variables. MPG is the number of miles per gallon 
for each of 406 cars (though some have missing values coded as NaN). The other 
three variables are factors: cyl4 (four-cylinder car or not), org (car originated 
in Europe, Japan, or the USA), and when (car was built early in the period, in 
the middle of the period, or late in the period).

First, fit the full model, requesting up to three-way interactions and Type 3 
sums-of-squares.

varnames = {'Origin';'4Cyl';'MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames)

ans =
    0.0000
       NaN
         0
    0.7032
    0.0001
    0.2072
    0.6990

Note that many terms are marked by a “#” symbol as not having full rank, and 
one of them has zero degrees of freedom and is missing a p-value. This can 
happen when there are missing factor combinations and the model has 
higher-order terms. In this case, the cross-tabulation below shows that there 
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are no cars made in Europe during the early part of the period with other than 
four cylinders, as indicated by the 0 in table(2,1,1).

[table, chi2, p, factorvals] = crosstab(org,when,cyl4)

table(:,:,1) =

    82    75    25
     0     4     3
     3     3     4

table(:,:,2) =

    12    22    38
    23    26    17
    12    25    32

chi2 =

  207.7689

p =

     0

factorvals = 

    'USA'       'Early'    'Other'
    'Europe'    'Mid'      'Four' 
    'Japan'     'Late'          []

Consequently it is impossible to estimate the three-way interaction effects, and 
including the three-way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, you can see 
that the three-way interaction has a p-value of 0.699, so it is not significant. So 
this time you examine only two-way interactions.

[p,tbl,stats,termvec] = anovan(MPG,{org cyl4 when},2,3,varnames);
termvec

termvec =
     1     0     0
     0     1     0
     0     0     1
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     1     1     0
     1     0     1
     0     1     1

Now all terms are estimable. The p-values for interaction term 4 
(Origin*4Cyl) and interaction term 6 (4Cyl*MfgDate) are much larger than a 
typical cutoff value of 0.05, indicating these terms are not significant. You 
could choose to omit these terms and pool their effects into the error term. The 
output termvec variable returns a vector of codes, each of which is a bit pattern 
representing a term. You can omit terms from the model by deleting their 
entries from termvec and running anovan again, this time supplying the 
resulting vector as the model argument.

termvec([4 6],:) = []

termvec =

     1     0     0
     0     1     0
     0     0     1
     1     0     1

anovan(MPG,{org cyl4 when},termvec,3,varnames)

ans =

  1.0e-003 *
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    0.0000
         0
         0
    0.1140

Now you have a more parsimonious model indicating that the mileage of these 
cars seems to be related to all three factors, and that the effect of the 
manufacturing date depends on where the car was made.
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ANOVA with Random Effects
In an ordinary ANOVA model, each grouping variable represents a fixed factor. 
The levels of that factor are a fixed set of values. Your goal is to determine 
whether different factor levels lead to different response values. This section 
presents an example that shows how to use anovan to fit models where a 
factor's levels represent a random selection from a larger (infinite) set of 
possible levels.

This section covers the following topics:

• “Setting Up the Model” on page 4-18

• “Fitting a Random Effects Model” on page 4-19

• “F Statistics for Models with Random Effects” on page 4-20

• “Variance Components” on page 4-22

Setting Up the Model
To set up the example, first load the data, which is stored in a 6-by-3 matrix, 
mileage.

load mileage

The anova2 function works only with balanced data, and it infers the values of 
the grouping variables from the row and column numbers of the input matrix. 
The anovan function, on the other hand, requires you to explicitly create 
vectors of grouping variable values. To create these vectors, do the following 
steps:

1 Create an array indicating the factory for each value in mileage. This array 
is 1 for the first column, 2 for the second, and 3 for the third.

factory  = repmat(1:3,6,1);

2 Create an array indicating the car model for each mileage value. This array 
is 1 for the first three rows of mileage, and 2 for the remaining three rows.

carmod = [ones(3,3); 2*ones(3,3)];

3 Turn these matrices into vectors and display them.
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mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);
[mileage factory carmod]

ans =

   33.3000    1.0000    1.0000
   33.4000    1.0000    1.0000
   32.9000    1.0000    1.0000
   32.6000    1.0000    2.0000
   32.5000    1.0000    2.0000
   33.0000    1.0000    2.0000
   34.5000    2.0000    1.0000
   34.8000    2.0000    1.0000
   33.8000    2.0000    1.0000
   33.4000    2.0000    2.0000
   33.7000    2.0000    2.0000
   33.9000    2.0000    2.0000
   37.4000    3.0000    1.0000
   36.8000    3.0000    1.0000
   37.6000    3.0000    1.0000
   36.6000    3.0000    2.0000
   37.0000    3.0000    2.0000
   36.7000    3.0000    2.0000

Fitting a Random Effects Model
Continuing the example from the preceding section, suppose you are studying 
a few factories but you want information about what would happen if you build 
these same car models in a different factory — either one that you already have 
or another that you might construct. To get this information, fit the analysis of 
variance model, specifying a model that includes an interaction term and that 
the factory factor is random.

[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...
'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});
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In the fixed effects version of this fit, which you get by omitting the inputs 
'random',1 in the preceding code, the effect of car model is significant, with a 
p-value of 0.0039. But in this example, which takes into account the random 
variation of the effect of the variable 'Car Model' from one factory to another, 
the effect is still significant, but with a higher p-value of 0.0136.

F Statistics for Models with Random Effects
The F statistic in a model having random effects is defined differently than in 
a model having all fixed effects. In the fixed effects model, you compute the F 
statistic for any term by taking the ratio of the mean square for that term with 
the mean square for error. In a random effects model, however, some F 
statistics use a different mean square in the denominator.

In the example described in “Setting Up the Model” on page 4-18, the effect of 
the variable 'Factory' could vary across car models. In this case, the 
interaction mean square takes the place of the error mean square in the F 
statistic. The F statistic for factory is

F = 1.445 / 0.02

F =

   72.2500
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The degrees of freedom for the statistic are the degrees of freedom for the 
numerator (1) and denominator (2) mean squares. Therefore the p-value for the 
statistic is

pval = 1 - fcdf(F,1,2)

pval =

    0.0136

With random effects, the expected value of each mean square depends not only 
on the variance of the error term, but also on the variances contributed by the 
random effects. You can see these dependencies by writing the expected values 
as linear combinations of contributions from the various model terms. To find 
the coefficients of these linear combinations, enter  stats.ems, which returns 
the ems field of the stats structure.

stats.ems

ans =

    6.0000    0.0000    3.0000    1.0000
    0.0000    9.0000    3.0000    1.0000
    0.0000    0.0000    3.0000    1.0000
         0         0         0    1.0000

To see text representations of the linear combinations, enter

stats.txtems

ans = 

    '6*V(Factory)+3*V(Factory*Car Model)+V(Error)'
    '9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'
    '3*V(Factory*Car Model)+V(Error)'
    'V(Error)'

The expected value for the mean square due to car model (second term) 
includes contributions from a quadratic function of the car model effects, plus 
three times the variance of the interaction term's effect, plus the variance of the 
error term. Notice that if the car model effects were all zero, the expression 
would reduce to the expected mean square for the third term (the interaction 
term). That is why the F statistic for the car model effect uses the interaction 
mean square in the denominator.
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In some cases there is no single term whose expected value matches the one 
required for the denominator of the F statistic. In that case, the denominator 
is a linear combination of mean squares. The stats structure contains fields 
giving the definitions of the denominators for each F statistic. The txtdenom 
field, stats.txtdenom, gives a text representation, and the denom field gives a 
matrix that defines a linear combination of the variances of terms in the model. 
For balanced models like this one, the denom matrix, stats.denom, contains 
zeros and ones, because the denominator is just a single term's mean square.

stats.txtdenom

ans = 

    'MS(Factory*Car Model)'
    'MS(Factory*Car Model)'
    'MS(Error)'

stats.denom

ans =

   -0.0000    1.0000    0.0000
    0.0000    1.0000   -0.0000
    0.0000         0    1.0000

Variance Components
For the model described in “Setting Up the Model” on page 4-18, consider the 
mileage for a particular car of a particular model made at a random factory. 
The variance of that car is the sum of components, or contributions, one from 
each of the random terms.

stats.rtnames

ans = 

    'Factory'
    'Factory*Car Model'
    'Error'

You do not know those variances, but you can estimate them from the data. 
Recall that the ems field of the stats structure expresses the expected value of 
each term's mean square as a linear combination of unknown variances for 
random terms, and unknown quadratic forms for fixed terms. If you take the 
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expected mean square expressions for the random terms, and equate those 
expected values to the computed mean squares, you get a system of equations 
that you can solve for the unknown variances. These solutions are the variance 
component estimates. The varest field contains a variance component 
estimate for each term. The rtnames field contains the names of the random 
terms.

stats.varest

ans =

    4.4426
   -0.0313
    0.1139

Under some conditions, the variability attributed to a term is unusually low, 
and that term's variance component estimate is negative. In those cases it is 
common to set the estimate to zero, which you might do, for example, to create 
a bar graph of the components.

bar(max(0,stats.varest))
set(gca,'xtick',1:3,'xticklabel',stats.rtnames)
bar(max(0,stats.varest))
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You can also compute confidence bounds for the variance estimate. The anovan 
function does this by computing confidence bounds for the variance expected 
mean squares, and finding lower and upper limits on each variance component 
containing all of these bounds. This procedure leads to a set of bounds that is 
conservative for balanced data. (That is, 95% confidence bounds will have a 
probability of at least 95% of containing the true variances if the number of 
observations for each combination of grouping variables is the same.) For 
unbalanced data, these are approximations that are not guaranteed to be 
conservative. 

[{'Term' 'Estimate' 'Lower' 'Upper'};
 stats.rtnames, num2cell([stats.varest stats.varci])]

ans = 

    'Term'                 'Estimate'    'Lower'     'Upper'   
    'Factory'              [  4.4426]    [1.0736]    [175.6038]
    'Factory*Car Model'    [ -0.0313]    [   NaN]    [     NaN]
    'Error'                [  0.1139]    [0.0586]    [  0.3103]

Factory Factory*Car Model Error
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Analysis of Covariance
Analysis of covariance is a technique for analyzing grouped data having a 
response (y, the variable to be predicted) and a predictor (x, the variable used 
to do the prediction). Using analysis of covariance, you can model y as a linear 
function of x, with the coefficients of the line possibly varying from group to 
group. 

The aoctool Demo
The aoctool demo is an interactive graphical environment for fitting and 
prediction with analysis of covariance (anocova) models. It is similar to the 
polytool demo. The aoctool function fits the following models for the ith 
group:

In the parallel lines model, for example, the intercept varies from one group to 
the next, but the slope is the same for each group. In the same mean model, 
there is a common intercept and no slope. In order to make the group 
coefficients well determined, the demo imposes the constraints

 .

The following sections provide an illustrative example. 

• “Exploring the aoctool Interface” on page 4-26

• “Confidence Bounds” on page 4-29

• “Multiple Comparisons” on page 4-31

Same mean

Separate means

Same line

Parallel lines

Separate lines

y α ε+=

y α αi+( ) ε+=

y α βx ε+ +=

y α αi+( ) βx ε+ +=

y α αi+( ) β βi+( )x ε+ +=

αj∑ βj∑ 0= =
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Exploring the aoctool Interface

1 Load the data. The Statistics Toolbox has a small data set with information 
about cars from the years 1970, 1976, and 1982. This example studies the 
relationship between the weight of a car and its mileage, and whether this 
relationship has changed over the years. To start the demonstration, load 
the data set.

load carsmall

The Workspace browser shows the variables in the data set.

You can also use aoctool with your own data. 

2 Start the tool. The following command calls aoctool to fit a separate line to 
the column vectors Weight and MPG for each of the three model group defined 
in Model_Year. The initial fit models the y variable, MPG, as a linear function 
of the x variable, Weight. 

[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);
Note: 6 observations with missing values have been removed.

See the aoctool function reference page for detailed information about calling 
aoctool.
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3 Examine the output. The graphical output consists of a main window with 
a plot, a table of coefficient estimates, and an analysis of variance table. In 
the plot, each Model_Year group has a separate line. The data points for each 
group are coded with the same color and symbol, and the fit for each group 
has the same color as the data points. 

The coefficients of the three lines appear in the figure titled ANOCOVA 
Coefficients. You can see that the slopes are roughly -0.0078, with a small 
deviation for each group:

Model year 1970:

Model year 1976:

Model year 1982:

y 45.9798 8.5805–( ) 0.0078 0.002+–( )x ε+ +=

y 45.9798 3.8902–( ) 0.0078 0.0011+–( )x ε+ +=

y 45.9798 12.4707+( ) 0.0078– 0.0031–( )x ε+ +=
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Because the three fitted lines have slopes that are roughly similar, you may 
wonder if they really are the same. The Model_Year*Weight interaction 
expresses the difference in slopes, and the ANOVA table shows a test for the 
significance of this term. With an F statistic of 5.23 and a p-value of 0.0072, 
the slopes are significantly different.

4 Constrain the slopes to be the same. To examine the fits when the slopes 
are constrained to be the same, return to the ANOCOVA Prediction Plot 
window and use the Model pop-up menu to select a Parallel Lines model. 
The window updates to show the following graph.
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Though this fit looks reasonable, it is significantly worse than the Separate 
Lines model. Use the Model pop-up menu again to return to the original 
model.

Confidence Bounds
The example in “Exploring the aoctool Interface” on page 4-26 provides 
estimates of the relationship between MPG and Weight for each Model_Year, but 
how accurate are these estimates? To find out, you can superimpose confidence 
bounds on the fits by examining them one group at a time. 

1 In the Model_Year menu at the lower right of the figure, change the setting 
from All Groups to 82. The data and fits for the other groups are dimmed, 
and confidence bounds appear around the 82 fit.
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The dashed lines form an envelope around the fitted line for model year 82. 
Under the assumption that the true relationship is linear, these bounds 
provide a 95% confidence region for the true line. Note that the fits for the 
other model years are well outside these confidence bounds for Weight 
values between 2000 and 3000. 

2 Sometimes it is more valuable to be able to predict the response value for a 
new observation, not just estimate the average response value. Use the 
aoctool function Bounds menu to change the definition of the confidence 
bounds from Line to Observation. The resulting wider intervals reflect the 
uncertainty in the parameter estimates as well as the randomness of a new 
observation.
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Like the polytool function, the aoctool function has crosshairs that you 
can use to manipulate the Weight and watch the estimate and confidence 
bounds along the y-axis update. These values appear only when a single 
group is selected, not when All Groups is selected.

Multiple Comparisons
You can perform a multiple comparison test by using the stats output 
structure from aoctool as input to the multcompare function. The 
multcompare function can test either slopes, intercepts, or population marginal 
means (the predicted MPG of the mean weight for each group). The example 
“Exploring the aoctool Interface” on page 4-26, shows that the slopes are not all 
the same, but could it be that two are the same and only the other one is 
different? You can test that hypothesis.
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multcompare(stats,0.05,'on','','s')

ans =
    1.0000    2.0000   -0.0012    0.0008    0.0029
    1.0000    3.0000    0.0013    0.0051    0.0088
    2.0000    3.0000    0.0005    0.0042    0.0079

This matrix shows that the estimated difference between the intercepts of 
groups 1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the 
difference is [-0.0012, 0.0029]. There is no significant difference between the 
two. There are significant differences, however, between the intercept for 1982 
and each of the other two. The graph shows the same information.

Note that the stats structure was created in the initial call to the aoctool 
function, so it is based on the initial model fit (typically a separate-lines model). 
If you change the model interactively and want to base your multiple 
comparisons on the new model, you need to run aoctool again to get another 
stats structure, this time specifying your new model as the initial model.
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Multiple Linear Regression
The purpose of multiple linear regression is to establish a quantitative 
relationship between a group of predictor variables (the columns of X) and a 
response, y. This relationship is useful for:

• Understanding which predictors have the greatest effect.

• Knowing the direction of the effect (i.e., increasing x increases/decreases y).

• Using the model to predict future values of the response when only the 
predictors are currently known.

The following sections explain multiple linear regression in greater detail:

• “Mathematical Foundations of Multiple Linear Regression” on page 4-33

• “Example: Multiple Linear Regression” on page 4-35

• “Polynomial Curve Fitting Demo” on page 4-36

Mathematical Foundations of Multiple Linear 
Regression
The linear model takes its common form

where:

• y is an n-by-1 vector of observations.

• X is an n-by-p matrix of regressors.

• β is a p-by-1 vector of parameters.

• ε is an n-by-1 vector of random disturbances.

The solution to the problem is a vector, b, which estimates the unknown vector 
of parameters, β. The least squares solution is

This equation is useful for developing later statistical formulas, but has poor 
numeric properties. regress uses QR decomposition of X followed by the 
backslash operator to compute b. The QR decomposition is not necessary for 
computing b, but the matrix R is useful for computing confidence intervals.

y Xβ ε+=

b β̂ XTX( )
1–
XTy= =
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You can plug b back into the model formula to get the predicted y values at the 
data points.

Note  Statisticians use a hat (circumflex) over a letter to denote an estimate 
of a parameter or a prediction from a model. The projection matrix H is called 
the hat matrix, because it puts the “hat” on y.

The residuals are the difference between the observed and predicted y values.

The residuals are useful for detecting failures in the model assumptions, since 
they correspond to the errors, ε, in the model equation. By assumption, these 
errors each have independent normal distributions with mean zero and a 
constant variance.

The residuals, however, are correlated and have variances that depend on the 
locations of the data points. It is a common practice to scale (“Studentize”) the 
residuals so they all have the same variance.

In the equation below, the scaled residual, ti, has a Student’s t distribution 
with (n-p-1) degrees of freedom

where

and:

• ti is the scaled residual for the ith data point.

• ri is the raw residual for the ith data point.

ŷ Xb Hy= =

H X XTX( )
1–
XT

=

r y ŷ–= I H–( )y=

ti
ri

σ̂ i( ) 1 hi–
----------------------------=

  σ̂
2

i( )
r 2

n p– 1–
----------------------

ri
2

n p– 1–( ) 1 hi–( )
-----------------------------------------------–=
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• n is the sample size.

• p is the number of parameters in the model.

• hi is the ith diagonal element of H.

The left-hand side of the second equation is the estimate of the variance of the 
errors excluding the ith data point from the calculation.

A hypothesis test for outliers involves comparing ti with the critical values of 
the t distribution. If ti is large, this casts doubt on the assumption that this 
residual has the same variance as the others.

A confidence interval for the mean of each error is

Confidence intervals that do not include zero are equivalent to rejecting the 
hypothesis (at a significance probability of α) that the residual mean is zero. 
Such confidence intervals are good evidence that the observation is an outlier 
for the given model.

Example: Multiple Linear Regression
The example comes from Chatterjee and Hadi [41] in a paper on regression 
diagnostics. The data set (originally from Moore [42]) has five predictor 
variables and one response.

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];

Matrix X has a column of ones, and then one column of values for each of the 
five predictor variables. The column of ones is necessary for estimating the 
y-intercept of the linear model.

y = moore(:,6);
[b,bint,r,rint,stats] = regress(y,X);

The y-intercept is b(1), which corresponds to the column index of the column 
of ones.

ci ri t
1 α

2
--- ν,–⎝ ⎠

⎛ ⎞
± σ̂ i( ) 1 hi–=
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stats
stats =

    0.8107   11.9886    0.0001

The elements of the vector stats are the regression R2 statistic, the F statistic 
(for the hypothesis test that all the regression coefficients are zero), and the 
p-value associated with this F statistic.

R2 is 0.8107 indicating the model accounts for over 80% of the variability in the 
observations. The F statistic of about 12 and its p-value of 0.0001 indicate that 
it is highly unlikely that all of the regression coefficients are zero.

rcoplot(r,rint)

The plot shows the residuals plotted in case order (by row). The 95% confidence 
intervals about these residuals are plotted as error bars. The first observation 
is an outlier since its error bar does not cross the zero reference line.

In problems with just a single predictor, it is simpler to use the polytool 
function (see “Polynomial Curve Fitting Demo” on page 4-36). This function 
can form an X matrix with predictor values, their squares, their cubes, and so 
on.

Polynomial Curve Fitting Demo
The polytool demo is an interactive graphic environment for polynomial curve 
fitting and prediction. You can use polytool to do curve fitting and prediction 
for any set of x-y data, but, for the sake of demonstration, the Statistics Toolbox 
provides a data set (polydata.mat) to illustrate some basic concepts.

0 5 10 15 20

-0.5

0

0.5

R
es

id
ua

ls

Case Number



Multiple Linear Regression

4-37

With the polytool demo you can

• Plot the data, the fitted polynomial, and global confidence bounds on a new 
predicted value.

• Change the degree of the polynomial fit.

• Evaluate the polynomial at a specific x-value, or drag the vertical reference 
line to evaluate the polynomial at varying x-values.

• Display the predicted y-value and its uncertainty at the current x-value.

• Control the confidence bounds and choose between least squares or robust 
fitting.

• Export fit results to the workspace.

Note  From the command line, you can call polytool and specify the data set, 
the order of the polynomial, and the confidence intervals, as well as labels to 
replace X Values and Y Values. See the polytool function reference page for 
details. 

The following sections explore the use of polytool:

• “Fitting a Polynomial” on page 4-37

• “Confidence Bounds” on page 4-40

Fitting a Polynomial

1 Load the data. Before you start the demonstration, you must first load a 
data set. This example uses polydata.mat. For this data set, the variables x 
and y are observations made with error from a cubic polynomial. The 
variables x1 and y1 are data points from the “true” function without error.

load polydata

Your variables appear in the Workspace browser.
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2 Try a linear fit. Run polytool and provide it with the data to which the 
polynomial is fit. Because this code does not specify the degree of the 
polynomial, polytool does a linear fit to the data.

polytool(x,y)

The linear fit is not very good. The bulk of the data with x-values between 0 
and 2 has a steeper slope than the fitted line. The two points to the right are 
dragging down the estimate of the slope.

Predicted 
value

Polynomial 
degree

95% 
confidence 
interval

Draggable 
reference 
line

Lower 
confidence 
bound

Fitted line

Upper 
confidence 
bound

x-value

Data points

Export to 
workspace
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3 Try a cubic fit. In the Degree text box at the top, type 3 for a cubic model. 
Then, drag the vertical reference line to the x-value of 2 (or type 2 in the 
X Values text box).

This graph shows a much better fit to the data. The confidence bounds are 
closer together indicating that there is less uncertainty in prediction. The 
data at both ends of the plot track the fitted curve. 

4 Finally, overfit the data. If the cubic polynomial is a good fit, it is tempting 
to try a higher order polynomial to see if even more precise predictions are 
possible. Since the true function is cubic, this amounts to overfitting the 
data. Use the data entry box for degree and type 5 for a quintic model. 
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As measured by the confidence bounds, the fit is precise near the data 
points. But, in the region between the data groups, the uncertainty of 
prediction rises dramatically.

This bulge in the confidence bounds happens because the data really does 
not contain enough information to estimate the higher order polynomial 
terms precisely, so even interpolation using polynomials can be risky in 
some cases.

Confidence Bounds
By default, the confidence bounds are nonsimultaneous bounds for a new 
observation. What does this mean? Let  be the true but unknown function 
you want to estimate. The graph contains the following three curves:

• , the fitted function

• , the lower confidence bounds

• , the upper confidence bounds

p x( )

f x( )
l x( )
u x( )
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Suppose you plan to take a new observation at the value . Call it 
. This new observation has its own error , so it satisfies the 

equation

What are the likely values for this new observation? The confidence bounds 
provide the answer. The interval [ , ] is a 95% confidence bound for 

.

These are the default bounds, but the Bounds menu on the polytool figure 
window provides options for changing the meaning of these bounds. This menu 
has options that enable you to specify whether the bounds should be 
simultaneous or not, and whether the bounds are to apply to the estimated 
function, i.e., curve, or to a new observation. Using these options you can 
produce any of the following types of confidence bounds.

Simultaneous? For Quantity Yields Confidence Bounds for

Nonsimultaneous Observation  (default)

Nonsimultaneous Curve

Simultaneous Observation , globally for any x

Simultaneous Curve , simultaneously for all x

xn 1+
yn 1+ xn 1+( ) εn 1+

yn 1+ xn 1+( ) p xn 1+( ) εn 1++=

ln 1+ un 1+
yn 1+ xn 1+( )

yn 1+ xn 1+( )

p xn 1+( )

yn 1+ x( )

p x( )
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Quadratic Response Surface Models
Response Surface Methodology (RSM) is a tool for understanding the 
quantitative relationship between multiple input variables and one output 
variable.

Consider one output, z, as a polynomial function of two inputs, x and y. The 
function z = f(x,y) describes a two-dimensional surface in the space (x,y,z). In 
general, you can have as many input variables as you want and the resulting 
surface becomes a hypersurface. Also, you can have multiple output variables 
with a separate hypersurface for each one.

For three inputs (x1, x2, x3), the equation of a quadratic response surface is

It is difficult to visualize a k-dimensional surface in k+1 dimensional space 
for k>2. The function rstool is a graphical user interface (GUI) designed to 
make this visualization more intuitive, as is discussed in the next section.

Exploring Graphs of Multidimensional Polynomials
The function rstool performs an interactive fit and plot of a multidimensional 
response surface (RSM). Note that, in general, this GUI provides an 
environment for exploration of the graph of a multidimensional polynomial. 

You can learn about rstool by trying the commands below. The chemistry 
behind the data in reaction.mat deals with reaction kinetics as a function of 
the partial pressure of three chemical reactants: hydrogen, n-pentane, and 
isopentane.

load reaction
rstool(reactants,rate,'quadratic',0.01,xn,yn)

rstool displays a “vector” of three plots. The dependent variable of all three 
plots is the reaction rate. The first plot has hydrogen as the independent 

y b0 b1x1 b2x2 b3x3 …

b12x1x2 b13x1x3 b23x2x3 …

b11x1
2 b22x2

2 b33x3
2

+ + + +

+ + + +

+ + +

= (linear terms)

(interaction terms)
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variable. The second and third plots have n-pentane and isopentane 
respectively.

Each plot shows the fitted relationship of the reaction rate to the independent 
variable at a fixed value of the other two independent variables. The fixed 
value of each independent variable is in an editable text box below each axis, 
and is marked by a vertical dashed blue line. You can change the fixed value of 
any independent variable by either typing a new value in the box or by 
dragging any of the three vertical lines to a new position.

When you change the value of an independent variable, all the plots update to 
show the current picture at the new point in the space of the independent 
variables.

Note that while this example only uses three inputs (reactants) and one 
output (rate), rstool can accommodate an arbitrary number of inputs and 
outputs. Interpretability may be limited by the size of your monitor for large 
numbers of inputs or outputs.
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Exporting Variables to the Workspace
Click Export to save variables in the GUI to the base workspace. 
(

Fitted parameters, i.e., coefficients, appear in the following order. Some 
polynomial models use a subset of these terms but keep them in this order. 

1 Constant term

2 Linear terms

3 Interaction terms formed by taking pairwise products of the columns of the 
input matrix

4 Squared terms

Changing the Order of the Polynomial
Below the Export button, there is a pop-up menu that enables you to change 
the polynomial model. If you use the commands above, this menu has the string 
Full Quadratic already selected. The choices are:

• Linear – includes constant and linear terms.

• Pure Quadratic – includes constant, linear and squared terms.

• Interactions – includes constant, linear, and cross product terms.

• Full Quadratic – includes interactions and squared terms. 

• User Specified – available only if you provide a matrix of model terms as the 
third argument to rstool. See the rstool and x2fx function reference pages 
for details.)

The rstool GUI is used by the rsmdemo function to visualize the results of a 
designed experiment for studying a chemical reaction. See “Design of 
Experiments Demo” on page 10-10.
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Stepwise Regression
Stepwise regression is a technique for choosing the variables, i.e., terms, to 
include in a multiple regression model. Forward stepwise regression starts 
with no model terms. At each step it adds the most statistically significant term 
(the one with the highest F statistic or lowest p-value) until there are none left. 
Backward stepwise regression starts with all the terms in the model and 
removes the least significant terms until all the remaining terms are 
statistically significant. It is also possible to start with a subset of all the terms 
and then add significant terms or remove insignificant terms.

An important assumption behind the method is that some input variables in a 
multiple regression do not have an important explanatory effect on the 
response. If this assumption is true, then it is a convenient simplification to 
keep only the statistically significant terms in the model.

One common problem in multiple regression analysis is multicollinearity of the 
input variables. The input variables may be as correlated with each other as 
they are with the response. If this is the case, the presence of one input variable 
in the model may mask the effect of another input. Stepwise regression might 
include different variables depending on the choice of starting model and 
inclusion strategy.

The Statistics includes two functions for performing stepwise regression:

• stepwise — an interactive graphical tool that enables you to explore 
stepwise regression. See “Stepwise Regression Demo” on page 4-45 for an 
example of how to use this tool.

• stepwisefit — a command-line tool for performing stepwise regression. You 
can use stepwisefit to return the results of a stepwise regression to the 
MATLAB workspace.

Stepwise Regression Demo
The stepwise function provides an interactive graphical interface that you can 
use to compare competing models. 

This example uses the Hald ([17], p. 167) data set. The Hald data come from a 
study of the heat of reaction of various cement mixtures. There are four 
components in each mixture, and the amount of heat produced depends on the 
amount of each ingredient in the mixture.
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Here are the commands to get started.

load hald
stepwise(ingredients,heat)

For each term on the y-axis, the plot shows the regression (least squares) 
coefficient as a dot with horizontal bars indicating confidence intervals. Blue 
dots represent terms that are in the model, while red dots indicate terms that 
are not currently in the model. The horizontal bars indicate 90% (colored) and 
95% (grey) confidence intervals.

To the right of each bar, a table lists the value of the regression coefficient for 
that term, along with its t-statistic and p-value. The coefficient for a term that 
is not in the model is the coefficient that would result from adding that term to 
the current model.

From the Stepwise menu, select Scale Inputs to center and normalize the 
columns of the input matrix to have a standard deviation of 1.



Stepwise Regression

4-47

Note  When you call the stepwise function, you can also specify the initial 
state of the model and the confidence levels to use. See the stepwise function 
reference page for details.

Additional Diagnostic Statistics
Several diagnostic statistics appear below the plot. 

• Intercept – the estimated value of the constant term

• RMSE – the root mean squared error of the current model

• R-square – the amount of response variability explained by the model

• Adjusted R-square – the R-square statistic adjusted for the residual degrees 
of freedom

• F – the overall F statistic for the regression

• P – the associated significance probability

Moving Terms In and Out of the Model
There are two ways you can move terms in and out of the model:

• Click on a line in the plot or in the table to toggle the state of the 
corresponding term. The resulting change to the model depends on the color 
of the line:

- Clicking a blue line, corresponding to a term currently in the model, 
removes the term from the model and changes the line to red. 

- Clicking a red line, corresponding to a term currently not in the model, 
adds the term to the model and changes the line to blue.

• Select the recommended step shown under Next Step to the right of the 
table. The recommended step is either to add the most statistically 
significant term, or to remove the least significant term. Click Next Step to 
perform the recommended step. After you do so, the stepwise GUI displays 
the next term to add or remove. When there are no more recommended steps, 
the GUI displays “Move no terms.”

Alternatively, you can perform all the recommended steps at once by clicking 
All Steps. 



4 Linear Models

4-48

Assessing the Effect of Adding a Term
The demo can produce a partial regression leverage plot for the term you 
choose. If the term is not in the model, the plot shows the effect of adding it by 
plotting the residuals of the terms that are in the model against the residuals 
of the chosen term. If the term is in the model, the plot shows the effect of 
adding it if it were not already in the model. That is, the demo plots the 
residuals of all other terms in the model against the residuals of the chosen 
term.

From the Stepwise menu, select Added Variable Plot to display a list of 
terms. Select the term for which you want a plot, and click OK. This example 
selects X4, the recommended term in the figure above.

Model History
The Model History plot shows the RMSE for every model generated during the 
current session. Click one of the dots to return to the model at that point in the 
analysis.

−30 −20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

30
Partial regression leverage plot for X4

X4 residuals

Y
 r

es
id

ua
ls

Adjusted data
Fit: y=−0.738162*x
95% conf. bounds



Stepwise Regression

4-49

Exporting Variables
The Export pop-up menu enables you to export variables from the stepwise 
function to the base workspace. Check the variables you want to export and, 
optionally, change the variable name in the corresponding edit box. Click OK.
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Generalized Linear Models
So far, the functions in this section have dealt with models that have a linear 
relationship between the response and one or more predictors. Sometimes you 
may have a nonlinear relationship instead. To fit nonlinear models you can use 
the functions described in “Nonlinear Regression Models” on page 5-1. 
However, there are some nonlinear models, known as generalized linear 
models, that you can fit using simpler linear methods. To understand 
generalized linear models, first review the linear models you have seen so far. 
Each of these models has the following three characteristics:

• The response has a normal distribution with mean .

• A coefficient vector  defines a linear combination  of the predictors .

• The model equates the two as .

In generalized linear models, these characteristics are generalized as follows:

• The response has a distribution that may be normal, binomial, Poisson, 
gamma, or inverse Gaussian, with parameters including a mean µ.

• A coefficient vector  defines a linear combination  of the predictors .

• A link function  defines the link between the two as .

The following sections explore these models in greater detail.

• “Example: Generalized Linear Models” on page 4-50

• “Generalized Linear Model Demo” on page 4-54

Example: Generalized Linear Models
For example, consider the following data derived from the carbig data set, in 
which the cars have various weights. You record the total number of cars of 
each weight and the number qualifying as poor-mileage cars because their 
miles per gallon value is below some target. Assume that you don’t know the 
miles per gallon for each car, only the number passing the test. It might be 
reasonable to assume that the value of the variable poor follows a binomial 
distribution with parameter N=total and with a p parameter that depends on 
the car weight. A plot shows that the proportion of poor-mileage cars follows a 
nonlinear S-shape.

µ
b X*b X

µ X*b=

b X*b X

f ·( ) f µ( ) X*b=
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w = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';

[w poor total]
ans =
        2100           1          48
        2300           2          42
        2500           0          31
        2700           3          34
        2900           8          31
        3100           8          21
        3300          14          23
        3500          17          23
        3700          19          21
        3900          15          16
        4100          17          17
        4300          21          21

plot(w,poor./total,'x')

This shape is typical of graphs of proportions, as they have natural boundaries 
at 0.0 and 1.0.
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A linear regression model would not produce a satisfactory fit to this graph. Not 
only would the fitted line not follow the data points, it would produce invalid 
proportions less than 0 for light cars, and higher than 1 for heavy cars.

There is a class of regression models for dealing with proportion data. The 
logistic model is one such model. It defines the relationship between proportion 
p and weight w to be

Is this a good model for the data? It would be helpful to graph the data on this 
scale, to see if the relationship appears linear. However, some of the 
proportions are 0 and 1, so you cannot explicitly evaluate the left-hand-side of 
the equation. A useful trick is to compute adjusted proportions by adding small 
increments to the poor and total values — say a half observation to poor and 
a full observation to total. This keeps the proportions within range. A graph 
now shows a more nearly linear relationship.

padj = (poor+.5) ./ (total+1);
plot(w,log(padj./(1-padj)),'x')

p
1 p–
------------⎝ ⎠
⎛ ⎞log b1 b2w+=
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You can use the glmfit function to fit this logistic model.

b = glmfit(w,[poor total],'binomial')

b =
  -13.3801
    0.0042

To use these coefficients to compute a fitted proportion, you have to invert the 
logistic relationship. Some simple algebra shows that the logistic equation can 
also be written as

Fortunately, the function glmval can decode this link function to compute the 
fitted values. Using this function, you can graph fitted proportions for a range 
of car weights, and superimpose this curve on the original scatter plot.

x = 2100:100:4500;
y = glmval(b,x,'logit');
plot(w,poor./total,'x',x,y,'r-')

Generalized linear models can fit a variety of distributions with a variety of 
relationships between the distribution parameters and the predictors. A full 
description is beyond the scope of this document. For more information see 

p 1
1 b– 1 b2w–( )exp+
---------------------------------------------------=
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Dobson [9], or McCullagh and Nelder [30]. Also see the reference material for 
glmfit.

Generalized Linear Model Demo
The glmdemo function begins a slide show describing generalized linear models. 
It presents examples of what functions and distributions are available with 
generalized linear models. It then presents an example where traditional 
linear least squares fitting is not appropriate, and shows how to use the glmfit 
function to fit a logistic regression model and the glmval function to compute 
predictions from that model. (See the glmfit and glmval function reference 
pages for details.)

To run glmdemo from the command line, type playshow glmdemo. 
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Robust and Nonparametric Methods
As mentioned in the previous sections, regression and analysis of variance 
procedures depend on certain assumptions, such as a normal distribution for 
the error term. Sometimes such an assumption is not warranted. For example, 
if the distribution of the errors is asymmetric or prone to extreme outliers, that 
is a violation of the assumption of normal errors.

The Statistics Toolbox has a robust regression function that is useful when 
there may be outliers. Robust methods are designed to be relatively insensitive 
to large changes in a small part of the data.

The Statistics Toolbox also has nonparametric versions of the one-way and 
two-way analysis of variance functions. Unlike classical tests, nonparametric 
tests make only mild assumptions about the data, and are appropriate when 
the distribution of the data is not normal. On the other hand, they are less 
powerful than classical methods for normally distributed data.

The following sections describe the robust regression and nonparametric 
functions in greater detail:

• “Robust Regression” on page 4-55

• “Kruskal-Wallis Test” on page 4-59

• “Friedman’s Test” on page 4-60

Both of the nonparametric functions described here can return a stats 
structure that you can use as input to the multcompare function to perform 
multiple comparisons.

Note  See “Regression and Classification Trees” on page 5-8 for information 
on another type of nonparametric regression.

Robust Regression
“Example: Multiple Linear Regression” on page 4-35 shows that there is an 
outlier when you use ordinary least squares regression to model a response as 
a function of five predictors. How does that outlier affect the results?
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There is a type of regression known as “robust” regression that can be used to 
limit the effect of outliers. The idea is to assign a weight to each point so that 
outliers are given reduced weight. This makes the results less sensitive to the 
presence of outliers. The weighting is done automatically and iteratively as 
follows. In the first iteration, the fit is an ordinary least squares fit with each 
point having the same weight. Then new weights are computed to give lower 
weight to points that are far from their predicted values, and the fit is repeated 
using these weights. The process continues until it converges.

So, to determine how the outlier affects the results in this example, first 
estimate the coefficients using the robustfit function.

load moore
x = moore(:,1:5);
y = moore(:,6);
[br,statsr] = robustfit(x,y);
br
br =
   -1.7742
    0.0000
    0.0009
    0.0002
    0.0062
    0.0001

Compare these estimates to those you obtain from the regress function.

b
b =
   -2.1561
   -0.0000
    0.0013
    0.0001
    0.0079
    0.0001

To understand why the two differ, it is helpful to look at the weight variable 
from the robust fit. It measures how much weight was given to each point 
during the final iteration of the fit. In this case, the first point had a very low 
weight so it was effectively ignored.

statsr.w'
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ans =

  Columns 1 through 7 
    0.0577  0.9977  0.9776  0.9455  0.9687  0.8734  0.9177
  Columns 8 through 14 
    0.9990  0.9653  0.9679  0.9768  0.9882  0.9998  0.9979
  Columns 15 through 20 
    0.8185  0.9757  0.9875  0.9991  0.9021  0.6953

Robust Fitting Demo
The robustdemo function presents a simple comparison of least squares and 
robust fits for a response and a single predictor. You can use data provided by 
the demo or supply your own. See the robustdemo function reference page for 
information about using your own data:

1 Start the demo. To begin using robustdemo with the built-in sample data, 
simply type the function name.

robustdemo

The resulting figure presents a scatter plot with two fitted lines. One line is 
the fit from an ordinary least squares regression. The other is from a robust 
regression. Along the bottom of the figure are the equations for the fitted line 
and the estimated error standard deviation for each fit.

The effect of any point on the least squares fit depends on the residual and 
leverage for that point. The residual is the vertical distance from the point 
to the line. The leverage is a measure of how far the point is from the center 
of the x data. 

The effect of any point on the robust fit also depends on the weight assigned 
to the point. Points far from the line get lower weight.
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2 Compare effects of leverage and weight. Use the right mouse button to 
click on any point and see its least squares leverage and robust weight. 

In this example, the rightmost point has a leverage value of 0.35. It is also 
far from the line, so it exerts a large influence on the least squares fit. It has 
a small weight, though, so it is effectively excluded from the robust fit.

3 See how changes in data affect the two fits. Using the left mouse button, 
select any point, and drag it to a new location while holding the left button 
down. When you release the point, both fits update.

Bringing the rightmost point closer to the line makes the two fitted lines 
nearly identical. Now, the point has nearly full weight in the robust fit.
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Kruskal-Wallis Test
The example “One-Way Analysis of Variance (ANOVA)” on page 4-3 uses 
one-way analysis of variance to determine if the bacteria counts of milk varied 
from shipment to shipment. The one-way analysis rests on the assumption that 
the measurements are independent, and that each has a normal distribution 
with a common variance and with a mean that was constant in each column. 
You can conclude that the column means were not all the same. The following 
example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of 
variance. The assumption behind this test is that the measurements come from 
a continuous distribution, but not necessarily a normal distribution. The test 
is based on an analysis of variance using the ranks of the data values, not the 
data values themselves. Output includes a table similar to an anova table, and 
a box plot.
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You can run this test as follows.

p = kruskalwallis(hogg)
p =
    0.0020

The low p-value means the Kruskal-Wallis test results agree with the one-way 
analysis of variance results.

Friedman’s Test
The example “Two-Way Analysis of Variance (ANOVA)” on page 4-8 uses 
two-way analysis of variance to study the effect of car model and factory on car 
mileage. The example tests whether either of these factors has a significant 
effect on mileage, and whether there is an interaction between these factors. 
The conclusion of the example is there is no interaction, but that each 
individual factor has a significant effect. The next example examines whether 
a nonparametric analysis leads to the same conclusion.

Friedman’s test is a nonparametric test for data having a two-way layout (data 
grouped by two categorical factors). Unlike two-way analysis of variance, 
Friedman’s test does not treat the two factors symmetrically and it does not 
test for an interaction between them. Instead, it is a test for whether the 
columns are different after adjusting for possible row differences. The test is 
based on an analysis of variance using the ranks of the data across categories 
of the row factor. Output includes a table similar to an anova table.

You can run Friedman’s test as follows.

p = friedman(mileage, 3)

ans =

  7.4659e-004

Recall the classical analysis of variance gave a p-value to test column effects, 
row effects, and interaction effects. This p-value is for column effects. Using 
either this p-value or the p-value from ANOVA (p < 0.0001), you conclude that 
there are significant column effects.
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In order to test for row effects, you need to rearrange the data to swap the roles 
of the rows in columns. For a data matrix x with no replications, you could 
simply transpose the data and type

p = friedman(x')

With replicated data it is slightly more complicated. A simple way is to 
transform the matrix into a three-dimensional array with the first dimension 
representing the replicates, swapping the other two dimensions, and restoring 
the two-dimensional shape.

x = reshape(mileage, [3 2 3]);
x = permute(x, [1 3 2]);
x = reshape(x, [9 2])
x =
   33.3000   32.6000
   33.4000   32.5000
   32.9000   33.0000
   34.5000   33.4000
   34.8000   33.7000
   33.8000   33.9000
   37.4000   36.6000
   36.8000   37.0000
   37.6000   36.7000

friedman(x, 3)

ans =

    0.0082

Again, the conclusion is similar to that of the classical analysis of variance. 
Both this p-value and the one from ANOVA (p = 0.0039) lead you to conclude 
that there are significant row effects.

You cannot use Friedman’s test to test for interactions between the row and 
column factors.
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5 
Nonlinear Regression 
Models

Nonlinear Least Squares (p. 5-2) Fits a model that has a known parametric form but 
unknown parameter values.

Regression and Classification Trees 
(p. 5-8)

Approximates a regression relationship using a decision 
tree. Such a tree partitions the data set into regions, 
using values of the predictor variables, so that the 
response variables are roughly constant in each region.
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Nonlinear Least Squares
Response Surface Methodology (RSM) is an empirical modeling approach using 
polynomials as local approximations to the true input/output relationship. This 
empirical approach is often adequate for process improvement in an industrial 
setting.

In scientific applications there is usually relevant theory for constructing a 
mechanistic model. Often such models are nonlinear in the unknown 
parameters. Nonlinear models are more difficult to fit, requiring iterative 
methods that start with an initial guess of the unknown parameters. Each 
iteration alters the current guess until the algorithm converges.

The Statistics Toolbox has functions for fitting nonlinear models of the form

where:

• y is an-n by-1 vector of observations.

• f is any function of X and β.
• X is an n-by-p matrix of input variables.

• β is a p-by-1 vector of unknown parameters to be estimated.

• ε is an n-by-1 vector of random disturbances.

This is explored further in the following sections:

• “Example: Nonlinear Modeling” on page 5-2

• “An Interactive GUI for Nonlinear Fitting and Prediction” on page 5-6

Example: Nonlinear Modeling
The Hougen-Watson model (Bates and Watts, [2], pp. 271-272) for reaction 
kinetics is one specific example of this type. The form of the model is

where β1, β2, ..., β5 are the unknown parameters, and x1, x2, and x3 are the 
three input variables. The three inputs are hydrogen, n-pentane, and 

y f X β,( ) ε+=

rate
β1 x2⋅ x3 β5⁄–

1 β2 x1⋅ β3 x2⋅ β4 x3⋅+ + +
------------------------------------------------------------------------=
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isopentane. It is easy to see that the parameters do not enter the model 
linearly.

The file reaction.mat contains simulated data from this reaction.

load reaction
who
Your variables are:

beta        rate        xn          
model       reactants   yn          

The variables are as follows:

• rate is a 13-by-1 vector of observed reaction rates.

• reactants is a 13-by-3 matrix of reactants.

• beta is 5-by-1 vector of initial parameter estimates.

• model is a string containing the nonlinear function name.

• xn is a string matrix of the names of the reactants.

• yn is a string containing the name of the response.

The data and model are explored further in the following sections:

• “Fitting the Hougen-Watson Model” on page 5-3

• “Confidence Intervals on the Parameter Estimates” on page 5-5

• “Confidence Intervals on the Predicted Responses” on page 5-5

• “An Interactive GUI for Nonlinear Fitting and Prediction” on page 5-6

Fitting the Hougen-Watson Model
The Statistics Toolbox provides the function nlinfit for finding parameter 
estimates in nonlinear modeling. nlinfit returns the least squares parameter 
estimates. That is, it finds the parameters that minimize the sum of the 
squared differences between the observed responses and their fitted values. It 
uses the Gauss-Newton algorithm with Levenberg-Marquardt modifications 
for global convergence.

nlinfit requires the input data, the responses, and an initial guess of the 
unknown parameters. You must also supply the name of a function that takes 
the input data and the current parameter estimate and returns the predicted 
responses. In MATLAB terminology, nlinfit is called a “function” function.
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Here is the hougen function.

function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
%   YHAT = HOUGEN(BETA,X) gives the predicted values of the
%   reaction rate, YHAT, as a function of the vector of 
%   parameters, BETA, and the matrix of data, X.
%   BETA must have five elements and X must have three
%   columns.
%
%   The model form is:
%   y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)

b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);

x1 = x(:,1);
x2 = x(:,2);
x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

To fit the reaction data, call the function nlinfit.

load reaction
betahat = nlinfit(reactants,rate,'hougen',beta)

betahat =

    1.2526
    0.0628
    0.0400
    0.1124
    1.1914

nlinfit has two optional outputs. They are the residuals and Jacobian matrix 
at the solution. The residuals are the differences between the observed and 
fitted responses. The Jacobian matrix is the direct analog of the matrix X in the 
standard linear regression model.
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These outputs are useful for obtaining confidence intervals on the parameter 
estimates and predicted responses.

Confidence Intervals on the Parameter Estimates
Using nlparci, form 95% confidence intervals on the parameter estimates, 
betahat, from the reaction kinetics example.

[betahat,resid,J] = nlinfit(reactants,rate,'hougen',beta);
betaci = nlparci(betahat,resid,J)

betaci =

   -0.7467    3.2519
   -0.0377    0.1632
   -0.0312    0.1113
   -0.0609    0.2857
   -0.7381    3.1208

Confidence Intervals on the Predicted Responses
Using nlpredci, form 95% confidence intervals on the predicted responses 
from the reaction kinetics example.

[yhat,delta] = nlpredci('hougen',reactants,betahat,resid,J);
opd = [rate yhat delta]

opd =

    8.5500    8.2937    0.9178
    3.7900    3.8584    0.7244
    4.8200    4.7950    0.8267
    0.0200   -0.0725    0.4775
    2.7500    2.5687    0.4987
   14.3900   14.2227    0.9666
    2.5400    2.4393    0.9247
    4.3500    3.9360    0.7327
   13.0000   12.9440    0.7210
    8.5000    8.2670    0.9459
    0.0500   -0.1437    0.9537
   11.3200   11.3484    0.9228
    3.1300    3.3145    0.8418
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Matrix opd has the observed rates in column 1 and the predictions in column 2. 
The 95% confidence interval is column 2±column 3. These are simultaneous 
confidence intervals for the estimated function at each input value. They are 
not intervals for new response observations at those inputs, even though most 
of the confidence intervals do contain the original observations.

An Interactive GUI for Nonlinear Fitting and 
Prediction
The function nlintool for nonlinear models is a direct analog of rstool for 
polynomial models. nlintool calls nlinfit and requires the same inputs. 

The purpose of nlintool is larger than just fitting and prediction for nonlinear 
models. This GUI provides an environment for exploring the graph of a 
multidimensional nonlinear function. 

Start by loading the data set reaction.mat and starting nlintool. The 
chemistry behind the data in reaction.mat deals with reaction kinetics as a 
function of the partial pressure of three chemical reactants: hydrogen, 
n-pentane, and isopentane. 

load reaction
nlintool(reactants,rate,'hougen',beta,0.01,xn,yn)

You will see a “vector” of three plots. The dependent variable of all three plots 
is the reaction rate. The first plot has hydrogen as the independent variable. 
The second and third plots have n-pentane and isopentane respectively.
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Each plot shows the fitted relationship of the reaction rate to the independent 
variable at a fixed value of the other two independent variables. The fixed 
value of each independent variable is in an editable text box below each axis. 
You can change the fixed value of any independent variable by either typing a 
new value in the box or by dragging any of the three vertical lines to a new 
position.

When you change the value of an independent variable, all the plots update to 
show the current picture at the new point in the space of the independent 
variables.

Note that while this example only uses three reactants, nlintool can 
accommodate an arbitrary number of independent variables. Interpretability 
may be limited by the size of your monitor for large numbers of inputs.
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Regression and Classification Trees
In nonlinear least squares you suppose that you know the form of the 
relationship between the response and predictor. Suppose instead that you do 
not know that relationship, and also that you are unwilling to assume that the 
relationship can be well approximated by a linear model. You need a more 
nonparametric type of regression fitting approach. One such approach is based 
on “trees.” 

A regression tree is a sequence of questions that can be answered as yes or no, 
plus a set of fitted response values. Each question asks whether a predictor 
satisfies a given condition. Predictors can be continuous or discrete. Depending 
on the answers to one question, you either proceed to another question or arrive 
at a fitted response value. 

This example fits a regression tree to variables from the carsmall data set. The 
example uses the same variables as in the Analysis of Covariance example (see 
“The aoctool Demo” on page 4-25), so there is one continuous predictor (car 
weight) and one discrete predictor (model year). 

The object of the example is to model mileage (MPG) as a function of car weight 
and model year. First load the data and create a matrix x of predictor values 
and a vector y of response variables. Then fit a regression tree, specifying the 
model year column as a categorical variable. In this data set there are cars from 
the three different model years 1970, 1976, and 1982. 

load carsmall
x = [Weight,Model_Year];
y = MPG;
t = treefit(x,y,'catidx',2);
treedisp(t,'name',{'Wt' 'Yr'});
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Now you want to use this model to determine the predicted mileage for a car 
weighing 3000 pounds from model year 1982. Start at the top node. The weight 
is less than the cutoff value of 3085.5, so you take the left branch. The model 
year is not 1970 or 1976, so you take the right branch. Continue moving down 
the tree until you arrive at a terminal node that gives the predicted value. In 
this case, the predicted value is 38 miles per gallon. You can use the treeval 
function to find the fitted value for any set of predictor values. 

treeval(t,[3000 82])

ans =
    38

With a tree like this one, having many branches, there is a danger that it fits 
the current data set well but would not do a good job at predicting new values. 
Some of its lower branches might be strongly affected by outliers and other 
artifacts of the current data set. If possible you would prefer to find a simpler 
tree that avoids this problem of overfitting. 
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You can estimate the best tree size by cross validation. First, compute a 
resubstitution estimate of the error variance for this tree and a sequence of 
simpler trees and plot it as the lower (blue) line in the figure. This estimate 
probably under-estimates the true error variance. Then compute a 
cross-validation estimate of the same quantity and plot it as the upper (red) 
line. The cross-validation procedure also provides an estimate of the pruning 
level, best, needed to achieve the best tree size. 

[c,s,ntn] = treetest(t,'resub');
[c2,s2,n2,best] = treetest(t,'cross',x,y);
plot(ntn,c,'b-', n2,c2,'r-', n2(best+1),c2(best+1),'mo');
xlabel('Number of terminal nodes')
ylabel('Residual variance')
legend('Resubstitution error','Cross-validation 
error','Estimated best tree size')
best

best =
    10

The best tree is the one that has a residual variance that is no more than one 
standard error above the minimum value along the cross-validation line. In 
this case the variance is just over 14. The output best takes on values starting 
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with 0 (representing no pruning), so you need to add 1 to use it as an index into 
the other output arguments. 

c2(best+1)
ans =
   14.3440

Use the output best to create a smaller tree that is pruned to the estimated 
best size. 

t0 = treeprune(t,'level',best);
treedisp(t0,'name',{'Wt' 'Yr'})

Now plot the original data and overlay the fitted values that you get using this 
tree. Notice that this tree does not distinguish between cars from 1970 or 1976, 
so create a vector yold containing fitted values for 1976 and another ynew for 
year 1982. Cars from 1970 have the same fitted values as those from 1976. 
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xx = (1500:20:5000)';
ynew = treeval(t0,[xx 82*ones(size(xx))]);
yold = treeval(t0,[xx 76*ones(size(xx))]);
gscatter(Weight,MPG,Model_Year,'rgb','osx');
hold on; plot(xx,yold,'b:', xx,ynew,'r--'); hold off

The tree functions (treedisp, treefit, treeprune, treetest, and treeval) can 
also accept a categorical response variable. In that case, the fitted value from 
the tree is the category with the highest predicted probability for the range of 
predictor values falling in a given node. The demo Classification, in the 
Multivariate Analysis section of the Statistics Toolbox demos, shows how to use 
decision trees for classification.
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Multivariate Statistics

Principal Components Analysis (p. 6-2) Describes how to perform principal components analysis.

Factor Analysis (p. 6-15) Describes how to perform factor analysis.

Multivariate Analysis of Variance 
(MANOVA) (p. 6-24)

Describes how to perform multivariate analysis of variance.

Cluster Analysis (p. 6-30) Describes how to perform cluster analysis.

Multidimensional Scaling (p. 6-53) Describes how to perform multidimensional scaling.
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Principal Components Analysis
One of the difficulties inherent in multivariate statistics is the problem of 
visualizing data that has many variables. In MATLAB, the plot command 
displays a graph of the relationship between two variables. The plot3 and surf 
commands display different three-dimensional views. But when there are more 
than three variables, it is more difficult to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move 
together. One reason for this is that more than one variable might be 
measuring the same driving principle governing the behavior of the system. In 
many systems there are only a few such driving forces. But an abundance of 
instrumentation enables you to measure dozens of system variables. When this 
happens, you can take advantage of this redundancy of information. You can 
simplify the problem by replacing a group of variables with a single new 
variable. 

Principal components analysis is a quantitatively rigorous method for 
achieving this simplification. The method generates a new set of variables, 
called principal components. Each principal component is a linear combination 
of the original variables. All the principal components are orthogonal to each 
other, so there is no redundant information. The principal components as a 
whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for 
several columns of data. What is so special about the principal component 
basis?

The first principal component is a single axis in space. When you project each 
observation on that axis, the resulting values form a new variable. And the 
variance of this variable is the maximum among all possible choices of the first 
axis.

The second principal component is another axis in space, perpendicular to the 
first. Projecting the observations on this axis generates another new variable. 
The variance of this variable is the maximum among all possible choices of this 
second axis.

The full set of principal components is as large as the original set of variables. 
But it is commonplace for the sum of the variances of the first few principal 
components to exceed 80% of the total variance of the original data. By 
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examining plots of these few new variables, researchers often develop a deeper 
understanding of the driving forces that generated the original data.

You can use the function princomp to find the principal components. The 
following sections provide an example and explain the four outputs of 
princomp:

• “Example: Principal Components Analysis” on page 6-3

• “The Principal Component Coefficients (First Output)” on page 6-6

• “The Component Scores (Second Output)” on page 6-6

• “The Component Variances (Third Output)” on page 6-10

• “Hotelling’s T2 (Fourth Output)” on page 6-11

• “Visualizing the Results of a Principal Components Analysis — The Biplot” 
on page 6-12

To use princomp, you need to have the actual measured data you want to 
analyze. However, if you lack the actual data, but have the sample covariance 
or correlation matrix for the data, you can still use the function pcacov to 
perform a principal components analysis. See the reference page for pcacov for 
a description of its inputs and outputs.

Example: Principal Components Analysis
Consider a sample application that uses nine different indices of the quality of 
life in 329 U.S. cities. These are climate, housing, health, crime, 
transportation, education, arts, recreation, and economics. For each index, 
higher is better. For example, a higher index for crime means a lower crime 
rate.

Start by loading the data in cities.mat.

load cities
whos

  Name             Size         Bytes  Class

  categories       9x14           252  char array
  names          329x43         28294  char array
  ratings        329x9          23688  double array
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The whos command generates a table of information about all the variables in 
the workspace. 

The cities data set contains three variables: 

• categories, a string matrix containing the names of the indices

• names, a string matrix containing the 329 city names

• ratings, the data matrix with 329 rows and 9 columns

The categories variable has the following values:

categories

categories =
   climate       
   housing       
   health        
   crime         
   transportation
   education     
   arts          
   recreation    
   economics     

The first five rows of names are

first5 = names(1:5,:)
first5 =
   Abilene, TX      
   Akron, OH        
   Albany, GA       
   Albany-Troy, NY  
   Albuquerque, NM  

To get a quick impression of the ratings data, make a box plot.

boxplot(ratings,'orientation','horizontal','labels',categories)

This command generates the plot below. Note that there is substantially more 
variability in the ratings of the arts and housing than in the ratings of crime 
and climate. 
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Ordinarily you might also graph pairs of the original variables, but there are 
36 two-variable plots. Perhaps principal components analysis can reduce the 
number of variables you need to consider.

Sometimes it makes sense to compute principal components for raw data. This 
is appropriate when all the variables are in the same units. Standardizing the 
data is often preferable when the variables are in different units or when the 
variance of the different columns is substantial (as in this case). 

You can standardize the data by dividing each column by its standard 
deviation.

stdr = std(ratings);
sr = ratings./repmat(stdr,329,1);

Now you are ready to find the principal components.

[coefs,scores,variances,t2] = princomp(sr);

The following sections explain the four outputs from princomp.
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The Principal Component Coefficients (First Output)
The first output of the princomp function, coefs, contains the coefficients for 
nine principal components. These are the linear combinations of the original 
variables that generate the new variables.

The first three principal component coefficient vectors are

c3 = coefs(:,1:3)
c3 =

    0.2064    0.2178   -0.6900
    0.3565    0.2506   -0.2082
    0.4602   -0.2995   -0.0073
    0.2813    0.3553    0.1851
    0.3512   -0.1796    0.1464
    0.2753   -0.4834    0.2297
    0.4631   -0.1948   -0.0265
    0.3279    0.3845   -0.0509
    0.1354    0.4713    0.6073

The largest coefficients in the first column (first principal component) are the 
third and seventh elements, corresponding to the variables health and arts. 
All the coefficients of the first principal component have the same sign, making 
it a weighted average of all the original variables.

Because the principal components are unit length and orthogonal, 
premultiplying the matrix c3 by its transpose yields the identity matrix.

I = c3'*c3
I =

    1.0000   -0.0000   -0.0000
   -0.0000    1.0000   -0.0000
   -0.0000   -0.0000    1.0000

The Component Scores (Second Output)
The second output, scores, is the original data mapped into the new coordinate 
system defined by the principal components. This output is the same size as the 
input data matrix. 
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A plot of the first two columns of scores shows the ratings data projected onto 
the first two principal components. princomp computes the scores to have mean 
zero. 

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

Note the outlying points in the right half of the plot. 

While it is possible to create a three-dimensional plot using three columns of 
scores, the examples in this section create two-dimensional plots, which are 
easier to describe.

The function gname is useful for graphically identifying a few points in a plot 
like this. You can call gname with a string matrix containing as many case 
labels as points in the plot. The string matrix names works for labeling points 
with the city names.

gname(names)

Move your cursor over the plot and click once near each point in the right half. 
As you click each point, MATLAB labels it with the proper row from the names 
string matrix. When you are finished labeling points, press the Return key. 
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Here is the resulting plot.

The labeled cities are some of the biggest population centers in the United 
States. They are definitely different from the remainder of the data, so perhaps 
they should be considered separately. To remove the labeled cities from the 
data, first identify their corresponding row numbers as follows:

1 Close the plot window.

2 Redraw the plot by entering

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

3 Enter gname without any arguments.

4 Click near the points you labeled in the preceding figure. This labels the 
points by their row numbers, as shown in the following figure.
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Then you can create an index variable containing the row numbers of all the 
metropolitan areas you choose.

metro = [43 65 179 213 234 270 314];
names(metro,:)

ans =
   Boston, MA                  
   Chicago, IL                 
   Los Angeles, Long Beach, CA 
   New York, NY                
   Philadelphia, PA-NJ         
   San Francisco, CA           
   Washington, DC-MD-VA        

To remove these rows from the ratings matrix, enter the following.

rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];
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size(rsubset)
ans =

   322     9

The Component Variances (Third Output)
The third output, variances, is a vector containing the variance explained by 
the corresponding principal component. Each column of scores has a sample 
variance equal to the corresponding element of variances.

variances
variances =

    3.4083
    1.2140
    1.1415
    0.9209
    0.7533
    0.6306
    0.4930
    0.3180
    0.1204

You can easily calculate the percent of the total variability explained by each 
principal component.

percent_explained = 100*variances/sum(variances)
percent_explained =

   37.8699
   13.4886
   12.6831
   10.2324
    8.3698
    7.0062
    5.4783
    3.5338
    1.3378

Use the pareto function to make a scree plot of the percent variability 
explained by each principal component.
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pareto(percent_explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')

The preceding figure shows that the only clear break in the amount of variance 
accounted for by each component is between the first and second components. 
However, that component by itself explains less than 40% of the variance, so 
more components are probably needed. You can see that the first three 
principal components explain roughly two thirds of the total variability in the 
standardized ratings, so that might be a reasonable way to reduce the 
dimensions in order to visualize the data.

Hotelling’s T2 (Fourth Output)
The last output of the princomp function, t2, is Hotelling’s T2, a statistical 
measure of the multivariate distance of each observation from the center of the 
data set. This is an analytical way to find the most extreme points in the data.

[st2, index] = sort(t2,'descend'); % Sort in descending order.
extreme = index(1)
extreme =

   213

names(extreme,:)
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ans =

New York, NY

It is not surprising that the ratings for New York are the furthest from the 
average U.S. town.

Visualizing the Results of a Principal Components 
Analysis — The Biplot
You can use the biplot function to help visualize both the principal component 
coefficients for each variable and the principal component scores for each 
observation in a single plot. For example, the following command plots the 
results from the principal components analysis on the cities and labels each of 
the variables. 

biplot(coefs(:,1:2), 'scores',scores(:,1:2),...
'varlabels',categories);
axis([-.26 1 -.51 .51]);
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Each of the nine variables is represented in this plot by a vector, and the 
direction and length of the vector indicates how each variable contributes to the 
two principal components in the plot. For example, you have seen that the first 
principal component, represented in this biplot by the horizontal axis, has 
positive coefficients for all nine variables. That corresponds to the nine vectors 
directed into the right half of the plot. You have also seen that the second 
principal component, represented by the vertical axis, has positive coefficients 
for the variables education, health, arts, and education, and negative 
coefficients for the remaining five variables. That corresponds to vectors 
directed into the top and bottom halves of the plot, respectively. This indicates 
that this component distinguishes between cities that have high values for the 
first set of variables and low for the second, and cities that have the opposite. 

The variable labels in this figure are somewhat crowded. You could either leave 
out the 'VarLabels' parameter when making the plot, or simply select and drag 
some of the labels to better positions using the Edit Plot tool from the figure 
window toolbar. 

Each of the 329 observations is represented in this plot by a point, and their 
locations indicate the score of each observation for the two principal 
components in the plot. For example, points near the left edge of this plot have 
the lowest scores for the first principal component. The points are scaled to fit 
within the unit square, so only their relative locations may be determined from 
the plot. 

You can use the Data Cursor, in the Tools menu in the figure window, to 
identify the items in this plot. By clicking on a variable (vector), you can read 
off that variable's coefficients for each principal component. By clicking on an 
observation (point), you can read off that observation's scores for each principal 
component. 

You can also make a biplot in three dimensions. This can be useful if the first 
two principal coordinates do not explain enough of the variance in your data. 
Selecting Rotate 3D in the Tools menu enables you to rotate the figure to see 
it from different angles. 

biplot(coefs(:,1:3), 'scores',scores(:,1:3),... 
'obslabels',names);
axis([-.26 1 -.51 .51 -.61 .81]);
view([30 40]);
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Factor Analysis
Multivariate data often includes a large number of measured variables, and 
sometimes those variables overlap, in the sense that groups of them might be 
dependent. For example, in a decathlon, each athlete competes in 10 events, 
but several of them can be thought of as speed events, while others can be 
thought of as strength events, etc. Thus, you can think of a competitor's 10 
event scores as largely dependent on a smaller set of three or four types of 
athletic ability. 

Factor analysis is a way to fit a model to multivariate data to estimate just this 
sort of interdependence. In a factor analysis model, the measured variables 
depend on a smaller number of unobserved (latent) factors. Because each factor 
might affect several variables in common, they are known as common factors. 
Each variable is assumed to be dependent on a linear combination of the 
common factors, and the coefficients are known as loadings. Each measured 
variable also includes a component due to independent random variability, 
known as “specific variance” because it is specific to one variable. 

Specifically, factor analysis assumes that the covariance matrix of your data is 
of the form 

where  is the matrix of loadings, and the elements of the diagonal matrix  
are the specific variances. The function factoran fits the Factor Analysis 
model using maximum likelihood. 

This section includes these topics:

• “Example: Finding Common Factors Affecting Stock Prices” on page 6-16

• “Factor Rotation” on page 6-18

• “Predicting Factor Scores” on page 6-19

• “Visualizing the Results of a Factor Analysis — The Biplot” on page 6-21

• “Comparison of Factor Analysis and Principal Components Analysis” on 
page 6-23
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Example: Finding Common Factors Affecting Stock 
Prices
Over the course of 100 weeks, the percent change in stock prices for ten 
companies has been recorded. Of the ten companies, the first four can be 
classified as primarily technology, the next three as financial, and the last 
three as retail. It seems reasonable that the stock prices for companies that are 
in the same sector might vary together as economic conditions change. Factor 
Analysis can provide quantitative evidence that companies within each sector 
do experience similar week-to-week changes in stock price. 

In this example, you first load the data, and then call factoran, specifying a 
model fit with three common factors. By default, factoran computes rotated 
estimates of the loadings to try and make their interpretation simpler. But in 
this example, you specify an unrotated solution. 

load stockreturns
[Loadings,specificVar,T,stats] = factoran(stocks,3,...
                                          'rotate','none');

The first two factoran return arguments are the estimated loadings and the 
estimated specific variances. Each row of the loadings matrix represents one of 
the ten stocks, and each column corresponds to a common factor. With 
unrotated estimates, interpretation of the factors in this fit is difficult because 
most of the stocks contain fairly large coefficients for two or more factors. 

Loadings
Loadings =
       0.8885    0.2367   -0.2354
       0.7126    0.3862    0.0034
       0.3351    0.2784   -0.0211
       0.3088    0.1113   -0.1905
       0.6277   -0.6643    0.1478
       0.4726   -0.6383    0.0133
       0.1133   -0.5416    0.0322
       0.6403    0.1669    0.4960
       0.2363    0.5293    0.5770
       0.1105    0.1680    0.5524
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Note  “Factor Rotation” on page 6-18 helps to simplify the structure in the 
Loadings matrix, to make it easier to assign meaningful interpretations to the 
factors. 

From the estimated specific variances, you can see that the model indicates 
that a particular stock price varies quite a lot beyond the variation due to the 
common factors. 

specificVar
specificVar =
       0.0991
       0.3431
       0.8097
       0.8559
       0.1429
       0.3691
       0.6928
       0.3162
       0.3311
       0.6544

A specific variance of 1 would indicate that there is no common factor 
component in that variable, while a specific variance of 0 would indicate that 
the variable is entirely determined by common factors. These data seem to fall 
somewhere in between. 

The p-value returned in the stats structure fails to reject the null hypothesis 
of three common factors, suggesting that this model provides a satisfactory 
explanation of the covariation in these data. 

stats.p
ans =
       0.8144

To determine whether fewer than three factors can provide an acceptable fit, 
you can try a model with two common factors. The p-value for this second fit is 
highly significant, and rejects the hypothesis of two factors, indicating that the 
simpler model is not sufficient to explain the pattern in these data. 

[Loadings2,specificVar2,T2,stats2] = factoran(stocks, 2,...
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                                     'rotate','none');
stats2.p
ans =
      3.5610e-006

Factor Rotation
As the results in “Example: Finding Common Factors Affecting Stock Prices” 
on page 6-16 illustrate, the estimated loadings from an unrotated factor 
analysis fit can have a complicated structure. The goal of factor rotation is to 
find a parameterization in which each variable has only a small number of 
large loadings. That is, each variable is affected by a small number of factors, 
preferably only one. This can often make it easier to interpret what the factors 
represent. 

If you think of each row of the loadings matrix as coordinates of a point in 
M-dimensional space, then each factor corresponds to a coordinate axis. Factor 
rotation is equivalent to rotating those axes and computing new loadings in the 
rotated coordinate system. There are various ways to do this. Some methods 
leave the axes orthogonal, while others are oblique methods that change the 
angles between them. For this example, you can rotate the estimated loadings 
by using the promax criterion, a common oblique method. 

[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');
LoadingsPM
LoadingsPM =
       0.9452    0.1214   -0.0617
       0.7064   -0.0178    0.2058
       0.3885   -0.0994    0.0975
       0.4162   -0.0148   -0.1298
       0.1021    0.9019    0.0768
       0.0873    0.7709   -0.0821
      -0.1616    0.5320   -0.0888
       0.2169    0.2844    0.6635
       0.0016   -0.1881    0.7849
      -0.2289    0.0636    0.6475

Promax rotation creates a simpler structure in the loadings, one in which most 
of the stocks have a large loading on only one factor. To see this structure more 
clearly, you can use the biplot function to plot each stock using its factor 
loadings as coordinates. 
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biplot(LoadingsPM,'varlabels',num2str((1:10)'));
axis square
view(155,27);

This plot shows that promax has rotated the factor loadings to a simpler 
structure. Each stock depends primarily on only one factor, and it is possible to 
describe each factor in terms of the stocks that it affects. Based on which 
companies are near which axes, you could reasonably conclude that the first 
factor axis represents the financial sector, the second retail, and the third 
technology. The original conjecture, that stocks vary primarily within sector, is 
apparently supported by the data. 

Predicting Factor Scores
Sometimes, it is useful to be able to classify an observation based on its factor 
scores. For example, if you accepted the three-factor model and the 
interpretation of the rotated factors, you might want to categorize each week 
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in terms of how favorable it was for each of the three stock sectors, based on the 
data from the ten observed stocks. 

Because the data in this example are the raw stock price changes, and not just 
their correlation matrix, you can have factoran return estimates of the value 
of each of the three rotated common factors for each week. You can then plot 
the estimated scores to see how the different stock sectors were affected during 
each week. 

[LoadingsPM,specVarPM,TPM,stats,F] = factoran(stocks, 3,...
                                     'rotate','promax');
subplot(1,1,1); 
plot3(F(:,1),F(:,2),F(:,3),'b.');
line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],...
     [0 0 NaN 0 0 NaN -4 4], 'Color','black');
xlabel('Financial Sector'); 
ylabel('Retail Sector'); 
zlabel('Technology Sector');
grid on; 
axis square;
view(-22.5, 8);
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Oblique rotation often creates factors that are correlated. This plot shows some 
evidence of correlation between the first and third factors, and you can 
investigate further by computing the estimated factor correlation matrix. 

inv(TPM'*TPM)
ans =
       1.0000    0.1559    0.4082
       0.1559    1.0000   -0.0559
       0.4082   -0.0559    1.0000

Visualizing the Results of a Factor Analysis — The 
Biplot
You can use the biplot function to help visualize both the factor loadings for 
each variable and the factor scores for each observation in a single plot. For 
example, the following command plots the results from the factor analysis on 
the stock data and labels each of the 10 stocks. 

biplot(LoadingsPM, 'scores',F, 'varlabels',num2str((1:10)'));
xlabel('Financial Sector'); ylabel('Retail Sector'); 
zlabel('Technology Sector');
axis square
view(155,27);
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In this case, the factor analysis includes three factors, and so the biplot is 
three-dimensional. Each of the 10 stocks is represented in this plot by a vector, 
and the direction and length of the vector indicates how each stock depends on 
the underlying factors. For example, you have seen that after promax rotation, 
the first four stocks have positive loadings on the first factor, and unimportant 
loadings on the other two factors. That first factor, interpreted as a financial 
sector effect, is represented in this biplot as one of the horizontal axes. The 
dependence of those four stocks on that factor corresponds to the four vectors 
directed approximately along that axis. Similarly, the dependence of stocks 5, 
6, and 7 primarily on the second factor, interpreted as a retail sector effect, is 
represented by vectors directed approximately along that axis. 

Each of the 100 observations is represented in this plot by a point, and their 
locations indicate the score of each observation for the three factors. For 
example, points near the top of this plot have the highest scores for the 
technology sector factor. The points are scaled to fit within the unit square, so 
only their relative locations can be determined from the plot. 
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You can use the Data Cursor tool from the Tools menu in the figure window 
to identify the items in this plot. By clicking a stock (vector), you can read off 
that stock's loadings for each factor. By clicking an observation (point), you can 
read off that observation’s scores for each factor. 

Comparison of Factor Analysis and Principal 
Components Analysis
There is a good deal of overlap in terminology and goals between principal 
components analysis (PCA) and factor analysis (FA). Much of the literature on 
the two methods does not distinguish between them, and some algorithms for 
fitting the FA model involve PCA. Both are dimension-reduction techniques, in 
the sense that they can be used to replace a large set of observed variables with 
a smaller set of new variables. However, the two methods are different in their 
goals and in their underlying models. Roughly speaking, you should use PCA 
when you simply need to summarize or approximate your data using fewer 
dimensions (to visualize it, for example), and you should use FA when you need 
an explanatory model for the correlations among your data. 
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Multivariate Analysis of Variance (MANOVA)
The analysis of variance technique in “One-Way Analysis of Variance 
(ANOVA)” on page 4-3 takes a set of grouped data and determine whether the 
mean of a variable differs significantly between groups. Often there are 
multiple variables, and you are interested in determining whether the entire 
set of means is different from one group to the next. There is a multivariate 
version of analysis of variance that can address that problem, as illustrated in 
the following example.

Example: Multivariate Analysis of Variance
The carsmall data set has measurements on a variety of car models from the 
years 1970, 1976, and 1982. Suppose you are interested in whether the 
characteristics of the cars have changed over time.

First, load the data.

load carsmall
whos

  Name              Size          Bytes  Class

  Acceleration     100x1            800  double array
  Cylinders        100x1            800  double array
  Displacement     100x1            800  double array
  Horsepower       100x1            800  double array
  MPG              100x1            800  double array
  Model            100x36          7200  char array
  Model_Year       100x1            800  double array
  Origin           100x7           1400  char array
  Weight           100x1            800  double array

Four of these variables (Acceleration, Displacement, Horsepower, and MPG) 
are continuous measurements on individual car models. The variable 
Model_Year indicates the year in which the car was made. You can create a 
grouped plot matrix of these variables using the gplotmatrix function.

x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+xo')
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(When the second argument of gplotmatrix is empty, the function graphs the 
columns of the x argument against each other, and places histograms along the 
diagonals. The empty fourth argument produces a graph with the default 
colors. The fifth argument controls the symbols used to distinguish between 
groups.)

It appears the cars do differ from year to year. The upper right plot, for 
example, is a graph of MPG versus Weight. The 1982 cars appear to have higher 
mileage than the older cars, and they appear to weigh less on average. But as 
a group, are the three years significantly different from one another? The 
manova1 function can answer that question.

[d,p,stats] = manova1(x,Model_Year)

d =
     2

p =

  1.0e-006 *
         0
    0.1141

stats = 
           W: [4x4 double]

2000 3000 4000200 400100 20020 40
2000

3000

4000

100

200

300

400

10

20

30

40

50

100

150

200

70
76
82



6 Multivariate Statistics

6-26

           B: [4x4 double]
           T: [4x4 double]
         dfW: 90
         dfB: 2
         dfT: 92
      lambda: [2x1 double]
       chisq: [2x1 double]
     chisqdf: [2x1 double]
    eigenval: [4x1 double]
    eigenvec: [4x4 double]
       canon: [100x4 double]
       mdist: [100x1 double]
      gmdist: [3x3 double]

The manova1 function produces three outputs:

• The first output, d, is an estimate of the dimension of the group means. If the 
means were all the same, the dimension would be 0, indicating that the 
means are at the same point. If the means differed but fell along a line, the 
dimension would be 1. In the example the dimension is 2, indicating that the 
group means fall in a plane but not along a line. This is the largest possible 
dimension for the means of three groups.

• The second output, p, is a vector of p-values for a sequence of tests. The first 
p-value tests whether the dimension is 0, the next whether the dimension 
is 1, and so on. In this case both p-values are small. That’s why the estimated 
dimension is 2.

• The third output, stats, is a structure containing several fields, described in 
the following section.

The Fields of the stats Structure
The W, B, and T fields are matrix analogs to the within, between, and total sums 
of squares in ordinary one-way analysis of variance. The next three fields are 
the degrees of freedom for these matrices. Fields lambda, chisq, and chisqdf 
are the ingredients of the test for the dimensionality of the group means. (The 
p-values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in 
principal components analysis (“Principal Components Analysis” on page 6-2) 
you look for the combination of the original variables that has the largest 
possible variation. In multivariate analysis of variance, you instead look for the 
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linear combination of the original variables that has the largest separation 
between groups. It is the single variable that would give the most significant 
result in a univariate one-way analysis of variance. Having found that 
combination, you next look for the combination with the second highest 
separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear 
combinations of the original variables. The eigenval field is a vector 
measuring the ratio of the between-group variance to the within-group 
variance for the corresponding linear combination. The canon field is a matrix 
of the canonical variable values. Each column is a linear combination of the 
mean-centered original variables, using coefficients from the eigenvec matrix.

A grouped scatter plot of the first two canonical variables shows more 
separation between groups then a grouped scatter plot of any pair of original 
variables. In this example it shows three clouds of points, overlapping but with 
distinct centers. One point in the bottom right sits apart from the others. By 
using the gname function, you can see that this is the 20th point.

c1 = stats.canon(:,1);
c2 = stats.canon(:,2);
gscatter(c2,c1,Model_Year,[],'oxs')
gname
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Roughly speaking, the first canonical variable, c1, separates the 1982 cars 
(which have high values of c1) from the older cars. The second canonical 
variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The 
mdist field measures the distance from each point to its group mean. Points 
with large values may be outliers. In this data set, the largest outlier is the one 
in the scatter plot, the Buick Estate station wagon. (Note that you could have 
supplied the model name to the gname function above if you wanted to label the 
point with its model name rather than its row number.)

max(stats.mdist)
ans =

   31.5273

find(stats.mdist == ans)
ans =

    20

Model(20,:)
ans =

buick_estate_wagon_(sw) 

The gmdist field measures the distances between each pair of group means. 
The following commands examine the group means and their distances:

grpstats(x, Model_Year)

ans =

  1.0e+003 *
    0.0177    0.1489    0.2869    3.4413
    0.0216    0.1011    0.1978    3.0787
    0.0317    0.0815    0.1289    2.4535

stats.gmdist

ans =
         0    3.8277   11.1106
    3.8277         0    6.1374
   11.1106    6.1374         0
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As might be expected, the multivariate distance between the extreme years 
1970 and 1982 (11.1) is larger than the difference between more closely spaced 
years (3.8 and 6.1). This is consistent with the scatter plots, where the points 
seem to follow a progression as the year changes from 1970 through 1976 to 
1982. If you had more groups, you might find it instructive to use the 
manovacluster function to draw a diagram that presents clusters of the 
groups, formed using the distances between their means.
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Cluster Analysis
Cluster analysis, also called segmentation analysis or taxonomy analysis, is a 
way to create groups of objects, or clusters, in such a way that the profiles of 
objects in the same cluster are very similar and the profiles of objects in 
different clusters are quite distinct. 

Cluster analysis can be performed on many different types of data sets. For 
example, a data set might contain a number of observations of subjects in a 
study where each observation contains a set of variables.

Many different fields of study, such as engineering, zoology, medicine, 
linguistics, anthropology, psychology, and marketing, have contributed to the 
development of clustering techniques and the application of such techniques. 
For example, cluster analysis can help in creating “balanced” treatment and 
control groups for a designed study. If you find that each cluster contains 
roughly equal numbers of treatment and control subjects, then statistical 
differences found between the groups can be attributed to the experiment and 
not to any initial difference between the groups. 

This section explores two kinds of clustering:

• “Hierarchical Clustering” on page 6-30

• “K-Means Clustering” on page 6-46

Hierarchical Clustering
Hierarchical clustering is a way to investigate grouping in your data, 
simultaneously over a variety of scales, by creating a cluster tree. The tree is 
not a single set of clusters, but rather a multilevel hierarchy, where clusters at 
one level are joined as clusters at the next higher level. This allows you to 
decide what level or scale of clustering is most appropriate in your application.

The following sections explore the hierarchical clustering features in the 
Statistics Toolbox:

• “Terminology and Basic Procedure” on page 6-31

• “Finding the Similarities Between Objects” on page 6-31

• “Defining the Links Between Objects” on page 6-34

• “Evaluating Cluster Formation” on page 6-36

• “Creating Clusters” on page 6-42
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Terminology and Basic Procedure
To perform hierarchical cluster analysis on a data set using the Statistics 
Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the 
data set. In this step, you calculate the distance between objects using the 
pdist function. The pdist function supports many different ways to 
compute this measurement. See “Finding the Similarities Between Objects” 
on page 6-31 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step, 
you link pairs of objects that are in close proximity using the linkage 
function. The linkage function uses the distance information generated in 
step 1 to determine the proximity of objects to each other. As objects are 
paired into binary clusters, the newly formed clusters are grouped into 
larger clusters until a hierarchical tree is formed. See “Defining the Links 
Between Objects” on page 6-34 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this step, 
you use the cluster function to prune branches off the bottom of the 
hierarchical tree, and assign all the objects below each cut to a single cluster. 
This creates a partition of the data. The cluster function can create these 
clusters by detecting natural groupings in the hierarchical tree or by cutting 
off the hierarchical tree at an arbitrary point. See “Creating Clusters” on 
page 6-42 for more information. 

The following sections provide more information about each of these steps.

Note  The Statistics Toolbox includes a convenience function, clusterdata, 
which performs all these steps for you. You do not need to execute the pdist, 
linkage, or cluster functions separately. 

Finding the Similarities Between Objects
You use the pdist function to calculate the distance between every pair of 
objects in a data set. For a data set made up of m objects, there are 

 pairs in the data set. The result of this computation is commonly 
known as a distance or dissimilarity matrix.
m m 1–( )⋅ 2⁄
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There are many ways to calculate this distance information. By default, the 
pdist function calculates the Euclidean distance between objects; however, 
you can specify one of several other options. See pdist for more information.

Note  You can optionally normalize the values in the data set before 
calculating the distance information. In a real world data set, variables can be 
measured against different scales. For example, one variable can measure 
Intelligence Quotient (IQ) test scores and another variable can measure head 
circumference. These discrepancies can distort the proximity calculations. 
Using the zscore function, you can convert all the values in the data set to use 
the same proportional scale. See zscore for more information.

For example, consider a data set, X, made up of five objects where each object 
is a set of x,y coordinates.

• Object 1: 1, 2

• Object 2: 2.5, 4.5

• Object 3: 2, 2

• Object 4: 4, 1.5

• Object 5: 4, 2.5

You can define this data set as a matrix 

X = [1 2;2.5 4.5;2 2;4 1.5;4 2.5]

and pass it to pdist. The pdist function calculates the distance between 
object 1 and object 2, object 1 and object 3, and so on until the distances 
between all the pairs have been calculated. The following figure plots these 
objects in a graph. The Euclidean distance between object 2 and object 3 is 
shown to illustrate one interpretation of distance.
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Returning Distance Information. The pdist function returns this distance 
information in a vector, Y, where each element contains the distance between 
a pair of objects. 

Y = pdist(X)

Y =

  Columns 1 through 7 
    2.9155    1.0000    3.0414    3.0414    2.5495    3.3541    2.5000
  Columns 8 through 10 
    2.0616    2.0616    1.0000

To make it easier to see the relationship between the distance information 
generated by pdist and the objects in the original data set, you can reformat 
the distance vector into a matrix using the squareform function. In this matrix, 
element i,j corresponds to the distance between object i and object j in the 
original data set. In the following example, element 1,1 represents the distance 
between object 1 and itself (which is zero). Element 1,2 represents the distance 
between object 1 and object 2, and so on.

squareform(Y)

ans =
         0    2.9155    1.0000    3.0414    3.0414
    2.9155         0    2.5495    3.3541    2.5000
    1.0000    2.5495         0    2.0616    2.0616
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    3.0414    3.3541    2.0616         0    1.0000
    3.0414    2.5000    2.0616    1.0000         0

Defining the Links Between Objects
Once the proximity between objects in the data set has been computed, you can 
determine how objects in the data set should be grouped into clusters, using the 
linkage function. The linkage function takes the distance information 
generated by pdist and links pairs of objects that are close together into binary 
clusters (clusters made up of two objects). The linkage function then links 
these newly formed clusters to each other and to other objects to create bigger 
clusters until all the objects in the original data set are linked together in a 
hierarchical tree. 

For example, given the distance vector Y generated by pdist from the sample 
data set of x- and y-coordinates, the linkage function generates a hierarchical 
cluster tree, returning the linkage information in a matrix, Z.

Z = linkage(Y)
Z =

    4.0000    5.0000    1.0000
    1.0000    3.0000    1.0000
    6.0000    7.0000    2.0616
    2.0000    8.0000    2.5000

In this output, each row identifies a link between objects or clusters. The first 
two columns identify the objects that have been linked, that is, object 1, 
object 2, and so on. The third column contains the distance between these 
objects. For the sample data set of x- and y-coordinates, the linkage function 
begins by grouping objects 1 and 3, which have the closest proximity (distance 
value = 1.0000). The linkage function continues by grouping objects 4 and 5, 
which also have a distance value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If 
the original sample data set contained only five objects, what are objects 6 
and 7? Object 6 is the newly formed binary cluster created by the grouping of 
objects 1 and 3. When the linkage function groups two objects into a new 
cluster, it must assign the cluster a unique index value, starting with the 
value m+1, where m is the number of objects in the original data set. (Values 1 
through m are already used by the original data set.) Similarly, object 7 is the 
cluster formed by grouping objects 4 and 5.
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linkage uses distances to determine the order in which it clusters objects. The 
distance vector Y contains the distances between the original objects 1 through 
5. But linkage must also be able to determine distances involving clusters that 
it creates, such as objects 6 and 7. By default, linkage uses a method known as 
single linkage. However, there are a number of different methods available. 
See the linkage reference page for more information. 

As the final cluster, the linkage function grouped object 8, the newly formed 
cluster made up of objects 6 and 7, with object 2 from the original data set. The 
following figure graphically illustrates the way linkage groups the objects into 
a hierarchy of clusters.

Plotting the Cluster Tree
The hierarchical, binary cluster tree created by the linkage function is most 
easily understood when viewed graphically. The Statistics Toolbox includes the 
dendrogram function that plots this hierarchical tree information as a graph, 
as in the following example.

dendrogram(Z)
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In the figure, the numbers along the horizontal axis represent the indices of the 
objects in the original data set. The links between objects are represented as 
upside-down U-shaped lines. The height of the U indicates the distance 
between the objects. For example, the link representing the cluster containing 
objects 1 and 3 has a height of 1. The link representing the cluster that groups 
object 2 together with objects 1, 3, 4, and 5, (which are already clustered as 
object 8) has a height of 2.5. The height represents the distance linkage 
computes between objects 2 and 8. For more information about creating a 
dendrogram diagram, see the dendrogram reference page.

Evaluating Cluster Formation
After linking the objects in a data set into a hierarchical cluster tree, you might 
want to verify that the distances (that is, heights) in the tree reflect the original 
distances accurately. In addition, you might want to investigate natural 
divisions that exist among links between objects. The Statistics Toolbox 
provides functions to perform both these tasks, as described in the following 
sections:
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• “Verifying the Cluster Tree” on page 6-37

• “Getting More Information About Cluster Links” on page 6-38

Verifying the Cluster Tree. In a hierarchical cluster tree, any two objects in the 
original data set are eventually linked together at some level. The height of the 
link represents the distance between the two clusters that contain those two 
objects. This height is known as the cophenetic distance between the two 
objects. One way to measure how well the cluster tree generated by the 
linkage function reflects your data is to compare the cophenetic distances with 
the original distance data generated by the pdist function. If the clustering is 
valid, the linking of objects in the cluster tree should have a strong correlation 
with the distances between objects in the distance vector. The cophenet 
function compares these two sets of values and computes their correlation, 
returning a value called the cophenetic correlation coefficient. The closer the 
value of the cophenetic correlation coefficient is to 1, the more accurately the 
clustering solution reflects your data. 

You can use the cophenetic correlation coefficient to compare the results of 
clustering the same data set using different distance calculation methods or 
clustering algorithms. For example, you can use the cophenet function to 
evaluate the clusters created for the sample data set

c = cophenet(Z,Y)

c =

    0.8615

where Z is the matrix output by the linkage function and Y is the distance 
vector output by the pdist function. 

Execute pdist again on the same data set, this time specifying the city block 
metric. After running the linkage function on this new pdist output using the 
average linkage method, call cophenet to evaluate the clustering solution. 

Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)

c =

    0.9044
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The cophenetic correlation coefficient shows that using a different distance and 
linkage method creates a tree that represents the original distances slightly 
better.

Getting More Information About Cluster Links. One way to determine the natural 
cluster divisions in a data set is to compare the height of each link in a cluster 
tree with the heights of neighboring links below it in the tree. 

A link that is approximately the same height as the links below it indicates 
that there are no distinct divisions between the objects joined at this level of 
the hierarchy. These links are said to exhibit a high level of consistency, 
because the distance between the objects being joined is approximately the 
same as the distances between the objects they contain. 

On the other hand, a link whose height differs noticeably from the height of the 
links below it indicates that the objects joined at this level in the cluster tree 
are much farther apart from each other than their components were when they 
were joined. This link is said to be inconsistent with the links below it. 

In cluster analysis, inconsistent links can indicate the border of a natural 
division in a data set. The cluster function uses a quantitative measure of 
inconsistency to determine where to partition your data set into clusters. (See 
“Creating Clusters” on page 6-42 for more information.) 

The following dendrogram, created using a data set of random numbers, 
illustrates inconsistent links. Note how the objects in the dendrogram fall into 
three groups that are connected by links at a much higher level in the tree. 
These links are inconsistent when compared with the links below them in the 
hierarchy. 
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The relative consistency of each link in a hierarchical cluster tree can be 
quantified and expressed as the inconsistency coefficient. This value compares 
the height of a link in a cluster hierarchy with the average height of links below 
it. Links that join distinct clusters have a low inconsistency coefficient; links 
that join indistinct clusters have a high inconsistency coefficient. 

To generate a listing of the inconsistency coefficient for each link in the cluster 
tree, use the inconsistent function. By default, the inconsistent function 
compares each link in the cluster hierarchy with adjacent links that are less 
than two levels below it in the cluster hierarchy. This is called the depth of the 
comparison. You can also specify other depths. The objects at the bottom of the 
cluster tree, called leaf nodes, that have no further objects below them, have an 
inconsistency coefficient of zero. Clusters that join two leaves also have a zero 
inconsistency coefficient.
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For example, you can use the inconsistent function to calculate the 
inconsistency values for the links created by the linkage function in “Defining 
the Links Between Objects” on page 6-34. 

I = inconsistent(Z)
I =

    1.0000         0    1.0000         0
    1.0000         0    1.0000         0
    1.3539    0.6129    3.0000    1.1547
    2.2808    0.3100    2.0000    0.7071

The inconsistent function returns data about the links in an (m-1)-by-4 
matrix, whose columns are described in the following table.

In the sample output, the first row represents the link between objects 4 and 5. 
This cluster is assigned the index 6 by the linkage function. Because both 4 
and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero. The 
second row represents the link between objects 1 and 3, both of which are also 
leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6 
and 7. (This new cluster is assigned index 8 in the linkage output). Column 3 
indicates that three links are considered in the calculation: the link itself and 
the two links directly below it in the hierarchy. Column 1 represents the mean 
of the heights of these links. The inconsistent function uses the height 
information output by the linkage function to calculate the mean. Column 2 
represents the standard deviation between the links. The last column contains 
the inconsistency value for these links, 1.1547. It is the difference between the 
current link height and the mean, normalized by the standard deviation:

>> (2.0616 - 1.3539) / .6129

Column Description

1 Mean of the heights of all the links included in the calculation

2 Standard deviation of all the links included in the calculation

3 Number of links included in the calculation

4 Inconsistency coefficient
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ans =
    1.1547

The following figure illustrates the links and heights included in this 
calculation.

Note  In the preceding figure, the lower limit on the y-axis is set to 0 to show 
the heights of the links. To set the lower limit to 0, select Axes Properties 
from the Edit menu, click the Y Axis tab, and enter 0 in the field immediately 
to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2. 
Column 3 indicates that two links are included in this calculation: the link 
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itself and the link directly below it in the hierarchy. The inconsistency 
coefficient for this link is 0.7071. 

The following figure illustrates the links and heights included in this 
calculation.

Creating Clusters
After you create the hierarchical tree of binary clusters, you can prune the tree 
to partition your data into clusters using the cluster function. The cluster 
function lets you create clusters in two ways, as discussed in the following 
sections:
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• “Finding Natural Divisions in Data” on page 6-43

• “Specifying Arbitrary Clusters” on page 6-44

Finding Natural Divisions in Data. The hierarchical cluster tree may naturally 
divide the data into distinct, well-separated clusters. This can be particularly 
evident in a dendrogram diagram created from data where groups of objects are 
densely packed in certain areas and not in others. The inconsistency coefficient 
of the links in the cluster tree can identify these divisions where the 
similarities between objects change abruptly. (See “Evaluating Cluster 
Formation” on page 6-36 for more information about the inconsistency 
coefficient.) You can use this value to determine where the cluster function 
creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into 
clusters, specifying an inconsistency coefficient threshold of 1.2 as the value of 
the cutoff argument, the cluster function groups all the objects in the sample 
data set into one cluster. In this case, none of the links in the cluster hierarchy 
had an inconsistency coefficient greater than 1.2. 

T = cluster(Z,'cutoff',1.2)
T =
     1
     1
     1
     1
     1

The cluster function outputs a vector, T, that is the same size as the original 
data set. Each element in this vector contains the number of the cluster into 
which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster function 
divides the sample data set into three separate clusters.

T = cluster(Z,'cutoff',0.8)
T =

1
3
1
2
2
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This output indicates that objects 1 and 3 were placed in cluster 1, objects 4 
and 5 were placed in cluster 2, and object 2 was placed in cluster 3.

When clusters are formed in this way, the cutoff value is applied to the 
inconsistency coefficient. These clusters may, but do not necessarily, 
correspond to a horizontal slice across the dendrogram at a certain height. If 
you want clusters corresponding to a horizontal slice of the dendrogram, you 
can either use the 'criterion' option to specify that the cutoff should be 
based on distance rather than inconsistency, or you can specify the number of 
clusters directly as described in the following section.

Specifying Arbitrary Clusters. Instead of letting the cluster function create 
clusters determined by the natural divisions in the data set, you can specify the 
number of clusters you want created. 

For example, you can specify that you want the cluster function to partition 
the sample data set into two clusters. In this case, the cluster function creates 
one cluster containing objects 1, 3, 4, and 5 and another cluster containing 
object 2. 

T = cluster(Z,'maxclust',2)

T =

     2
     1
     2
     2
     2

To help you visualize how the cluster function determines these clusters, the 
following figure shows the dendrogram of the hierarchical cluster tree. The 
horizontal dashed line intersects two lines of the dendrogram, corresponding to 
setting 'maxclust' to 2. These two lines partition the objects into two clusters: 
the objects below the left-hand line, namely 1, 3, 4, and 5, belong to one cluster, 
while the object below the right-hand line, namely 2, belongs to the other 
cluster.
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On the other hand, if you set 'maxclust' to 3, the cluster function groups 
objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2 
in a third cluster. The following command illustrates this.

T = cluster(Z,'maxclust',3)
T =

1
3
1
2
2
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This time, the cluster function cuts off the hierarchy at a lower point, 
corresponding to the horizontal line that intersects three lines of the 
dendrogram in the following figure. 

K-Means Clustering
This section gives a description and an example of using the MATLAB function 
for K-means clustering, kmeans. 

• “Overview of K-Means Clustering” on page 6-46

• “Example: Clustering Data in Four Dimensions” on page 6-47

Overview of K-Means Clustering
K-means clustering can best be described as a partitioning method. That is, the 
function kmeans partitions the observations in your data into K mutually 
exclusive clusters, and returns a vector of indices indicating to which of the k 
clusters it has assigned each observation. Unlike the hierarchical clustering 
methods used in linkage (see “Hierarchical Clustering” on page 6-30), kmeans 
does not create a tree structure to describe the groupings in your data, but 
rather creates a single level of clusters. Another difference is that K-means 
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clustering uses the actual observations of objects or individuals in your data, 
and not just their proximities. These differences often mean that kmeans is 
more suitable for clustering large amounts of data. 

kmeans treats each observation in your data as an object having a location in 
space. It finds a partition in which objects within each cluster are as close to 
each other as possible, and as far from objects in other clusters as possible. You 
can choose from five different distance measures, depending on the kind of data 
you are clustering. 

Each cluster in the partition is defined by its member objects and by its 
centroid, or center. The centroid for each cluster is the point to which the sum 
of distances from all objects in that cluster is minimized. kmeans computes 
cluster centroids differently for each distance measure, to minimize the sum 
with respect to the measure that you specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from 
each object to its cluster centroid, over all clusters. This algorithm moves 
objects between clusters until the sum cannot be decreased further. The result 
is a set of clusters that are as compact and well-separated as possible. You can 
control the details of the minimization using several optional input parameters 
to kmeans, including ones for the initial values of the cluster centroids, and for 
the maximum number of iterations. 

Example: Clustering Data in Four Dimensions
This example explores possible clustering in four-dimensional data by 
analyzing the results of partitioning the points into three, four, and five 
clusters.

Note  Because each part of this example generates random numbers 
sequentially, i.e., without setting a new state, you must perform all steps in 
sequence to duplicate the results shown. If you perform the steps out of 
sequence, the answers will be essentially the same, but the intermediate 
results, number of iterations, or ordering of the silhouette plots may differ. 
See “Random Number Generators in the Statistics Toolbox” on page 1-5 to set 
the correct seed. 

Creating Clusters and Determining Separation. First, load some data. 
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load kmeansdata;
size(X)

ans =
   560     4

Even though these data are four-dimensional, and cannot be easily visualized, 
kmeans enables you to investigate whether a group structure exists in them. 
Call kmeans with k, the desired number of clusters, equal to 3. For this example, 
specify the city block distance measure, and use the default starting method of 
initializing centroids from randomly selected data points. 

idx3 = kmeans(X,3,'distance','city');

To get an idea of how well-separated the resulting clusters are, you can make 
a silhouette plot using the cluster indices output from kmeans. The silhouette 
plot displays a measure of how close each point in one cluster is to points in the 
neighboring clusters. This measure ranges from +1, indicating points that are 
very distant from neighboring clusters, through 0, indicating points that are 
not distinctly in one cluster or another, to -1, indicating points that are 
probably assigned to the wrong cluster. silhouette returns these values in its 
first output. 

[silh3,h] = silhouette(X,idx3,'city');
xlabel('Silhouette Value')
ylabel('Cluster')
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From the silhouette plot, you can see that most points in the third cluster have 
a large silhouette value, greater than 0.6, indicating that the cluster is 
somewhat separated from neighboring clusters. However, the second cluster 
contains many points with low silhouette values, and the first contains a few 
points with negative values, indicating that those two clusters are not well 
separated. 

Determining the Correct Number of Clusters. Increase the number of clusters to see if 
kmeans can find a better grouping of the data. This time, use the optional 
'display' parameter to print information about each iteration. 

idx4 = kmeans(X,4, 'dist','city', 'display','iter');
  iter phase     num         sum
     1     1     560     2897.56
     2     1      53     2736.67
     3     1      50     2476.78
     4     1     102     1779.68
     5     1       5      1771.1
     6     2       0      1771.1
6 iterations, total sum of distances = 1771.1

Notice that the total sum of distances decreases at each iteration as kmeans 
reassigns points between clusters and recomputes cluster centroids. In this 
case, the second phase of the algorithm did not make any reassignments, 
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indicating that the first phase reached a minimum after five iterations. In some 
problems, the first phase might not reach a minimum, but the second phase 
always will. 

A silhouette plot for this solution indicates that these four clusters are better 
separated than the three in the previous solution. 

[silh4,h] = silhouette(X,idx4,'city');
xlabel('Silhouette Value')
ylabel('Cluster')

A more quantitative way to compare the two solutions is to look at the average 
silhouette values for the two cases. 

mean(silh3)
ans =
      0.52594

mean(silh4)
ans =
      0.63997

Finally, try clustering the data using five clusters. 

idx5 = kmeans(X,5,'dist','city','replicates',5);
[silh5,h] = silhouette(X,idx5,'city');
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xlabel('Silhouette Value')
ylabel('Cluster')
mean(silh5)
ans =
      0.52657

This silhouette plot indicates that this is probably not the right number of 
clusters, since two of the clusters contain points with mostly low silhouette 
values. Without some knowledge of how many clusters are really in the data, 
it is a good idea to experiment with a range of values for k. 

Avoiding Local Minima. Like many other types of numerical minimizations, the 
solution that kmeans reaches often depends on the starting points. It is possible 
for kmeans to reach a local minimum, where reassigning any one point to a new 
cluster would increase the total sum of point-to-centroid distances, but where 
a better solution does exist. However, you can use the optional 'replicates' 
parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display' parameter to 
print out the final sum of distances for each of the solutions. 

[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
                       'display','final','replicates',5);
17 iterations, total sum of distances = 2303.36
 5 iterations, total sum of distances = 1771.1
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 6 iterations, total sum of distances = 1771.1
 5 iterations, total sum of distances = 1771.1
 8 iterations, total sum of distances = 2303.36

The output shows that, even for this relatively simple problem, nonglobal 
minima do exist. Each of these five replicates began from a different randomly 
selected set of initial centroids, and kmeans found two different local minima. 
However, the final solution that kmeans returns is the one with the lowest total 
sum of distances, over all replicates.

sum(sumdist)
ans =
       1771.1
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Multidimensional Scaling
The following sections explain how to perform multidimensional scaling, using 
the functions cmdscale and mdscale:

• “Overview” on page 6-53

• “Classical Multidimensional Scaling” on page 6-53

• “Nonclassical Metric Multidimensional Scaling” on page 6-56

• “Nonmetric Multidimensional Scaling” on page 6-58

• “Example — Reconstructing a Map from Intercity Distances” on page 6-60

Overview
One of the most important goals in visualizing data is to get a sense of how near 
or far points are from each other. Often, you can do this with a scatter plot. 
However, for some analyses, the data that you have might not be in the form of 
points at all, but rather in the form of pairwise similarities or dissimilarities 
between cases, observations, or subjects. Without any points, you cannot make 
a scatter plot. 

Even if your data are in the form of points rather than pairwise distances, a 
scatter plot of those data might not be useful. For some kinds of data, the 
relevant way to measure how “near” two points are might not be their 
Euclidean distance. While scatter plots of the raw data make it easy to compare 
Euclidean distances, they are not always useful when comparing other kinds 
of interpoint distances, city block distance for example, or even more general 
dissimilarities. Also, with a large number of variables, it is very difficult to 
visualize distances unless the data can be represented in a small number of 
dimensions. Some sort of dimension reduction is usually necessary. 

Multidimensional scaling (MDS) is a set of methods that address all these 
problems. MDS allows you to visualize how near points are to each other for 
many kinds of distance or dissimilarity measures and can produce a 
representation of your data in a small number of dimensions. MDS does not 
require raw data, but only a matrix of pairwise distances or dissimilarities. 

Classical Multidimensional Scaling
The function cmdscale performs classical (metric) multidimensional scaling, 
also known as principal coordinates analysis. cmdscale takes as an input a 
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matrix of interpoint distances and creates a configuration of points. Ideally, 
those points are in two or three dimensions, and the Euclidean distances 
between them reproduce the original distance matrix. Thus, a scatter plot of 
the points created by cmdscale provides a visual representation of the original 
distances. 

A Simple Example
As a very simple example, you can reconstruct a set of points from only their 
interpoint distances. First, create some four dimensional points with a small 
component in their fourth coordinate, and reduce them to distances. 

X = [ normrnd(0,1,10,3), normrnd(0,.1,10,1) ];
D = pdist(X,'euclidean');

Next, use cmdscale to find a configuration with those interpoint distances. 
cmdscale accepts distances as either a square matrix, or, as in this example, in 
the vector upper-triangular form produced by pdist. 

[Y,eigvals] = cmdscale(D);

cmdscale produces two outputs. The first output, Y, is a matrix containing the 
reconstructed points. The second output, eigvals, is a vector containing the 
sorted eigenvalues of what is often referred to as the “scalar product matrix,” 
which, in the simplest case, is equal to Y*Y'. The relative magnitudes of those 
eigenvalues indicate the relative contribution of the corresponding columns of 
Y in reproducing the original distance matrix D with the reconstructed points. 

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =
       12.623            1
       4.3699      0.34618
       1.9307      0.15295
     0.025884    0.0020505
  1.7192e-015  1.3619e-016
  6.8727e-016  5.4445e-017
  4.4367e-017  3.5147e-018
 -9.2731e-016 -7.3461e-017
  -1.327e-015 -1.0513e-016
 -1.9232e-015 -1.5236e-016
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If eigvals contains only positive and zero (within roundoff error) eigenvalues, 
the columns of Y corresponding to the positive eigenvalues provide an exact 
reconstruction of D, in the sense that their interpoint Euclidean distances, 
computed using pdist, for example, are identical (within roundoff) to the 
values in D. 

maxerr4 = max(abs(D - pdist(Y))) % exact reconstruction
maxerr4 =
  2.6645e-015

If two or three of the eigenvalues in eigvals are much larger than the rest, 
then the distance matrix based on the corresponding columns of Y nearly 
reproduces the original distance matrix D. In this sense, those columns form a 
lower-dimensional representation that adequately describes the data. However 
it is not always possible to find a good low-dimensional reconstruction.

% good reconstruction in 3D
maxerr3 = max(abs(D - pdist(Y(:,1:3)))) 
maxerr3 =
     0.029728

% poor reconstruction in 2D
maxerr2 = max(abs(D - pdist(Y(:,1:2)))) 
maxerr2 =
      0.91641

The reconstruction in three dimensions reproduces D very well, but the 
reconstruction in two dimensions has errors that are of the same order of 
magnitude as the largest values in D. 

max(max(D))
ans =
       3.4686

Often, eigvals contains some negative eigenvalues, indicating that the 
distances in D cannot be reproduced exactly. That is, there might not be any 
configuration of points whose interpoint Euclidean distances are given by D. If 
the largest negative eigenvalue is small in magnitude relative to the largest 
positive eigenvalues, then the configuration returned by cmdscale might still 
reproduce D well. “Example — Reconstructing a Map from Intercity Distances” 
on page 6-60 demonstrates this. 
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Nonclassical Metric Multidimensional Scaling
The function cmdscale performs classical multidimensional scaling (MDS). 
The Statistics Toolbox also includes the function mdscale to perform 
non-classical MDS. As with cmdcale, you can use mdscale either to visualize 
dissimilarity data for which no “locations” exist, or to visualize 
high-dimensional data by reducing its dimensionality. Both functions take a 
matrix of dissimilarities as an input and produce a configuration of points. 
However, mdscale offers a choice of different criteria to construct the 
configuration, and allows missing data and weights. 

For example, the cereal data include measurements on 10 variables describing 
breakfast cereals. You can use mdscale to visualize these data in two 
dimensions. First, load the data. For clarity, this example code selects a subset 
of 22 of the observations. 

load cereal.mat
X = [Calories Protein Fat Sodium Fiber Carbo Sugars Shelf...
Potass Vitamins];
X = X(strmatch('G',Mfg),:); % take a subset from a single

% manufacturer
size(X)
ans =
    22 10

Then use pdist to transform the 10-dimensional data into dissimilarities. The 
output from pdist is a symmetric dissimilarity matrix, stored as a vector 
containing only the (23*22/2) elements in its upper triangle. 

dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =
     1   231

This example code first standardizes the cereal data, and then uses city block 
distance as a dissimilarity. The choice of transformation to dissimilarities is 
application-dependent, and the choice here is only for simplicity. In some 
applications, the original data are already in the form of dissimilarities. 

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must specify 
the desired number of dimensions, and the method to use to construct the 
output configuration. For this example, use two dimensions. The metric 
STRESS criterion is a common method for computing the output; for other 



Multidimensional Scaling

6-57

choices, see the mdscale reference page in the online documentation. The 
second output from mdscale is the value of that criterion evaluated for the 
output configuration. It measures the how well the interpoint distances of the 
output configuration approximate the original input dissimilarities. 

[Y,stress] =...
mdscale(dissimilarities,2,'criterion','metricstress');
stress
stress =

    0.1856

A scatterplot of the output from mdscale represents the original 
10-dimensional data in two dimensions, and you can use the gname function to 
label selected points. 

plot(Y(:,1),Y(:,2),'o');
gname(Name(strmatch('G',Mfg)))
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Nonmetric Multidimensional Scaling
Metric multidimensional scaling creates a configuration of points whose 
interpoint distances approximate the given dissimilarities. This is sometimes 
too strict a requirement, and non-metric scaling is designed to relax it a bit. 
Instead of trying to approximate the dissimilarities themselves, non-metric 
scaling approximates a nonlinear, but monotonic, transformation of them. 
Because of the monotonicity, larger or smaller distances on a plot of the output 
will correspond to larger or smaller dissimilarities, respectively. However, the 
nonlinearity implies that mdscale only attempts to preserve the ordering of 
dissimilarities. Thus, there may be contractions or expansions of distances at 
different scales. 

You use mdscale to perform nonmetric MDS in much the same way as for 
metric scaling. The nonmetric STRESS criterion is a common method for 
computing the output; for more choices, see the mdscale reference page in the 
online documentation. As with metric scaling, the second output from mdscale 
is the value of that criterion evaluated for the output configuration. For 
nonmetric scaling, however, it measures the how well the interpoint distances 
of the output configuration approximate the disparities. The disparities are 
returned in the third output. They are the transformed values of the original 
dissimilarities. 

[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =

    0.1562

To check the fit of the output configuration to the dissimilarities, and to 
understand the disparities, it helps to make a Shepard plot. 

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
     dissimilarities(ord),disparities(ord),'r.-', ...
     [0 25],[0 25],'k-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...
'Location','NorthWest');
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This plot shows that mdscale has found a configuration of points in two 
dimensions whose interpoint distances approximates the disparities, which in 
turn are a nonlinear transformation of the original dissimilarities. The concave 
shape of the disparities as a function of the dissimilarities indicates that fit 
tends to contract small distances relative to the corresponding dissimilarities. 
This may be perfectly acceptable in practice. 

mdscale uses an iterative algorithm to find the output configuration, and the 
results can often depend on the starting point. By default, mdscale uses 
cmdscale to construct an initial configuration, and this choice often leads to a 
globally best solution. However, it is possible for mdscale to stop at a 
configuration that is a local minimum of the criterion. Such cases can be 
diagnosed and often overcome by running mdscale multiple times with 
different starting points. You can do this using the 'start' and 'replicates' 
parameters. The following code runs 5 replicates of MDS, each starting at a 
different randomly-chosen initial configuration. The criterion value is printed 
out for each replication; mdscale returns the configuration with the best fit. 
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opts = statset('Display','final');
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);
90 iterations, Final stress criterion = 0.156209 
100 iterations, Final stress criterion = 0.195546
116 iterations, Final stress criterion = 0.156209
85 iterations, Final stress criterion = 0.156209
106 iterations, Final stress criterion = 0.17121

Notice that mdscale finds several different local solutions, some of which do not 
have as low a stress value as the solution found with the cmdscale starting 
point. 

Example — Reconstructing a Map from Intercity 
Distances
Given only the distances between 10 US cities, cmdscale can construct a map 
of those cities. First, create the distance matrix and pass it to cmdscale. In this 
example, D is a full distance matrix: it is square and symmetric, has positive 
entries off the diagonal, and has zeros on the diagonal. 

cities = 
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};
D = [    0  587 1212  701 1936  604  748 2139 2182   543;
       587    0  920  940 1745 1188  713 1858 1737   597;
      1212  920    0  879  831 1726 1631  949 1021  1494;
       701  940  879    0 1374  968 1420 1645 1891  1220;
      1936 1745  831 1374    0 2339 2451  347  959  2300;
       604 1188 1726  968 2339    0 1092 2594 2734   923;
       748  713 1631 1420 2451 1092    0 2571 2408   205;
      2139 1858  949 1645  347 2594 2571    0  678  2442;
      2182 1737 1021 1891  959 2734 2408  678    0  2329;
       543  597 1494 1220 2300  923  205 2442 2329     0];
[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are 
negative, indicating that the original distances are not Euclidean. This is 
because of the curvature of the earth. 

format short g
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[eigvals eigvals/max(abs(eigvals))]
ans =
  9.5821e+006            1
  1.6868e+006      0.17604
       8157.3    0.0008513
       1432.9   0.00014954
       508.67  5.3085e-005
       25.143   2.624e-006
  5.3394e-010  5.5722e-017
       -897.7 -9.3685e-005
      -5467.6   -0.0005706
       -35479   -0.0037026

However, in this case, the two largest positive eigenvalues are much larger in 
magnitude than the remaining eigenvalues. So, despite the negative 
eigenvalues, the first two coordinates of Y are sufficient for a reasonable 
reproduction of D. 

Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu - pdist(Y(:,1:2)))) ./ max(Dtriu)
maxrelerr =
    0.0075371

Here is a plot of the reconstructed city locations as a map. The orientation of 
the reconstruction is arbitrary: in this case, it happens to be close to, although 
not exactly, the correct orientation. 

plot(Y(:,1),Y(:,2),'.');
text(Y(:,1)+25,Y(:,2),cities);
xlabel('Miles'); ylabel('Miles');
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Hypothesis Tests

Introduction (p. 7-2) Introduces the concept of hypothesis tests.

Hypothesis Test Terminology (p. 7-3) Explains some basic terminology of hypothesis tests.

Hypothesis Test Assumptions (p. 7-4) Explains some assumptions underlying hypothesis tests.

Example: Hypothesis Testing (p. 7-5) Provides an example of hypothesis testing.

Available Hypothesis Tests (p. 7-9) Describes the available hypothesis tests.
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Introduction
A hypothesis test is a procedure for determining if an assertion about a 
characteristic of a population is reasonable. 

For example, suppose that someone says that the average price of a gallon of 
regular unleaded gas in Massachusetts is $1.15. How would you decide 
whether this statement is true? You could try to find out what every gas station 
in the state was charging and how many gallons they were selling at that price. 
That approach might be definitive, but it could end up costing more than the 
information is worth.

A simpler approach is to find out the price of gas at a small number of randomly 
chosen stations around the state and compare the average price to $1.15. 

Of course, the average price you get will probably not be exactly $1.15 due to 
variability in price from one station to the next. Suppose your average price 
was $1.18. Is this three cent difference a result of chance variability, or is the 
original assertion incorrect? A hypothesis test can provide an answer.

The following sections provide an overview of hypothesis testing with the 
Statistics Toolbox:

• “Hypothesis Test Terminology” on page 7-3

• “Hypothesis Test Assumptions” on page 7-4

• “Example: Hypothesis Testing” on page 7-5

• “Available Hypothesis Tests” on page 7-9
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Hypothesis Test Terminology
To get started, there are some terms to define and assumptions to make:

• The null hypothesis is the original assertion. In this case the null hypothesis 
is that the average price of a gallon of gas is $1.15. The notation is 
H0: µ = 1.15.

• There are three possibilities for the alternative hypothesis. You might only be 
interested in the result if gas prices were actually higher. In this case, the 
alternative hypothesis is H1: µ > 1.15. The other possibilities are H1: µ < 1.15 
and H1: µ ≠ 1.15.

• The significance level is related to the degree of certainty you require in order 
to reject the null hypothesis in favor of the alternative. By taking a small 
sample you cannot be certain about your conclusion. So you decide in 
advance to reject the null hypothesis if the probability of observing your 
sampled result is less than the significance level. For a typical significance 
level of 5%, the notation is α = 0.05. For this significance level, the 
probability of incorrectly rejecting the null hypothesis when it is actually 
true is 5%. If you need more protection from this error, then choose a lower 
value of α.

• The p-value is the probability of observing the given sample result under the 
assumption that the null hypothesis is true. If the p-value is less than α, then 
you reject the null hypothesis. For example, if α = 0.05 and the p-value is 
0.03, then you reject the null hypothesis.

The converse is not true. If the p-value is greater than α, you have 
insufficient evidence to reject the null hypothesis.

• The outputs for many hypothesis test functions also include confidence 
intervals. Loosely speaking, a confidence interval is a range of values that 
have a chosen probability of containing the true hypothesized quantity. 
Suppose, in the example, 1.15 is inside a 95% confidence interval for the 
mean, µ. That is equivalent to being unable to reject the null hypothesis at a 
significance level of 0.05. Conversely if the 100(1-α) confidence interval does 
not contain 1.15, then you reject the null hypothesis at the α level of 
significance.
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Hypothesis Test Assumptions
The difference between hypothesis test procedures often arises from 
differences in the assumptions that the researcher is willing to make about the 
data sample. For example, the Z-test assumes that the data represents 
independent samples from the same normal distribution and that you know the 
standard deviation, σ. The t-test has the same assumptions except that you 
estimate the standard deviation using the data instead of specifying it as a 
known quantity.

Both tests have an associated signal-to-noise ratio

The signal is the difference between the average and the hypothesized mean. 
The noise is the standard deviation posited or estimated.

If the null hypothesis is true, then Z has a standard normal distribution, 
N(0,1). T has a Student’s t distribution with the degrees of freedom, ν, equal to 
one less than the number of data values.

Given the observed result for Z or T, and knowing the distribution of Z and T 
assuming the null hypothesis is true, it is possible to compute the probability 
(p-value) of observing this result. A very small p-value casts doubt on the truth 
of the null hypothesis. For example, suppose that the p-value was 0.001, 
meaning that the probability of observing the given Z or T was one in a 
thousand. That should make you skeptical enough about the null hypothesis 
that you reject it rather than believe that your result was just a lucky 999 to 1 
shot.

There are also nonparametric tests that do not even require the assumption 
that the data come from a normal distribution. In addition, there are functions 
for testing whether the normal assumption is reasonable.

Z x µ–
σ

------------    or    T x µ–
s

------------==

where  x
xi
n
----

i 1=

n

∑=
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Example: Hypothesis Testing
This example uses the gasoline price data in gas.mat. There are two samples 
of 20 observed gas prices for the months of January and February, 1993.

load gas
prices = [price1 price2];

As a first step, you may want to test whether the samples from each month 
follow a normal distribution. As each sample is relatively small, you might 
choose to perform a Lilliefors test (rather than a Jarque-Bera test).

lillietest(price1)

ans =

     0

lillietest(price2)

ans =

     0

The result of the hypothesis test is a Boolean value that is 0 when you do not 
reject the null hypothesis, and 1 when you do reject that hypothesis. In each 
case, there is no need to reject the null hypothesis that the samples have a 
normal distribution.

Suppose it is historically true that the standard deviation of gas prices at gas 
stations around Massachusetts is four cents a gallon. The Z-test is a procedure 
for testing the null hypothesis that the average price of a gallon of gas in 
January (price1) is $1.15.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)

h =
     0

pvalue =

    0.8668

ci =

    1.1340    1.1690
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The Boolean output is h = 0, so you do not reject the null hypothesis.

The result suggests that $1.15 is reasonable. The 95% confidence interval 
[1.1340 1.1690] neatly brackets $1.15.

What about February? Try a t-test with price2. Now you are not assuming 
that you know the standard deviation in price.

[h,pvalue,ci] = ttest(price2/100,1.15)

h =
     1

pvalue =

   4.9517e-04

ci =
    1.1675    1.2025

With the Boolean result h = 1, you can reject the null hypothesis at the default 
significance level, 0.05.

It looks like $1.15 is not a reasonable estimate of the gasoline price in 
February. The low end of the 95% confidence interval is greater than 1.15.

The function ttest2 allows you to compare the means of the two data samples.

[h,sig,ci] = ttest2(price1,price2)

h =
     1

sig =

    0.0083

ci =

   -5.7845   -0.9155

The confidence interval (ci above) indicates that gasoline prices were between 
one and six cents lower in January than February.

If the two samples were not normally distributed but had similar shape, it 
would have been more appropriate to use the nonparametric rank sum test in 
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place of the t-test. You can still use the rank sum test with normally distributed 
data, but it is less powerful than the t-test.

[p,h,stats] = ranksum(price1, price2)

p =
    0.0092

h =
     1

stats = 
       zval: -2.6064
    ranksum: 314

As might be expected, the rank sum test leads to the same conclusion but is less 
sensitive to the difference between samples (higher p-value).

The box plot below gives less conclusive results. On a notched box plot, two 
groups have overlapping notches if their medians are not significantly 
different. Here the notches just barely overlap, indicating that the difference in 
medians is of borderline significance. (The results for a box plot are not always 
the same as for a t-test, which is based on means rather than medians.) Refer 
to the “Statistical Plots” chapter for more information about box plots.

boxplot(prices,1)
set(gca,'XtickLabel',str2mat('January','February'))
xlabel('Month')
ylabel('Prices ($0.01)')
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Available Hypothesis Tests
The Statistics Toolbox has functions for performing the following tests.

Function What it Tests

jbtest Normal distribution for one sample

kstest Any specified distribution for one sample

kstest2 Equal distributions for two samples

lillietest Normal distribution for one sample

ranksum Median of two unpaired samples

signrank Median of two paired samples

signtest Median of two paired samples

ttest Mean of one normal sample

ttest2 Mean of two normal samples

ztest Mean of normal sample with known standard deviation
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Statistical Plots

Introduction (p. 8-2) Introduces the tools for creating statistical plots.

Box Plots (p. 8-3) Explains how to create box plots.

Distribution Plots (p. 8-4) Explains how to create distribution plots.

Scatter Plots (p. 8-10) Explains how to create scatter plots.
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Introduction
The Statistics Toolbox adds specialized plots to the extensive graphics 
capabilities of MATLAB:

• Box plots are graphs for describing data samples. They are also useful for 
graphic comparisons of the means of many samples (see “One-Way Analysis 
of Variance (ANOVA)” on page 4-3).

• Distribution plots are graphs for visualizing the distribution of one or more 
samples. They include normal and Weibull probability plots, 
quantile-quantile plots, and empirical cumulative distribution plots.

• Scatter plots are graphs for visualizing the relationship between a pair of 
variables or several such pairs. Grouped versions of these plots use different 
plotting symbols to indicate group membership. The gname function can label 
points on these plots with a text label or an observation number.

The plot types are described further in the following sections:

• “Box Plots” on page 8-3

• “Distribution Plots” on page 8-4

• “Scatter Plots” on page 8-10
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Box Plots
The graph shows an example of a notched box plot.

This plot has several graphic elements:

• The lower and upper lines of the “box” are the 25th and 75th percentiles of 
the sample. The distance between the top and bottom of the box is the 
interquartile range.

• The line in the middle of the box is the sample median. If the median is not 
centered in the box, that is an indication of skewness.

• The “whiskers” are lines extending above and below the box. They show the 
extent of the rest of the sample (unless there are outliers). Assuming no 
outliers, the maximum of the sample is the top of the upper whisker. The 
minimum of the sample is the bottom of the lower whisker. By default, an 
outlier is a value that is more than 1.5 times the interquartile range away 
from the top or bottom of the box.

• The plus sign at the top of the plot is an indication of an outlier in the data. 
This point might be the result of a data entry error, a poor measurement, or 
a change in the system that generated the data.

• The notches in the box are a graphic confidence interval about the median of 
a sample. Box plots do not have notches by default.

A side-by-side comparison of two notched box plots provides a graphical way to 
determine which groups have significantly different medians. This is similar to 
a one-way analysis of variance, except that the latter compares means. 
Analysis of variance is described in Chapter 4, “Linear Models.”
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Distribution Plots
There are several types of plots for examining the distribution of one or more 
samples, as described in the following sections:

• “Normal Probability Plots” on page 8-4

• “Quantile-Quantile Plots” on page 8-6

• “Weibull Probability Plots” on page 8-7

• “Empirical Cumulative Distribution Function (CDF)” on page 8-8

Normal Probability Plots
A normal probability plot is a useful graph for assessing whether data comes 
from a normal distribution. Many statistical procedures make the assumption 
that the underlying distribution of the data is normal, so this plot can provide 
some assurance that the assumption of normality is not being violated, or 
provide an early warning of a problem with your assumptions.

This example shows a typical normal probability plot.

x = normrnd(10,1,25,1);
normplot(x)
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The plot has three graphical elements. The plus signs show the empirical 
probability versus the data value for each point in the sample. The solid line 
connects the 25th and 75th percentiles of the data and represents a robust 
linear fit (i.e., insensitive to the extremes of the sample). The dashed line 
extends the solid line to the ends of the sample. 

The scale of the y-axis is not uniform. The y-axis values are probabilities and, 
as such, go from zero to one. The distance between the tick marks on the y-axis 
matches the distance between the quantiles of a normal distribution. The 
quantiles are close together near the median (probability = 0.5) and stretch out 
symmetrically moving away from the median. Compare the vertical distance 
from the bottom of the plot to the probability 0.25 with the distance from 0.25 
to 0.50. Similarly, compare the distance from the top of the plot to the 
probability 0.75 with the distance from 0.75 to 0.50.

If all the data points fall near the line, the assumption of normality is 
reasonable. But, if the data is nonnormal, the plus signs may follow a curve, as 
in the example using exponential data below.

x = exprnd(10,100,1);
normplot(x)

This plot is clear evidence that the underlying distribution is not normal.
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Quantile-Quantile Plots
A quantile-quantile plot is useful for determining whether two samples come 
from the same distribution (whether normally distributed or not).

The example shows a quantile-quantile plot of two samples from a Poisson 
distribution.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);

Even though the parameters and sample sizes are different, the straight line 
relationship shows that the two samples come from the same distribution.

Like the normal probability plot, the quantile-quantile plot has three graphical 
elements. The pluses are the quantiles of each sample. By default the number 
of pluses is the number of data values in the smaller sample. The solid line joins 
the 25th and 75th percentiles of the samples. The dashed line extends the solid 
line to the extent of the sample.

The example below shows what happens when the underlying distributions are 
not the same.

x = normrnd(5,1,100,1);
y = weibrnd(2,0.5,100,1);
qqplot(x,y);
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These samples clearly are not from the same distribution. 

It is incorrect to interpret a linear plot as a guarantee that the two samples 
come from the same distribution. But, for assessing the validity of a statistical 
procedure that depends on the two samples coming from the same distribution 
(e.g., ANOVA), a linear quantile-quantile plot should be sufficient.

Weibull Probability Plots
A Weibull probability plot is a useful graph for assessing whether data comes 
from a Weibull distribution. Many reliability analyses make the assumption 
that the underlying distribution of the lifetimes is Weibull, so this plot can 
provide some assurance that this assumption is not being violated, or provide 
an early warning of a problem with your assumptions.

The scale of the y-axis is not uniform. The y-axis values are probabilities and, 
as such, go from zero to one. The distance between the tick marks on the y-axis 
matches the distance between the quantiles of a Weibull distribution. 

If the data points (pluses) fall near the line, the assumption that the data comes 
from a Weibull distribution is reasonable.

2 3 4 5 6 7 8
-2

0

2

4

6

8

10

12

14

16

X Quantiles

Y
 Q

ua
nt

ile
s



8 Statistical Plots

8-8

This example shows a typical Weibull probability plot.

y = weibrnd(2,0.5,100,1);
weibplot(y)

Empirical Cumulative Distribution Function (CDF)
If you are not willing to assume that your data follows a specific probability 
distribution, you can use the cdfplot function to graph an empirical estimate 
of the cumulative distribution function (cdf). This function computes the 
proportion of data points less than each x value, and plots the proportion as a 
function of x. The y-axis scale is linear, not a probability scale for a specific 
distribution.

This example shows the empirical cumulative distribution function for a 
Weibull sample.

y = weibrnd(2,0.5,100,1);
cdfplot(y)
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The plot shows a probability function that rises steeply near x=0 and levels off 
for larger values. Over 80% of the observations are less than 1, with the 
remaining values spread over the range [1 5].
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Scatter Plots
A scatter plot is a simple plot of one variable against another. The MATLAB 
plot and scatter functions can produce scatter plots. The MATLAB 
plotmatrix function can produce a matrix of such plots showing the 
relationship between several pairs of variables.

The Statistics Toolbox adds functions that produce grouped versions of these 
plots. These are useful for determining whether the values of two variables or 
the relationship between those variables is the same in each group.

Suppose you want to examine the weight and mileage of cars from three 
different model years. 

load carsmall
gscatter(Weight,MPG,Model_Year,'','xos')

This shows that not only is there a strong relationship between the weight of a 
car and its mileage, but also that newer cars tend to be lighter and have better 
gas mileage than older cars.

(The default arguments for gscatter produce a scatter plot with the different 
groups shown with the same symbol but different colors. The last two 
arguments above request that all groups be shown in default colors and with 
different symbols.)

1500 2000 2500 3000 3500 4000 4500 5000
5

10

15

20

25

30

35

40

45

Weight

M
P

G

70
76
82



Scatter Plots

8-11

The carsmall data set contains other variables that describe different aspects 
of cars. You can examine several of them in a single display by creating a 
grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'','xos')

The upper right subplot displays MPG against Horsepower, and shows that over 
the years the horsepower of the cars has decreased but the gas mileage has 
improved.

The gplotmatrix function can also graph all pairs from a single list of 
variables, along with histograms for each variable. See “Multivariate Analysis 
of Variance (MANOVA)” on page 6-24.
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Statistical Process Control 

Statistical process control (SPC) refers to a number of methods for assessing and monitoring the 
quality of manufactured goods. The following sections describe the SPC features of the Statistics 
Toolbox:

Control Charts (p. 9-2) Explains how to create control charts.

Capability Studies (p. 9-5) Describes how to perform capability studies.
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Control Charts
Control charts were popularized by Walter Shewhart in his work in the 1920s 
at Western Electric. A control chart is a plot of a measurements over time with 
statistical limits applied. Actually, control chart is a slight misnomer. The 
chart itself is really a monitoring tool. The control activity might occur if the 
chart indicates that the process is changing in an undesirable systematic 
direction.

The Statistics Toolbox supports three common control charts, described in the 
following sections:

• “Xbar Charts” on page 9-2

• “S Charts” on page 9-3

• “EWMA Charts” on page 9-4

Xbar Charts
Xbar charts are a plot of the average of a sample of a process taken at regular 
intervals. Suppose you are manufacturing pistons to a tolerance of 
0.5 thousandths of an inch. You measure the runout (deviation from circularity 
in thousandths of an inch) at four points on each piston.

load parts
conf = 0.99;
spec = [-0.5 0.5];
xbarplot(runout,conf,spec)
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The lines at the bottom and the top of the plot show the process specifications. 
The central line is the average runout over all the pistons. The two lines 
flanking the center line are the 99% statistical control limits. By chance only 
one measurement in 100 should fall outside these lines. You can see that even 
in this small run of 36 parts, there are several points outside the boundaries 
(labeled by their observation numbers). This is an indication that the process 
mean is not in statistical control. This might not be of much concern in practice, 
since all the parts are well within specification.

S Charts
The S chart is a plot of the standard deviation of a process taken at regular 
intervals. The standard deviation is a measure of the variability of a process. 
So, the plot indicates whether there is any systematic change in the process 
variability. Continuing with the piston manufacturing example, you can look 
at the standard deviation of each set of four measurements of runout.

schart(runout)

The average runout is about 0.1 thousandths of an inch. There is no indication 
of nonrandom variability.
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EWMA Charts
The exponentially-weighted moving average (EWMA) chart is another chart 
for monitoring the process average. It operates on slightly different 
assumptions than the Xbar chart. The mathematical model behind the Xbar 
chart posits that the process mean is actually constant over time and any 
variation in individual measurements is due entirely to chance.

The EWMA model is a little looser. Here you assume that the mean may be 
varying in time. Here is an EWMA chart of the runout example. Compare this 
with the plot in “Xbar Charts” on page 9-2.

ewmaplot(runout,0.5,0.01,spec)
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Capability Studies
Before going into full-scale production, many manufacturers run a pilot study 
to determine whether their process can actually build parts to the 
specifications demanded by the engineering drawing. 

Using the data from these capability studies with a statistical model enables 
you to get a preliminary estimate of the percentage of parts that will fall 
outside the specifications.

[p,Cp,Cpk] = capable(mean(runout),spec)

p =
   1.3940e-09

Cp =
    2.3950

Cpk =
    1.9812

The result above shows that the probability (p = 1.3940e-09) of observing an 
unacceptable runout is extremely low. Cp and Cpk are two popular capability 
indices.

Cp is the ratio of the range of the specifications to six times the estimate of the 
process standard deviation.

For a process that has its average value on target, a Cp of 1 translates to a little 
more than one defect per thousand. Recently many industries have set a 
quality goal of one part per million. This would correspond to a Cp = 1.6. The 
higher the value of Cp, the more capable the process.

Cpk is the ratio of difference between the process mean and the closer 
specification limit to three times the estimate of the process standard 
deviation.
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where the process mean is µ. For processes that do not maintain their average 
on target, Cpk, is a more descriptive index of process capability. 
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Design of Experiments

Introduction (p. 10-2) Introduces the topic of design of experiments.

Full Factorial Designs (p. 10-4) Explains how to create full factorial designs.

Fractional Factorial Designs (p. 10-6) Explains how to create fractional factorial designs.

Response Surface Designs (p. 10-8) Explains how to create response surface designs.

D-Optimal Designs (p. 10-18) Explains how to create D-optimal designs.
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Introduction
There is a world of difference between data and information. To extract 
information from data you have to make assumptions about the system that 
generated the data. Using these assumptions and physical theory you may be 
able to develop a mathematical model of the system. 

Generally, even rigorously formulated models have some unknown constants. 
The goal of experimentation is to acquire data that enable you to estimate these 
constants.

But why do you need to experiment at all? You could instrument the system 
you want to study and just let it run. Sooner or later you would have all the 
data you could use.

In fact, this is a fairly common approach. There are three characteristics of 
historical data that pose problems for statistical modeling:

• Suppose you observe a change in the operating variables of a system followed 
by a change in the outputs of the system. That does not necessarily mean 
that the change in the system caused the change in the outputs.

• A common assumption in statistical modeling is that the observations are 
independent of each other. This is not the way a system in normal operation 
works.

• Controlling a system in operation often means changing system variables in 
tandem. But if two variables change together, it is impossible to separate 
their effects mathematically.

Designed experiments directly address these problems. The overwhelming 
advantage of a designed experiment is that you actively manipulate the system 
you are studying. With Design of Experiments (DOE) you may generate fewer 
data points than by using passive instrumentation, but the quality of the 
information you get will be higher.
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The Statistics Toolbox provides several functions for generating experimental 
designs appropriate to various situations. These are discussed in the following 
sections:

• “Full Factorial Designs” on page 10-4

• “Fractional Factorial Designs” on page 10-6

• “Response Surface Designs” on page 10-8

• “D-Optimal Designs” on page 10-18
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Full Factorial Designs
Suppose you want to determine whether the variability of a machining process 
is due to the difference in the lathes that cut the parts or the operators who run 
the lathes. 

If the same operator always runs a given lathe then you cannot tell whether 
the machine or the operator is the cause of the variation in the output. By 
allowing every operator to run every lathe you can separate their effects. 

This is a factorial approach. fullfact is the function that generates the design. 
Suppose you have four operators and three machines. What is the factorial 
design?

d = fullfact([4 3])

d =
     1     1
     2     1
     3     1
     4     1
     1     2
     2     2
     3     2
     4     2
     1     3
     2     3
     3     3
     4     3

Each row of d represents one operator/machine combination. Note that there 
are 4*3 = 12 rows.

One special subclass of factorial designs is when all the variables take only two 
values. Suppose you want to quickly determine the sensitivity of a process to 
high and low values of three variables.

d2 = ff2n(3)

d2 =
     0     0     0
     0     0     1
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     0     1     0
     0     1     1
     1     0     0
     1     0     1
     1     1     0
     1     1     1

There are 23 = 8 combinations to check.
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Fractional Factorial Designs
One difficulty with factorial designs is that the number of combinations 
increases exponentially with the number of variables you want to manipulate.

For example, the sensitivity study discussed above might be impractical if 
there were seven variables to study instead of just three. A full factorial design 
would require 27 = 128 runs!

If you assume that the variables do not act synergistically in the system, you 
can assess the sensitivity with far fewer runs. The theoretical minimum 
number is eight. A design known as the Plackett-Burman design uses a 
Hadamard matrix to define this minimal number of runs. To see the design (X) 
matrix for the Plackett-Burman design, you use the hadamard function.

X = hadamard(8)

X =
     1     1     1     1     1     1     1     1
     1    -1     1    -1     1    -1     1    -1
     1     1    -1    -1     1     1    -1    -1
     1    -1    -1     1     1    -1    -1     1
     1     1     1     1    -1    -1    -1    -1
     1    -1     1    -1    -1     1    -1     1
     1     1    -1    -1    -1    -1     1     1
     1    -1    -1     1    -1     1     1    -1

The last seven columns are the actual variable settings (-1 for low, 1 for high.) 
The first column (all ones) enables you to measure the mean effect in the linear 
equation, .

The Plackett-Burman design enables you to study the main (linear) effects of 
each variable with a small number of runs. It does this by using a fraction, in 
this case 8/128, of the runs required for a full factorial design. A drawback of 
this design is that if the effect of one variable does vary with the value of 
another variable, then the estimated effects will be biased (that is, they will 
tend to be off by a systematic amount).

At a cost of a somewhat larger design, you can find a fractional factorial that is 
much smaller than a full factorial, but that does allow estimation of main 
effects independent of interactions between pairs of variables. You can do this 
by specifying generators that control the confounding between variables.

y Xβ ε+=
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As an example, suppose you create a design with the first four variables 
varying independently as in a full factorial, but with the other three variables 
formed by multiplying different triplets of the first four. With this design the 
effects of the last three variables are confounded with three-way interactions 
among the first four variables. The estimated effect of any single variable, 
however, is not confounded with (is independent of) interaction effects between 
any pair of variables. Interaction effects are confounded with each other. Box, 
Hunter, and Hunter [3] present the properties of these designs and provide the 
generators needed to produce them.

The fracfact function can produce this fractional factorial design using the 
generator strings that Box, Hunter, and Hunter provide.

X = fracfact('a b c d abc bcd acd')

X =
    -1    -1    -1    -1    -1    -1    -1
    -1    -1    -1     1    -1     1     1
    -1    -1     1    -1     1     1     1
    -1    -1     1     1     1    -1    -1
    -1     1    -1    -1     1     1    -1
    -1     1    -1     1     1    -1     1
    -1     1     1    -1    -1    -1     1
    -1     1     1     1    -1     1    -1
     1    -1    -1    -1     1    -1     1
     1    -1    -1     1     1     1    -1
     1    -1     1    -1    -1     1    -1
     1    -1     1     1    -1    -1     1
     1     1    -1    -1    -1     1     1
     1     1    -1     1    -1    -1    -1
     1     1     1    -1     1    -1    -1
     1     1     1     1     1     1     1
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Response Surface Designs
Sometimes simple linear and interaction models are not adequate. For 
example, suppose that the outputs are defects or yield, and the goal is to 
minimize defects and maximize yield. If these optimal points are in the interior 
of the region in which the experiment is to be conducted, you need a 
mathematical model that can represent curvature so that it has a local 
optimum. The simplest such model has the quadratic form 

containing linear terms for all factors, squared terms for all factors, and 
products of all pairs of factors. 

Designs for fitting these types of models are known as response surface 
designs. One such design is the full factorial design having three values for 
each input. Although the Statistics Toolbox is capable of generating this 
design, it is not really a satisfactory design in most cases because it has many 
more runs than are necessary to fit the model.

The two most common designs generally used in response surface modeling are 
central composite designs and Box-Behnken designs. In these designs the 
inputs take on three or five distinct values (levels), but not all combinations of 
these values appear in the design. 

The functions described here produce specific response surface designs: 

• “Central Composite Designs” on page 10-8

• “Box-Behnken Designs” on page 10-9

If these do not serve your purposes, consider creating a D-optimal design. 
“Design of Experiments Demo” on page 10-10 uses a D-optimal design to fit 
data that conforms to a response surface model. For more information see 
“D-Optimal Designs” on page 10-18.

Central Composite Designs
Central composite designs are response surface designs that can fit a full 
quadratic model. To picture a central composite design, imagine you have 
several factors that can vary between low and high values. For convenience, 
suppose each factor varies from -1 to +1. 

Y β0 β1X1 β2X2 β12X1X2 β11X1
2 β22X2

2
+ + + + +=
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One central composite design consists of cube points at the corners of a unit 
cube that is the product of the intervals [-1,1], star points along the axes at or 
outside the cube, and center points at the origin. 

Central composite designs are of three types. Circumscribed (CCC) designs are 
as described above. Inscribed (CCI) designs are as described above, but scaled 
so the star points take the values -1 and +1, and the cube points lie in the 
interior of the cube. Faced (CCF) designs have the star points on the faces of 
the cube. Faced designs have three levels per factor, in contrast with the other 
types, which have five levels per factor. The following figure shows these three 
types of designs for three factors. 

Box-Behnken Designs
Like central composite designs, Box-Behnken designs are response surface 
designs that can fit a full quadratic model. Unlike most central composite 
designs, Box-Behnken designs use just three levels of each factor. This makes 
them appealing when the factors are quantitative but the set of achievable 
values is small. 

Central composite faced (CCF) designs also use just three factor levels. 
However, they are not rotatable as Box-Behnken designs are. On the other 
hand, Box-Behnken designs can be expected to have poorer prediction ability 
in the corners of the cube that encloses the design, because unlike CCF designs 
they do not include points at the corners of that cube. 

The following figure shows a Box-Behnken design for three factors, with the 
circled point appearing at the origin and possibly repeated for several runs. A 
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repeated center point makes it possible to compute an estimate of the error 
term that does not depend on the fitted model. For this design all points except 
the center point appear at a distance  from the origin. That does not hold 
true for Box-Behnken designs with different numbers of factors. 

Design of Experiments Demo
The rsmdemo utility is an interactive graphic environment that demonstrates 
the design of experiments and surface fitting through the simulation of a 
chemical reaction. The goal of the demo is to find the levels of the reactants 
needed to maximize the reaction rate. 

Suitable designs for this experiment include the central composite designs and 
Box-Behnken designs, described in the previous two sections, and the 
D-optimal designs, described in “D-Optimal Designs” on page 10-18. This demo 
uses D-optimal designs.

There are two parts to the demo:

• “Comparing Results from Trial-and-Error Data and a Designed Experiment” 
on page 10-11

• “Comparing Results Using a Polynomial Model and a Nonlinear Model” on 
page 10-15
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Comparing Results from Trial-and-Error Data and a Designed Experiment
This part of the experiment compares the results obtained using data gathered 
through trial and error and using data from a designed experiment:

1 To begin, run the rsmdemo function.

rsmdemo

2 Click Run in the Reaction Simulator window to generate a test reaction for 
the trial and error phase of the demo. 

To perform the experiment, you can click Run as many as 13 times. For each 
run, based on the results of previous runs, you can move the sliders in the 
Reaction Simulator window to change the levels of the reactants to increase 
or decrease the reaction rate. Each time you click the Run button, the levels 
for the reactants and results of the run are displayed in the Trial and Error 
Data window, as shown in the following figure after 13 trials.
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Note  The results are determined using an underlying model that takes into 
account the noise in the process, so even if you keep all of the levels the same, 
the results will vary from run to run. In this case however, the Analyze 
function will not be able to generate a fit for the results.

3 When you have completed 13 runs, select Hydrogen vs. Rate, in the field 
next to Analyze, to plot the relationships between the reactants and the 
reaction rate. 

For this set of 13 runs, rsmdemo produces the following plot. 
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4 Click the Analyze button to call the rstool function, which you can then use 
to try to optimize the results. See “Exploring Graphs of Multidimensional 
Polynomials” on page 4-42 for more information about using the rstool 
demo.

5 Next, perform another set of 13 runs, this time from a designed experiment. 
In the Experimental Data window, click the Do Experiment button. 
rsmdemo calls the cordexch function to generate a D-optimal design, and 
then, for each run, computes the reaction rate.
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6 Select Hydrogen vs. Rate in the field next to Nonlinear Model in the 
Experimental Data window. This displays the following plot. 

7 You can also click the Response Surface button to call rstool to find the 
optimal levels of the reactants.
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8 Compare the analysis results for the two sets of data. It is likely (though not 
certain) that you’ll find some or all of these differences:

- You can fit a full quadratic model with the data from the designed 
experiment, but the trial and error data may be insufficient for fitting a 
quadratic model or interactions model.

- Using the data from the designed experiment, you are more likely to be 
able to find levels for the reactants that result in the maximum reaction 
rate. Even if you find the best settings using the trial and error data, the 
confidence bounds are likely to be wider than those from the designed 
experiment.

Comparing Results Using a Polynomial Model and a Nonlinear Model
This part of the experiment analyzes the experimental design data with a 
polynomial (response surface) model and a nonlinear model, and compare the 
results. The true model for the process, which is used to generate the data, is 
actually a nonlinear model. However, within the range of the data, a quadratic 
model approximates the true model quite well:

1 Using the results generated in the designed experiment part of “Comparing 
Results from Trial-and-Error Data and a Designed Experiment” on 
page 10-11, click the Response Surface button on the Experimental Data 
window. rsmdemo calls rstool, which fits a full quadratic model to the data. 
Drag the reference lines to change the levels of the reactants, and find the 
optimal reaction rate. Observe the width of the confidence intervals.
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2 Now click the Nonlinear Model button on the Experimental Data window. 
rsmdemo calls nlintool, which fits a Hougen-Watson model to the data. As 
with the quadratic model, you can drag the reference lines to change the 
reactant levels. Observe the reaction rate and the confidence intervals.
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3 Compare the analysis results for the two models. Even though the true 
model is nonlinear, you may find that the polynomial model provides a good 
fit. Because polynomial models are much easier to fit and work with than 
nonlinear models, a polynomial model is often preferable even when 
modeling a nonlinear process. Keep in mind, however, that such models are 
unlikely to be reliable for extrapolating outside the range of the data.
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D-Optimal Designs
The designs above pre-date the computer age, and some were in use by early in 
the 20th century. In the 1970s statisticians started to use the computer in 
experimental design by recasting the design of experiments (DOE) in terms of 
optimization. A D-optimal design is one that maximizes the determinant of 
Fisher’s information matrix, XTX. This matrix is proportional to the inverse of 
the covariance matrix of the parameters. So maximizing det(XTX) is equivalent 
to minimizing the determinant of the covariance of the parameters.

A D-optimal design minimizes the volume of the confidence ellipsoid of the 
regression estimates of the linear model parameters, β.

There are several functions in the Statistics Toolbox that generate D-optimal 
designs. These are cordexch, daugment, dcovary, and rowexch. The following 
sections explore D-optimal design in greater detail:

• “Generating D-Optimal Designs” on page 10-18

• “Augmenting D-Optimal Designs” on page 10-21

• “Designing Experiments with Uncontrolled Inputs” on page 10-23

• “Controlling Candidate Points” on page 10-24

• “Including Categorical Factors” on page 10-24

Generating D-Optimal Designs
The cordexch and rowexch functions provide two competing optimization 
algorithms for computing a D-optimal design given a model specification.

Both cordexch and rowexch are iterative algorithms. They operate by 
improving a starting design by making incremental changes to its elements. In 
the coordinate exchange algorithm, the increments are the individual elements 
of the design matrix. In row exchange, the elements are the rows of the design 
matrix. Atkinson and Donev [1] is a reference.

To generate a D-optimal design you must specify the number of inputs, the 
number of runs, and the order of the model you want to fit.

Both cordexch and rowexch take the following strings to specify the model:

• 'linear' or 'l' – the default model with constant and first order terms

• 'interaction' or 'i' – includes constant, linear, and cross product terms
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• 'quadratic' or 'q' – interactions plus squared terms

• 'purequadratic' or 'p' – includes constant, linear and squared terms

Alternatively, you can use a matrix of integers to specify the terms. Details are 
in the help for the utility function x2fx.

For a simple example using the coordinate-exchange algorithm, consider the 
problem of quadratic modeling with two inputs. The model form is

Suppose you want the D-optimal design for fitting this model with nine runs.

settings = cordexch(2,9,'q')
settings =

    -1     1
     1     1
     0     1
     1    -1
    -1    -1
     0    -1
     1     0
     0     0
    -1     0

You can plot the columns of settings against each other to get a better picture 
of the design.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

y β0 β1x1 β2x2 β12x1x2 β11x1
2 β22x2

2 ε+ + + + + +=
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For a simple example using the row-exchange algorithm, consider the 
interaction model with two inputs. The model form is

Suppose you want the D-optimal design for fitting this model with four runs.

[settings, X] = rowexch(2,4,'i')

settings =

    -1     1
    -1    -1
     1    -1
     1     1

X =
     1    -1     1    -1
     1    -1    -1     1
     1     1    -1    -1
     1     1     1     1

The settings matrix shows how to vary the inputs from run to run. The X matrix 
is the design matrix for fitting the above regression model. The first column of X 
is for fitting the constant term. The last column is the element-wise product of 
the second and third columns.

The associated plot is simple but elegant.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])

-1 0 1
-1

0

1

y β0 β1x1 β2x2 β12x1x2 ε+ + + +=
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set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

Augmenting D-Optimal Designs
In practice, experimentation is an iterative process. You often want to add runs 
to a completed experiment to learn more about the system. The function 
daugment allows you choose these extra runs optimally.

Suppose you execute the eight-run design below for fitting a linear model to 
four input variables.

settings = cordexch(4,8)
settings =

     1    -1     1     1
    -1    -1     1    -1
    -1     1     1     1
     1     1     1    -1
    -1     1    -1     1
     1    -1    -1     1
    -1    -1    -1    -1
     1     1    -1    -1

-1 0 1
-1

0

1
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This design is adequate to fit the linear model for four inputs, but cannot fit the 
six cross-product (interaction) terms. Suppose you are willing to do eight more 
runs to fit these extra terms. The following code show how to do so.

[augmented, X] = daugment(settings,8,'i');

augmented
augmented =

     1    -1     1     1
    -1    -1     1    -1
    -1     1     1     1
     1     1     1    -1
    -1     1    -1     1
     1    -1    -1     1
    -1    -1    -1    -1
     1     1    -1    -1
    -1    -1    -1     1
     1     1     1     1
    -1    -1     1     1
    -1     1     1    -1
     1    -1     1    -1
     1    -1    -1    -1
    -1     1    -1    -1
     1     1    -1     1

info = X'*X
info =

    16     0     0     0     0     0     0     0     0     0     0
     0    16     0     0     0     0     0     0     0     0     0
     0     0    16     0     0     0     0     0     0     0     0
     0     0     0    16     0     0     0     0     0     0     0
     0     0     0     0    16     0     0     0     0     0     0
     0     0     0     0     0    16     0     0     0     0     0
     0     0     0     0     0     0    16     0     0     0     0
     0     0     0     0     0     0     0    16     0     0     0
     0     0     0     0     0     0     0     0    16     0     0
     0     0     0     0     0     0     0     0     0    16     0
     0     0     0     0     0     0     0     0     0     0    16
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The augmented design is orthogonal, since X'*X is a multiple of the identity 
matrix. In fact, this design is the same as a 24 factorial design.

Designing Experiments with Uncontrolled Inputs
Sometimes it is impossible to control every experimental input. But you might 
know the values of some inputs in advance. An example is the time each run 
takes place. If a process is experiencing linear drift, you might want to include 
the time of each test run as a variable in the model.

The function dcovary enables you to choose the settings for each run in order 
to maximize your information despite a linear drift in the process.

Suppose you want to execute an eight-run experiment with three factors that 
is optimal with respect to a linear drift in the response over time. First you 
create the drift input variable. Note that drift is normalized to have mean 
zero. Its minimum is -1 and its maximum is 1.

drift = (linspace(-1,1,8))'
drift =

   -1.0000
   -0.7143
   -0.4286
   -0.1429
    0.1429
    0.4286
    0.7143
    1.0000

settings = dcovary(3,drift,'linear')
settings =

    1.0000    1.0000   -1.0000   -1.0000
   -1.0000   -1.0000   -1.0000   -0.7143
   -1.0000    1.0000    1.0000   -0.4286
    1.0000   -1.0000    1.0000   -0.1429
   -1.0000    1.0000   -1.0000    0.1429
    1.0000    1.0000    1.0000    0.4286
   -1.0000   -1.0000    1.0000    0.7143
    1.0000   -1.0000   -1.0000    1.0000
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Controlling Candidate Points
The rowexch function generates a candidate set of possible design points, and 
then uses a D-optimal algorithm to select a design from those points. It does 
this by invoking the candgen and candexch functions. If you need to supply 
your own candidate set, or if you need to modify the one that the candgen 
function provides, you might prefer to call these functions separately.

This example creates a design that represents proportions of a mixture, so the 
sum of the proportions cannot exceed 1.

% Generate a matrix of (x,y) values with x+y<=1 
[x,y]=meshgrid(0:.1:1); 
xy = [x(:) y(:)]; 
xy = xy(sum(xy,2)<=1,:);

% Compute quadratic model terms for these points. 
f = x2fx(xy,'q');

% Generate a 10-point design and display it 
r=candexch(f,10); 
xy(r,:)
ans = 
        0           0
        0      1.0000
   1.0000           0
        0      0.5000
   0.5000           0
        0      1.0000
   1.0000           0
   0.5000      0.5000
   0.5000           0
   0.5000      0.5000

Including Categorical Factors
Another example where it is useful to call candexch directly is to generate a 
design that includes categorical factors. For these designs you create a 
candidate set containing dummy variables for the categorical factors. The 
dummyvar function is useful to create such a candidate set.
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This example contains three categorical factors, each taking three levels. You 
create a candidate set F containing all 27 combinations of these factor levels. 
Then you create a matrix C containing dummy variables for the factors, and 
remove enough columns to make the resulting matrix full rank. (You remove 
one column for each factor except the first factor.) Finally, you use the 
candexch function to generate a nine-run design. 

F = fullfact([3 3 3]);
C = dummyvar(F);
C(:,[4 7]) = [];
rows = candexch(C,9);
D = F(rows,:)
D = 
    3 1 3
    1 3 2
    3 3 1
    1 2 3
    2 2 1
    2 1 2
    3 2 2
    2 3 3
    1 1 1

In this example, the resulting design has the property that for each pair of 
factors, each of the nine possible combinations of levels appears exactly once. 
That is not always true of D-optimal designs. In fact, because of some 
randomness built into the candexch function, repeated runs of this example 
might give different designs.
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11

Hidden Markov Models

Introduction (p. 11-2) Introduces the concept of a hidden Markov model.

Example of a Hidden Markov Model 
(p. 11-4)

Gives an example of a hidden Markov model.

Markov Chains (p. 11-6) Provides a definition of Markov chains.

Analyzing a Hidden Markov Model 
(p. 11-8)

Shows how to use Statistics Toolbox functions to analyze 
a hidden Markov model.
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Introduction
Markov models are mathematical models of stochastic processes — processes 
that generate random sequences of outcomes according to certain probabilities. 
A simple example of a stochastic process is a sequence of coin tosses, the 
outcomes being heads or tails. People use Markov models to analyze a wide 
variety of stochastic processes, from daily stock prices to the positions of genes 
in a chromosome. 

You can construct Markov models very easily using state diagrams, such as the 
one shown in this figure.

A State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you 
are trying to model, and the arrows represent transitions between states. The 
label on each arrow represents the probability of that transition, which 
depends on the process you are modeling. At each step of the process, the model 
generates an output, or emission, depending on which state it is in, and then 
makes a transition to another state. 

For example, if you are modeling a sequence of coin tosses, the two states are 
heads and tails. The most recent coin toss determines the current state of the 
model and each subsequent toss determines the transition to the next state. If 
the coin is fair, the transition probabilities are all 1/2. In this simple example, 
the emission at any moment in time is simply the current state. However, in 
more complicated models, the states themselves can contain random processes 
that affect their emissions. For example, after each flip of the coin, you could 
roll a die to determine the emission at that step. 
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A hidden Markov model is one in which you observe a sequence of emissions, 
but you do not know the sequence of states the model went through to generate 
the emissions. In this case, your goal is to recover the state information from 
the observed data. The next section, “Example of a Hidden Markov Model” on 
page 11-4, provides an example.

The Statistics Toolbox includes five functions for analyzing hidden Markov 
models: 

• hmmdecode — Calculates the posterior state probabilities of a sequence

• hmmgenerate — Generates a sequence for a hidden Markov model

• hmmestimate — Estimates the parameters for a Markov model 

• hmmtrain — Calculates the maximum likelihood estimate of hidden Markov 
model parameters

• hmmviterbi — Calculates the most likely state path for a hidden Markov 
model sequence

“Analyzing a Hidden Markov Model” on page 11-8 explains how to use these 
functions in detail.
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Example of a Hidden Markov Model
This section describes a simple example of a Markov model in which there are 
two states and six possible emissions. The example uses the following objects:

• A red die, having six sides, labeled 1 through 6.

• A green die, having twelve sides, five of which are labeled 2 through 6, while 
the remaining seven sides are labeled 1.

• A weighted red coin, for which the probability of heads is .9 and the 
probability of tails is .1.

• A weighted green coin, for which the probability of heads is .95 and the 
probability of tails is .05.

You create a sequence of numbers from the set {1, 2, 3, 4, 5, 6} using the 
following rules: 

• Begin by rolling the red die and writing down the number that comes up, 
which is the emission.

• Toss the red coin and do one of the following: 

- If the result is heads, roll the red die and write down the result. 

- If the result is tails, roll the green die and write down the result. 

• At each subsequent step, you flip the coin that has the same color as the die 
you rolled in the previous step. If the coin comes up heads, roll the same die 
as in the previous step. If the coin comes up tails, switch to the other die.

You can model this example with a state diagram that has two states, red and 
green, as shown in the following figure. 
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You determine the emission from a state by rolling the die with the same color 
as the state, and the transition to the next state by flipping the coin with the 
same color as the state.

So far, the model is not hidden, because you know the sequence of states from 
the colors of the coins and dice. But, suppose that someone else is generating 
the emissions without showing you the dice or coins. All you can see is the 
sequence of numbers. If you start seeing more 1s than other numbers, you 
might suspect that the model is in the green state, but you cannot be sure 
because you cannot see the color of the die being rolled. This is an example of a 
hidden Markov model: you can observe the sequence of emissions, but you do 
not know what state the model is in — that is, what color die is being rolled — 
when the emission occurs. 

Not knowing the state the model is in raises the following problems:

• Given a sequence, what is the most likely state path? 

• How can you estimate the parameters of the model given the state path?

• How can you estimate the parameters of the model without knowing the 
state path? 

• What is the probability that the model generates a given sequence? This is 
known as the forward probability.

• What is the probability that the model is in a particular state at any point in 
the sequence? This is the posterior probability.



11 Hidden Markov Models

11-6

Markov Chains
This section defines Markov chains, which are the mathematical descriptions 
of Markov models. A Markov chain contains the following elements:

• A set of states {1, 2, ..., M}

• An M-by-M transition matrix T whose i, j entry is the probability of a 
transition from state i to state j. The matrix corresponds to a state diagram 
like the one shown in the Figure , A State Diagram for a Markov Model, on 
page 11-2. The sum of the entries in each row of T must be 1, because this is 
the sum of the probabilities of making a transition from a given state to each 
of the other states.

• A set of possible outputs, or emissions, {s1, s2, ... , sN}. By default, the set of 
emissions is {1, 2, ... , N}, where N is the number of possible emissions, but 
you can choose a different set of numbers or symbols.

• An M-by-N emission matrix E whose i,k entry gives the probability of 
emitting symbol sk given that the model is in state i.

When the model is in state i1, it emits an output  with probability . The 
model then makes a transition to state i2 with probability , and emits 
another symbol. 

You can represent the example in “Example of a Hidden Markov Model” on 
page 11-4 by a Markov chain with two states, red and green. You determine 
transitions between states by flipping the coins. The transition matrix is

You determine emissions by rolling the dice. The emissions matrix is

“Analyzing a Hidden Markov Model” on page 11-8 shows how to analyze this 
model using functions in the Statistics Toolbox.
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How the Toolbox Generates Random Sequences
The hidden Markov model functions in the Statistics Toolbox generate random 
sequences using the transition matrix, T, and the emission matrix, E, as 
described in the preceding section. The functions always begin with the model 
in the initial state, i0 = 1, at step 0. The model then makes a transition to state 
i1 with probability , and emits an output  with probability . 
Consequently, the probability of observing the sequence of states  and 
the sequence of emissions  in the first r steps, is

Note that if the function returns a generated sequence of states, the first state 
in the sequence is i1: the initial state, i0, is not included. 

In this implementation, the initial state is 1 with probability 1, and all other 
states have probability 0 of being the initial state. At times, you might want to 
change the probabilities of the initial states. You can do so by adding a new 
artificial state 1 that has transitions to the other states with any probabilities 
you want, but that never occurs after step 0. See “Changing the Probabilities 
of the Initial States” on page 11-13 to learn how to do this.

T1i1
sk1
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i1i2…ir
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Analyzing a Hidden Markov Model
This section explains how to use functions in the Statistics Toolbox to analyze 
hidden Markov models. For illustration, the section uses the example described 
in “Example of a Hidden Markov Model” on page 11-4. The section shows how 
to recover information about the model, assuming that you do not know some 
of the model’s parameters. The section covers the following topics:

• “Setting Up the Model and Generating Data” on page 11-8

• “Computing the Most Likely Sequence of States” on page 11-9

• “Estimating the Transition and Emission Matrices” on page 11-9

• “Changing the Probabilities of the Initial States” on page 11-13

• “Example: Changing the Initial Probabilities” on page 11-14

Setting Up the Model and Generating Data
This section shows how to set up a hidden Markov model and use it to generate 
data. First, create the transition and emission matrices by entering the 
following commands.

TRANS = [.9 .1; .05 .95;];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

Next, generate a random sequence of emissions from the model, seq, of length 
1000, using the function hmmgenerate. You can also return the corresponding 
random sequence of states in the model as the second output, states.

[seq, states] = hmmgenerate(1000, TRANS, EMIS);

Note  In generating the sequences seq and states, hmmgenerate begins with 
the model in state i0 = 1 at step 0. The model then makes a transition to state 
i1 at step 1, and returns i1 as the first entry in states.
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Computing the Most Likely Sequence of States
Suppose you know the transition and emission matrices, TRANS and EMIS. If you 
observe a sequence, seq, of emissions, how can you compute the most likely 
sequence of states that generated the sequence? The function hmmviterbi uses 
the Viterbi algorithm to compute the most likely sequence of states that the 
model would go through to generate the given sequence of emissions.

likelystates = hmmviterbi(seq, TRANS, EMIS);

likelystates is a sequence of the same length as seq.

To test the accuracy of hmmviterbi, you can compute the percentage of the time 
that the actual sequence states agrees with the sequence likelystates.

sum(states==likelystates)/1000

ans =

0.8200

This shows that the most likely sequence of states agrees with the actual 
sequence 82% of the time. Note that your results might differ if you run the 
same commands, because the sequence seq is random.

Note  The states at the beginning of the sequence returned by hmmviterbi 
are less reliable because of the computational delay in the Viterbi algorithm. 

Estimating the Transition and Emission Matrices
Suppose you do not know the transition and emission matrices in the model, 
and you observe a sequence of emissions, seq. There are two functions that you 
can use to estimate the matrices:

• hmmestimate
• hmmtrain

Using hmmestimate
To use hmmestimate, you also need to know the corresponding sequence of 
states that the model went through to generate seq. The following command 
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takes the emission and state sequences, seq and states, and returns estimates 
of the transition and emission matrices, TRANS_EST and EMIS_EST.

[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)

TRANS_EST =

0.8989    0.1011
0.0585    0.9415

EMIS_EST =

0.1721    0.1721    0.1749    0.1612    0.1803    0.1393
0.5836    0.0741    0.0804    0.0789    0.0726    0.1104

You can compare these outputs with the original transition and emission 
matrices, TRANS and EMIS, to see how well hmmestimate estimates them.

TRANS

TRANS =

0.9000    0.1000
0.0500    0.9500

EMIS

EMIS =

0.1667    0.1667    0.1667    0.1667    0.1667    0.1667
0.5833    0.0833    0.0833    0.0833    0.0833    0.0833

Using hmmtrain
If you do not know the sequence of states, but you have an initial guess as to 
the values of TRANS and EMIS, you can estimate the transition and emission 
matrices using the function hmmtrain. For example, suppose you have the 
following initial guesses for TRANS and EMIS.

TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 .08 .08 .08 .08 08];
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You can estimate TRANS and EMIS with the following command.

[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)

TRANS_EST2 =

0.2286    0.7714
0.0032    0.9968

EMIS_EST2 =

0.1436    0.2348    0.1837    0.1963    0.2350    0.0066
0.4355    0.1089    0.1144    0.1082    0.1109    0.1220

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS and 
EMIS_GUESS so that at each step the adjusted matrices are more likely to 
generate the observed sequence, seq. The algorithm halts when the matrices 
in two successive iterations are within a small tolerance of each other. See the 
reference page for hmmtrain for more information about the tolerance.

If the algorithm fails to reach this tolerance within a maximum number of 
iterations, whose default value is 100, the algorithm halts. In this case, 
hmmtrain returns the last values of TRANS_EST and EMIS_EST and issues a 
warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, you can increase the 
default value of the maximum number of iterations with the command

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'maxiterations', maxiter)

where maxiter is the maximum number of steps the algorithm executes. 

You can also change default value of the tolerance with the command

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)

where tol is the desired value of the tolerance. Increasing the value of tol 
makes the algorithm halt sooner, but the results are less accurate. 

Note  If the sequence seq is long, the hmmtrain algorithm might take a long 
time to run. If so, you might want to lower the maximum number of iterations 
temporarily at first to find out how much time the algorithm requires. 
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There are two factors that can make the output matrices of hmmtrain less 
reliable:

• The algorithm might converge to a local maximum that does not represent 
the true transition and emission matrices. If you suspect that this is the case, 
try different initial guesses for the matrices TRANS_EST and EMIS_EST.

• The sequence seq might be too short to properly train the matrices. If you 
suspect this is the case, try using a longer sequence for seq.

Calculating Posterior State Probabilities
The posterior state probabilities of an emission sequence seq are the 
conditional probabilities that the model is in a particular state when it 
generates a symbol in seq, given that seq is emitted. You can compute the 
posterior state probabilities with the following command:

PSTATES = hmmdecode(seq, TRANS, EMIS)

The output PSTATES is an M-by-L matrix, where M is the number of states and 
L is the length of seq. PSTATES(i,j) is the conditional probability that the 
model is in state i when it generates the jth symbol of seq, given that seq is 
emitted. 

Note  The function hmmdecode begins with the model in state 1 at step 0, prior 
to the first emission. PSTATES(i,1) is the probability that the model is in state 
i at the following step 1.

You can also return the logarithm of the probability of the sequence seq as the 
second output argument.

[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS)

The actual probability of a sequence tends to 0 rapidly as the length of the 
sequence increases, so the probability of a sufficiently long sequence is less 
than the smallest positive number your computer can represent. Consequently, 
hmmdecode returns the logarithm of the probability instead.



Analyzing a Hidden Markov Model

11-13

For example, the following code returns the logarithm probability of the 
one-element sequence [3].

[PSTATES, logpseq] = hmmdecode([3], TRANS, EMIS);
exp(logpseq)

ans =

0.1583

Note that you can compute this answer directly as 

by the commands

TRANS(1,:)*EMIS(:,3)

ans =

0.1583

Changing the Probabilities of the Initial States
By default, the hidden Markov model functions begin with the model in state 1 
at step 0. In other words, with probability 1, the initial state is 1, and all other 
states have probability 0 of being the initial state. See “How the Toolbox 
Generates Random Sequences” on page 11-7.

For some models, you might want to assign different probabilities to the initial 
states. For example, you might want to choose initial state probabilities from a 
probability vector p satisfying pT = p. This assignment makes the Markov 
chain time independent: the probability of observing a given output at a 
specified step of the sequence is independent of the step number. This section 
explains how to assign any vector of probabilities for the initial states in your 
model. 

T1jEj3

j 1=

6

∑
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To assign a vector of probabilities, p = [p1, p2, ..., pM], to the initial states, do 
the following:

1 Create an M+1-by-M+1 augmented transition matrix, , that has the 
following form: 

where T is the true transition matrix. The first column of  contains M+1 
zeros.

2 Create an M+1-by-N augmented emission matrix, , that has the following 
form:

If the transition and emission matrices are TRANS and EMIS, respectively, you 
can create the augmented matrices with the following commands:

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS];

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];

Example: Changing the Initial Probabilities
For example, suppose that you have the following transition and emission 
matrices.

TRANS = [.9 .1; .05 .95;];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

You want to assign the states initial probabilities that are given by a left 
eigenvector, p, for TRANS, corresponding to the maximum eigenvalue 1. These 
initial probabilities make the Markov model time independent: the probability 
of observing a given emission is the same at each step of the output sequence.

T̂

T̂ 0 p
0 T

=

T̂

Ê

T̂ 0
E

=
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To find the vector p, enter the following commands.

[V,D] = eigs(TRANS')

V =

-0.4472   -0.7071
-0.8944    0.7071

D =

1.0000         0
0    0.8500

The first column of V is the right eigenvector for TRANS' corresponding to 
eigenvalue 1. So the transpose of this vector is a left eigenvector for TRANS. You 
can create this vector as follows.

p = V(:, 1)'

p =

-0.4472   -0.8944

p*TRANS

ans =

-0.4472   -0.8944

This is not yet a probability vector, so divide p by its sum.

p = p/sum(p)

p =

0.3333    0.6667

Next, create the augmented matrices TRANS_HAT and EMIS_HAT.

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS]

TRANS_HAT =

0    0.3333    0.6667
0    0.9000    0.1000
0    0.0500    0.9500
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EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS]

EMIS_HAT =

0         0         0         0         0         0
0.1667    0.1667    0.1667    0.1667    0.1667    0.1667
0.5833    0.0833    0.0833    0.0833    0.0833    0.0833

This assignment of probabilities makes the Markov model time independent. 
For example, you can calculate the probability of seeing symbol 3 at step 1 of 
an emission sequence using the function hmmdecode as follows.

[pStates, logp]=hmmdecode([3],TRANS_HAT,EMIS_HAT);

exp(logp)

ans =
0.1111

Note that the second output argument, logp, is the logarithm of the probability 
of the sequence [3].

On the other hand, the probability of seeing symbol 3 at step 2 is the sum of the 
probabilities of the sequences [1 3], [2 3]. [3 3], [4 3], [5 3], and [6 3].

sum = 0;
for n = 1:6

[pStates, logp] = hmmdecode([n 3],TRANS_HAT,EMIS_HAT);
sum = sum + exp(logp);

end;
sum

sum =
0.1111

References
To learn more about hidden Markov models and their applications, see the 
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This chapter contains detailed descriptions of all the Statistics Toolbox 
functions.  It is divided into two sections:

• “Functions — By Category” on page 12-2, a list of functions grouped by 
subject area.

• “Functions — Alphabetical List” on page 12-22, detailed function 
descriptions in alphabetical order.

Functions — By Category (p. 12-2) Brief descriptions of the Statistics Toolbox functions organized 
by category

Functions — Alphabetical List 
(p. 12-22)

Reference pages for the Statistics Toolbox functions in 
alphabetical order
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Functions — By Category
The Statistics Toolbox provides several categories of functions.

Probability Distributions
For each supported distribution, the Statistics Toolbox provides associated 
functions in each of these categories

Probability Distributions Specific functions for each supported 
distribution

Descriptive Statistics Descriptive statistics for data samples

Statistical Plotting Statistical plots

Statistical Process Control Statistical Process Control

Linear Models Fitting linear models to data

Nonlinear Regression Fitting nonlinear regression models

Design of Experiments Design of Experiments

Multivariate Statistics Multivariate statistics

Decision Tree Techniques Decision trees

Hypothesis Tests Statistical tests of hypotheses

Distribution Testing Tests for fitting distributions to data

Nonparametric Testing Nonparametric testing

Hidden Markov Models Finding hidden Markov models

File I/O Reading data from and writing data to 
operating-system files

Demonstrations Demonstrations

Data Data for examples

Utility Utility functions

Parameter Estimation

Cumulative Distribution Functions (cdf)
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Probability Density Functions (pdf)

Inverse Cumulative Distribution Functions

Random Number Generators

Moments of Distribution Functions
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Parameter Estimation

Cumulative Distribution Functions (cdf)

betafit Parameter estimation for the beta distribution

betalike Negative beta log-likelihood function

binofit Parameter estimation for the binomial distribution

evfit Parameter estimation for the extreme value distribution

evlike Negative log-likelihood for the extreme value distribution

expfit Parameter estimation for the exponential distribution

explike Negative log-likelihood for the exponential distribution

gamfit Parameter estimation for the gamma distribution

gamlike Negative gamma log-likelihood function

lognfit Parameter estimation for the lognormal distribution

lognlike Negative log-likelihood for the lognormal distribution

mle Maximum likelihood estimation

nbinfit Parameter estimates and confidence intervals for negative 
binomial data

normfit Parameter estimation for the normal distribution

normlike Negative normal log-likelihood function

poissfit Parameter estimation for the Poisson distribution

raylfit Rayleigh parameter estimation

unifit Parameter estimation for the uniform distribution

wblfit Weibull parameter estimation

wbllike Weibull negative log-likelihood function

betacdf Beta cdf

binocdf Binomial cdf

cdf Parameterized cdf routine
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chi2cdf Chi-square cdf

ecdf Empirical (Kaplan-Meier) cdf

evcdf Extreme value cdf

expcdf Exponential cdf

fcdf F cdf

gamcdf Gamma cdf

geocdf Geometric cdf

hygecdf Hypergeometric cdf

logncdf Lognormal cdf

nbincdf Negative binomial cdf

ncfcdf Noncentral F cdf

nctcdf Noncentral t cdf

ncx2cdf Noncentral Chi-square cdf

normcdf Normal (Gaussian) cdf

poisscdf Poisson cdf

raylcdf Rayleigh cdf

tcdf Student’s t cdf

unidcdf Discrete uniform cdf

unifcdf Continuous uniform cdf

wblcdf Weibull cdf
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Probability Density Functions (pdf)

betapdf Beta pdf

binopdf Binomial pdf

chi2pdf Chi-square pdf

evpdf Extreme value pdf

exppdf Exponential pdf

fpdf F pdf

gampdf Gamma pdf

geopdf Geometric pdf

hygepdf Hypergeometric pdf

lognpdf Lognormal pdf

mvnpdf Multivariate normal pdf

nbinpdf Negative binomial pdf

ncfpdf Noncentral F pdf

nctpdf Noncentral t pdf

ncx2pdf Noncentral Chi-square pdf

normpdf Normal (Gaussian) pdf

pdf Parameterized pdf routine

poisspdf Poisson pdf

raylpdf Rayleigh pdf

tpdf Student’s t pdf

unidpdf Discrete uniform pdf

unifpdf Continuous uniform pdf

wblpdf Weibull pdf
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Inverse Cumulative Distribution Functions

Random Number Generators

betainv Beta critical values

binoinv Binomial critical values

chi2inv Chi-square critical values

evinv Extreme value critical values

expinv Exponential critical values

finv F critical values

gaminv Gamma critical values

geoinv Geometric critical values

hygeinv Hypergeometric critical values

icdf Parameterized inverse distribution routine

logninv Lognormal critical values

nbininv Negative binomial critical values

ncfinv Noncentral F critical values

nctinv Noncentral t critical values

ncx2inv Noncentral Chi-square critical values

norminv Normal (Gaussian) critical values

poissinv Poisson critical values

raylinv Rayleigh critical values

tinv Student’s t critical values

unidinv Discrete uniform critical values

unifinv Continuous uniform critical values

wblinv Weibull critical values

betarnd Beta random numbers

binornd Binomial random numbers
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chi2rnd Chi-square random numbers

evrnd Extreme value random numbers

exprnd Exponential random numbers

frnd F random numbers

gamrnd Gamma random numbers

geornd Geometric random numbers

hygernd Hypergeometric random numbers

iwishrnd Inverse Wishart random matrix

lhsdesign Latin hypercube sample

lhsnorm Latin hypercube sample with normal distribution

lognrnd Lognormal random numbers

mvnrnd Multivariate normal random numbers

mvtrnd Multivariate t random numbers

nbinrnd Negative binomial random numbers

ncfrnd Noncentral F random numbers

nctrnd Noncentral t random numbers

ncx2rnd Noncentral Chi-square random numbers

normrnd Normal (Gaussian) random numbers

poissrnd Poisson random numbers

random Parameterized random number routine

randsample Random sample, with or without replacement

raylrnd Rayleigh random numbers

trnd Student’s t random numbers

unidrnd Discrete uniform random numbers

unifrnd Continuous uniform random numbers
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wblrnd Weibull random numbers

wishrnd Wishart random matrix
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Moments of Distribution Functions

Descriptive Statistics

betastat Beta mean and variance

binostat Binomial mean and variance

chi2stat Chi-square mean and variance

evstat Extreme value mean and variance

expstat Exponential mean and variance

fstat F mean and variance

gamstat Gamma mean and variance

geostat Geometric mean and variance

hygestat Hypergeometric mean and variance

lognstat Lognormal mean and variance

nbinstat Negative binomial mean and variance

ncfstat Noncentral F mean and variance

nctstat Noncentral t mean and variance

ncx2stat Noncentral Chi-square mean and variance

normstat Normal (Gaussian) mean and variance

poisstat Poisson mean and variance

raylstat Rayleigh mean and variance

tstat Student’s t mean and variance

unidstat Discrete uniform mean and variance

unifstat Continuous uniform mean and variance

wblstat Weibull mean and variance

bootstrp Bootstrap statistics for any function

corrcoef Correlation coefficients (in MATLAB)
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cov Covariance matrix (in MATLAB)

crosstab Cross tabulation

geomean Geometric mean

grpstats Summary statistics by group

harmmean Harmonic mean

iqr Interquartile range

kurtosis Sample kurtosis

mad Mean absolute deviation

mean Arithmetic average (in MATLAB)

median 50th percentile (in MATLAB)

moment Central moments of all orders

nanmax Maximum ignoring missing data

nanmean Average ignoring missing data

nanmedian Median ignoring missing data

nanmin Minimum ignoring missing data

nanstd Standard deviation ignoring missing data

nansum Sum ignoring missing data

prctile Empirical percentiles of a sample

range Sample range

skewness Sample skewness

std Standard deviation (in MATLAB)

tabulate Frequency table

trimmean Trimmed mean

var Variance
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Statistical Plotting

Statistical Process Control

addedvarplot Added-variable plot for stepwise regression

boxplot Box plots

cdfplot Plot of empirical cumulative distribution function

ecdfhist Histogram from ecdf output 

errorbar Error bar plot

fsurfht Interactive contour plot of a function

gline Interactive line drawing

gname Interactive point labeling

gplotmatrix Matrix of scatter plots grouped by a common variable

gscatter Scatter plot of two variables grouped by a third

lsline Add least-squares fit line to plotted data

normplot Normal probability plots

pareto Pareto charts

qqplot Quantile-Quantile plots

rcoplot Regression case order plot

refcurve Reference polynomial

refline Reference line

surfht Interactive interpolating contour plot

wblplot Weibull plotting

capable Quality capability indices

capaplot Plot of process capability

ewmaplot Exponentially weighted moving average plot

histfit Histogram and normal density curve
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normspec Plot normal density between limits

schart Time plot of standard deviation

xbarplot Time plot of means
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Linear Models
anova1 One-way Analysis of Variance (ANOVA)

anova2 Two-way Analysis of Variance

anovan N-way analysis of variance

aoctool Interactive tool for analysis of covariance

dummyvar Dummy-variable coding

friedman Friedman's test (nonparametric two-way ANOVA)

glmfit Generalized linear model fitting

glmval Compute predictions for generalized linear model

kruskalwallis Kruskal-Wallis test (nonparametric one-way ANOVA)

leverage Regression diagnostic

lscov Regression given a covariance matrix (in MATLAB)

manova1 One-way multivariate analysis of variance

manovacluster Draw clusters of group means for manova1

multcompare Multiple comparisons of means and other estimates

polyconf Polynomial prediction with confidence intervals

polyfit Polynomial fitting (in MATLAB)

polyval Polynomial prediction (in MATLAB)

rcoplot Residuals case order plot

regress Multiple linear regression

regstats Regression diagnostics for linear models

ridge Ridge regression

rstool Response surface tool

robustfit Robust regression model fitting

rstool Multidimensional response surface visualization (RSM)

stepwise Stepwise regression GUI
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Nonlinear Regression

Design of Experiments

stepwisefit Fit regression model using stepwise regression

x2fx Factor settings matrix (X) to design matrix (D)

nlinfit Nonlinear least-squares fitting

nlintool Prediction graph for nonlinear fits

nlparci Confidence intervals on parameters

nlpredci Confidence intervals for prediction

lsqnonneg Nonnegative least squares (in MATLAB)

treefit Fit a tree-based model for classification or regression.

treeprune Produce a sequence of subtrees by pruning.

treedisp Show classification or regression tree graphically.

treetest Compute error rate for tree.

treeval Compute fitted value for decision tree applied to data.

bbdesign Box-Behnken design

candgen Candidate set for D-optimal design

candexch D-optimal design from candidate set using row exchanges

ccdesign Central composite design

cordexch D-optimal design using coordinate exchange

daugment D-optimal augmentation of designs

dcovary D-optimal design with fixed covariates

ff2n Two-level full factorial designs

fracfact Two-level fractional factorial design

fullfact Mixed level full factorial designs
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hadamard Hadamard designs (in MATLAB)

rowexch D-optimal design using row exchange
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Multivariate Statistics

Cluster  Analysis

Dimension Reduction Techniques

Other Multivariate Methods

cluster Create clusters from linkage output

clusterdata Create clusters from a data set

cophenet Calculate the cophenetic correlation coefficient

dendrogram Plot a hierarchical tree in a dendrogram graph

inconsistent Calculate the inconsistency values of objects in a cluster 
hierarchy tree

kmeans K-means clustering

linkage Link objects in a dataset into a hierarchical tree of binary 
clusters

pdist Calculate the pairwise distance between objects in a 
dataset

silhouette Silhouette plot for clustered data

squareform Reformat output of pdist function from vector to square 
matrix

factoran Maximum Likelihood Common Factor Analysis

pcacov PCA from covariance matrix

pcares Residuals from PCA

princomp PCA from raw data matrix

barttest Bartlett’s test

canoncorr Canonical correlation analysis

classify Discriminant Analysis

cmdscale Classical multidimensional scaling
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mahal Mahalanobis distance

manova1 One-way multivariate analysis of variance

manovacluster Draw clusters of group means for manova1

procrustes Procrustes Analysis

zscore Normalize a dataset before calculating the distance
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Decision Tree Techniques

Hypothesis Tests

Distribution Testing

Nonparametric Testing

treefit Fit a tree-based model for classification or regression.

treeprune Produce a sequence of subtrees by pruning.

treedisp Show classification or regression tree graphically.

treetest Compute error rate for tree.

treeval Compute fitted value for decision tree applied to data.

ranksum Wilcoxon rank sum test

signrank Wilcoxon signed rank test

signtest Sign test for paired samples

ttest One sample t-test

ttest2 Two sample t-test

ztest Z-test

jbtest Jarque-Bera test of normality

kstest Kolmogorov-Smirnov test for one sample

kstest2 Kolmogorov-Smirnov test for two samples

lillietest Lilliefors test of normality

friedman Friedman's test (nonparametric two-way anova)

kruskalwallis Kruskal-Wallis test (nonparametric one-way anova)

ksdensity Probability density estimate using a kernel smoothing 
method

ranksum Wilcoxon rank sum test (independent samples)
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Hidden Markov Models

File I/O

Demonstrations
To run glmdemo from the command line, type playshow glmdemo. You can run 
all other demos by typing the demo name as a command.

signrank Wilcoxon sign rank test (paired samples)

signtest Sign test (paired samples)

hmmdecode Calculate the posterior state probabilities of a sequence

hmmestimate Estimate the parameters for a hidden Markov model 

hmmgenerate Generate a sequence for a hidden Markov model

hmmtrain Calculate the maximum likelihood estimate of hidden 
Markov model parameters

hmmviterbi Calculate the most probable state path for a hidden 
Markov model sequence

caseread Read case names from a file

casewrite Write casenames from a string matrix to a file

tblread Retrieve tabular data from the file system

tblwrite Write data in tabular form to the file system

tdfread Read in text and numeric data from tab-delimited file

aoctool Interactive tool for analysis of covariance

disttool Interactive exploration of distribution functions

glmdemo Generalized linear model slide show. 

randtool Interactive random number generation

polytool Interactive fitting of polynomial models
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Data 

Utility

rsmdemo Interactive process experimentation and analysis

robustdemo Interactive tool to compare robust and least squares fits

carbig.mat Measurements on 406 car models

carsmall.mat Measurements on 100 car models from 1970, 1976, and 
1982 

census.mat U. S. Population 1790 to 1980

cities.mat Names of U.S. metropolitan areas

discrim.mat Classification data

gas.mat Gasoline prices

hald.mat Hald data

hogg.mat Bacteria counts from milk shipments

lawdata.mat GPA versus LSAT for 15 law schools

mileage.mat Mileage data for three car models from two factories

moore.mat Five factor – one response regression data

parts.mat Dimensional run out on 36 circular parts

popcorn.mat Data for popcorn example (anova2, friedman)

polydata.mat Data for polytool demo

reaction.mat Reaction kinetics data

sat.dat ASCII data for tblread example

statget Get parameter values from a statistics options structure

statset Create or edit a statistics options structure
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Functions — Alphabetical List 12

This section contains function reference pages listed alphabetically. The 
reference pages contain detailed descriptions of the Statistics Toolbox 
functions.
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12addedvarplotPurpose Create added-variable plot for stepwise regression

Syntax addedvarplot(X, y, vnum, inmodel)

Description addedvarplot(X, y, vnum, inmodel) produces an added variable plot for the 
response y and the predictor in column vnum of X. This plot illustrates the 
incremental affect of this predictor in a regression model in which the columns 
listed in the vector inmodel are used as predictors. X is an n-by-p matrix of 
predictor values. y is vector of n response values. vnum is a scalar index 
specifying the column of X to use in the plot. inmodel is a logical vector of p 
elements specifying the columns of X to use in the base model. By default, all 
elements of inmodel are false, which means that the model has no predictors. 
You can call the function stepwisefit, which produces a regression model 
using stepwise regression, to create the vector inmodel.

addedvarplot(X, y, vnum, inmodel, stats) uses the structure stats, which 
contains fitted model results created by the stepwisefit function. If you create 
the structure stats by calling stepwisefit, prior to calling addedvarplot, you 
can save computational time by including the argument stats in 
addedvarplot.

An added variable plot contains data and fitted lines. If X1 is column vnum of X, 
the data curve plots y versus X1 after removing the effects of the other 
predictors specified by the vector inmodel. The solid line is a least squares fit 
to the data curve, and its slope is the coefficient that X1 would have if it were 
included in the model. The dotted lines are 95% confidence bounds for the fitted 
line, which you can use to judge the significance of X1.

Example The following code performs a stepwise regression on the Hald data, and 
creates an added variable plot for the predictor in column 2.

load hald
[b,se,p,inmodel,stats] = stepwisefit(ingredients,heat);
addedvarplot(ingredients,heat,2,inmodel,stats)
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See Also stepwisefit
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12andrewsplotPurpose Andrews plot for multivariate data.

Syntax andrewsplot(X)
andrewsplot(X, ..., 'Standardize', 'on')
andrewsplot(X, ..., 'Standardize', 'PCA')
andrewsplot(X, ..., 'Standardize', 'PCAStd')
andrewsplot(X, ..., 'Quantile', alpha)
andrewsplot(X, ..., 'Group', group)
andrewsplot(X, ..., 'PropertyName', PropertyValue, ...)

Description andrewsplot(X) creates an Andrews plot of the multivariate data in the matrix 
X. The rows of X correspond to observations, the columns to variables. An 
Andrews plot is a tool for visualizing high-dimensional data, where each 
observation is represented by a function, f(t), of a continuous dummy variable, 
t, over the interval [0,1]. f(t) is defined for the i-th observation in X as

andrewsplot treats NaNs in X as missing values and ignores the corresponding 
rows.

andrewsplot(X, ..., 'Standardize', 'on') scales each column of X to have

mean 0 and standard deviation 1 before making the plot.

andrewsplot(X, ..., 'Standardize', 'PCA') creates an Andrews plot from 
the principal component scores of X, in order of decreasing eigenvalue.

andrewsplot(X, ..., 'Standardize', 'PCAStd') creates an Andrews plot 
using the standardized principal component scores.

andrewsplot(X, ..., 'Quantile', alpha) plots only the median and the 
alpha and (1 - alpha) quantiles of f(t) at each value of t. This is useful if X 
contains many observations.

andrewsplot(X, ..., 'Group', group) plots the data in different groups with 
different colors. Groups are defined by group, a numeric array containing a 
group index for each observation. group can also be a character matrix or a cell 
array of strings, containing a group name for each observation.

f t( ) X i 1,( ) 2⁄ X i 2,( ) 2πtsin X i 2,( ) 2πt …+cos+ +=
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andrewsplot(X, ..., 'PropertyName', PropertyValue, ...) sets 
properties to the specified property values for all line graphics objects created 
by andrewsplot.

h = andrewsplot(X, ...) returns a column vector of handles to the line 
objects created by andrewsplot, one handle per row of X. If you use the 
'Quantile' input parameter, h contains one handle for each of the three lines 
objects created. If you use both the 'Quantile' and the 'Group' input 
parameters, h contains three handles for each group.

Examples  

% make a grouped plot of the raw data
load fisheriris
andrewsplot(meas, 'group',species);
 
% plot only the median and quartiles of each group
andrewsplot(meas, 'group',species, 'quantile',.25);

 

See Also parallelcoords, glyphplot
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12anova1Purpose One-way analysis of variance (ANOVA)

Syntax p = anova1(X)
p = anova1(X,group)
p = anova1(X,group,'displayopt')
[p,table] = anova1(...)
[p,table,stats] = anova1(...)

Description p = anova1(X) performs a balanced one-way ANOVA for comparing the 
means of two or more columns of data in the m-by-n matrix X, where each 
column represents an independent sample containing m mutually independent 
observations. The function returns the p-value for the null hypothesis that all 
samples in X are drawn from the same population (or from different 
populations with the same mean). 

If the p-value is near zero, this casts doubt on the null hypothesis and suggests 
that at least one sample mean is significantly different than the other sample 
means. The choice of a critical p-value to determine whether the result is 
judged “statistically significant” is left to the researcher. It is common to 
declare a result significant if the p-value is less than 0.05 or 0.01.

The anova1 function displays two figures. The first figure is the standard 
ANOVA table, which divides the variability of the data in X into two parts:

• Variability due to the differences among the column means (variability 
between groups)

• Variability due to the differences between the data in each column and the 
column mean (variability within groups)

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS) for each source, which is the ratio 
SS/df.

• The fifth shows the F statistic, which is the ratio of the MS’s.
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• The sixth shows the p-value, which is derived from the cdf of F. As F 
increases, the p-value decreases.

The second figure displays box plots of each column of X. Large differences in 
the center lines of the box plots correspond to large values of F and 
correspondingly small p-values.

p = anova1(X,group) uses the values in group (a character array or cell 
array) as labels for the box plot of the samples in X, when X is a matrix. Each 
row of group contains the label for the data in the corresponding column of X, 
so group must have length equal to the number of columns in X.

When X is a vector, anova1 performs a one-way ANOVA on the samples 
contained in X, as indexed by input group (a vector, character array, or cell 
array). Each element in group identifies the group (i.e., sample) to which the 
corresponding element in vector X belongs, so group must have the same length 
as X. The labels contained in group are also used to annotate the box plot. The 
vector-input form of anova1 does not require equal numbers of observations in 
each sample, so it is appropriate for unbalanced data.

It is not necessary to label samples sequentially (1, 2, 3, ...). For example, if X 
contains measurements taken at three different temperatures, -27°, 65°, and 
110°, you could use these numbers as the sample labels in group. If a row of 
group contains an empty cell or empty string, that row and the corresponding 
observation in X are disregarded. NaNs in either input are similarly ignored. 

p = anova1(X,group,'displayopt') enables the ANOVA table and box plot 
displays when 'displayopt' is 'on' (default) and suppresses the displays 
when 'displayopt' is 'off'.

[p,table] = anova1(...) returns the ANOVA table (including column and 
row labels) in cell array table. (Copy a text version of the ANOVA table to the 
clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = anova1(...) returns a stats structure that you can use 
to perform a follow-up multiple comparison test. The anova1 test evaluates the 
hypothesis that the samples all have the same mean against the alternative 
that the means are not all the same. Sometimes it is preferable to perform a 
test to determine which pairs of means are significantly different, and which 
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are not. Use the multcompare function to perform such tests by supplying the 
stats structure as input.

Assumptions
The ANOVA test makes the following assumptions about the data in X:

• All sample populations are normally distributed.

• All sample populations have equal variance.

• All observations are mutually independent.

The ANOVA test is known to be robust to modest violations of the first two 
assumptions.

Examples Example 1
The five columns of X are the constants one through five plus a random normal 
disturbance with mean zero and standard deviation one. 

X = meshgrid(1:5)

X =

   1   2   3   4   5
   1   2   3   4   5
   1   2   3   4   5
   1   2   3   4   5
   1   2   3   4   5

X = X + normrnd(0,1,5,5)

X =

  -0.0741  2.7782  2.2129  4.0802  5.7902
  1.2018  1.9937  3.7520  3.0627  5.1053
  1.7629  2.5245  2.8331  4.6357  4.8414
  -0.2882  3.3643  2.1838  5.6820  5.8709
  0.0470  2.4820  5.0941  4.5936  4.8052

p = anova1(X)

p =

 4.0889e-007
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The very small p-value of 6e-5 indicates that differences between the column 
means are highly significant. The probability of this outcome under the null 
hypothesis (i.e., the probability that samples actually drawn from the same 
population would have means differing by the amounts seen in X) is less than 
6 in 100,000. The test therefore strongly supports the alternate hypothesis, 
that one or more of the samples are drawn from populations with different 
means.

Example 2
The following example comes from a study of the material strength of 
structural beams in Hogg (1987). The vector strength measures the deflection 
of a beam in thousandths of an inch under 3,000 pounds of force. Stronger 
beams deflect less. The civil engineer performing the study wanted to 
determine whether the strength of steel beams was equal to the strength of two 
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more expensive alloys. Steel is coded 'st' in the vector alloy. The other 
materials are coded 'al1' and 'al2'. 

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

Though alloy is sorted in this example, you do not need to sort the grouping 
variable.

p = anova1(strength,alloy)

p =

 1.5264e-004
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The p-value indicates that the three alloys are significantly different. The box 
plot confirms this graphically and shows that the steel beams deflect more than 
the more expensive alloys.

References [1] Hogg, R. V., and J. Ledolter, Engineering Statistics. MacMillan, 1987.

See Also anova2, anovan, boxplot, ttest
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12anova2Purpose Two-way Analysis of Variance (ANOVA)

Syntax p = anova2(X,reps) 
p = anova2(X,reps,'displayopt') 
[p,table] = anova2(...)
[p,table,stats] = anova2(...)

Description anova2(X,reps) performs a balanced two-way ANOVA for comparing the 
means of two or more columns and two or more rows of the observations in X. 
The data in different columns represent changes in factor A. The data in 
different rows represent changes in factor B. If there is more than one 
observation for each combination of factors, input reps indicates the number of 
replicates in each “cell,” which much be constant. (For unbalanced designs, use 
anovan.)

The matrix below shows the format for a set-up where column factor A has two 
levels, row factor B has three levels, and there are two replications (reps=2). 
The subscripts indicate row, column, and replicate, respectively.

When reps is 1 (default), anova2 returns two p-values in vector p:

1 The p-value for the null hypothesis, H0A, that all samples from factor A 
(i.e., all column-samples in X) are drawn from the same population

2 The p-value for the null hypothesis, H0B, that all samples from factor B 
(i.e., all row-samples in X) are drawn from the same population 

When reps is greater than 1, anova2 returns a third p-value in vector p:

x111 x121

x112 x122

x211 x221

x212 x222

x311 x321

x312 x322
B = 3

B = 2

B = 1

A 
= 

1

A 
= 

2
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3 The p-value for the null hypothesis, H0AB, that the effects due to factors 
A and B are additive (i.e., that there is no interaction between factors 
A and B)

If any p-value is near zero, this casts doubt on the associated null hypothesis. 
A sufficiently small p-value for H0A suggests that at least one column-sample 
mean is significantly different that the other column-sample means; i.e., there 
is a main effect due to factor A. A sufficiently small p-value for H0B suggests 
that at least one row-sample mean is significantly different than the other 
row-sample means; i.e., there is a main effect due to factor B. A sufficiently 
small p-value for H0AB suggests that there is an interaction between factors A 
and B. The choice of a limit for the p-value to determine whether a result is 
“statistically significant” is left to the researcher. It is common to declare a 
result significant if the p-value is less than 0.05 or 0.01.

anova2 also displays a figure showing the standard ANOVA table, which 
divides the variability of the data in X into three or four parts depending on the 
value of reps:

• The variability due to the differences among the column means

• The variability due to the differences among the row means

• The variability due to the interaction between rows and columns (if reps is 
greater than its default value of one)

• The remaining variability not explained by any systematic source

The ANOVA table has five columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which is the ratio of the mean squares.

p = anova2(X,reps,'displayopt') enables the ANOVA table display when 
'displayopt' is 'on' (default) and suppresses the display when 'displayopt' 
is 'off'.
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[p,table] = anova2(...) returns the ANOVA table (including column and 
row labels) in cell array table. (Copy a text version of the ANOVA table to the 
clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = anova2(...) returns a stats structure that you can use 
to perform a follow-up multiple comparison test. 

The anova2 test evaluates the hypothesis that the row, column, and interaction 
effects are all the same, against the alternative that they are not all the same. 
Sometimes it is preferable to perform a test to determine which pairs of effects 
are significantly different, and which are not. Use the multcompare function to 
perform such tests by supplying the stats structure as input.

Examples The data below come from a study of popcorn brands and popper type (Hogg 
1987). The columns of the matrix popcorn are brands (Gourmet, National, and 
Generic). The rows are popper type (Oil and Air.) The study popped a batch of 
each brand three times with each popper. The values are the yield in cups of 
popped popcorn. 

load popcorn

popcorn

popcorn =

  5.5000  4.5000  3.5000
  5.5000  4.5000  4.0000
  6.0000  4.0000  3.0000
  6.5000  5.0000  4.0000
  7.0000  5.5000  5.0000
  7.0000  5.0000  4.5000

p = anova2(popcorn,3)

p =

  0.0000  0.0001  0.7462
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The vector p shows the p-values for the three brands of popcorn, 0.0000, the 
two popper types, 0.0001, and the interaction between brand and popper 
type, 0.7462. These values indicate that both popcorn brand and popper type 
affect the yield of popcorn, but there is no evidence of a synergistic (interaction) 
effect of the two.

The conclusion is that you can get the greatest yield using the Gourmet brand 
and an Air popper (the three values popcorn(4:6,1)).

Reference [1] Hogg, R. V. and J. Ledolter, Engineering Statistics. MacMillan, 1987.

See Also anova1, anovan
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12anovanPurpose N-way analysis of variance (ANOVA)

Syntax p = anovan(x,group) 
p = anovan(x,group,'Param1',val1,'Param2',val2,...)
[p,table] = anovan(...)
[p,table,stats] = anovan(...) 
[p,table,stats,terms] = anovan(...) 

Description p = anovan(X,group) performs a balanced or unbalanced multiway analysis 
of variance (ANOVA) for comparing the means of the observations in the 
vector X with respect to N different factors. The factors and factor levels of the 
observations in X are assigned by the cell array group. Each of the N cells in 
group contains a list of factor levels identifying the observations in X with 
respect to one of the N factors. The list within each cell can be a vector, 
character array, or cell array of strings, and must have the same number of 
elements as X. For an example, see “Example of Three-Way ANOVA” on 
page 12-41.

P = anovan(x,group,'Param1',val1,'Param2',val2,...) specifies one or 
more of the name/value pairs described in the following table.

Parameter 
Name

Parameter Value

'sstype' 1, 2, or 3, to specify the type of sum of squares (default = 3)

'varnames' A character matrix or a cell array of strings specifying 
names of grouping variables, one per grouping variable. 
When you do not specify 'varnames', the default labels 
'X1', 'X2', 'X3', ..., 'XN' are used. See “ANOVA with 
Random Effects” on page 4-18 for an example of how to use 
'varnames'.

'display' 'on' displays an ANOVA table (the default)

'off' omits the display
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[p,table] = anovan(...) returns the ANOVA table (including factor labels) 
in cell array table. (Copy a text version of the ANOVA table to the clipboard 
by using the Copy Text item on the Edit menu.)

[p,table,stats] = anovan(...) returns a stats structure that you can use 
to perform a follow-up multiple comparison test with the multcompare 
function. See “The stats Structure” on page 12-43 for more information.

[p,table,stats,terms] = anovan(...) returns the main and interaction 
terms used in the ANOVA computations. The terms are encoded in the output 
matrix terms using the same format described above for input 'model'. When 
you specify 'model' itself in this matrix format, the matrix returned in terms 
is identical.

The rest of this section explains the following topics:

• “Model Types” on page 12-38

• “Example of Three-Way ANOVA” on page 12-41

• “The stats Structure” on page 12-43

Model Types
This section explains how to use the argument 'model' with the syntax

p = anovan(x,group,'model', modeltype) 

'random' A vector of indices indicating which grouping variables are 
random effects (all are fixed by default). See “ANOVA with 
Random Effects” on page 4-18 for an example of how to use 
'random'.

'alpha' A number between 0 and 1 requesting 100(1 - alpha)%         
confidence bounds (default 0.05 for 95% confidence)

'model' The type of model used. See “Model Types” on page 12-38 for 
a description of the options for this argument.

Parameter 
Name

Parameter Value
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The argument modeltype, which specifies the type of model the function uses, 
can be any one of the following:

• 'linear' — The default 'linear' model computes only the p-values for the 
null hypotheses on the N main effects.

• 'interaction' — The 'interaction' model computes the p-values for null 
hypotheses on the N main effects and the  two-factor interactions.

• 'full' — The 'full' model computes the p-values for null hypotheses on 
the N main effects and interactions at all levels.

•  An integer — For an integer value of modeltype, k (k ≤ N), anovan computes 
all interaction levels through the kth level. For example, the value 3 means 
main effects plus two- and three-factor interactions. The values k=1 and k=2 
are equivalent to the 'linear' and 'interaction' specifications, 
respectively, while the value k=N is equivalent to the 'full' specification. 

• A matrix of term definitions having the same form as the input to the x2fx 
function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that anovan 
computes, modeltype can specify a matrix containing one row for each main or 
interaction term to include in the ANOVA model. Each row defines one term 
using a vector of N zeros and ones. The table below illustrates the coding for a 
3-factor ANOVA.

Row of Matrix Corresponding ANOVA Term

[1 0 0] Main term A

[0 1 0] Main term B

[0 0 1] Main term C

[1 1 0] Interaction term AB

[0 1 1] Interaction term BC

[1 0 1] Interaction term AC

[1 1 1] Interaction term ABC

N
2⎝ ⎠

⎛ ⎞
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For example, if modeltype is the matrix [0 1 0;0 0 1;0 1 1], the output 
vector p contains the p-values for the null hypotheses on the main effects 
B and C and the interaction effect BC, in that order. A simple way to generate 
the modeltype matrix is to modify the terms output, which codes the terms in 
the current model using the format described above. If anovan returns 
[0 1 0;0 0 1;0 1 1] for terms, for example, and there is no significant result 
for interaction BC, you can recompute the ANOVA on just the main effects B 
and C by specifying [0 1 0;0 0 1] for modeltype.

p = anovan(x,group,'sstype', integer) computes the ANOVA using the 
type of sum-of-squares specified by integer, which can be 1, 2, or 3 to designate 
Type 1, Type 2, or Type 3 sum-of-squares, respectively. The default is 3. The 
value of integer only influences computations on unbalanced data.

The sum of squares for any term is determined by comparing two models. The 
Type 1 sum of squares for a term is the reduction in residual sum of squares 
obtained by adding that term to a fit that already includes the terms listed 
before it. The Type 2 sum of squares is the reduction in residual sum of squares 
obtained by adding that term to a model consisting of all other terms that do 
not contain the term in question. The Type 3 sum of squares is the reduction in 
residual sum of squares obtained by adding that term to a model containing all 
other terms, but with their effects constrained to obey the usual “sigma 
restrictions” that make models estimable.

Suppose you are fitting a model with two factors and their interaction, and that 
the terms appear in the order A, B, AB. Let R(·) represent the residual sum of 
squares for a model, so for example R(A,B,AB) is the residual sum of squares 
fitting the whole model, R(A) is the residual sum of squares fitting just the 
main effect of A, and R(1) is the residual sum of squares fitting just the mean. 
The three types of sums of squares are as follows:

Term Type 1 SS Type 2 SS Type 3 SS

A R(1)-R(A) R(B)-R(A,B) R(B,AB)-R(A,B,AB)

B R(A)-R(A,B) R(A)-R(A,B) R(A,AB)-R(A,B,AB)

AB R(A,B)-R(A,B,AB) R(A,B)-R(A,B,AB) R(A,B)-R(A,B,AB)
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The models for Type 3 sum of squares have sigma restrictions imposed. This 
means, for example, that in fitting R(B,AB), the array of AB effects is 
constrained to sum to 0 over A for each value of B, and over B for each value 
of A.

Example of Three-Way ANOVA
As an example of three-way ANOVA, consider the vector y and group inputs 
below.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2]; 
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'}; 
g3 = {'may'; 'may'; 'may'; 'may'; 'june'; 'june'; 'june'; 'june'}; 

This defines a three-way ANOVA with two levels of each factor. Every 
observation in y is identified by a combination of factor levels. If the factors are 
A, B, and C, then observation y(1) is associated with

• Level 1 of factor A

• Level 'hi' of factor B

• Level 'may' of factor C 

Similarly, observation y(6) is associated with

• Level 2 of factor A

• Level 'hi' of factor B

• Level 'june' of factor C

To compute the ANOVA, enter

p = anovan(y, {g1 g2 g3})

p =
  0.4174
  0.0028
  0.9140

Output vector p contains p-values for the null hypotheses on the N main 
effects. Element p(1) contains the p-value for the null hypotheses, H0A, that 
samples at all levels of factor A are drawn from the same population; 
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element p(2) contains the p-value for the null hypotheses, H0B, that samples 
at all levels of factor B are drawn from the same population; and so on.

If any p-value is near zero, this casts doubt on the associated null hypothesis. 
For example, a sufficiently small p-value for H0A suggests that at least one 
A-sample mean is significantly different from the other A-sample means; that 
is, there is a main effect due to factor A. You need to choose a bound for the 
p-value to determine whether a result is statistically significant. It is common 
to declare a result significant if the p-value is less than 0.05 or 0.01.

anovan also displays a figure showing the standard ANOVA table, which by 
default divides the variability of the data in x into

• The variability due to differences between the levels of each factor accounted 
for in the model (one row for each factor)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the sum of squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the mean squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which are the ratios of the mean squares.

• The sixth shows the p-values for the F statistics.

The table is shown in the following figure:

Two-Factor Interactions. By default, anovan computes p-values just for the three 
main effects. To also compute p-values for the two-factor interactions, X1*X2, 
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X1*X3, and X2*X3, add the name/value pair 'model', 'interaction' as input 
arguments.

p = anovan(y, {g1 g2 g3}, 'model', 'interaction')

p =

  0.0347
  0.0048
  0.2578
  0.0158
  0.1444
  0.5000

The first three entries of p are the p-values for the main effects. The last three 
entries are the p-values for the two-factor interactions. You can determine the 
order in which the two-factor interactions occur from the ANOVAN table 
shown in the following figure.

The stats Structure
The anovan test evaluates the hypothesis that the different levels of a factor (or 
more generally, a term) have the same effect, against the alternative that they 
do not all have the same effect. Sometimes it is preferable to perform a test to 
determine which pairs of levels are significantly different, and which are not. 
Use the multcompare function to perform such tests by supplying the stats 
structure as input. 
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The stats structure contains the fields listed below, in addition to a number of 
other fields required for doing multiple comparisons using the multcompare 
function:

The stats structure also contains the following fields if there are random 
effects:

Examples “Two-Way Analysis of Variance (ANOVA)” on page 4-8 shows how to use 
anova2 to analyze the effects of two factors on a response in a balanced design. 
For a design that is not balanced, use anovan instead.

In this example, the data set carbig contains a number of measurements on 
406 cars. You can use anonvan to study how the mileage depends on where and 
when the cars were made.

load carbig

Stats Field Meaning

coeffs Estimated coefficients

coeffnames Name of term for each coefficient

vars Matrix of grouping variable values for each 
term

resid Residuals from the fitted model

Stats Field Meaning

ems Expected mean squares

denom Denominator definition

rtnames Names of random terms

varest Variance component estimates 
(one per random term)

varci Confidence intervals for 
variance components
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anovan(MPG,{org when},2,3,{'Origin';'Mfg date'})

ans =
      0
      0
    0.3059

The p-value for the interaction term is not small, indicating little evidence that 
the effect of the car’s year or manufacture (when) depends on where the car was 
made (org). The linear effects of those two factors, though, are significant.

Reference [1] Hogg, R. V., and J. Ledolter, Engineering Statistics, MacMillan, 1987.

See Also anova1, anova2, multcompare 
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12aoctoolPurpose Interactive plot for fitting and predicting analysis of covariance models

Syntax aoctool(x,y,g)
aoctool(x,y,g,alpha)
aoctool(x,y,g,alpha,xname,yname,gname)
aoctool(x,y,g,alpha,xname,yname,gname,'displayopt')
aoctool(x,y,g,alpha,xname,yname,gname,'displayopt','model')
h = aoctool(...)
[h,atab,ctab] = aoctool(...)
[h,atab,ctab,stats] = aoctool(...)

Description aoctool(x,y,g) fits a separate line to the column vectors, x and y, for each 
group defined by the values in the array g. These types of models are known as 
one-way analysis of covariance (ANOCOVA) models. The output consists of 
three figures:

• An interactive graph of the data and prediction curves

• An ANOVA table

• A table of parameter estimates

You can use the figures to change models and to test different parts of the 
model. More information about interactive use of the aoctool function appears 
in “The aoctool Demo” on page 4-25.

aoctool(x,y,g,alpha) determines the confidence levels of the prediction 
intervals. The confidence level is 100(1-alpha)%. The default value of alpha is 
0.05. 

aoctool(x,y,g,alpha,xname,yname,gname) specifies the name to use for the 
x, y, and g variables in the graph and tables. If you enter simple variable names 
for the x, y, and g arguments, the aoctool function uses those names. If you 
enter an expression for one of these arguments, you can specify a name to use 
in place of that expression by supplying these arguments. For example, if you 
enter m(:,2) as the x argument, you might choose to enter 'Col 2' as the 
xname argument.

aoctool(x,y,g,alpha,xname,yname,gname,'displayopt') enables the 
graph and table displays when 'displayopt' is 'on' (default) and suppresses 
those displays when 'displayopt' is 'off'.
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aoctool(x,y,g,alpha,xname,yname,gname,'displayopt','model')
specifies the initial model to fit. The value of 'model' can be any of the 
following:

• 'same mean' – fit a single mean, ignoring grouping

• 'separate means' – fit a separate mean to each group

• 'same line' – fit a single line, ignoring grouping

• 'parallel lines' – fit a separate line to each group, but constrain the lines 
to be parallel

• 'separate lines' – fit a separate line to each group, with no constraints

h = aoctool(...) returns a vector of handles to the line objects in the plot.

[h,atab,ctab] = aoctool(...) returns cell arrays containing the entries in 
ANOVA table (atab) and the table of coefficient estimates (ctab). (You can copy 
a text version of either table to the clipboard by using the Copy Text item on 
the Edit menu.)

[h,atab,ctab,stats] = aoctool(...) returns a stats structure that you 
can use to perform a follow-up multiple comparison test. The ANOVA table 
output includes tests of the hypotheses that the slopes or intercepts are all the 
same, against a general alternative that they are not all the same. Sometimes 
it is preferable to perform a test to determine which pairs of values are 
significantly different, and which are not. You can use the multcompare 
function to perform such tests by supplying the stats structure as input. You 
can test either the slopes, the intercepts, or population marginal means (the 
heights of the curves at the mean x value).

Example This example illustrates how to fit different models non-interactively. After 
loading the smaller car data set and fitting a separate-slopes model, you can 
examine the coefficient estimates.

load carsmall
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...

'','','','off','separate lines');
c(:,1:2)
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ans = 
  'Term'     'Estimate'     
  'Intercept'  [45.97983716833132]
  ' 70'     [-8.58050531454973]
  ' 76'     [-3.89017396094922]
  ' 82'     [12.47067927549897]
  'Slope'    [-0.00780212907455]
  ' 70'     [ 0.00195840368824]
  ' 76'     [ 0.00113831038418]
  ' 82'     [-0.00309671407243]

Roughly speaking, the lines relating MPG to Weight have an intercept close to 
45.98 and a slope close to -0.0078. Each group’s coefficients are offset from 
these values somewhat. For instance, the intercept for the cars made in 1970 
is 45.98-8.58 = 37.40.

Next, try a fit using parallel lines. (The ANOVA table shows that the 
parallel-lines fit is significantly worse than the separate-lines fit.)

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
'','','','off','parallel lines');

c(:,1:2)

ans = 

  'Term'     'Estimate'     
  'Intercept'  [43.38984085130596]
  ' 70'     [-3.27948192983761]
  ' 76'     [-1.35036234809006]
  ' 82'     [ 4.62984427792768]
  'Slope'    [-0.00664751826198]

Again, there are different intercepts for each group, but this time the slopes are 
constrained to be the same.

See Also anova1, multcompare, polytool
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12barttestPurpose Bartlett’s test for dimensionality

Syntax ndim = barttest(x,alpha)
[ndim,prob,chisquare] = barttest(x,alpha)

Description ndim = barttest(x,alpha) returns the number of dimensions necessary to 
explain the nonrandom variation in the data matrix x, using the significance 
probability alpha. The dimension is determined by a series of hypothesis tests. 
The test for ndim=1 tests the hypothesis that the variances of the data values 
along each principal component are equal, the test for ndim=2 tests the 
hypothesis that the variances along the second through last components are 
equal, and so on.

[ndim,prob,chisquare] = barttest(x,alpha) returns the number of 
dimensions, the significance values for the hypothesis tests, and the χ2 values 
associated with the tests.

Example x = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,3:4) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,5:6) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
[ndim, prob] = barttest(x,0.05)

ndim =

   3

prob =
     0
     0
     0
  0.5081
  0.6618

See Also princomp, pcacov, pcares
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12bbdesignPurpose Generate Box-Behnken design

Syntax D = bbdesign(nfactors) 
D = bbdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
[D,blk] = bbdesign(...)

Description D = bbdesign(nfactors) generates a Box-Behnken design for nfactors 
factors. The output matrix D is n-by-nfactors, where n is the number of points 
in the design. Each row lists the settings for all factors, scaled between -1 
and 1.

[D,blk] = bbdesign(nfactors) requests a blocked design. The output vector 
blk is a vector of block numbers. Blocks are groups of runs that are to be 
measured under similar conditions (for example, on the same day). Blocked 
designs minimize the effect of between-block differences on the parameter 
estimates.

[...] = bbdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
allows you to specify additional parameters and their values. Valid parameters 
are:

Remarks Box and Behnken proposed designs when the number of factors was equal to 
3-7, 9-12, or 16. This function produces those designs. For other values of 
nfactors, this function produces designs that are constructed in a similar way, 
even though they were not tabulated by Box and Behnken, and they may be too 
large to be practical.

See Also ccdesign, cordexch, rowexch

'center' Number of center points to include.

'blocksize' Maximum number of points allowed in a block. 
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12betacdfPurpose Beta cumulative distribution function (cdf)

Syntax p = betacdf(X,A,B)

Description p = betacdf(X,A,B) computes the beta cdf at each of the values in X using the 
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other inputs. 
The parameters in A and B must all be positive, and the values in X must lie on 
the interval [0,1].

The beta cdf for a given value x and given pair of parameters a and b is

where B( · ) is the Beta function. The result, p, is the probability that a single 
observation from a beta distribution with parameters a and b will fall in the 
interval [0,x].

Examples x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)

p = 

0.0280  0.2160  0.5000  0.7840  0.9720

a = [1 2 3];
p = betacdf(0.5,a,a)

p =

0.5000  0.5000  0.5000

See Also betafit, betainv, betalike, betapdf, betarnd, betastat, cdf, betainc

p F x a b,( ) 1
B a b,( )
------------------- ta 1–

0

x

∫ 1 t–( )b 1– dt= =
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12betafitPurpose Parameter estimates and confidence intervals for beta distributed data

Syntax phat = betafit(data)
[phat,pci] = betafit(data,alpha)

Description phat = betafit(data) computes the maximum likelihood estimates of the 
beta distribution parameters a and b from the data in the vector data, where 
the beta cdf is given by 

and B( · ) is the Beta function. The elements of data must lie in the interval 
(0 1). 

[phat,pci] = betafit(data,alpha) returns confidence intervals on the 
a and b parameters in the 2-by-2 matrix pci. The first column of the matrix 
contains the lower and upper confidence bounds for parameter a, and the 
second column contains the confidence bounds for parameter b. The optional 
input argument alpha is a value in the range [0 1] specifying the width of the 
confidence intervals. By default, alpha is 0.05, which corresponds to 95% 
confidence intervals. 

Example This example generates 100 beta distributed observations. The true a and b 
parameters are 4 and 3, respectively. Compare these to the values returned 
in p. Note that the columns of ci both bracket the true parameters.

data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)

p =

  3.9010  2.6193

ci =

  2.5244  1.7488
  5.2776  3.4898

Reference [1] Hahn, Gerald J., and Shapiro, Samuel S., Statistical Models in Engineering. 
John Wiley & Sons, 1994. p. 95.

F x a b,( ) 1
B a b,( )
------------------- ta 1–

0

x

∫ 1 t–( )b 1– dt=
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See Also betalike, mle
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12betainvPurpose Inverse of the beta cumulative distribution function

Syntax X = betainv(P,A,B)

Description X = betainv(P,A,B) computes the inverse of the beta cdf with parameters 
specified by A and B for the corresponding probabilities in P. P, A, and B can be 
vectors, matrices, or multidimensional arrays that all have the same size. A 
scalar input is expanded to a constant array with the same dimensions as the 
other inputs. The parameters in A and B must all be positive, and the values 
in P must lie on the interval [0 1].

The inverse beta cdf for a given probability p and a given pair of parameters 
a and b is 

where

and B( · ) is the Beta function. Each element of output X is the value whose 
cumulative probability under the beta cdf defined by the corresponding 
parameters in A and B is specified by the corresponding value in P.

Algorithm The betainv function uses Newton’s method with modifications to constrain 
steps to the allowable range for x, i.e., [0 1].

Examples p = [0.01 0.5 0.99];
x = betainv(p,10,5)

x =

  0.3726  0.6742  0.8981

According to this result, for a beta cdf with a=10 and b=5, a value less than or 
equal to 0.3726 occurs with probability 0.01. Similarly, values less than or 
equal to 0.6742 and 0.8981 occur with respective probabilities 0.5 and 0.99.

See Also betafit, icdf

x F 1–
= p a b,( ) x:F x a b,( ) p={ }=

 p F x a b,( ) 1
B a b,( )
------------------- ta 1–

0

x

∫ 1 t–( )b 1– dt= =
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12betalikePurpose Negative beta log-likelihood function

Syntax logL = betalike(params,data)
[logL,AVAR] = betalike(params,data)

Description logL = betalike(params,data) returns the negative of the beta 
log-likelihood function for the beta parameters a and b specified in vector 
params and the observations specified in the column vector data. The length of 
logL is the length of data.

[logL,AVAR] = betalike(params,data) also returns AVAR, which is the 
asymptotic variance-covariance matrix of the parameter estimates if the 
values in params are the maximum likelihood estimates. AVAR is the inverse of 
Fisher’s information matrix. The diagonal elements of AVAR are the asymptotic 
variances of their respective parameters.

betalike is a utility function for maximum likelihood estimation of the beta 
distribution. The likelihood assumes that all the elements in the data sample 
are mutually independent. Since betalike returns the negative beta 
log-likelihood function, minimizing betalike using fminsearch is the same as 
maximizing the likelihood.

Example This example continues the betafit example, which calculates estimates of 
the beta parameters for some randomly generated beta distributed data.

r = betarnd(4,3,100,1);
[logl,AVAR] = betalike(betafit(r),r)

logl =

 -39.1615

AVAR =

  0.3717  0.2644
  0.2644  0.2414

See Also betafit, fminsearch, gamlike, mle, normlike, wbllike
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12betapdfPurpose Beta probability density function (pdf)

Syntax Y = betapdf(X,A,B)

Description Y = betapdf(X,A,B) computes the beta pdf at each of the values in X using the 
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions of the other inputs. 
The parameters in A and B must all be positive, and the values in X must lie on 
the interval [0 1].

The beta probability density function for a given value x and given pair of 
parameters a and b is

where B( · ) is the Beta function. The result, y, is the probability that a single 
observation from a beta distribution with parameters a and b will have value x. 
The indicator function  ensures that only values of x in the range (0 1) 
have nonzero probability. The uniform distribution on (0 1) is a degenerate case 
of the beta pdf where a = 1 and b = 1.

A likelihood function is the pdf viewed as a function of the parameters. 
Maximum likelihood estimators (MLEs) are the values of the parameters that 
maximize the likelihood function for a fixed value of x.

Examples a = [0.5 1; 2 4]

a =

  0.5000  1.0000
  2.0000  4.0000

y = betapdf(0.5,a,a)

y =
  0.6366  1.0000
  1.5000  2.1875

See Also betacdf, betafit, betainv, betalike, betarnd, betastat, pdf, beta, betaln

y f x a b,( ) 1
B a b,( )
-------------------xa 1– 1 x–( )b 1– I 0 1,( ) x( )= =

I 0 1,( ) x( )
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12betarndPurpose Random numbers from the beta distribution

Syntax R = betarnd(A,B)
R = betarnd(A,B,v)
R = betarnd(A,B,m,n)
R = betarnd(A,B,m,n,o,...)

Description R = betarnd(A,B) generates random numbers from the beta distribution with 
parameters specified by A and B. A and B can be vectors, matrices, or 
multidimensional arrays that have the same size, which is also the size of R. A 
scalar input for A or B is expanded to a constant array with the same 
dimensions as the other input.

R = betarnd(A,B,v) generates an array R of size v containing random 
numbers from the beta distribution with parameters A and B, where v is a row 
vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. 
If v is 1-by-n, R is an n-dimensional array.

R = betarnd(A,B,m,n) generates an m-by-n matrix containing random 
numbers from the beta distribution with parameters A and B.

R = betarnd(A,B,m,n,o,...) generates an m-by-n-by-o-by-... 
multidimensional array containing random numbers from the beta 
distribution with parameters A and B.

Reproducing the Output of betarnd
betarnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call betarnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to betarnd or any other 
functions that depend on rand or randn. If you want to reproduce the output of 
betarnd, reset the states of rand and randn to the same fixed values each time 
you call betarnd. For an example of how to do this, and a list of the Statistics 
Toolbox functions that depend on rand or randn, see “Reproducing the Output 
of Random Number Functions” on page 2-46.
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Note   The results in the following examples depend on the current states of 
rand and randn. If you run the code in these examples, your results may differ 
from the answers shown here.

Examples a = [1 1;2 2];
b = [1 2;1 2];

r = betarnd(a,b)

r =
  0.6987  0.6139
  0.9102  0.8067

r = betarnd(10,10,[1 5])

r =
  0.5974  0.4777  0.5538  0.5465  0.6327

r = betarnd(4,2,2,3)

r =
  0.3943  0.6101  0.5768
  0.5990  0.2760  0.5474

See Also betacdf, betafit, betainv, betalike, betapdf, betastat, rand, randn, 
randtool
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12betastatPurpose Mean and variance for the beta distribution

Syntax [M,V] = betastat(A,B)

Description [M,V] = betastat(A,B) returns the mean and variance for the beta 
distribution with parameters specified by A and B. A and B can be vectors, 
matrices, or multidimensional arrays that have the same size, which is also the 
size of M and V. A scalar input for A or B is expanded to a constant array with 
the same dimensions as the other input.

The mean of the beta distribution with parameters a and b is  and the 
variance is

Examples If parameters a and b are equal, the mean is 1/2.

a = 1:6;
[m,v] = betastat(a,a)

m =
  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000

v =
  0.0833  0.0500  0.0357  0.0278  0.0227  0.0192

See Also betacdf, betafit, betainv, betalike, betapdf, betarnd

a a b+( )⁄

ab
a b 1+ +( ) a b+( )2

-------------------------------------------------
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12binocdfPurpose Binomial cumulative distribution function (cdf)

Syntax Y = binocdf(X,N,P)

Description binocdf(X,N,P) computes a binomial cdf at each of the values in X using the 
corresponding parameters in N and P. X, N, and P can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions of the other inputs. 
The values in N must all be positive integers, the values in X must lie on the 
interval [0,N], and the values in P must lie on the interval [0 1].

The binomial cdf for a given value  and given pair of parameters and  is 

The result, , is the probability of observing up to  successes in  independent 
trials, where the probability of success in any given trial is . The indicator 
function  ensures that  only adopts values of .

Examples If a baseball team plays 162 games in a season and has a 50-50 chance of 
winning any game, then the probability of that team winning more than 100 
games in a season is:

1 - binocdf(100,162,0.5)

The result is 0.001 (i.e., 1-0.999). If a team wins 100 or more games in a 
season, this result suggests that it is likely that the team’s true probability of 
winning any game is greater than 0.5.

See Also binofit, binoinv, binopdf, binornd, binostat, cdf
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12binofitPurpose Parameter estimates and confidence intervals for binomial data

Syntax phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)

Description phat = binofit(x,n) returns a maximum likelihood estimate of the 
probability of success in a given binomial trial based on the number of 
successes, x, observed in n independent trials. If 
x = (x(1), x(2), ... x(k)) is a vector, binofit returns a vector of the same 
size as x whose ith entry is the parameter estimate for x(i). All k estimates are 
independent of each other. If n = (n(1), n(2), ..., n(k)) is a vector of the 
same size as x, binofit returns a vector whose ith entry is the parameter 
estimate based on the number of successes x(i) in n(i) independent trials. A 
scalar value for x or n is expanded to the same size as the other input.

[phat,pci] = binofit(x,n) returns the probability estimate, phat, and the 
95% confidence intervals, pci.

[phat,pci] = binofit(x,n,alpha) returns the 100(1 - alpha)% confidence 
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

Note  binofit behaves differently than other functions in the Statistics 
Toolbox that compute parameter estimates, in that it returns independent 
estimates for each entry of x. By comparison, expfit returns a single 
parameter estimate based on all the entries of x. 

Example This example generates a binomial sample of 100 elements, where the 
probability of success in a given trial is 0.6, and then estimates this probability 
from the outcomes in the sample. 

r = binornd(100,0.6);
[phat,pci] = binofit(r,100)

phat =

  0.5800
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pci =

  0.4771  0.6780

The 95% confidence interval, pci, contains the true value, 0.6.

Reference [1] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete Distributions, 
2nd edition, Wiley, 1992, pp. 124–130.

See Also binocdf, binoinv, binopdf, binornd, binostat, mle
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12binoinvPurpose Inverse of the binomial cumulative distribution function (cdf)

Syntax X = binoinv(Y,N,P)

Description X = binoinv(Y,N,P) returns the smallest integer X such that the binomial cdf 
evaluated at X is equal to or exceeds Y. You can think of Y as the probability of 
observing X successes in N independent trials where P is the probability of 
success in each trial. Each X is a positive integer less than or equal to N.

Y, N, and P can be vectors, matrices, or multidimensional arrays that all have 
the same size. A scalar input is expanded to a constant array with the same 
dimensions as the other inputs. The parameters in N must be positive integers, 
and the values in both P and Y must lie on the interval [0 1]. 

Examples If a baseball team has a 50-50 chance of winning any game, what is a 
reasonable range of games this team might win over a season of 162 games? 

binoinv([0.05 0.95],162,0.5)

ans =

71 91

This result means that in 90% of baseball seasons, a .500 team should win 
between 71 and 91 games.

See Also binocdf, binofit, binopdf, binornd, binostat, icdf
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12binopdfPurpose Binomial probability density function (pdf)

Syntax Y = binopdf(X,N,P)

Description Y = binopdf(X,N,P) computes the binomial pdf at each of the values in X 
using the corresponding parameters in N and P. Y, N, and P can be vectors, 
matrices, or multidimensional arrays that all have the same size. A scalar 
input is expanded to a constant array with the same dimensions of the other 
inputs.

The parameters in N must be positive integers, and the values in P must lie on 
the interval [0 1].

The binomial probability density function for a given value x and given pair of 
parameters n and p is

where q = 1-p. The result, y, is the probability of observing x successes in n 
independent trials, where the probability of success in any given trial is p. The 
indicator function I(0,1,...,n)(x) ensures that x only adopts values of 0, 1, ..., n. 

Examples A Quality Assurance inspector tests 200 circuit boards a day. If 2% of the 
boards have defects, what is the probability that the inspector will find no 
defective boards on any given day?

binopdf(0,200,0.02)
ans =

  0.0176

What is the most likely number of defective boards the inspector will find?

y = binopdf([0:200],200,0.02);
[x,i] = max(y);

i
i =
   5

See Also binocdf, binofit, binoinv, binornd, binostat, pdf
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12binorndPurpose Random numbers from the binomial distribution

Syntax R = binornd(N,P)
R = binornd(N,P,v)
R = binornd(N,P,m,n)

Description R = binornd(N,P) generates random numbers from the beta distribution with 
parameters specified by N and P. N and P can be vectors, matrices, or 
multidimensional arrays that have the same size, which is also the size of R. A 
scalar input for N or P is expanded to a constant array with the same 
dimensions as the other input.

R = binornd(N,P,v) generates an array R of size v containing random 
numbers from the beta distribution with parameters N and P, where v is a row 
vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. 
If v is 1-by-n, R is an n-dimensional array.

R = binornd(N,p,m,n) generates an m-by-n matrix containing random 
numbers from the binomial distribution with parameters N and P.

Algorithm The binornd function uses the direct method using the definition of the 
binomial distribution as a sum of Bernoulli random variables.

Reproducing the Output of binornd
binornd uses the MATLAB function rand to generate random numbers. When 
you call binornd, you change the current state of rand, and thereby alter the 
output of subsequent calls to binornd or any other functions that depend on 
rand. If you want to reproduce the output of binornd, reset the state of rand to 
the same fixed value each time you call binornd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The results in the following examples depend on the current state of 
rand. If you run the code in these examples, your results may differ from the 
answers shown here.
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Examples n = 10:10:60;

r1 = binornd(n,1./n)
r1 =
   2   1   0   1   1   2

r2 = binornd(n,1./n,[1 6])
r2 =
   0   1   2   1   3   1

r3 = binornd(n,1./n,1,6)
r3 =
   0   1   1   1   0   3

See Also binocdf, binofit, binoinv, binopdf, binostat, rand, randtool
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12binostatPurpose Mean and variance for the binomial distribution

Syntax [M,V] = binostat(N,P)

Description [M,V] = binostat(N,P) returns the mean and variance for the binomial 
distribution with parameters specified by N and P. N and P can be vectors, 
matrices, or multidimensional arrays that have the same size, which is also the 
size of M and V. A scalar input for N or P is expanded to a constant array with 
the same dimensions as the other input.

The mean of the binomial distribution with parameters n and p is np. The 
variance is npq, where q = 1-p.

Examples n = logspace(1,5,5)
n =
     10     100    1000    10000   100000

[m,v] = binostat(n,1./n)

m =
   1   1   1   1   1

v =
  0.9000  0.9900  0.9990  0.9999  1.0000

[m,v] = binostat(n,1/2)

m =
      5     50     500    5000    50000

v =

  1.0e+04 *
  0.0003  0.0025  0.0250  0.2500  2.5000

See Also binocdf, binofit, binoinv, binopdf, binornd



biplot

12-68

12biplotPurpose Biplot of variable/factor coefficients and scores

Syntax biplot(coefs)
biplot(coefs, ..., 'Scores', scores)
biplot(coefs, ..., 'VarLabels', varlabs)
biplot(coefs, ..., 'Scores', scores, 'ObsLabels', obslabs)
biplot(coeffs, ..., 'PropertyName', PropertyValue, ...)
h = biplot(coefs, ...)

Description biplot(coefs) creates a biplot of the coefficients in the matrix coefs. The 
biplot is two dimensional if coefs has two columns or three dimensional if it 
has three columns. coefs usually contains principal component coefficients 
created with princomp, pcacov, or factor loadings estimated with factoran. 
The axes in the biplot represent the principal components or latent factors 
(columns of coefs), and the observed variables (rows of coefs) are represented 
as vectors.

biplot(coefs, ..., 'Scores', scores) plots both coefs and the scores in 
the matrix scores in the biplot. scores usually contains principal component 
scores created with princomp or factor scores estimated with factoran. Each 
observation (row of scores) is represented as a point in the biplot.

A biplot allows you to visualize the magnitude and sign of each variable's 
contribution to the first two or three principal components, and how each 
observation is represented in terms of those components.

biplot imposes a sign convention, forcing the element with largest magnitude 
in each column of coefs is positive.

biplot(coefs, ..., 'VarLabels', varlabs) labels each vector (variable) 
with the text in the character array or cell array varlabs.

biplot(coefs, ..., 'Scores', scores, 'ObsLabels', obslabs) labels each

point (observation) with the text in the character array or cell array obslabs.

biplot(coeffs, ..., 'PropertyName', PropertyValue, ...) sets 
properties to the specified property values for all line graphics objects created 
by biplot.

h = biplot(coefs, ...) returns a column vector of handles to the graphics 
objects created by biplot. h contains, in order, handles corresponding to 
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variables (line handles, followed by marker handles, followed by text handles), 
to observations (if present, marker handles followed by text handles), and to 
the axis lines.

Example load carsmall
x = [Acceleration Displacement Horsepower MPG Weight];
x = x(all(~isnan(x),2),:);
[coefs,score] = princomp(zscore(x));
vlabs = {'Accel','Disp','HP','MPG','Wgt'};
biplot(coefs(:,1:3), 'scores',score(:,1:3), 'varlabels',vlabs);

See Also factoran, princomp, pcacov, rotatefactors
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12bootstrpPurpose Bootstrap statistics through resampling of data

Syntax bootstat = bootstrp(nboot,bootfun,d1,d2,...)
[bootstat,bootsam] = bootstrp(...)

Description bootstat = bootstrp(nboot,bootfun,d1,d2,...) draws nboot bootstrap 
samples from each of the input data sets, d1, d2, etc., and passes the bootstrap 
samples to function bootfun for analysis. bootfun is a function handle 
specified using the @ sign. nboot must be a positive integer, and each input data 
set must contain the same number of rows, n. Each bootstrap sample contains 
n rows chosen randomly (with replacement) from the corresponding input data 
set (d1, d2, etc.). Any scalar arguments among d1, d2, etc., are passed to 
bootfun unchanged.

Each row of the output bootstat contains the results of applying bootfun to 
one bootstrap sample. If bootfun returns multiple output arguments, only the 
first is stored in bootstat. If the first output from bootfun is a matrix, the 
matrix is reshaped to a row vector for storage in bootstat.

[bootstat,bootsam] = bootstrp(...) returns an n-by-n boot matrix of 
bootstrap indices, bootsam. Each column in bootsam contains indices of the 
values that were drawn from the original data sets to constitute the 
corresponding bootstrap sample. For example, if d1, d2, etc., each contain 16 
values, and nboot = 4, then bootsam is a 16-by-4 matrix. The first column 
contains the indices of the 16 values drawn from d1, d2, etc., for the first of the 
four bootstrap samples, the second column contains the indices for the second 
of the four bootstrap samples, and so on. (The bootstrap indices are the same 
for all input data sets.) To get the output samples bootsam without applying a 
function, set bootfun to empty ([]).

Examples Correlating Two Data Sets
Correlate the LSAT scores and law-school GPA for 15 students. These 15 data 
points are resampled to create 1000 different data sets, and the correlation 
between the two variables is computed for each data set.

load lawdata
[bootstat,bootsam] = bootstrp(1000,'corrcoef',lsat,gpa);

bootstat(1:5,:)
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ans =

  1.0000  0.3021  0.3021  1.0000
  1.0000  0.6869  0.6869  1.0000
  1.0000  0.8346  0.8346  1.0000
  1.0000  0.8711  0.8711  1.0000
  1.0000  0.8043  0.8043  1.0000

bootsam(:,1:5)

ans =

   4   7   5  12   8
   1  11  10   8   4
  11   9  12   4   2
  11  14  15   5  15
  15  13   6   6   2
   6   8   4   3   8
   8   2  15   8   6
  13  10  11  14   5
   1   7  12  14  14
   1  11  10   1   8
   8  14   2  14   7
  11  12  10   8  15
   1   4  14   8   1
   6   1   5   5  12
   2  12   7  15  12

hist(bootstat(:,2))
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The histogram shows the variation of the correlation coefficient across all the 
bootstrap samples. The sample minimum is positive, indicating that the 
relationship between LSAT score and GPA is not accidental.

Estimating Density of Bootstrapped Means
Compute a sample of 100 bootstrapped means of random samples taken from 
the vector Y, and plot an estimate of the density of these bootstrapped means:

y = exprnd(5,100,1);
m = bootstrp(100, @mean, y);
[fi,xi] = ksdensity(m);
plot(xi,fi);

Estimating Bootstrap Pairs
Compute a sample of 100 bootstrapped means and standard deviations of 
random samples taken from the vector Y, and plot the bootstrap estimate pairs:

y = exprnd(5,100,1);
stats = bootstrp(100, @(x) [mean(x) std(x)], y);
plot(stats(:,1),stats(:,2),'o')
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Computing a Bootstrap Regression
Compute a sample of 200 bootstrapped coefficient vectors for a regression of the 
vector Y on the matrix X:

load hald
x = [ones(size(heat)), ingredients];
y = heat;
b = bootstrp(200, 'regress', y, x);
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12boxplotPurpose Box plots of a data sample

Syntax boxplot(X)
boxplot(x,G)
boxplot(...,'Param1', val1, 'Param2', val2,...)
h = boxplot(...)

Description boxplot(X) produces a box and whisker plot for each column of the matrix X. 
The box has lines at the lower quartile, median, and upper quartile values. The 
whiskers are lines extending from each end of the box to show the extent of the 
rest of the data. Outliers are data with values beyond the ends of the whiskers. 
If there is no data outside the whisker, a dot is placed at the bottom whisker.

boxplot(x,G) produces a box and whisker plot for the vector x grouped by G. G 
is a grouping variable defined as a vector, string matrix, or cell array of strings. 
G can also be a cell array of several grouping variables (such as {G1 G2 G3}) to 
group the values in x by each unique combination of grouping variable values.

boxplot(...,'Param1', val1, 'Param2', val2,...) specifies optional 
parameter name/value pairs, as described in the following table.

Parameter 
Name

Parameter Values

'notch' 'on' to include notches (default is 'off')

'symbol' Symbol to use for outliers (default is 'r+'). See 
LineSpec for a description of symbols.

'orientation' Box orientation, 'vertical' (default) or 'horizontal'

'whisker' Maximum whisker length in units of interquartile range 
(default 1.5)

'labels' Character array or cell array of strings containing           
column labels (used only if X is a matrix, and the           
default label is the column number)
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In a notched box plot the notches represent a robust estimate of the uncertainty 
about the medians for box-to-box comparison. Boxes whose notches do not 
overlap indicate that the medians of the two groups differ at the 5% 
significance level. 

Whiskers extend from the box out to the most extreme data value within 
whis*iqr, where whis is the value of the 'whisker' parameter and iqr is the 
interquartile range of the sample.

h = boxplot(...) returns a matrix of handles to the lines in the box plot. h 
contains one column for each box. Each column contains seven handles 
corresponding to the upper whisker, lower whisker, upper adjacent value, 
lower adjacent value, box, median, and outliers.

 Examples The following commands create a box plot of car mileage grouped by country.

load carsmall
boxplot(MPG, Origin)

'colors' A string, such as 'bgry', or a three-column matrix of box 
colors. Letters in the string specify colors, as described in 
LineSpec. Each box (outline, median line, and whiskers) 
is drawn in the corresponding color. The default is to 
draw all boxes with blue outline, red median, and black 
whiskers. Colors are reused in the same order if 
necessary.

'widths' A numeric vector of box widths. The default is 0.5, or 
slightly smaller for fewer than three boxes. Widths are 
reused if necessary.

'positions' A numeric vector of box positions. The default is 1:n.

'grouporder' When the grouping variable G is given, a character array 
or cell array of group names, specifying the ordering of 
the groups in G. Ignored when G is not given.

Parameter 
Name

Parameter Values
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The following example produces notched box plots for two groups of sample 
data.

x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);
boxplot([x1,x2],'notch','on')
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The difference between the medians of the two groups is approximately 1. 
Since the notches in the boxplot do not overlap, you can conclude, with 95% 
confidence, that the true medians do differ. 

The following figure shows the boxplot for same data with the length of the 
whiskers specified as 1.0 times the interquartile range. Points beyond the 
whiskers are displayed using '+'. 

boxplot([x1,x2],'notch','on','whisker',1)
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References [1] McGill, R., J. W. Tukey, and W. A. Larsen, “Variations of Boxplots,” The 
American Statistician, Vol. 32, 1978, pp.12-16.

[2] Velleman, P.F., and D.C. Hoaglin, Applications, Basics, and Computing of 
Exploratory Data Analysis, Duxbury Press, 1981.

[3] Nelson, L. S., “Evaluating Overlapping Confidence Intervals,” Journal of 
Quality Technology, Vol. 21, 1989, pp. 140-141. 

See Also anova1, kruskalwallis, multcompare
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12candexchPurpose D-optimal design from candidate set using row exchanges

Syntax rlist = candexch(C,nrows)
rlist = candexch(C,nrows,'param1',value1,'param2',value2,...)

Description rlist = candexch(C,nrows) uses a row-exchange algorithm to select a 
D-optimal design from the candidate set C. C is an n-by-p matrix containing the 
values of p model terms at each of n points. nrows is the desired number of rows 
in the design. rlist is a vector of length nrows listing the selected rows.

The candexch function selects a starting design X at random, and uses a 
row-exchange algorithm to iteratively replace rows of X by rows of C in an 
attempt to improve the determinant of X'*X.

rlist = candexch(C,nrows,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of 
parameter/value pairs. Valid parameters are the following:

Note  The rowexch function also generates D-optimal designs using a 
row-exchange algorithm, but it accepts a model type and automatically selects 
a candidate set that is appropriate for such a model.

Examples Generate a D-optimal design when there is a restriction on the candidate set. 
In this case, the rowexch function isn't appropriate.

F = (fullfact([5 5 5])-1)/4;  % Factor settings in unit cube.
T = sum(F,2)<=1.51;     % Find rows matching a restriction.

Parameter Value

'display' Either 'on' or 'off' to control display of iteration number 
The default is 'on'.

'init' Initial design as an nrows-by-p matrix. The default is a 
random subset of the rows of C.

'maxiter' Maximum number of iterations. The default is 10.
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F = F(T,:);           % Take only those rows.
C = [ones(size(F,1),1) F F.^2]; % Compute model terms including
              % a constant and all squared terms.
R = candexch(C,12);     % Find a D-optimal 12-point subset.
X = F(R,:);         % Get factor settings.

See Also candgen, cordexch, rowexch, x2fx
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12candgenPurpose Generate candidate set for D-optimal design

Syntax xcand = candgen(nfactors,'model')
[xcand,fxcand] = candgen(nfactors,'model')

Description xcand = candgen(nfactors,'model') generates a candidate set appropriate 
for a D-optimal design with nfactors factors and the model model. The output 
matrix xcand has nfactors columns, with each row representing the 
coordinates of a candidate point. model is one of: 

Alternatively, model can be a matrix of term definitions as accepted by the x2fx 
function.

[xcand,fxcand] = candgen(nfactors,model) returns both the matrix of 
factor values xcand and the matrix of term values fxcand. You can input the 
latter to candexch to generate the D-optimal design.

Note  The rowexch function automatically generates a candidate set using 
candgen, and creates a D-optimal design from that candidate set using 
candexch. Call these functions separately if you want to modify the default 
candidate set.

See Also candexch, rowexch, x2fx

'linear' Constant and linear terms (the default)

'interaction' Constant, linear, and cross product terms

'quadratic' Interactions plus squared terms

'purequadratic' Constant, linear, and squared terms
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12canoncorrPurpose Canonical correlation analysis

Syntax [A,B] = canoncorr(X,Y)
[A,B,r] = canoncorr(X,Y)
[A,B,r,U,V] = canoncorr(X,Y)
[A,B,r,U,V,stats] = canoncorr(X,Y)

Description [A,B] = canoncorr(X,Y) computes the sample canonical coefficients for the 
n-by-d1 and n-by-d2 data matrices X and Y. X and Y must have the same number 
of observations (rows) but can have different numbers of variables (columns). A 
and B are d1-by-d and d2-by-d matrices, where d = min(rank(X),rank(Y)). 
The jth columns of A and B contain the canonical coefficients, i.e., the linear 
combination of variables making up the jth canonical variable for X and Y, 
respectively. Columns of A and B are scaled to make the covariance matrices of 
the canonical variables the identity matrix (see U and V below). If X or Y is less 
than full rank, canoncorr gives a warning and returns zeros in the rows of A or 
B corresponding to dependent columns of X or Y.

[A,B,r] = canoncorr(X,Y) also returns a 1-by-d vector containing the sample 
canonical correlations. The jth element of r is the correlation between the jth 
columns of U and V (see below).

[A,B,r,U,V] = canoncorr(X,Y) also returns the canonical variables, scores. U 
and V are n-by-d matrices computed as

U = (X - repmat(mean(X),N,1))*A
V = (Y - repmat(mean(Y),N,1))*B

[A,B,r,U,V,stats] = canoncorr(X,Y) also returns a structure stats 
containing information relating to the sequence of d null hypotheses , that 
the (k+1)st through dth correlations are all zero, for k = 0:(d-1). stats 
contains seven fields, each a 1-by-d vector with elements corresponding to the 
values of k, as described in the following table:

Wilks Wilks' lambda (likelihood ratio) statistic

chisq Bartlett's approximate chi-squared statistic for  with 
Lawley’s modification

pChisq Right-tail significance level for chisq

H0
k( )

H0
k( )
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Examples load carbig;
X = [Displacement Horsepower Weight Acceleration MPG];
nans = sum(isnan(X),2) > 0;
[A B r U V] = canoncorr(X(~nans,1:3), X(~nans,4:5));

plot(U(:,1),V(:,1),'.');
xlabel('0.0025*Disp + 0.020*HP - 0.000025*Wgt');
ylabel('-0.17*Accel + -0.092*MPG')

References [1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University 
Press, 1988.

[2] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

F Rao's approximate F statistic for 

pF Right-tail significance level for F

df1 Degrees of freedom for the chi-squared statistic, and the 
numerator degrees of freedom for the F statistic

df2 Denominator degrees of freedom for the F statistic

H0
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See Also manova1, princomp
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12capablePurpose Process capability indices

Syntax p = capable(data,specs)
[p,Cp,Cpk] = capable(data,specs)

Description p = capable(data,specs) computes the probability that a sample, data, from 
some process falls outside the bounds specified in specs, a 2-element vector of 
the form [lower upper]. 

The assumptions are that the measured values in the vector data are normally 
distributed with constant mean and variance and that the measurements are 
statistically independent.

[p,Cp,Cpk] = capable(data,specs) additionally returns the capability 
indices Cp and Cpk. 

Cp is the ratio of the range of the specifications to six times the estimate of the 
process standard deviation:

For a process that has its average value on target, a Cp of 1 translates to a little 
more than one defect per thousand. Recently, many industries have set a 
quality goal of one part per million. This would correspond to Cp = 1.6. The 
higher the value of Cp, the more capable the process.

Cpk is the ratio of difference between the process mean and the closer 
specification limit to three times the estimate of the process standard 
deviation:

where the process mean is µ. For processes that do not maintain their average 
on target, Cpk is a more descriptive index of process capability. 

Example Imagine a machined part with specifications requiring a dimension to be 
within three thousandths of an inch of nominal. Suppose that the machining 
process cuts too thick by one thousandth of an inch on average and also has a 

Cp
USL LSL–

6σ
--------------------------------=

Cpk min USL µ–
3σ

----------------------- µ LSL–
3σ

----------------------,⎝ ⎠
⎛ ⎞=
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standard deviation of one thousandth of an inch. What are the capability 
indices of this process?

data = normrnd(1,1,30,1);
[p,Cp,Cpk] = capable(data,[-3 3]);

indices = [p Cp Cpk]
indices =

  0.0172  1.1144  0.7053

You expect 17 parts out of a thousand to be out-of-specification. Cpk is less than 
Cp because the process is not centered.

Reference [1] Montgomery, D., “Introduction to Statistical Quality Control,” John Wiley 
& Sons, 1991, pp. 369-374.

See Also capaplot, histfit



capaplot

12-87

12capaplotPurpose Process capability plot

Syntax p = capaplot(data,specs)
[p,h] = capaplot(data,specs)

Description p = capaplot(data,specs) estimates the mean and variance of the 
observations in input vector data, and plots the pdf of the resulting 
T distribution. The observations in data are assumed to be normally 
distributed. The output, p, is the probability that a new observation from the 
estimated distribution will fall within the range specified by the two-element 
vector specs. The portion of the distribution between the lower and upper 
bounds specified in specs is shaded in the plot. 

[p,h] = capaplot(data,specs) additionally returns handles to the plot 
elements in h.

Example Imagine a machined part with specifications requiring a dimension to be 
within 3 thousandths of an inch of nominal. Suppose that the machining 
process cuts too thick by one thousandth of an inch on average and also has a 
standard deviation of one thousandth of an inch.

data = normrnd(1,1,30,1);
p = capaplot(data,[-3 3])
p =

  0.9784

The probability of a new observation being within specs is 97.84%.

-3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4
Probability Between Limits is 0.9784
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See Also capable, histfit
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12casereadPurpose Read casenames from a file

Syntax names = caseread('filename')
names = caseread 

Description names = caseread('filename') reads the contents of filename and returns a 
string matrix of names. filename is the name of a file in the current directory, 
or the complete pathname of any file elsewhere. caseread treats each line as a 
separate case.

names = caseread displays the Select File to Open dialog box for interactive 
selection of the input file.

Example Read the file months.dat created using the function casewrite on the next 
page.

type months.dat

January
February
March
April
May

names = caseread('months.dat')
names =

January 
February
March  
April  
May   

See Also tblread, gname, casewrite, tdfread
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12casewritePurpose Write casenames from a string matrix to a file

Syntax casewrite(strmat,'filename')
casewrite(strmat)

Description casewrite(strmat,'filename') writes the contents of string matrix strmat 
to filename. Each row of strmat represents one casename. filename is the 
name of a file in the current directory, or the complete pathname of any file 
elsewhere. casewrite writes each name to a separate line in filename.

casewrite(strmat) displays the Select File to Write dialog box for interactive 
specification of the output file.

Example strmat = str2mat('January','February','March','April','May')

strmat =

January 
February
March  
April  
May 

casewrite(strmat,'months.dat')
type months.dat

January 
February
March  
April  
May   

See Also gname, caseread, tblwrite, tdfread
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12ccdesignPurpose Generate central composite design

Syntax D = ccdesign(nfactors)
D = ccdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
[D,blk] = ccdesign(...)

Description D = ccdesign(nfactors) generates a central composite design for nfactors 
factors. The output matrix D is n-by-nfactors, where n is the number of points 
in the design. Each row represents one run of the design, and it has the settings 
of all factors for that run. Factor values are normalized so that the cube points 
take values between -1 and 1.

[D,blk] = ccdesign(nfactors) requests a blocked design. The output vector 
blk is a vector of block numbers. Blocks are groups of runs that are to be 
measured under similar conditions (for example, on the same day). Blocked 
designs minimize the effect of between-block differences on the parameter 
estimates. 

[...] = ccdesign(nfactors,'pname1',pvalue1,'pname2',pvalue2,...)
enables you to specify additional parameters and their values. Valid 
parameters are: 

'center' Number of center points:

Integer Specific number of center points to include

'uniform' Number of center points is selected to give 
uniform precision

'orthogonal' Number of center points is selected to give 
an orthogonal design (default)

'fraction' Fraction of full factorial for cube portion expressed as an 
exponent of 1/2. For example: 

0 Whole design

1 1/2 fraction

2 1/4 fraction

'type' Either 'inscribed', 'circumscribed', or 'faced'

'blocksize' Maximum number of points allowed in a block. 
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See Also bbdesign, cordexch, rowexch
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12cdfPurpose Computes a chosen cumulative distribution function (cdf)

Syntax P = cdf('name',X,A1,A2,A3)

Description P = cdf('name',X,A1,A2,A3) returns a matrix of probabilities, where name is 
a string containing the name of the distribution, X is a matrix of values, and A, 
A2, and A3 are matrices of distribution parameters. Depending on the 
distribution, some of these parameters may not be necessary.

Vector or matrix inputs for X, A1, A2, and A3 must have the same size, which is 
also the size of P. A scalar input for X, A1, A2, or A3 is expanded to a constant 
matrix with the same dimensions as the other inputs.

cdf is a utility routine allowing you to access all the cdfs in the Statistics 
Toolbox by using the name of the distribution as a parameter. See “Overview 
of the Distributions” on page 2-45 for the list of available distributions.

Examples p = cdf('Normal',-2:2,0,1)
p =

  0.0228  0.1587  0.5000  0.8413  0.9772

p = cdf('Poisson',0:5,1:6)
p =

  0.3679  0.4060  0.4232  0.4335  0.4405  0.4457

See Also betacdf, binocdf, chi2cdf, expcdf, fcdf, gamcdf, geocdf, hygecdf, icdf, 
logncdf, mle, nbincdf, ncfcdf, nctcdf, ncx2cdf, normcdf, pdf, poisscdf, 
random, raylcdf, tcdf, unidcdf, unifcdf, wblcdf
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12cdfplotPurpose Plot of empirical cumulative distribution function

Syntax cdfplot(X)
h = cdfplot(X)
[h,stats] = cdfplot(X)

Description cdfplot(X) displays a plot of the empirical cumulative distribution function 
(cdf) for the data in the vector X. The empirical cdf  is defined as the 
proportion of X values less than or equal to x.

This plot, like those produced by hist and normplot, is useful for examining 
the distribution of a sample of data. You can overlay a theoretical cdf on the 
same plot to compare the empirical distribution of the sample to the theoretical 
distribution.

The kstest, kstest2, and lillietest functions compute test statistics that 
are derived from the empirical cdf. You may find the empirical cdf plot 
produced by cdfplot useful in helping you to understand the output from those 
functions.

H = cdfplot(X) returns a handle to the cdf curve.

[h,stats] = cdfplot(X) also returns a stats structure with the following 
fields.

Examples Generate a normal sample and an empirical cdf plot of the data.

x = normrnd(0,1,50,1);
cdfplot(x)

Field Contents

stats.min Minimum value

stats.max Maximum value

stats.mean Sample mean

stats.median Sample median (50th percentile)

stats.std Sample standard deviation

F x( )
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See Also ecdf, hist, kstest, kstest2, lillietest, normplot 
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12chi2cdfPurpose Chi-square (χ2) cumulative distribution function (cdf)

Syntax P = chi2cdf(X,V)

Description P = chi2cdf(X,V) computes the χ2 cdf at each of the values in X using the 
corresponding parameters in V. X and V can be vectors, matrices, or 
multidimensional arrays that have the same size. A scalar input is expanded 
to a constant array with the same dimensions as the other input. The degrees 
of freedom parameters in V must be positive integers, and the values in X must 
lie on the interval [0 1].

The χ2 cdf for a given value x and degrees-of-freedom ν is

 

where Γ( · ) is the Gamma function. The result, p, is the probability that a 
single observation from a χ2 distribution with ν degrees of freedom will fall in 
the interval [0 x]. 

The χ2 density function with ν degrees-of-freedom is the same as the gamma 
density function with parameters ν/2 and 2.

Examples probability = chi2cdf(5,1:5)
probability =

  0.9747  0.9179  0.8282  0.7127  0.5841

probability = chi2cdf(1:5,1:5)
probability =

  0.6827  0.6321  0.6084  0.5940  0.5841

See Also cdf, chi2inv, chi2pdf, chi2rnd, chi2stat

p F x ν( ) t ν 2–( ) 2⁄ e t– 2⁄

2ν 2⁄ Γ ν 2⁄( )
-----------------------------------

0

x

∫ dt= =
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12chi2invPurpose Inverse of the chi-square (χ2) cumulative distribution function (cdf)

Syntax X = chi2inv(P,V)

Description X = chi2inv(P,V) computes the inverse of the χ2 cdf with parameters 
specified by V for the corresponding probabilities in P. P and V can be vectors, 
matrices, or multidimensional arrays that have the same size. A scalar input 
is expanded to a constant array with the same dimensions as the other inputs. 

The degrees of freedom parameters in V must be positive integers, and the 
values in P must lie in the interval [0 1].

The inverse χ2 cdf for a given probability p and ν degrees of freedom is 

where

and Γ( · ) is the Gamma function. Each element of output X is the value whose 
cumulative probability under the χ2 cdf defined by the corresponding degrees 
of freedom parameter in V is specified by the corresponding value in P.

Examples Find a value that exceeds 95% of the samples from a χ2 distribution with 
10 degrees of freedom.

x = chi2inv(0.95,10)
x =

  18.3070

You would observe values greater than 18.3 only 5% of the time by chance.

See Also chi2cdf, chi2pdf, chi2rnd, chi2stat, icdf

x F 1– p ν( ) x:F x ν( ) p={ }= =

p F x ν( ) t ν 2–( ) 2⁄ e t– 2⁄

2ν 2⁄ Γ ν 2⁄( )
-----------------------------------

0

x

∫ dt= =
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12chi2pdfPurpose Chi-square (χ2) probability density function (pdf)

Syntax Y = chi2pdf(X,V)

Description Y = chi2pdf(X,V) computes the χ2 pdf at each of the values in X using the 
corresponding parameters in V. X and V can be vectors, matrices, or 
multidimensional arrays that have the same size, which is also the size of the 
output Y. A scalar input is expanded to a constant array with the same 
dimensions as the other input. 

The degrees of freedom parameters in V must be positive integers, and the 
values in X must lie on the interval [0 1].

The χ2 pdf for a given value x and ν degrees of freedom is

where Γ( · ) is the Gamma function. The result, y, is the probability that a 
single observation from a χ2 distribution with ν degrees of freedom will have 
value x.

If x is standard normal, then x2 is distributed χ2 with one degree of freedom. If 
x1, x2, ..., xn are n independent standard normal observations, then the sum of 
the squares of the x’s is distributed χ2 with n degrees of freedom (and is 
equivalent to the gamma density function with parameters ν/2 and 2).

Examples nu = 1:6;
x = nu;
y = chi2pdf(x,nu)

y =

  0.2420  0.1839  0.1542  0.1353  0.1220  0.1120

The mean of the χ2 distribution is the value of the degrees of freedom 
parameter, nu. The above example shows that the probability density of the 
mean falls as nu increases.

See Also chi2cdf, chi2inv, chi2rnd, chi2stat, pdf

y f x ν( ) x ν 2–( ) 2⁄ e x– 2⁄

2ν 2⁄ Γ ν 2⁄( )
-------------------------------------= =
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12chi2rndPurpose Random numbers from the chi-square (χ2) distribution

Syntax R = chi2rnd(V)
R = chi2rnd(V,u)
R = chi2rnd(V,m,n)

Description R = chi2rnd(V) generates random numbers from the χ2 distribution with 
degrees of freedom parameters specified by V. V can be a vector, a matrix, or a 
multidimensional array. R is the same size as V.

R = chi2rnd(V,u) generates an array R of size u containing random numbers 
from the χ2 distribution with degrees of freedom parameters specified by V, 
where u is a row vector. If u is a 1-by-2 vector, R is a matrix with u(1) rows and 
u(2) columns. If u is 1-by-n, R is an n-dimensional array.

R = chi2rnd(V,m,n) generates an m-by-n matrix containing random numbers 
from the χ2 distribution with degrees of freedom parameter V.

Reproducing the Output of chi2rnd
chi2rnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call chi2rnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to chi2rnd or any other 
functions that depend on rand or randn. If you want to reproduce the output of 
chi2rnd, reset the states of rand and randn to the same fixed values each time 
you call chi2rnd. For an example of how to do this, and a list of the Statistics 
Toolbox functions that depend on rand or randn, see “Reproducing the Output 
of Random Number Functions” on page 2-46.

Note   The results in the following examples depend on the current states of 
rand and randn. If you run the code in these examples, your results may differ 
from the answers shown here.

Examples Note that the first and third commands are the same, but are different from the 
second command.

r = chi2rnd(1:6)
r =



chi2rnd

12-100

0.0037  3.0377  7.8142  0.9021  3.2019  9.0729

r = chi2rnd(6,[1 6])
r =

6.5249  2.6226  12.2497  3.0388  6.3133  5.0388

r = chi2rnd(1:6,1,6)
r =

  0.7638  6.0955  0.8273  3.2506  1.5469  10.9197

See Also chi2cdf, chi2inv, chi2pdf, chi2stat
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12chi2statPurpose Mean and variance for the chi-square (χ2) distribution

Syntax [M,V] = chi2stat(NU)

Description [M,V] = chi2stat(NU) returns the mean and variance for the χ2 distribution 
with degrees of freedom parameters specified by NU. 

The mean of the χ2 distribution is ν, the degrees of freedom parameter, and the 
variance is 2ν.

Example nu = 1:10;
nu = nu'∗nu;
[m,v] = chi2stat(nu)

m =

 1   2   3   4   5   6   7   8   9  10
 2   4   6   8  10  12  14  16  18  20
 3   6   9  12  15  18  21  24  27  30
 4   8  12  16  20  24  28  32  36  40
 5  10  15  20  25  30  35  40  45  50
 6  12  18  24  30  36  42  48  54  60
 7  14  21  28  35  42  49  56  63  70
 8  16  24  32  40  48  56  64  72  80
 9  18  27  36  45  54  63  72  81  90
10  20  30  40  50  60  70  80  90  100

v =

 2   4   6   8  10  12  14  16  18  20
 4   8  12  16  20  24  28  32  36  40
 6  12  18  24  30  36  42  48  54  60
 8  16  24  32  40  48  56  64  72  80
10  20  30  40  50  60  70  80  90  100
12  24  36  48  60  72  84  96  108  120
14  28  42  56  70  84  98  112  126  140
16  32  48  64  80  96  112  128  144  160
18  36  54  72  90  108  126  144  162  180
20  40  60  80  100  120  140  160  180  200

See Also chi2cdf, chi2inv, chi2pdf, chi2rnd
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12classifyPurpose Discriminant analysis

Syntax class = classify(sample,training,group)
class = classify(sample,training,group,type)
class = classify(sample,training,group,type,prior)
[class,err] = classify(...)
[class,err,posterior] = classify(...)
[class,err,posterior,logp] = classify(...)

Description class = classify(sample,training,group) classifies the rows of the matrix 
sample into groups, based on the grouping of the rows in training. sample and 
training must be matrices with the same number of columns. group is a vector 
whose distinct values define the grouping of the rows of training. Each row of 
training belongs to the group whose value is the corresponding entry of group. 
group can be a numeric vector, a string array, or a cell array of strings. 
training and group must have the same number of rows. classify treats NaNs 
or empty strings in group as missing values, and ignores the corresponding 
rows of training. class indicates which group each row of sample has been 
assigned to, and is of the same type as group.

class = classify(sample,training,group,type) enables you to specify the 
type of discriminant function type as one of:

'linear' Fits a multivariate normal density to each group, with a 
pooled estimate of covariance (default).

'diaglinear' Same as 'linear', except that the covariance matrices 
are assumed to be diagonal and are estimated as 
diag(var).

'quadratic' Fits multivariate normal densities with covariance 
estimates stratified by group.

'diagquadratic' Same as 'quadratic', except that the covariance matrices 
are assumed to be diagonal and are estimated as 
diag(var).

'mahalanobis' Uses Mahalanobis distances with stratified covariance 
estimates.
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class = classify(sample,training,group,type,prior) enables you to 
specify prior probabilities for the groups in one of three ways. prior can be 

• A numeric vector of the same length as the number of unique values in 
group. If group is numeric, the order of prior must correspond to the sorted 
values in group, or, if group contains strings, to the order of first occurrence 
of the values in group. 

• A 1-by-1 structure with fields:

As a structure, prior can contain groups that do not appear in group. This 
can be useful if training is a subset a larger training set. 

• The string value 'empirical', indicating that classify should estimate the 
group prior probabilities from the group relative frequencies in training. 

prior defaults to a numeric vector of equal probabilities, i.e., a uniform 
distribution. prior is not used for discrimination by Mahalanobis distance, 
except for error rate calculation.

[class,err] = classify(...) also returns an estimate of the 
misclassification error rate. classify returns the apparent error rate, i.e., the 
percentage of observations in the training that are misclassified.

[class,err,posterior] = classify(...) returns posterior, a matrix 
containing estimates of the posterior probabilities that the j'th training group 
was the source of the i'th sample observation, that is, Pr{group j | obs i}. 
posterior is not computed for Mahalanobis discrimination.

[class,err,posterior,logp] = classify(...) returns logp, a vector 
containing estimates of the logarithms of the unconditional predictive 
probability density of the sample observations, p(obs i). p(obs i) is the sum of 
p(obs i | group j)*Pr{group j} taken over all groups. logp is not computed for 
Mahalanobis discrimination.

Examples load discrim
sample = ratings(idx,:);

prob A numeric vector

group Of the same type as group, and containing unique values 
indicating which groups the elements of prob correspond to.
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training = ratings(1:200,:);
g = group(1:200);
class = classify(sample,training,g);
first5 = class(1:5)

first5 =

   2
   2
   2
   2
   2

See Also mahal

References [1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University 
Press, 1988.

[2] Seber, G.A.F., Multivariate Observations, Wiley, 1984
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12clusterPurpose Construct clusters from linkage output

Syntax T = cluster(Z,'cutoff',c)
T = cluster(Z,'maxclust',n)
T = cluster(...,'criterion','crit')
T = cluster(...,'depth',d)

Description T = cluster(Z,'cutoff',c) constructs clusters from the hierarchical cluster 
tree, Z, generated by the linkage function. Z is a matrix of size (m-1)-by-3, 
where m is the number of observations in the original data. c is a threshold for 
cutting Z into clusters. Clusters are formed when inconsistent values are less 
than c. See the inconsistent function for more information. The output T is a 
vector of size m that contains the cluster number for each observation in the 
original data.

T = cluster(Z,'maxclust',n) specifies n as the maximum number of 
clusters to form from the hierarchical tree in Z. 

T = cluster(...,'criterion','crit') uses the specified criterion for 
forming clusters, where crit is either 'inconsistent' or 'distance'.

T = cluster(...,'depth',d) evaluates inconsistent values to a depth of d in 
the tree. The default is d = 2. An inconsistency coefficient computation 
compares a link between two objects in the cluster tree with neighboring links 
up to the specified depth. See the inconsistent function for more information.

Example The example uses the pdist function to calculate the distance between items 
in a matrix of random numbers and then uses the linkage function to compute 
the hierarchical cluster tree based on the matrix. The example passes the 
output of the linkage function to the cluster function. The 'maxclust' value 
3 indicates that you want to group the items into three clusters. The find 
function lists all the items grouped into cluster 1. 

rand('state', 7)
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2]; 
Y = pdist(X); 
Z = linkage(Y); 
T = cluster(Z,'maxclust',3); 
find(T==1)
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ans = 
11
12
13
14
15
16
17
18
19
20

See Also clusterdata, cophenet, inconsistent, linkage, pdist
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12clusterdataPurpose Construct clusters from data

Syntax T = clusterdata(X, cutoff)
T = clusterdata(X,'param1',val1,'param2',val2,...)

Description T = clusterdata(X, cutoff) uses the pdist, linkage, and cluster 
functions to construct clusters from data X. X is an m-by-n matrix, treated as m 
observations of n variables. cutoff is a threshold for cutting the hierarchical 
tree generated by linkage into clusters. When 0 < cutoff < 2, clusterdata 
forms clusters when inconsistent values are greater than cutoff (see the 
inconsistent function). When cutoff is an integer and cutoff >= 2, then 
clusterdata interprets cutoff as the maximum number of clusters to keep in 
the hierarchical tree generated by linkage. The output T is a vector of size m 
containing a cluster number for each observation. 

T = clusterdata(X,cutoff) is the same as

Y = pdist(X,'euclid'); 
Z = linkage(Y,'single'); 
T = cluster(Z,'cutoff',cutoff); 

T = clusterdata(X,'param1',val1,'param2',val2,...) provides more 
control over the clustering through a set of parameter/value pairs. Valid 
parameters are 

Example The example first creates a sample data set of random numbers. It then uses 
clusterdata to compute the distances between items in the data set and create 
a hierarchical cluster tree from the data set. Finally, the clusterdata function 
groups the items in the data set into three clusters. The example uses the find 

'distance' Any of the distance metric names allowed by pdist (follow the 
'minkowski' option by the value of the exponent p)

'linkage' Any of the linkage methods allowed by the linkage function

'cutoff' Cutoff for inconsistent or distance measure

'maxclust' Maximum number of clusters to form

'criterion' Either 'inconsistent' or 'distance'

'depth' Depth for computing inconsistent values



clusterdata

12-108

function to list all the items in cluster 2, and the scatter3 function to plot the 
data with each cluster shown in a different color. 

rand('state',12); 
X = [rand(10,3); rand(10,3)+1.2; rand(10,3)+2.5]; 
T = clusterdata(X,'maxclust',3); 
find(T==2)

ans =
  11
  11
  13
  14
  115
  16
  17
  18
  19
  20

scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')
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See Also cluster, inconsistent, kmeans, linkage, pdist
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12cmdscalePurpose Classical multidimensional scaling

Syntax Y = cmdscale(D)
[Y,e] = cmdscale(D)

Description Y = cmdscale(D) takes an n-by-n distance matrix D, and returns an n-by-p 
configuration matrix Y. Rows of Y are the coordinates of n points in 
p-dimensional space for some p < n. When D is a Euclidean distance matrix, 
the distances between those points are given by D. p is the dimension of the 
smallest space in which the n points whose interpoint distances are given by D 
can be embedded.

[Y,e] = cmdscale(D) also returns the eigenvalues of Y*Y'. When D is 
Euclidean, the first p elements of e are positive, the rest zero. If the first k 
elements of e are much larger than the remaining (n-k), then you can use the 
first k columns of Y as k-dimensional points whose interpoint distances 
approximate D. This can provide a useful dimension reduction for visualization, 
e.g., for k = 2. 

D need not be a Euclidean distance matrix. If it is non-Euclidean or a more 
general dissimilarity matrix, then some elements of e are negative, and 
cmdscale choses p as the number of positive eigenvalues. In this case, the 
reduction to p or fewer dimensions provides a reasonable approximation to D 
only if the negative elements of e are small in magnitude.

You can specify D as either a full dissimilarity matrix, or in upper triangle 
vector form such as is output by pdist. A full dissimilarity matrix must be real 
and symmetric, and have zeros along the diagonal and positive elements 
everywhere else. A dissimilarity matrix in upper triangle form must have real, 
positive entries. You can also specify D as a full similarity matrix, with ones 
along the diagonal and all other elements less than one. cmdscale transforms 
a similarity matrix to a dissimilarity matrix in such a way that distances 
between the points returned in Y equal or approximate sqrt(1-D). To use a 
different transformation, you must transform the similarities prior to calling 
cmdscale.

Examples Generate some points in 4-dimensional space, but close to 3-dimensional space, 
then reduce them to distances only.
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X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');

Find a configuration with those inter-point distances.

[Y,e] = cmdscale(D);
% Four, but fourth one small
dim = sum(e > eps^(3/4))
% Poor reconstruction
maxerr2 = max(abs(pdist(X) - pdist(Y(:,1:2)))) 
% Good reconstruction
maxerr3 = max(abs(pdist(X) - pdist(Y(:,1:3)))) 
% Exact reconstruction
maxerr4 = max(abs(pdist(X) - pdist(Y)))
% D is now non-Euclidean
D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);
% One is large negative
min(e)
% Poor reconstruction
maxerr = max(abs(pdist(X) - pdist(Y)))

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984

See Also mdscale, pdist, procrustes
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12combnkPurpose Enumeration of all combinations of n objects k at a time

Syntax C = combnk(v,k)

Description C = combnk(v,k) returns all combinations of the n elements in v taken k at a 
time. 

C = combnk(v,k) produces a matrix C with k columns and n! / k!(n-k)! rows, 
where each row contains k of the elements in the vector v.

It is not practical to use this function if v has more than about 15 elements.

Example Combinations of characters from a string.

C = combnk('tendril',4);
last5 = C(31:35,:)

last5 =

tedr
tenl
teni
tenr
tend

Combinations of elements from a numeric vector.

c = combnk(1:4,2)

c =
   3   4
   2   4
   2   3
   1   4
   1   3
   1   2
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12cophenetPurpose Cophenetic correlation coefficient

Syntax c = cophenet(Z,Y)
[c,d] = cophenet(Z,Y)

Description c = cophenet(Z,Y) computes the cophenetic correlation coefficient for the 
hierarchical cluster tree represented by Z. Z is the output of the linkage 
function. Y contains the distances or dissimilarities used to construct Z, as 
output by the pdist function. Z is a matrix of size (m-1)-by-3, with distance 
information in the third column. Y is a vector of size .

[c,d] = cophenet(Z,Y) returns the cophenetic distances d in the same lower 
triangular distance vector format as Y.

The cophenetic correlation for a cluster tree is defined as the linear correlation 
coefficient between the cophenetic distances obtained from the tree, and the 
original distances (or dissimilarities) used to construct the tree. Thus, it is a 
measure of how faithfully the tree represents the dissimilarities among 
observations.

The cophenetic distance between two observations is represented in a 
dendrogram by the height of the link at which those two observations are first 
joined. That height is the distance between the two subclusters that are 
merged by that link.

The output value, c, is the cophenetic correlation coefficient. The magnitude of 
this value should be very close to 1 for a high-quality solution. This measure 
can be used to compare alternative cluster solutions obtained using different 
algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

where:

• Yij is the distance between objects i and j in Y.

• Zij is the cophenetic distance between objects i and j, from Z(:,3).

• y and z are the average of Y and Z(:,3), respectively. 

m m 1–( ) 2⁄⋅

c
Σi j< Yij y–( ) Zij z–( )

Σi j< Yij y–( )2Σi j< Zij z–( )2
------------------------------------------------------------------------------=



cophenet

12-114

Example X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'average');

% Compute Spearman's rank correlation between the
% dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
r = corr(Y',D','type','spearman')
r =
   0.8279 

See Also cluster, dendrogram, inconsistent, linkage, pdist, squareform
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12cordexchPurpose D-optimal design of experiments – coordinate exchange algorithm

Syntax settings = cordexch(nfactors,nruns)
[settings,X] = cordexch(nfactors,nruns)
[settings,X] = cordexch(nfactors,nruns,'model')
[settings,X] = cordexch(...,'param1',value1,'param2',value2,...)

Description settings = cordexch(nfactors,nruns) generates the factor settings matrix, 
settings, for a D-optimal design using a linear additive model with a constant 
term. settings has nruns rows and nfactors columns. 

[settings,X] = cordexch(nfactors,nruns) also generates the associated 
design matrix X.

[settings,X] = cordexch(nfactors,nruns,'model') produces a design for 
fitting a specified regression model. The input, 'model', can be one of these 
strings:

Alternatively model can be a matrix of term definitions as accepted by the x2fx 
function.

[settings,X] = cordexch(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of 
parameter/value pairs. Valid parameters are:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.

'display' Either 'on' or 'off' to control display of iteration counter. 
The default is 'on'.

'init'   Initial design as an nruns-by-nfactors matrix. The default is a 
randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.
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Example The D-optimal design for two factors in nine runs using a quadratic model is 
the 32 factorial as shown below:

settings = cordexch(2,9,'quadratic')

settings =

  -1   1
   1   1
   0   1
   1  -1
  -1  -1
   0  -1
   1   0
   0   0
  -1   0

Algorithm The cordexch function searches for a D-optimal design using a coordinate 
exchange algorithm. It creates a starting design, and then iterates by changing 
each coordinate of each design point in an attempt to reduce the variance of the 
coefficients that would be estimated using this design.

See Also bbdesign, candexch, candgen, ccdesign, daugment, dcovary, rowexch, x2fx
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12corrPurpose Linear or rank correlation

Syntax RHO = corr(X)
RHO = corr(X,Y,...)
[RHO, PVAL] = corr(...)
[...] = corr(...,'param1', val1, 'param2', val2,...)

Description RHO = corr(X) returns a p-by-p matrix containing the pairwise linear 
correlation coefficient between each pair of columns in the n-by-p matrix X.

RHO = corr(X,Y,...) returns a p1-by-p2 matrix containing the pairwise 
correlation coefficient between each pair of columns in the n-by-p1 and n-by-p2 
matrices X and Y.

[RHO, PVAL] = corr(...) also returns PVAL, a matrix of p-values for testing 
the hypothesis of no correlation against the alternative that there is a non-zero 
correlation. Each element of PVAL is the p-value for the corresponding element 
of RHO. If PVAL(i, j) is small, say less than 0.05, then the correlation 
RHO(i, j) is significantly different from zero.

[...] = corr(...,'param1', val1, 'param2', val2,...) specifies 
additional parameters and their values. The following table lists the valid 
parameters and their values.

Parameter Values

'type' •  'Pearson' (the default) computes Pearson's 
linear correlation coefficient

•  'Kendall' computes Kendall's tau

• 'Spearman' computes Spearman's rho
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Using the 'pairwise' option for the 'rows' parameter might return a matrix 
that is not positive definite. The 'complete' option always returns a positive 
definite matrix, but in general the estimates will be based on fewer 
observations.

corr computes p-values for Pearson's correlation using a Student's t 
distribution for a transformation of the correlation. This is exact when X and Y 
are normal. corr computes p-values for Kendall's tau and Spearman's rho 
using either the exact permutation distributions (for small sample sizes), or 
large-sample approximations.

corr computes p-values for the two-tailed test by doubling the more significant 
of the two one-tailed p-values.

See Also corrcoef

'rows' •  'all' (the default) uses all rows regardless of 
missing values (NaNs)

• 'complete' uses only rows with no missing 
values

• 'pairwise'computes RHO(i,j) using rows with 
no missing values in column i or j

'tail' — The 
alternative hypothesis 
against which to 
compute p-values for 
testing the hypothesis 
of no correlation

• 'ne' — Correlation is not zero (the default)

• 'gt' — Correlation is greater than zero

• 'lt' — Correlation is less than zero

Parameter Values
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12corrcoefPurpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients calculated from 
an input matrix X whose rows are observations and whose columns are 
variables. The (i,j)th element of the matrix R is related to the covariance 
matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag 
of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as 
corrcoef([x y]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing the 
hypothesis of no correlation. Each p-value is the probability of getting a 
correlation as large as the observed value by random chance, when the true 
correlation is zero. If P(i,j) is small, say less than 0.05, then the correlation 
R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP, of the same 
size as R, containing lower and upper bounds for a 95% confidence interval for 
each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies 
additional parameters and their values. Valid parameters are the following.

R i j,( ) C i j,( )
C i i,( )C j j,( )

-------------------------------------=
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The p-value is computed by transforming the correlation to create a t statistic 
having n-2 degrees of freedom, where n is the number of rows of X. The 
confidence bounds are based on an asymptotic normal distribution of 
0.5*log((1+R)/(1-R)), with an approximate variance equal to 1/(n-3). 
These bounds are accurate for large samples when X has a multivariate normal 
distribution. The 'pairwise' option can produce an R matrix that is not 
positive definite.

The corrcoef function is part of the standard MATLAB language.

Examples Generate random data having correlation between column 4 and the other 
columns.

x = randn(30,4);   % Uncorrelated data
x(:,4) = sum(x,2);  % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j]        % Display their (row,col) indices.

r =
  1.0000  -0.3566  0.1929  0.3457
  -0.3566  1.0000  -0.1429  0.4461
  0.1929  -0.1429  1.0000  0.5183
  0.3457  0.4461  0.5183  1.0000

p =
  1.0000  0.0531  0.3072  0.0613
  0.0531  1.0000  0.4511  0.0135
  0.3072  0.4511  1.0000  0.0033
  0.0613  0.0135  0.0033  1.0000

ans =
   4   2

'alpha' A number between 0 and 1 to specify a confidence level of
100(1 - alpha)%. Default is 0.05 for 95% confidence intervals.

'rows' Either 'all' (default) to use all rows, 'complete' to use rows 
with no NaN values, or 'pairwise' to compute R(i,j) using 
rows with no NaN values in either column i or j.
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   4   3
   2   4
   3   4

See Also cov, mean, std, var

xcorr, xcov in the Signal Processing Toolbox
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12covPurpose Covariance matrix.

Syntax C = cov(X)
C = cov(x,y)

Description C = cov(X) computes the covariance matrix. For a single vector, cov(x) 
returns a scalar containing the variance. For matrices, where each row is an 
observation, and each column a variable, cov(X) is the covariance matrix. 

The variance function, var(X) is the same as diag(cov(X)). 

The standard deviation function, std(X) is equivalent to sqrt(diag(cov(X))).

cov(x,y), where x and y are column vectors of equal length, gives the same 
result as cov([x y]).

The cov function is part of the standard MATLAB language.

Algorithm The algorithm for cov is

[n,p] = size(X);
X = X - ones(n,1) * mean(X);
Y = X'∗X/(n-1);

See Also corrcoef, mean, std, var

xcov, xcorr in the Signal Processing Toolbox
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12crosstabPurpose Cross-tabulation of several vectors

Syntax table = crosstab(col1,col2)
table = crosstab(col1,col2,col3,...)
[table,chi2,p] = crosstab(col1,col2)
[table,chi2,p,label] = crosstab(col1,col2)

Description table = crosstab(col1,col2) takes two vectors of positive integers and 
returns a matrix, table, of cross-tabulations. The ijth element of table 
contains the count of all instances where col1 = i and col2 = j.

Alternatively, col1 and col2 can be vectors containing noninteger values, 
character arrays, or cell arrays of strings. crosstab implicitly assigns a 
positive integer group number to each distinct value in col1 and col2, and 
creates a cross-tabulation using those numbers.

table = crosstab(col1,col2,col3,...) returns table as an n-dimensional 
array, where n is the number of arguments you supply. The value of 
table(i,j,k,...) is the count of all instances where col1 = i, col2 = j, 
col3 = k, and so on.

[table,chi2,p] = crosstab(col1,col2) also returns the chi-square statistic, 
chi2, for testing the independence of the rows and columns of table. The 
scalar p is the significance level of the test. Values of p near zero cast doubt on 
the assumption of independence of the rows and columns of table.

[table,chi2,p,label] = crosstab(col1,col2) also returns a cell array 
label that has one column for each input argument. The value in label(i,j) 
is the value of colj that defines group i in the jth dimension.

Example Example 1
This example generates 2 columns of 50 discrete uniform random numbers. 
The first column has numbers from 1 to 3. The second has only the numbers 1 
and 2. The two columns are independent so it would be surprising if p were 
near zero. 

r1 = unidrnd(3,50,1);
r2 = unidrnd(2,50,1);
[table,chi2,p] = crosstab(r1,r2)
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table =

  10   5
   8   8
   6  13

chi2 =

  4.1723

p =

  0.1242

The result, 0.1242, is not a surprise. A very small value of p would make you 
suspect the “randomness” of the random number generator.

Example 2
you have data collected on several cars over a period of time. How many 
four-cylinder cars were made in the USA during the late part of this period?

[t,c,p,l] = crosstab(cyl4,when,org);

l
l = 
  'Other'  'Early'  'USA'  
  'Four'   'Mid'   'Europe'
     []  'Late'   'Japan' 

t(2,3,1)

ans =
  38

See Also tabulate
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12daugmentPurpose D-optimal augmentation of an experimental design

Syntax settings = daugment(startdes,nruns)
[settings,X] = daugment(startdes,nruns)
[settings,X] = daugment(startdes,nruns,'model')
[settings, X] = daugment(...,'param1',value1,'param2',value2,...)

Description settings = daugment(startdes,nruns) adds nruns runs to an experimental 
design using the coordinate exchange D-optimal algorithm. startdes is a 
matrix of factor settings in the original design. The output matrix settings is 
the matrix of factor settings for the design. 

[settings,X] = daugment(startdes,nruns) also generates the associated 
design matrix, X.

[settings,X] = daugment(startdes,nruns,'model') also controls the order 
of the regression model. The input, 'model', can be one of these:

Alternatively model can be a matrix of term definitions as accepted by the x2fx 
function.

[settings, X] = daugment(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of 
parameter/value pairs. Valid parameters are the following:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.

Parameter Value

'display' Either 'on' or 'off' to control display of iteration counter. 
The default is 'on'.
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Example This example adds 5 runs to a 22 factorial design to fit a quadratic model.

startdes = [-1 -1; 1 -1; -1 1; 1 1];
settings = daugment(startdes,5,'quadratic')

settings =

  -1  -1
   1  -1
  -1   1
   1   1
   1   0
  -1   0
   0   1
   0   0
   0  -1

The result is a 32 factorial design.

See Also cordexch, x2fx

'init'   Initial design as an nruns-by-nfactors matrix. The default 
is a randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.

Parameter Value
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12dcovaryPurpose D-optimal design with specified fixed covariates

Syntax settings = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates,'model')
[settings,X] = dcovary(...,'param1',value1,'param2',value2,...)

Description settings = dcovary(nfactors,covariates) uses a coordinate exchange 
algorithm to generate a D-optimal design for nfactors factors, subject to the 
constraint that it also include the fixed covariate values in the input matrix 
covariates. The number of runs in the design is taken to be the number of 
rows in the covariates matrix. The output matrix settings is the matrix of 
factor settings for the design, including the fixed covariates.

[settings,X] = dcovary(nfactors,covariates) also generates the 
associated design matrix, X.

[settings,X] = dcovary(nfactors,covariates,'model') also controls the 
order of the regression model. The input, 'model', can be one of these:

Alternatively 'model' can be a matrix of term definitions as accepted by the 
x2fx function. The model is applied to the fixed covariates as well as the 
regular factors. If you want to treat the fixed covariates specially, for example 
by including linear terms for them but quadratic terms for the regular factors, 
you can do this by creating the proper 'model' matrix.

[settings, X] = dcovary(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of 
parameter/value pairs. Valid parameters are:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.
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Example Example 1. Generate a design for three factors in 2 blocks of 4 runs.

blk = [-1 -1 -1 -1 1 1 1 1]';
dsgn = dcovary(3,blk)

dsgn =
  -1   1   1  -1
   1  -1  -1  -1
  -1   1  -1  -1
   1  -1   1  -1
   1   1  -1   1
   1   1   1   1
  -1  -1   1   1
  -1  -1  -1   1

Example 2. Suppose you want to block an eight run experiment into 4 blocks 
of size 2 to fit a linear model on two factors. 

covariates = dummyvar([1 1 2 2 3 3 4 4]);
settings = dcovary(2,covariates(:,1:3),'linear')
settings =
   1   1   1   0   0
  -1  -1   1   0   0
  -1   1   0   1   0
   1  -1   0   1   0
   1   1   0   0   1
  -1  -1   0   0   1
  -1   1   0   0   0
   1  -1   0   0   0

The first two columns of the output matrix contain the settings for the two 
factors. The last three columns are dummy variable codings for the four blocks.

'display' Either 'on' or 'off' to control display of iteration counter. 
The default is 'on'.

'init'   Initial design as an nruns-by-nfactors matrix. The default is a 
randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.
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Algorithm The dcovary function creates a starting design that includes the fixed covariate 
values, and then iterates by changing the non-fixed coordinates of each design 
point in an attempt to reduce the variance of the coefficients that would be 
estimated using this design.

See Also cordexch, daugment, rowexch, x2fx
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12dendrogramPurpose Plot dendrogram graphs

Syntax H = dendrogram(Z) 
H = dendrogram(Z,p)
[H,T] = dendrogram(...)
[H,T,perm] = dendrogram(...)
[...] = dendrogram(...,'colorthreshold',t)
[...] = dendrogram(...,'orientation','orient')
[...] = dendrogram(...,'labels', S)

Description H = dendrogram(Z) generates a dendrogram plot of the hierarchical, binary 
cluster tree represented by Z. Z is an (m-1)-by-3 matrix, generated by the 
linkage function, where m is the number of objects in the original data set. The 
output, H, is a vector of handles to the lines in the dendrogram.

A dendrogram consists of many U-shaped lines connecting objects in a 
hierarchical tree. The height of each U represents the distance between the two 
objects being connected. 

H = dendrogram(Z,p) generates a dendrogram with only the top p nodes. By 
default, dendrogram uses 30 as the value of p. When there are more than 30 
initial nodes, a dendrogram may look crowded. To display every node, set 
p = 0. 

[H,T] = dendrogram(...) generates a dendrogram and returns T, a vector of 
length m that contains the leaf node number for each object in the original data 
set. T is useful when p is less than the total number of objects, so some leaf 
nodes in the display correspond to multiple objects. For example, to find out 
which objects are contained in leaf node k of the dendrogram, use find(T==k). 
When there are fewer than p objects in the original data, all objects are 
displayed in the dendrogram. In this case, T is the identity map, i.e., 
T = (1:m)', where each node contains only a single object.

[H,T,perm] = dendrogram(...) generates a dendrogram and returns the 
permutation vector of the node labels of the leaves of the dendrogram. perm is 
ordered from left to right on a horizontal dendrogram and bottom to top for a 
vertical dendrogram.
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[...] = dendrogram(...,'colorthreshold',t) assigns a unique color to 
each group of nodes in the dendrogram where the linkage is less than the 
threshold t. t is a value in the interval [0,max(Z(:,3))]. Setting t to the 
string 'default' is the same as t = .7(max(Z(:,3))). 0 is the same as not 
specifying 'colorthreshold'. The value max(Z(:,3)) treats the entire tree as 
one group and colors it all one color.

[...] = dendrogram(...,'orientation','orient') orients the dendrogram 
within the figure window. The options for 'orient' are

[...] = dendrogram(...,'labels', S) accepts a character array or cell array 
of strings S with one label for each observation. Any leaves in the tree 
containing a single observation are labeled with that observation's label.

Example X= rand(100,2);
Y= pdist(X,'cityblock');
Z= linkage(Y,'average');
[H,T] = dendrogram(Z,'colorthreshold','default');

'top' Top to bottom (default)

'bottom' Bottom to top

'left' Left to right

'right' Right to left
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find(T==20)

ans =

20
49
62
65
73
96

This output indicates that leaf node 20 in the dendrogram contains the original 
data points 20, 49, 62, 65, 73, and 96.

See Also cluster, clusterdata, cophenet, inconsistent, linkage, silhouette

14 17 13 22 12  8 23 20 19  1 21 15  5  2  3 16 27  4 18 24 28  6 10  7 30 26  9 25 11 29

0.2

0.3

0.4

0.5

0.6

0.7

0.8



disttool

12-133

12disttoolPurpose Interactive plot of cdf (or pdf) for many probability distributions

Syntax disttool

Description The disttool command displays a graphical interface for exploring the effects 
of changing parameters on the plot of a cdf or pdf. See “Probability 
Distributions Demo” on page 2-3 for detailed information about the demo.

See Also randtool
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12dummyvarPurpose Matrix of 0-1 “dummy” variables

Syntax D = dummyvar(group)

Description D = dummyvar(group) generates a matrix, D, of 0-1 columns. D has one column 
for each unique value in each column of the matrix group. Each column of 
group contains positive integers that indicate the group membership of an 
individual row.

Example Suppose you are studying the effects of two machines and three operators on a 
process. The first column of group would have the values 1 or 2 depending on 
which machine was used. The second column of group would have the values 
1, 2, or 3 depending on which operator ran the machine. 

group = [1 1;1 2;1 3;2 1;2 2;2 3];
D = dummyvar(group)

D =
   1   0   1   0   0
   1   0   0   1   0
   1   0   0   0   1
   0   1   1   0   0
   0   1   0   1   0
   0   1   0   0   1

See Also pinv, regress
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12ecdfPurpose Empirical (Kaplan-Meier) cumulative distribution function

Syntax [f,x] = ecdf(y)
[f,x,flo,fup] = ecdf(y)
[...] = ecdf(y,'param1',value1,'param2',value2,...)

Description [f,x] = ecdf(y) calculates the Kaplan-Meier estimate of the cumulative 
distribution function (cdf), also known as the empirical cdf. y is a vector of data 
values. f is a vector of values of the empirical cdf evaluated at x.

[f,x,flo,fup] = ecdf(y) also returns lower and upper confidence bounds for 
the cdf. These bounds are calculated using Greenwood's formula, and are not 
simultaneous confidence bounds.

[...] = ecdf(y,'param1',value1,'param2',value2,...) specifies 
additional parameter name-value pairs chosen from the following:

Examples Generate random failure times and random censoring times, and compare the 
empirical cdf with the known true cdf.

y = exprnd(10,50,1); % Random failure times are exponential(10)
d = exprnd(20,50,1); % Drop-out times are exponential(20)
t = min(y,d);    % Observe the minimum of these times
censored = (y>d);  % Observe also whether the subject failed

'censoring' Boolean vector of the same size as x. Elements are 1 for 
observations that are right-censored and 0 for observations 
that are observed exactly. Default is all observations 
observed exactly.

'frequency' Vector of the same size as x containing non-negative integer 
counts. The jth element of this vector gives the number of 
times the jth element of x was observed. Default is 1 
observation per element of x.

'alpha' Value between 0 and 1 for a confidence level of 
100(1-alpha)%. Default is alpha=0.05 for 95% confidence.

'function' Type of function returned as the f output argument, chosen 
from 'cdf' (default), 'survivor', or 'cumulative hazard'.
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% Calculate and plot the empirical cdf and confidence bounds
[f,x,flo,fup] = ecdf(t,'censoring',censored);
stairs(x,f);
hold on;
stairs(x,flo,'r:'); stairs(x,fup,'r:');

% Superimpose a plot of the known true cdf
xx = 0:.1:max(t); yy = 1-exp(-xx/10); plot(xx,yy,'g-')
hold off;

References [1] Cox, D. R., and D. Oakes, Analysis of Survival Data, Chapman & Hall, 
London, 1984.

See Also cdfplot
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12ecdfhistPurpose Create histogram from output of ecdf

Syntax n = ecdfhist(f, x)
n = ecdfhist(f, x, m)
n = ecdfhist(f, x, c)
[n, c] = ecdfhist(...)
ecdfhist(...)

Description n = ecdfhist(f, x) takes a vector f of empirical cumulative distribution 
function (cdf) values and a vector x of evaluation points, and returns a vector n 
containing the heights of histogram bars for 10 equally spaced bins. The 
function computes the bar heights from the increases in the empirical cdf, and 
normalizes them so that the area of the histogram is equal to 1. In contrast, 
hist produces bars whose heights represent bin counts.

n = ecdfhist(f, x, m), where m is a scalar, uses m bins.

n = ecdfhist(f, x, c), where c is a vector, uses bins with centers specified 
by c.

[n, c] = ecdfhist(...) also returns the position of the bin centers in c.

ecdfhist(...) without output arguments produces a histogram bar plot of the 
results.

Example The following code generates random failure times and random censoring 
times, and compares the empirical pdf with the known true pdf.

y = exprnd(10,50,1); % random failure times
d = exprnd(20,50,1); % drop-out times
t = min(y,d);    % observe the minimum of these times
censored = (y>d);  % observe whether the subject failed
% Calculate the empirical cdf and plot a histogram from it
[f,x] = ecdf(t,'censoring',censored);
ecdfhist(f,x);
% Superimpose a plot of the known true pdf
hold on;
xx = 0:.1:max(t); yy = exp(-xx/10)/10; plot(xx,yy,'g-');
hold off;



ecdfhist

12-138

See Also ecdf, hist, histc

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1



errorbar

12-139

12errorbarPurpose Plot error bars along a curve

Syntax errorbar(X,Y,L,U,symbol)
errorbar(X,Y,L)
errorbar(Y,L)

Description errorbar(X,Y,L,U,symbol) plots X versus Y with error bars specified by L 
and U. X, Y, L, and U must be the same length. If X, Y, L, and U are matrices, then 
each column produces a separate line. The error bars are each drawn a distance 
of U(i) above and L(i) below the points in (X,Y). symbol is a string that 
controls the line type, plotting symbol, and color of the error bars.

errorbar(X,Y,L) plots X versus Y with symmetric error bars about Y.

errorbar(Y,L) plots Y with error bars [Y-L Y+L].

The errorbar function is a part of the standard MATLAB language.

Example lambda = (0.1:0.2:0.5);
r = poissrnd(lambda(ones(50,1),:));
[p,pci] = poissfit(r,0.001);
L = p - pci(1,:) 
U = pci(2,:) - p
errorbar(1:3,p,L,U,'+')

L =
  0.1200  0.1600  0.2600

U =
  0.2000  0.2200  0.3400
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12evcdfPurpose Extreme value cumulative distribution function

Syntax P = evcdf(X, MU, SIGMA)
[P, PLO, PUP] = evcdf(X, MU, SIGMA, PCOV, alpha) 

Description P = evcdf(X, MU, SIGMA) computes the cumulative distribution function (cdf) 
for the type 1 extreme value distribution, with location parameter MU and scale 
parameter SIGMA, at each of the values in X. X, MU, and SIGMA can be vectors, 
matrices, or multidimensional arrays that all have the same size. A scalar 
input is expanded to a constant array of the same size as the other inputs. The 
default values for MU and SIGMA are 0 and 1, respectively. 

[P, PLO, PUP] = evcdf(X, MU, SIGMA, PCOV, alpha) produces confidence 
bounds for P when the input parameters MU and SIGMA are estimates. PCOV is a 
2-by-2 covariance matrix of the estimated parameters. alpha has a default 
value of 0.05, and specifies 100(1 - alpha)% confidence bounds. PLO and PUP 
are arrays of the same size as P, containing the lower and upper confidence 
bounds. 

The function evcdf computes confidence bounds for P using a normal 
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The computed 
bounds give approximately the desired confidence level when you estimate MU, 
SIGMA, and PCOV from large samples, but in smaller samples other methods of 
computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel 
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1 
extreme value distribution.

 See Also cdf, evfit, evinv, evlike, evpdf, evrnd, evstat

X µ̂–

σ̂
-------------
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12evfitPurpose Parameter estimates and confidence intervals for extreme value data

Syntax parmhat = evfit(data)
[parmhat, parmci] = evfit(data)
[parmhat, parmci] = evfit(data, alpha)
[...] = evfit(data, alpha, censoring)
[...] = evfit(data, alpha, censoring, freq)
[...] = evfit(data, alpha, censoring, freq, options)

Description parmhat = evfit(data) returns maximum likelihood estimates of the 
parameters of the type 1 extreme value distribution given the data in the vector 
data. parmhat(1) is the location parameter, µ, and parmhat(2) is the scale 
parameter, σ. 

[parmhat, parmci] = evfit(data) returns 95% confidence intervals for the 
parameter estimates on the µ and σ parameters in the 2-by-2 matrix parmci. 
The first column of the matrix contains the lower and upper confidence bounds 
for the parameter µ, and the second column contains the confidence bounds for 
the parameter σ. 

[parmhat, parmci] = evfit(data, alpha) returns 100(1 - alpha)% 
confidence intervals for the parameter estimates, where alpha is a value in the 
range [0 1] specifying the width of the confidence intervals. By default, alpha 
is 0.05, which corresponds to 95% confidence intervals. 

[...] = evfit(data, alpha, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly.

[...] = evfit(data, alpha, censoring, freq) accepts a frequency vector, 
freq of the same size as data. Typically, freq contains integer frequencies for 
the corresponding elements in data, but can contain any nonnegative values. 
Pass in [] for alpha, censoring, or freq to use their default values.

[...] = evfit(data, alpha, censoring, freq, options) accepts a 
structure, options, that specifies control parameters for the iterative 
algorithm the function uses to compute maximum likelihood estimates. You 
can create options using the function statset. Enter statset('evfit') to see 
the names and default values of the parameters that evfit accepts in the 
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options structure. See the reference page for statset for more information 
about these options.

The type 1 extreme value distribution is also known as the Gumbel 
distribution. If Y has a Weibull distribution, then X  = log(Y) has the type 1 
extreme value distribution.

See Also evcdf, evinv, evlike, evpdf, evrnd, evstat, mle, statset



evinv

12-143

12evinvPurpose Inverse of the extreme value cumulative distribution function

Syntax X = evinv(P, MU, SIGMA)
[X, XLO, XUP] = evinv(P, MU, SIGMA, PCOV, alpha)

Description X = evinv(P, MU, SIGMA) returns the inverse cumulative distribution function 
(cdf) for a type 1 extreme value distribution with location parameter MU and 
scale parameter SIGMA, evaluated at the values in P. P, MU, and SIGMA can be 
vectors, matrices, or multidimensional arrays that all have the same size.A 
scalar input is expanded to a constant array of the same size as the other 
inputs. The default values for MU and SIGMA are 0 and 1, respectively. 

[X, XLO, XUP] = evinv(P, MU, SIGMA, PCOV, alpha) produces confidence 
bounds for X when the input parameters MU and SIGMA are estimates. PCOV is 
the covariance matrix of the estimated parameters. alpha is a scalar that 
specifies 100(1 - alpha)% confidence bounds for the estimated parameters, and 
has a default value of 0.05. XLO and XUP are arrays of the same size as X 
containing the lower and upper confidence bounds.

The function evinv computes confidence bounds for P using a normal 
approximation to the distribution of the estimate

where q is the Pth quantile from an extreme value distribution with 
parameters and . The computed bounds give approximately the 
desired confidence level when you estimate MU, SIGMA, and PCOV from large 
samples, but in smaller samples other methods of computing the confidence 
bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel 
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1 
extreme value distribution.

See Also evcdf, evfit, evlike, evpdf, evrnd, evstat, icdf

µ̂ σ̂q+

µ 0= σ 1=
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12evlikePurpose Negative log-likelihood for the extreme value distribution

Syntax nlogL = evlike(params, data)
[nlogL, AVAR] = evlike(params, data)
[...] = evlike(params, data, censoring)
[...] = evlike(params, data, censoring, freq)

Description nlogL = evlike(params, data) returns the negative of the log-likelihood for 
the type 1 extreme value distribution, evaluated at parameters params(1) = 
MU and params(2) = SIGMA, given data. nlogL is a scalar. 

[nlogL, AVAR] = evlike(params, data) returns the inverse of Fisher's 
information matrix, AVAR. If the input parameter values in params are the 
maximum likelihood estimates, the diagonal elements of AVAR are their 
asymptotic variances. AVAR is based on the observed Fisher's information, not 
the expected information. 

[...] = evlike(params, data, censoring) accepts a Boolean vector of the 
same size as data, which is 1 for observations that are right-censored and 0 for 
observations that are observed exactly.

[...] = evlike(params, data, censoring, freq) accepts a frequency vector 
of the same size as data. freq typically contains integer frequencies for the 
corresponding elements in data, but can contain any nonnegative values. Pass 
in [] for censoring to use its default value.

The type 1 extreme value distribution is also known as the Gumbel 
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1 
extreme value distribution.

See Also evcdf, evfit, evinv, evpdf, evrnd, evstat 
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12evpdfPurpose Extreme value probability density function

Syntax Y = evpdf(X, MU, SIGMA)

Description Y = evpdf(X, MU, SIGMA) returns the pdf of the type 1 extreme value 
distribution with location parameter MU and scale parameter SIGMA, evaluated 
at the values in X. X, MU, and SIGMA can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array of the same size as the other inputs. The default 
values for MU and SIGMA are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel 
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1 
extreme value distribution.

See Also evcdf, evfit, evinv, evlike, evrnd, evstat, pdf
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12evrndPurpose Random matrices from the extreme value distribution

Syntax R = evrnd(MU, SIGMA)
R = evrnd(MU, SIGMA, v)
R = evrnd(MU, SIGMA, m, n)

Description R = evrnd(MU,SIGMA) generates random numbers from the extreme value 
distribution with parameters specified by MU and SIGMA. MU and SIGMA can be 
vectors, matrices, or multidimensional arrays that have the same size, which 
is also the size of R. A scalar input for MU or SIGMA is expanded to a constant 
array with the same dimensions as the other input.

R = evrnd(MU,SIGMA,v) generates an array R of size v containing random 
numbers from the extreme value distribution with parameters MU and SIGMA, 
where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and 
v(2) columns. If v is 1-by-n, R is an n-dimensional array.

If MU and SIGMA are both scalars, R = evrnd(MU, SIGMA, m, n) returns an 
m-by-n matrix.

The type 1 extreme value distribution is also known as the Gumbel 
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1 
extreme value distribution.

Reproducing the Output of evrnd
evrnd uses the MATLAB function rand to generate random numbers. When 
you call evrnd, you change the current state of rand, and thereby alter the 
output of subsequent calls to evrnd or any other functions that depend on rand. 
If you want to reproduce the output of evrnd, reset the state of rand to the same 
fixed value each time you call evrnd. For an example of how to do this, and a 
list of the Statistics Toolbox functions that depend on rand, see “Reproducing 
the Output of Random Number Functions” on page 2-46.

See Also evcdf, evfit, evinv, evlike, evpdf, evstat
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12evstatPurpose Mean and variance of the extreme value distribution

Syntax [M, V] = evstat(MU, SIGMA)

Description [M, V] = evstat(MU, SIGMA) returns the mean and variance of the type 1 
extreme value distribution with location parameter MU and scale parameter 
SIGMA. MU and SIGMA can be vectors, matrices, or multidimensional arrays that 
all have the same size. A scalar input is expanded to a constant array of the 
same size as the other input. The default values for MU and SIGMA are 0 and 1, 
respectively.

The type 1 extreme value distribution is also known as the Gumbel 
distribution. If Y has a Weibull distribution, then X = log(Y) has the type 1 
extreme value distribution.

See Also evcdf, evfit, evinv, evlike, evpdf, evrnd
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12ewmaplotPurpose Exponentially Weighted Moving Average (EWMA) chart for Statistical Process 
Control (SPC)

Syntax ewmaplot(data)
ewmaplot(data,lambda)
ewmaplot(data,lambda,alpha)
ewmaplot(data,lambda,alpha,specs)
h = ewmaplot(...)

Description ewmaplot(data) produces an EWMA chart of the grouped responses in data. 
The rows of data contain replicate observations taken at a given time. The rows 
should be in time order. 

ewmaplot(data,lambda) produces an EWMA chart of the grouped responses in 
data, and specifies how much the current prediction is influenced by past 
observations. Higher values of lambda give more weight to current 
observations. By default, lambda = 0.4; lambda must be between 0 and 1. 

ewmaplot(data,lambda,alpha) produces an EWMA chart of the grouped 
responses in data, and specifies the significance level of the upper and lower 
plotted confidence limits. alpha is 0.0027 by default. This value produces 
three-sigma limits:

norminv(1-0.0027/2)

ans =
3

To get k-sigma limits, use the expression 2*(1-normcdf(k)). For example, the 
correct alpha value for 2-sigma limits is 0.0455, as shown below.

k = 2;
2*(1-normcdf(k))

ans =
    0.0455

ewmaplot(data,lambda,alpha,specs) produces an EWMA chart of the 
grouped responses in data, and specifies a two-element vector, specs, for the 
lower and upper specification limits of the response. 
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h = ewmaplot(...) returns a vector of handles to the plotted lines.

Example Consider a process with a slowly drifting mean. An EWMA chart is preferable 
to an x-bar chart for monitoring this kind of process. The simulation below 
demonstrates an EWMA chart for a slow linear drift.

t = (1:28)';
r = normrnd(10+0.02*t(:,ones(4,1)),0.5);
ewmaplot(r,0.4,0.01,[9.75 10.75])

The EWMA value for group 28 is higher than would be expected purely by 
chance. If you had been monitoring this process continuously, you would have 
detected the drift when group 28 was collected, and would have had an 
opportunity to investigate its cause.

Reference [1] Montgomery, D., Introduction to Statistical Quality Control, John Wiley & 
Sons, 1991. p. 299.

See Also xbarplot, schart
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12expcdfPurpose Exponential cumulative distribution function (cdf)

Syntax P = expcdf(X, MU)
[P, PLO, PUP] = expcdf(X, MU, pcov, alpha)

Description P = expcdf(X, MU) computes the exponential cdf at each of the values in X 
using the corresponding parameters in MU. X and MU can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other input. The 
parameters in MU must be positive.

The exponential cdf is

The result, p, is the probability that a single observation from an exponential 
distribution will fall in the interval [0 x].

[P, PLO, PUP] = expcdf(X, MU, pcov, alpha) produces confidence bounds 
for P when the input parameter MU is an estimate. pcov is the variance of the 
estimated MU. alpha specifies 100(1 - alpha)% confidence bounds. The default 
value of alpha is 0.05. PLO and PUP are arrays of the same size as P containing 
the lower and upper confidence bounds. The bounds are based on a normal 
approximation for the distribution of the log of the estimate of MU. If you 
estimate MU from a set of data, you can get a more accurate set of bounds by 
applying expfit to the data to get a confidence interval for MU, and then 
evaluating expinv at the lower and upper endpoints of that interval.

Examples The following code shows that the median of the exponential distribution is 
µ∗log(2).

mu = 10:10:60; 
p = expcdf(log(2)*mu,mu)

p =
  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000

What is the probability that an exponential random variable is less than or 
equal to the mean, µ?

p F x µ( ) 1
µ
---e

t
µ
---–

0

x

∫ dt 1 e
x
µ
---–

–= = =
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mu = 1:6;
x = mu;
p = expcdf(x,mu)

p =
  0.6321  0.6321  0.6321  0.6321  0.6321  0.6321

See Also cdf, expfit, expinv, exppdf, exprnd, expstat
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12expfitPurpose Parameter estimates and confidence intervals for exponential data

Syntax parmhat = expfit(DATA)
[parmhat,parmci] = expfit(DATA)
[parmhat,parmci] = expfit(DATA,alpha)
[...] = expfit(x, alpha, censoring)
[...] = expfit(x, alpha, censoring, freq)

Description parmhat = expfit(DATA) returns estimates of the parameter, µ, of the 
exponential distribution, given the data in DATA. Each entry of parmhat 
corresponds to the data in a column of DATA.

[parmhat, parmci] = expfit(DATA) returns 95% confidence intervals for the 
parameter estimates in matrix parmci. The first row of parmci contains the 
lower bounds of the confidence intervals, and the second row contains the 
upper bounds. 

[parmhat, parmci] = expfit(DATA, alpha) returns 100(1 - alpha)% 
confidence intervals for the parameter estimates, where alpha is a value in the 
range [0 1] specifying the width of the confidence intervals. By default, alpha 
is 0.05, which corresponds to 95% confidence intervals. 

[...] = expfit(data, alpha, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly. data must be 
a vector in order to pass in the argument censoring.

[...] = expfit(data, alpha, censoring, freq) accepts a frequency vector, 
freq of the same size as data. Typically, freq contains integer frequencies for 
the corresponding elements in data, but can contain any nonnegative values. 
Pass in [] for alpha, censoring, or freq to use their default values. 

Example This example generates 100 independent samples of exponential data with 
µ = 3. muhat is an estimate of µ and muci is a 99% confidence interval around 
muhat. Notice that muci contains the true value of µ.

data = exprnd(3, 100, 1);
[parmhat, parmci] = expfit(data, 0.01)

parmhat =
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  2.7292

parmci =

  2.1384
  3.5854

See Also expcdf, expinv, explike, exppdf, exprnd, expstat, mle, statset
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12expinvPurpose Inverse of the exponential cumulative distribution function (cdf)

Syntax X = expinv(P, MU)

[P, PLO, PUP] = expinv(X, MU, pcov, alpha)

Description X = expinv(P,MU) computes the inverse of the exponential cdf with 
parameters specified by MU for the corresponding probabilities in P. P and MU 
can be vectors, matrices, or multidimensional arrays that all have the same 
size. A scalar input is expanded to a constant array with the same dimensions 
as the other input. The parameters in MU must be positive and the values in P 
must lie on the interval [0 1].

[X, XLO, XUP] = expinv(X, MU, pcov, alpha) produces confidence bounds 
for X when the input parameter MU is an estimate. pcov is the variance of the 
estimated MU. alpha specifies 100(1 - alpha)% confidence bounds. The default 
value of alpha is 0.05. XLO and XUP are arrays of the same size as X containing 
the lower and upper confidence bounds. The bounds are based on a normal 
approximation for the distribution of the log of the estimate of MU. If you 
estimate MU from a set of data, you can get a more accurate set of bounds by 
applying expfit to the data to get a confidence interval for MU, and then 
evaluating expinv at the lower and upper end points of that interval.

The inverse of the exponential cdf is

The result, x, is the value such that an observation from an exponential 
distribution with parameter µ will fall in the range [0 x] with probability p.

Examples Let the lifetime of light bulbs be exponentially distributed with µ = 700 hours. 
What is the median lifetime of a bulb?

expinv(0.50,700)

ans =

 485.2030

Suppose you buy a box of “700 hour” light bulbs. If 700 hours is the mean life 
of the bulbs, half of them will burn out in less than 500 hours.

x F 1– p µ( ) µln 1 p–( )–= =
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See Also expcdf, expfit, exppdf, exprnd, expstat, icdf
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12explikePurpose Negative log-likelihood for the exponential distribution

Syntax nlogL = explike(param, data)
[nlogL, avar] = explike(param, data)
[...] = explike(param, data, censoring)
[...] = explike(param, data, censoring, freq)

Description nlogL = explike(param, data) returns the negative of the log-likelihood for 
the exponential distribution, evaluated at the parameter param = MU, given 
data. nlogL is a scalar.

[nlogL, avar] = explike(param, data) returns the inverse of Fisher's 
information, avar, a scalar. If the input parameter value in param is the 
maximum likelihood estimate, avar is its asymptotic variance. avar is based on 
the observed Fisher's information, not the expected information.

[...] = explike(param, data, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly.

[...] = explike(param, data, censoring, freq) accepts a frequency 
vector, freq, of the same size as data. The vector freq typically contains 
integer frequencies for the corresponding elements in data, but can contain any 
nonnegative values. Pass in [] for censoring to use its default value.

See Also expcdf, expfit, expinv, exppdf, exprnd
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12exppdfPurpose Exponential probability density function (pdf)

Syntax Y = exppdf(X, MU)

Description Y = exppdf(X, MU) computes the exponential pdf at each of the values in X 
using the corresponding parameters in MU. X and MU can be vectors, matrices, or 
multidimensional arrays that have the same size. A scalar input is expanded 
to a constant array with the same dimensions as the other input. The 
parameters in MU must be positive.

The exponential pdf is

The exponential pdf is the gamma pdf with its first parameter equal to 1.

The exponential distribution is appropriate for modeling waiting times when 
the probability of waiting an additional period of time is independent of how 
long you have already waited. For example, the probability that a light bulb 
will burn out in its next minute of use is relatively independent of how many 
minutes it has already burned.

Examples y = exppdf(5,1:5)

y =
  0.0067  0.0410  0.0630  0.0716  0.0736

y = exppdf(1:5,1:5)

y =
  0.3679  0.1839  0.1226  0.0920  0.0736

See Also expcdf, expfit, expinv, exprnd, expstat, pdf

y f x µ( ) 1
µ
---e

x
µ
---–

= =
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12exprndPurpose Generate random numbers from the exponential distribution

Syntax R = exprnd(MU)
R = exprnd(MU,v)
R = exprnd(MU,m,n)

Description R = exprnd(MU) generates exponential random numbers with mean MU. MU can 
be a vector, a matrix, or a multidimensional array. The size of R is the size of MU.

R = exprnd(MU,v) generates an array R of size v containing exponential 
random numbers with mean MU, where v is a row vector. If v is a 1-by-2 vector, 
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an 
n-dimensional array.

R = exprnd(MU,m,n) generates exponential random numbers with mean MU, 
where scalars m and n are the row and column dimensions of R.

Reproducing the Output of exprnd
exprnd uses the MATLAB function rand to generate random numbers. When 
you call exprnd, you change the current state of rand, and thereby alter the 
output of subsequent calls to exprnd or any other functions that depend on 
rand. If you want to reproduce the output of exprnd, reset the state of rand to 
the same fixed value each time you call exprnd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The results in the following examples depend on the current state of 
rand. If you run the code in these examples, your results might differ from the 
answers shown here.

Examples n1 = exprnd(5:10)

n1 =
  7.5943  18.3400  2.7113  3.0936  0.6078  9.5841

n2 = exprnd(5:10,[1 6])
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n2 =
  3.2752  1.1110  23.5530  23.4303  5.7190  3.9876

n3 = exprnd(5,2,3)

n3 =
  24.3339  13.5271  1.8788
  4.7932  4.3675  2.6468

See Also expcdf, expfit, expinv, exppdf, expstat
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12expstatPurpose Mean and variance for the exponential distribution

Syntax [m,v] = expstat(mu)

Description [m,v] = expstat(mu) returns the mean and variance for the exponential 
distribution with parameters mu. mu can be a vectors, matrix, or 
multidimensional array. The mean of the exponential distribution is µ, and the 
variance is µ2.

Examples [m,v] = expstat([1 10 100 1000])

m =
      1     10     100    1000

v =
      1     100    10000   1000000

See Also expcdf, expfit, expinv, exppdf, exprnd
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12factoranPurpose Maximum likelihood common factor analysis

Syntax lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
[...] = factoran(...,'param1',value1,'param2',value2,...)

Definition factoran computes the maximum likelihood estimate (MLE) of the factor 
loadings matrix  in the factor analysis model

where  is a vector of observed variables,  is a constant vector of means,  is 
a constant d-by-m matrix of factor loadings,  is a vector of independent, 
standardized common factors, and  is a vector of independent specific factors. 

, , and  are of length d.  is of length m.

Alternatively, the factor analysis model can be specified as

 

where  is a d-by-d diagonal matrix of specific variances.

Description lambda = factoran(X,m) returns the maximum likelihood estimate, lambda, 
of the factor loadings matrix, in a common factor analysis model with m 
common factors. X is an n-by-d matrix where each row is an observation of d 
variables. The (i,j)th element of the d-by-m matrix lambda is the coefficient, 
or loading, of the jth factor for the ith variable. By default, factoran calls the 
function rotatefactors to rotate the estimated factor loadings using the 
'varimax' option.

[lambda,psi] = factoran(X,m) also returns maximum likelihood estimates 
of the specific variances as a column vector psi of length d. 

[lambda,psi,T] = factoran(X,m) also returns the m-by-m factor loadings 
rotation matrix T.
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[lambda,psi,T,stats] = factoran(X,m) also returns a structure stats 
containing information relating to the null hypothesis, H0, that the number of 
common factors is m. stats includes the following fields:

factoran does not compute the chisq and p fields unless dfe is positive and all 
the specific valiance estimates in psi are positive (see “Heywood Case” below). 
If X is a covariance matrix, then you must also specify the 'nobs' parameter if 
you want factoran to compute the chisq and p fields.

[lambda,psi,T,stats,F] = factoran(X,m) also returns, in F, predictions of 
the common factors, known as factor scores. F is an n-by-m matrix where each 
row is a prediction of m common factors. If X is a covariance matrix, factoran 
cannot compute F. factoran rotates F using the same criterion as for lambda.

[...] = factoran(...,'param1',value1,'param2',value2,...) enables 
you to specify optional parameter name/value pairs to control the model fit and 
the outputs. These are the valid parameters. The most commonly used 
parameters are listed first.

loglike Maximized log-likelihood value

dfe Error degrees of freedom = ((d-m)^2 - (d+m))/2

chisq Approximate chi-squared statistic for the null hypothesis

p Right-tail significance level for the null hypothesis

Parameter Value

'xtype' Type of input in the matrix X. 'xtype' can be one of:

'data' Raw data (default)

'covariance' Positive definite covariance or 
correlation matrix

'scores' Method for predicting factor scores. 'scores' is ignored 
if X is not raw data.
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'wls'
'Bartlett'

Synonyms for a weighted least 
squares estimate that treats F as 
fixed (default)

'regression'
'Thomson'

Synonyms for a minimum mean 
squared error prediction that is 
equivalent to a ridge regression

'start' Starting point for the specific variances psi in the 
maximum likelihood optimization. Can be specified as:

'random' Chooses d uniformly distributed 
values on the interval [0,1]. 

'Rsquared' Chooses the starting vector as a scale 
factor times 
diag(inv(corrcoef(X))) (default). 
For examples, see Jöreskog [2].

Positive 
integer

Performs the given number of 
maximum likelihood fits, each 
initialized as with 'random'. 
factoran returns the fit with the 
highest likelihood.

 Matrix Performs one maximum likelihood fit 
for each column of the specified 
matrix. The ith optimization is 
initialized with the values from the 
ith column. The matrix must have d 
rows. 

'rotate' Method used to rotate factor loadings and scores. 
'rotate' can have the same values as the 'Method' 
parameter of rotatefactors. See the reference page for 
rotatefactors for a full description of the available 
methods. 

'none' Performs no rotation.

Parameter Value
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'equamax' Special case of the orthomax rotation. 
Use the 'normalize', 'reltol', and 
'maxit' parameters to control the 
details of the rotation.

'orthomax' Orthogonal rotation that maximizes a 
criterion based on the variance of the 
loadings.

Use the 'coeff', 'normalize', 
'reltol', and 'maxit' parameters to 
control the details of the rotation.

'parsimax' Special case of the orthomax rotation 
(default). Use the 'normalize', 
'reltol', and 'maxit' parameters to 
control the details of the rotation.

'pattern' Performs either an oblique rotation 
(the default) or an orthogonal rotation 
to best match a specified pattern 
matrix. Use the 'type' parameter to 
choose the type of rotation. Use the 
'target' parameter to specify the 
pattern matrix.

'procrustes' Performs either an oblique (the 
default) or an orthogonal rotation to 
best match a specified target matrix 
in the least squares sense. 

Use the 'type' parameter to choose 
the type of rotation. Use 'target' to 
specify the target matrix. 

Parameter Value
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'promax' Performs an oblique procrustes 
rotation to a target matrix 
determined by factoran as a function 
of an orthomax solution.

Use the 'power' parameter to specify 
the exponent for creating the target 
matrix. Because 'promax' uses 
'orthomax' internally, you can also 
specify the parameters that apply to 
'orthomax'.

'quartimax' Special case of the orthomax rotation 
(default). Use the 'normalize', 
'reltol', and 'maxit' parameters to 
control the details of the rotation.

'varimax' Special case of the orthomax rotation 
(default). Use the 'normalize', 
'reltol', and 'maxit' parameters to 
control the details of the rotation.

Function Function handle to rotation function 
of the form

[B,T] = myrotation(A,...)

where A is a d-by-m matrix of 
unrotated factor loadings, B is a 
d-by-m matrix of rotated loadings, and 
T is the corresponding m-by-m rotation 
matrix.

Use the factoran parameter 
'userargs' to pass additional 
arguments to this rotation function. 
See Example 4.

Parameter Value
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'coeff' Coefficient, often denoted as , defining the specific 
'orthomax' criterion. Must be between 0 and 1. The 
value 0 corresponds to quartimax, and 1 corresponds to 
varimax. Default is 1.

'normalize' Flag indicating whether the loading matrix should be 
row-normalized (1) or left unnormalized (0) for 
'orthomax' or 'varimax' rotation. Default is 1.

'reltol' Relative convergence tolerance for 'orthomax' or 
'varimax' rotation. Default is sqrt(eps).

'maxit' Iteration limit for 'orthomax' or 'varimax' rotation. 
Default is 250.

'target' Target factor loading matrix for 'procrustes' rotation. 
Required for 'procrustes' rotation. No default value.

'type' Type of 'procrustes' rotation. Can be 'oblique' 
(default) or 'orthogonal'.

'power' Exponent for creating the target matrix in the 'promax' 
rotation. Must be >= 1. Default is 4.

'userargs' Denotes the beginning of additional input values for a 
user-defined rotation function. factoran appends all 
subsequent values, in order and without processing, to 
the rotation function argument list, following the 
unrotated factor loadings matrix A. See Example 4. 

'nobs' If X is a covariance or correlation matrix, indicates the 
number of observations that were used in its 
estimation. This allows calculation of significance for 
the null hypothesis even when the original data are not 
available. There is no default. 'nobs' is ignored if X is 
raw data.

Parameter Value

γ
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Remarks Observed Data Variables. The variables in the observed data matrix X must be 
linearly independent, i.e., cov(X) must have full rank, for maximum likelihood 
estimation to succeed. factoran reduces both raw data and a covariance 
matrix to a correlation matrix before performing the fit. 

factoran standardizes the observed data X to zero mean and unit variance 
before estimating the loadings lambda. This does not affect the model fit, 
because MLEs in this model are invariant to scale. However, lambda and psi 
are returned in terms of the standardized variables, i.e., 
lambda*lambda'+diag(psi) is an estimate of the correlation matrix of the 
original data X (although not after an oblique rotation). See Examples 1 and 3.

Heywood Case. If elements of psi are equal to the value of the 'delta' 
parameter (i.e., they are essentially zero), the fit is known as a Heywood case, 
and interpretation of the resulting estimates is problematic. In particular, 
there can be multiple local maxima of the likelihood, each with different 
estimates of the loadings and the specific variances. Heywood cases can 
indicate overfitting (i.e., m is too large), but can also be the result of 
underfitting.

Rotation of Factor Loadings and Scores. Unless you explicitly specify no rotation 
using the 'rotate' parameter, factoran rotates the estimated factor loadings, 
lambda, and the factor scores, F. The output matrix T is used to rotate the 
loadings, i.e., lambda = lambda0*T, where lambda0 is the initial (unrotated) 
MLE of the loadings. T is an orthogonal matrix for orthogonal rotations, and 

'delta' Lower bound for the specific variances psi during the 
maximum likelihood optimization. Default is 0.005.

'optimopts' Structure that specifies control parameters for the 
iterative algorithm the function uses to compute 
maximum likelihood estimates. Create this structure 
with the function statset. Enter statset('factoran') 
to see the names and default values of the parameters 
that factoran accepts in the options structure. See the 
reference page for statset for more information about 
these options.

Parameter Value
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the identity matrix for no rotation. The inverse of T is known as the primary 
axis rotation matrix, while T itself is related to the reference axis rotation 
matrix. For orthogonal rotations, the two are identical. 

factoran computes factor scores that have been rotated by inv(T'), i.e., 
F = F0 * inv(T'), where F0 contains the unrotated predictions. The 
estimated covariance of F is inv(T'*T), which, for orthogonal or no rotation, is 
the identity matrix. Rotation of factor loadings and scores is an attempt to 
create a more easily interpretable structure in the loadings matrix after 
maximum likelihood estimation. 

Examples Example 1. Load the carbig data, and fit the default model with two factors.

load carbig 
X = [Acceleration Displacement Horsepower MPG Weight]; 
X = X(all(~isnan(X),2),:);

[Lambda,Psi,T,stats,F] = factoran(X,2,'scores','regression')
inv(T'*T)    % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda' + diag(Psi) % Estimated correlation matrix of X
Lambda*inv(T)  % Unrotate the loadings
F*T'      % Unrotate the factor scores
biplot(Lambda) % Create a biplot of the two factors
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Example 2. Although the estimates are the same, the use of a covariance 
matrix rather than raw data doesn’t let you request scores or significance level.

[Lambda,Psi,T] = factoran(cov(X),2,'xtype','cov')
[Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

Example 3. Use promax rotation.

[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',...
             'powerpm',4)
inv(T'*T)  % Est'd correlation matrix of F, no longer eye(2)
Lambda*inv(T'*T)*Lambda' + diag(Psi) % Est'd correlation 
                   % matrix of X

Plot the unrotated variables with oblique axes superimposed.

invT = inv(T)
Lambda0 = Lambda*invT
biplot(Lambda0);
line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...
   [-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...
   'color','r','linewidth',2);
text(invT(:,1), invT(:,2),[' I '; ' II'],'color','r');
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xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')

Plot the rotated variables against the oblique axes.

 biplot(Lambda)
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Example 4. Syntax for passing additional arguments to a user-defined rotation 
function.

[Lambda,Psi,T] = ...
     factoran(X,2,'rotate',@myrotation,'userargs',1,'two')

References [1] Harman, H. H., Modern Factor Analysis, 3rd Ed., University of Chicago 
Press, Chicago, 1976.

[2] Jöreskog, K. G., “Some Contributions to Maximum Likelihood Factor 
Analysis,” Psychometrika, Vol.32, 1967, pp. 443-482.

[3] Lawley, D. N. and A. E. Maxwell, Factor Analysis as a Statistical Method, 
2nd Edition, American Elsevier Pub. Co., New York, 1971.

See Also biplot, princomp, procrustes, pcacov, rotatefactors, statset
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12fcdfPurpose F cumulative distribution function (cdf)

Syntax P = fcdf(X,V1,V2)

Description P = fcdf(X,V1,V2) computes the F cdf at each of the values in X using the 
corresponding parameters in V1 and V2. X, V1, and V2 can be vectors, matrices, 
or multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant matrix with the same dimensions as the other inputs. 
The parameters in V1 and V2 must be positive integers.

The F cdf is

The result, p, is the probability that a single observation from an F distribution 
with parameters ν1 and ν2 will fall in the interval [0 x].

Examples This example illustrates an important and useful mathematical identity for the 
F distribution.

nu1 = 1:5;
nu2 = 6:10;
x = 2:6;
F1 = fcdf(x,nu1,nu2)

F1 =

  0.7930  0.8854  0.9481  0.9788  0.9919

F2 = 1 - fcdf(1./x,nu2,nu1)

F2 =

  0.7930  0.8854  0.9481  0.9788  0.9919

See Also cdf, finv, fpdf, frnd, fstat
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12ff2nPurpose Two-level full-factorial designs

Syntax X = ff2n(n)

Description X = ff2n(n) creates a two-level full-factorial design, X, where n is the desired 
number of columns of X. The number of rows in X is 2n.

Example X = ff2n(3)

X =
   0   0   0
   0   0   1
   0   1   0
   0   1   1
   1   0   0
   1   0   1
   1   1   0
   1   1   1

X is the binary representation of the numbers from 0 to 2n-1.

See Also fracfact, fullfact
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12finvPurpose Inverse of the F cumulative distribution function (cdf)

Syntax X = finv(P,V1,V2)

Description X = finv(P,V1,V2) computes the inverse of the F cdf with numerator degrees 
of freedom V1 and denominator degrees of freedom V2 for the corresponding 
probabilities in P. P, V1, and V2 can be vectors, matrices, or multidimensional 
arrays that all have the same size. A scalar input is expanded to a constant 
array with the same dimensions as the other inputs.

The parameters in V1 and V2 must all be positive integers, and the values in P 
must lie on the interval [0 1].

The F inverse function is defined in terms of the F cdf as

where

Examples Find a value that should exceed 95% of the samples from an F distribution with 
5 degrees of freedom in the numerator and 10 degrees of freedom in the 
denominator.

x = finv(0.95,5,10)

x =
  3.3258

You would observe values greater than 3.3258 only 5% of the time by chance.

See Also fcdf, fpdf, frnd, fstat, icdf
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12fpdfPurpose F probability density function (pdf)

Syntax Y = fpdf(X,V1,V2)

Description Y = fpdf(X,V1,V2) computes the F pdf at each of the values in X using the 
corresponding parameters in V1 and V2. X, V1, and V2 can be vectors, matrices, 
or multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other inputs. 
The parameters in V1 and V2 must all be positive integers, and the values in X 
must lie on the interval [0 ∞).

The probability density function for the F distribution is

Examples y = fpdf(1:6,2,2)

y =
  0.2500  0.1111  0.0625  0.0400  0.0278  0.0204

z = fpdf(3,5:10,5:10)

z =
   0.0689  0.0659  0.0620  0.0577  0.0532  0.0487

See Also fcdf, finv, frnd, fstat, pdf
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12fracfactPurpose Generate fractional factorial design from generators

Syntax x = fracfact('gen') 
[x,conf] = fracfact('gen') 

Description x = fracfact('gen') generates a fractional factorial design as specified by 
the generator string gen, and returns a matrix x of design points. The input 
string gen is a generator string consisting of “words” separated by spaces. Each 
word describes how a column of the output design should be formed from 
columns of a full factorial. Typically gen will include single-letter words for the 
first few factors, plus additional multiple-letter words describing how the 
remaining factors are confounded with the first few. 

The output matrix x is a fraction of a two-level full-factorial design. Suppose 
there are m words in gen, and that each word is formed from a subset of the 
first n letters of the alphabet. The output matrix x has 2n rows and m columns. 
Let F represent the two-level full-factorial design as produced by ff2n(n). The 
values in column j of x are computed by multiplying together the columns of F 
corresponding to letters that appear in the jth word of the generator string.

[x,conf] = fracfact('gen') also returns a cell array, conf, that describes 
the confounding pattern among the main effects and all two-factor 
interactions.

Examples Example 1
You want to run an experiment to study the effects of four factors on a 
response, but you can only afford eight runs. (A run is a single repetition of the 
experiment at a specified combination of factor values.) Your goal is to 
determine which factors affect the response. There may be interactions 
between some pairs of factors.

A total of sixteen runs would be required to test all factor combinations. 
However, if you are willing to assume there are no three-factor interactions, 
you can estimate the main factor effects in just eight runs.

[x,conf] = fracfact('a b c abc')

x =
  -1  -1  -1  -1
  -1  -1   1   1
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  -1   1  -1   1
  -1   1   1  -1
   1  -1  -1   1
   1  -1   1  -1
   1   1  -1  -1
   1   1   1   1

conf = 

  'Term'   'Generator'  'Confounding' 
  'X1'    'a'      'X1'      
  'X2'    'b'      'X2'      
  'X3'    'c'      'X3'      
  'X4'    'abc'     'X4'      
  'X1*X2'  'ab'      'X1*X2 + X3*X4'
  'X1*X3'  'ac'      'X1*X3 + X2*X4'
  'X1*X4'  'bc'      'X1*X4 + X2*X3'
  'X2*X3'  'bc'      'X1*X4 + X2*X3'
  'X2*X4'  'ac'      'X1*X3 + X2*X4'
  'X3*X4'  'ab'      'X1*X2 + X3*X4'

The first three columns of the x matrix form a full-factorial design. The final 
column is formed by multiplying the other three. The confounding pattern 
shows that the main effects for all four factors are estimable, but the two-factor 
interactions are not. For example, the X1*X2 and X3*X4 interactions are 
confounded, so it is not possible to estimate their effects separately.

After conducting the experiment, you may find out that the 'ab' effect is 
significant. In order to determine whether this effect comes from X1*X2 or 
X3*X4 you would have to run the remaining eight runs. You can obtain those 
runs by reversing the sign of the final generator.

fracfact('a b c -abc')

ans =
  -1  -1  -1   1
  -1  -1   1  -1
  -1   1  -1  -1
  -1   1   1   1
   1  -1  -1  -1
   1  -1   1   1
   1   1  -1   1
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   1   1   1  -1

Example 2
Suppose now you need to study the effects of eight factors. A full factorial would 
require 256 runs. By clever choice of generators, you can find a sixteen-run 
design that can estimate those eight effects with no confounding from 
two-factor interactions.

[x,c] = fracfact('a b c d abc acd abd bcd');
c(1:10,:)

ans = 

  'Term'   'Generator'  'Confounding'         
  'X1'    'a'      'X1'              
  'X2'    'b'      'X2'              
  'X3'    'c'      'X3'              
  'X4'    'd'      'X4'              
  'X5'    'abc'     'X5'              
  'X6'    'acd'     'X6'              
  'X7'    'abd'     'X7'              
  'X8'    'bcd'     'X8'              
  'X1*X2'  'ab'      'X1*X2 + X3*X5 + X4*X7 + X6*X8'

This confounding pattern shows that the main effects are not confounded with 
two-factor interactions. The final row shown reveals that a group of four 
two-factor interactions is confounded. Other choices of generators would not 
have the same desirable property.

[x,c] = fracfact('a b c d ab cd ad bc');
c(1:10,:)

ans = 

  'Term'   'Generator'  'Confounding'    
  'X1'    'a'      'X1 + X2*X5 + X4*X7'
  'X2'    'b'      'X2 + X1*X5 + X3*X8'
  'X3'    'c'      'X3 + X2*X8 + X4*X6'
  'X4'    'd'      'X4 + X1*X7 + X3*X6'
  'X5'    'ab'      'X5 + X1*X2'    
  'X6'    'cd'      'X6 + X3*X4'    
  'X7'    'ad'      'X7 + X1*X4'    
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  'X8'    'bc'      'X8 + X2*X3'    
  'X1*X2'  'ab'      'X5 + X1*X2' 

Here all the main effects are confounded with one or more two-factor 
interactions.

References [1] Box, G. A. F., W. G. Hunter, and J. S. Hunter, Statistics for Experimenters, 
Wiley, 1978.

See Also ff2n, fullfact, hadamard 
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12friedmanPurpose Friedman’s nonparametric two-way Analysis of Variance (ANOVA)

Syntax p = friedman(X,reps) 
p = friedman(X,reps,'displayopt') 
[p,table] = friedman(...)
[p,table,stats] = friedman(...)

Description p = friedman(X,reps) performs the nonparametric Friedman’s test to 
compare column effects in a two-way layout. Friedman’s test is similar to 
classical balanced two-way ANOVA, but it tests only for column effects after 
adjusting for possible row effects. It does not test for row effects or interaction 
effects. Friedman’s test is appropriate when columns represent treatments 
that are under study, and rows represent nuisance effects (blocks) that need to 
be taken into account but are not of any interest.

The different columns of X represent changes in a factor A. The different rows 
represent changes in a blocking factor B. If there is more than one observation 
for each combination of factors, input reps indicates the number of replicates 
in each “cell,” which must be constant. 

The matrix below illustrates the format for a set-up where column factor A has 
three levels, row factor B has two levels, and there are two replicates (reps=2). 
The subscripts indicate row, column, and replicate, respectively.

Friedman’s test assumes a model of the form

where  is an overall location parameter,  represents the column effect,  
represents the row effect, and  represents the error. This test ranks the 
data within each level of B, and tests for a difference across levels of A. The p 
that friedman returns is the p-value for the null hypothesis that . If the 
p-value is near zero, this casts doubt on the null hypothesis. A sufficiently 

x111 x121 x131

x112 x122 x132

x211 x221 x231

x212 x222 x232

xijk µ αi βj εijk+ + +=

µ αi βj
εijk

αi 0=
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small p-value suggests that at least one column-sample median is significantly 
different than the others; i.e., there is a main effect due to factor A. The choice 
of a critical p-value to determine whether a result is “statistically significant” 
is left to the researcher. It is common to declare a result significant if the 
p-value is less than 0.05 or 0.01.

friedman also displays a figure showing an ANOVA table, which divides the 
variability of the ranks into two or three parts:

• The variability due to the differences among the column effects

• The variability due to the interaction between rows and columns (if reps is 
greater than its default value of 1)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows Friedman’s chi-square statistic.

• The sixth shows the p-value for the chi-square statistic.

p = friedman(X,reps,'displayopt') enables the ANOVA table display 
when 'displayopt' is 'on' (default) and suppresses the display when 
'displayopt' is 'off'.

[p,table] = friedman(...) returns the ANOVA table (including column and 
row labels) in cell array table. (You can copy a text version of the ANOVA table 
to the clipboard by selecting Copy Text from the Edit menu.

[p,table,stats] = friedman(...) returns a stats structure that you can 
use to perform a follow-up multiple comparison test. The friedman test 
evaluates the hypothesis that the column effects are all the same against the 
alternative that they are not all the same. Sometimes it is preferable to 
perform a test to determine which pairs of column effects are significantly 
different, and which are not. You can use the multcompare function to perform 
such tests by supplying the stats structure as input.
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Assumptions
Friedman’s test makes the following assumptions about the data in X:

• All data come from populations having the same continuous distribution, 
apart from possibly different locations due to column and row effects.

• All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the stronger 
assumption that data come from normal distributions.

Examples Let’s repeat the example from the anova2 function, this time applying 
Friedman’s test. Recall that the data below come from a study of popcorn 
brands and popper type (Hogg 1987). The columns of the matrix popcorn are 
brands (Gourmet, National, and Generic). The rows are popper type (Oil and 
Air). The study popped a batch of each brand three times with each popper. The 
values are the yield in cups of popped popcorn. 

load popcorn
popcorn
popcorn =
  5.5000  4.5000  3.5000
  5.5000  4.5000  4.0000
  6.0000  4.0000  3.0000
  6.5000  5.0000  4.0000
  7.0000  5.5000  5.0000
  7.0000  5.0000  4.5000

p = friedman(popcorn,3)
p =
  0.0010
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The small p-value of 0.001 indicates the popcorn brand affects the yield of 
popcorn. This is consistent with the results from anova2.

You could also test popper type by permuting the popcorn array as described 
on “Friedman’s Test” on page 4-60 and repeating the test.

References [1] Hogg, R. V. and J. Ledolter, Engineering Statistics, MacMillan, 1987.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 
1973.

See Also anova2, multcompare, kruskalwallis
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12frndPurpose Random numbers from the F distribution

Syntax R = frnd(V1,V2)
R = frnd(V1,V2,v)
R = frnd(V1,V2,m,n)

Description R = frnd(V1,V2) generates random numbers from the F distribution with 
numerator degrees of freedom V1 and denominator degrees of freedom V2. V1 
and V2 can be vectors, matrices, or multidimensional arrays that all have the 
same size. A scalar input for V1 or V2 is expanded to a constant array with the 
same dimensions as the other input.

R = frnd(V1,V2,v) generates random numbers from the F distribution with 
parameters V1 and V2, where v is a row vector. If v is a 1-by-2 vector, R is a 
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional 
array.

R = frnd(V1,V2,m,n) generates random numbers from the F distribution 
with parameters V1 and V2, where scalars m and n are the row and column 
dimensions of R.

Reproducing the Output of frnd
frnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call frnd, you change the current states of rand and randn, 
and thereby alter the output of subsequent calls to frnd or any other functions 
that depend on rand or randn. If you want to reproduce the output of frnd, reset 
the states of rand and randn to the same fixed values each time you call frnd. 
For an example of how to do this, and a list of the Statistics Toolbox functions 
that depend on rand or randn, see “Reproducing the Output of Random 
Number Functions” on page 2-46.

Note   The results in the following examples depend on the current states of 
rand and randn. If you run the code in these examples, your results may differ 
from the answers shown here.

Examples n1 = frnd(1:6,1:6)
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n1 =
  0.0022  0.3121  3.0528  0.3189  0.2715  0.9539

n2 = frnd(2,2,[2 3])

n2 =
  0.3186  0.9727  3.0268
  0.2052 148.5816  0.2191

n3 = frnd([1 2 3;4 5 6],1,2,3)

n3 =
  0.6233  0.2322  31.5458
  2.5848  0.2121  4.4955

See Also fcdf, finv, fpdf, fstat
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12fstatPurpose Mean and variance for the F distribution

Syntax [M,V] = fstat(V1,V2)

Description [M,V] = fstat(V1,V2) returns the mean and variance for the F distribution 
with parameters specified by V1 and V2. V1 and V2 can be vectors, matrices, or 
multidimensional arrays that all have the same size, which is also the size of M 
and V. A scalar input for V1 or V2 is expanded to a constant arrays with the 
same dimensions as the other input.

The mean of the F distribution for values of ν2 greater than 2 is

The variance of the F distribution for values of ν2 greater than 4 is

The mean of the F distribution is undefined if ν2 is less than 3. The variance is 
undefined for ν2 less than 5.

Examples fstat returns NaN when the mean and variance are undefined.

[m,v] = fstat(1:5,1:5)

m =
NaN    NaN  3.0000  2.0000  1.6667

v =
NaN    NaN    NaN    NaN  8.8889

See Also fcdf, finv, frnd, frnd

ν2
ν2 2–
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12fsurfhtPurpose Interactive contour plot of a function

Syntax fsurfht('fun',xlims,ylims)
fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5)

Description fsurfht('fun',xlims,ylims) is an interactive contour plot of the function 
specified by the text variable fun. The x-axis limits are specified by xlims in 
the form [xmin xmax], and the y-axis limits are specified by ylims in the form 
[ymin ymax].

fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5) allows for five optional 
parameters that you can supply to the function fun. 

The intersection of the vertical and horizontal reference lines on the plot 
defines the current x-value and y-value. You can drag these reference lines and 
watch the calculated z-values (at the top of the plot) update simultaneously. 
Alternatively, you can type the x-value and y-value into editable text fields on 
the x-axis and y-axis. 

Example Plot the Gaussian likelihood function for the gas.mat data.

load gas

Create a function containing the following commands, and name it 
gauslike.m.

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end

The gauslike function calls normpdf, treating the data sample as fixed and the 
parameters µ and σ as variables. Assume that the gas prices are normally 
distributed, and plot the likelihood surface of the sample.

fsurfht('gauslike',[112 118],[3 5],price1)
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The sample mean is the x-value at the maximum, but the sample standard 
deviation is not the y-value at the maximum.

mumax = mean(price1)

mumax =

 115.1500

sigmamax = std(price1)*sqrt(19/20)

sigmamax =

  3.7719
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12fullfactPurpose Full-factorial experimental design

Syntax design = fullfact(levels)

Description design = fullfact(levels) give the factor settings for a full factorial design. 
Each element in the vector levels specifies the number of unique values in the 
corresponding column of design. 

For example, if the first element of levels is 3, then the first column of design 
contains only integers from 1 to 3.

Example If levels = [2 4], fullfact generates an eight-run design with two levels in 
the first column and four in the second column.

d = fullfact([2 4])

d =
   1   1
   2   1
   1   2
   2   2
   1   3
   2   3
   1   4
   2   4

See Also ff2n, dcovary, daugment, cordexch
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12gamcdfPurpose Gamma cumulative distribution function (cdf)

Syntax P = gamcdf(X,A,B)
[P,PLO,PUP] = gamcdf(X,A,B,PCOV,ALPHA)

Description gamcdf(X,A,B) computes the gamma cdf at each of the values in X using the 
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other inputs. 
The parameters in A and B must be positive.

The gamma cdf is

The result, p, is the probability that a single observation from a gamma 
distribution with parameters a and b will fall in the interval [0 x].

[P,PLO,PUP] = gamcdf(X,A,B,PCOV,ALPHA) produces confidence bounds for P 
when the input parameters A and B are estimates. PCOV is a 2-by-2 matrix 
containing the covariance matrix of the estimated parameters. ALPHA has a 
default value of 0.05, and specifies 100(1-ALPHA)% confidence bounds. PLO and 
PUP are arrays of the same size as P containing the lower and upper confidence 
bounds.

gammainc is the gamma distribution with b fixed at 1.

Examples a = 1:6;
b = 5:10;
prob = gamcdf(a.∗b,a,b)

prob =

  0.6321  0.5940  0.5768  0.5665  0.5595  0.5543

The mean of the gamma distribution is the product of the parameters, ab. In 
this example, the mean approaches the median as it increases (i.e., the 
distribution becomes more symmetric).

p F x a b,( ) 1

baΓ a( )
------------------ ta 1– e

t
b
---–

td
0

x

∫= =



gamcdf

12-191

See Also cdf, gamfit, gaminv, gamlike, gampdf, gamrnd, gamstat, gammainc
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12gamfitPurpose Parameter estimates and confidence intervals for gamma distributed data

Syntax phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,options)

Description phat = gamfit(data) returns the maximum likelihood estimates (MLEs) for 
the parameters of the gamma distribution given the data in vector data.

[phat,pci] = gamfit(data) returns MLEs and 95% percent confidence 
intervals. The first row of pci is the lower bound of the confidence intervals; 
the last row is the upper bound.

[phat,pci] = gamfit(data,alpha) returns 100(1 - alpha)% confidence 
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

[...] = gamfit(data,alpha,censoring) accepts a boolean vector of the same 
size as data that is 1 for observations that are right-censored and 0 for 
observations that are observed exactly.

[...] = gamfit(data,alpha,censoring,freq) accepts a frequency vector of 
the same size as data. freq typically contains integer frequencies for the 
corresponding elements in data, but may contain any non-negative values.

[...] = gamfit(data,alpha,censoring,freq,options) accepts a structure, 
options, that specifies control parameters for the iterative algorithm the 
function uses to compute maximum likelihood estimates. You can create 
options using the function statset. Enter statset('gamfit') to see the 
names and default values of the parameters that gamfit accepts in the options 
structure.

Example Note that the 95% confidence intervals in the example below bracket the true 
parameter values of 2 and 4.

a = 2; b = 4;
data = gamrnd(a,b,100,1);
[p,ci] = gamfit(data)

p =
  2.1990  3.7426
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ci =
  1.6840  2.8298
  2.7141  4.6554

Reference [1] Hahn, G. J., and S. S. Shapiro, Statistical Models in Engineering. John 
Wiley & Sons, 1994. p. 88.

See Also gamcdf, gaminv, gamlike, gampdf, gamrnd, gamstat, mle, statset
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12gaminvPurpose Inverse of the gamma cumulative distribution function (cdf)

Syntax X = gaminv(P,A,B)
[X,XLO,XUP] = gamcdf(P,A,B,PCOV,ALPHA)

Description X = gaminv(P,A,B) computes the inverse of the gamma cdf with parameters A 
and B for the corresponding probabilities in P. P, A, and B can be vectors, 
matrices, or multidimensional arrays that all have the same size. A scalar 
input is expanded to a constant array with the same dimensions as the other 
inputs. The parameters in A and B must all be positive, and the values in P must 
lie on the interval [0 1]. 

The gamma inverse function in terms of the gamma cdf is

where

[X,XLO,XUP] = gamcdf(P,A,B,PCOV,ALPHA) produces confidence bounds for P 
when the input parameters A and B are estimates. PCOV is a 2-by-2 matrix 
containing the covariance matrix of the estimated parameters. ALPHA has a 
default value of 0.05, and specifies 100(1-ALPHA)% confidence bounds. PLO and 
PUP are arrays of the same size as P containing the lower and upper confidence 
bounds.

Algorithm There is no known analytical solution to the integral equation above. gaminv 
uses an iterative approach (Newton’s method) to converge on the solution.

Examples This example shows the relationship between the gamma cdf and its inverse 
function.

a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)

x =
  1.0000  2.0000  3.0000  4.0000  5.0000

x F 1– p a b,( ) x:F x a b,( ) p={ }= =
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See Also gamcdf, gamfit, gamlike, gampdf, gamrnd, gamstat, icdf
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12gamlikePurpose Negative gamma log-likelihood function

Syntax logL = gamlike(params,data)
[logL,AVAR] = gamlike(params,data)

Description logL = gamlike(params,data) returns the negative of the gamma 
log-likelihood function for the parameters, params, given data. The length of 
output vector logL is the length of vector data. 

[logL,AVAR] = gamlike(params,data) also returns AVAR, which is the 
asymptotic variance-covariance matrix of the parameter estimates when the 
values in params are the maximum likelihood estimates. AVAR is the inverse of 
Fisher's information matrix. The diagonal elements of AVAR are the asymptotic 
variances of their respective parameters.

[...] = gamlike(params,data,censoring) accepts a boolean vector of the 
same size as data that is 1 for observations that are right-censored and 0 for 
observations that are observed exactly.

[...] = gamfit(params,data,censoring,freq) accepts a frequency vector of 
the same size as data. freq typically contains integer frequencies for the 
corresponding elements in data, but may contain any non-negative values.

gamlike is a utility function for maximum likelihood estimation of the gamma 
distribution. Since gamlike returns the negative gamma log-likelihood 
function, minimizing gamlike using fminsearch is the same as maximizing the 
likelihood.

Example This example continues the example for gamfit.

a = 2; b = 3;
r = gamrnd(a,b,100,1);
[logL,info] = gamlike(gamfit(r),r)

logL =

 267.5648

info =

  0.0788  -0.1104
  -0.1104  0.1955
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See Also betalike, gamcdf, gamfit, gaminv, gampdf, gamrnd, gamstat, mle, normlike, 
wbllike
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12gampdfPurpose Gamma probability density function (pdf)

Syntax Y = gampdf(X,A,B)

Description gampdf(X,A,B) computes the gamma pdf at each of the values in X using the 
corresponding parameters in A and B. X, A, and B can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other inputs. 
The parameters in A and B must all be positive, and the values in X must lie on 
the interval [0 ∞).

The gamma pdf is

The gamma probability density function is useful in reliability models of 
lifetimes. The gamma distribution is more flexible than the exponential 
distribution in that the probability of a product surviving an additional period 
may depend on its current age. The exponential and χ2 functions are special 
cases of the gamma function.

Examples The exponential distribution is a special case of the gamma distribution.

mu = 1:5;
y = gampdf(1,1,mu)

y =
  0.3679  0.3033  0.2388  0.1947  0.1637

y1 = exppdf(1,mu)

y1 =
  0.3679  0.3033  0.2388  0.1947  0.1637

See Also gamcdf, gamfit, gaminv, gamlike, gamrnd, gamstat, pdf, gamma, gammaln
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12gamrndPurpose Random numbers from the gamma distribution

Syntax R = gamrnd(A,B)
R = gamrnd(A,B,v)
R = gamrnd(A,B,m,n)

Description R = gamrnd(A,B) generates random numbers from the gamma distribution 
with parameters A and B. A and B can be vectors, matrices, or multidimensional 
arrays that all have the same size. A scalar input for A or B is expanded to a 
constant array with the same dimensions as the other input.

R = gamrnd(A,B,v) generates random numbers from the gamma distribution 
with parameters A and B, where v is a row vector. If v is a 1-by-2 vector, R is a 
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional 
array.

R = gamrnd(A,B,m,n) generates gamma random numbers with parameters A 
and B, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of gamrnd
gamrnd uses the MATLAB function rand to generate random numbers. When 
you call gamrnd, you change the current state of rand, and thereby alter the 
output of subsequent calls to gamrnd or any other functions that depend on 
rand. If you want to reproduce the output of gamrnd, reset the state of rand to 
the same fixed value each time you call gamrnd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The results in the following examples depend on the current state of 
rand. If you run the code in these examples, your results may differ from the 
answers shown here.

Examples n1 = gamrnd(1:5,6:10)

n1 =
  9.1132  12.8431  24.8025  38.5960 106.4164
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n2 = gamrnd(5,10,[1 5])

n2 =
  30.9486  33.5667  33.6837  55.2014  46.8265

n3 = gamrnd(2:6,3,1,5)

n3 =
  12.8715  11.3068  3.0982  15.6012  21.6739

See Also gamcdf, gamfit, gaminv, gamlike, gampdf, gamstat, randg
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12gamstatPurpose Mean and variance for the gamma distribution

Syntax [M,V] = gamstat(A,B)

Description [M,V] = gamstat(A,B) returns the mean and variance for the gamma 
distribution with parameters specified by A and B. A and B can be vectors, 
matrices, or multidimensional arrays that have the same size, which is also the 
size of M and V. A scalar input for A or B is expanded to a constant array with 
the same dimensions as the other input.

The mean of the gamma distribution with parameters a and b is ab. The 
variance is ab2.

Examples [m,v] = gamstat(1:5,1:5)

m =
   1   4   9  16  25

v =
   1   8  27  64  125

[m,v] = gamstat(1:5,1./(1:5))

m =
   1   1   1   1   1

v =
  1.0000  0.5000  0.3333  0.2500  0.2000

See Also gamcdf, gamfit, gaminv, gamlike, gampdf, gamrnd
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12geocdfPurpose Geometric cumulative distribution function (cdf)

Syntax Y = geocdf(X,P)

Description geocdf(X,P) computes the geometric cdf at each of the values in X using the 
corresponding probabilities in P. X and P can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other input. The 
parameters in P must lie on the interval [0 1].

The geometric cdf is

where .

The result, y, is the probability of observing up to x trials before a success, when 
the probability of success in any given trial is p.

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that 
is a success. What is the probability of observing three or fewer tails before 
getting a heads?

p = geocdf(3,0.5)

p =
  0.9375

See Also cdf, geoinv, geopdf, geornd, geostat
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12geoinvPurpose Inverse of the geometric cumulative distribution function (cdf)

Syntax X = geoinv(Y,P)

Description X = geoinv(Y,P) returns the smallest positive integer X such that the 
geometric cdf evaluated at X is equal to or exceeds Y. You can think of Y as the 
probability of observing X successes in a row in independent trials where P is 
the probability of success in each trial.

Y and P can be vectors, matrices, or multidimensional arrays that all have the 
same size. A scalar input for P or Y is expanded to a constant array with the 
same dimensions as the other input. The values in P and Y must lie on the 
interval [0 1].

Examples The probability of correctly guessing the result of 10 coin tosses in a row is less 
than 0.001 (unless the coin is not fair).

psychic = geoinv(0.999,0.5)

psychic =

   9

The example below shows the inverse method for generating random numbers 
from the geometric distribution.

rndgeo = geoinv(rand(2,5),0.5)

rndgeo =

   0   1   3   1   0
   0   1   0   2   0

See Also geocdf, geopdf, geornd, geostat, icdf
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12geomeanPurpose Geometric mean of a sample

Syntax m = geomean(X)
geomean(X, dim)

Description geomean calculates the geometric mean of a sample. For vectors, geomean(x) is 
the geometric mean of the elements in x. For matrices, geomean(X) is a row 
vector containing the geometric means of each column. For N-dimensional 
arrays, geomean operates along the first nonsingleton dimension of X.

geomean(X, dim) takes the geometric mean along the dimension dim of X.

The geometric mean is

Examples The sample average is greater than or equal to the geometric mean.

x = exprnd(1,10,6);
geometric = geomean(x)

geometric =

  0.7466  0.6061  0.6038  0.2569  0.7539  0.3478

average = mean(x)

average =

  1.3509  1.1583  0.9741  0.5319  1.0088  0.8122

See Also mean, median, harmmean, trimmean
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12geopdfPurpose Geometric probability density function (pdf)

Syntax Y = geopdf(X,P)

Description geopdf(X,P) computes the geometric pdf at each of the values in X using the 
corresponding probabilities in P. X and P can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other input. The 
parameters in P must lie on the interval [0 1].

The geometric pdf is

where .

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that 
is a success. What is the probability of observing exactly three tails before 
getting a heads?

p = geopdf(3,0.5)

p =
  0.0625

See Also geocdf, geoinv, geornd, geostat, pdf
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12georndPurpose Random numbers from the geometric distribution

Syntax R = geornd(P)
R = geornd(P,v)
R = geornd(P,m,n)

Description The geometric distribution is useful when you want to model the number of 
successive failures preceding a success, where the probability of success in any 
given trial is the constant P.

R = geornd(P) generates geometric random numbers with probability 
parameter P. P can be a vector, a matrix, or a multidimensional array. The size 
of R is the size of P.

R = geornd(P,v) generates geometric random numbers with probability 
parameter P, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with 
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = geornd(P,m,n) generates geometric random numbers with probability 
parameter P, where scalars m and n are the row and column dimensions of R.

The parameters in P must lie on the interval [0 1].

Reproducing the Output of geornd
geornd uses the MATLAB function rand to generate random numbers. When 
you call geornd, you change the current state of rand, and thereby alter the 
output of subsequent calls to geornd or any other functions that depend on 
rand. If you want to reproduce the output of geornd, reset the state of rand to 
the same fixed value each time you call geornd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The results in the following examples depend on the current state of 
rand. If you run the code in these examples, your results may differ from the 
answers shown here.

Examples r1 = geornd(1 ./ 2.^(1:6))
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r1 =
   2  10   2   5   2  60

r2 = geornd(0.01,[1 5])

r2 =
  65  18  334  291  63

r3 = geornd(0.5,1,6)

r3 =
   0   7   1   3   1   0

See Also geocdf, geoinv, geopdf, geostat
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12geostatPurpose Mean and variance for the geometric distribution

Syntax [M,V] = geostat(P)

Description [M,V] = geostat(P) returns the mean and variance for the geometric 
distribution with parameters specified by P. 

The mean of the geometric distribution with parameter p is q/p, where q = 1-p. 
The variance is q/p2.

Examples [m,v] = geostat(1./(1:6))

m =
0  1.0000  2.0000  3.0000  4.0000  5.0000

v =
0  2.0000  6.0000  12.0000  20.0000  30.0000

See Also geocdf, geoinv, geopdf, geornd
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12glinePurpose Interactively draw a line in a figure

Syntax gline(fig)
h = gline(fig)
gline

Description gline(fig) allows you to draw a line segment in the figure fig by clicking the 
pointer at the two end-points. A rubber band line tracks the pointer movement. 

h = gline(fig) returns the handle to the line in h.

gline with no input arguments draws in the current figure.

See Also refline, gname



glmdemo

12-210

12glmdemoPurpose Demo of generalized linear models

Syntax glmdemo

Description glmdemo begins a slide show demonstration of generalized linear models. The 
slides indicate when generalized linear models are useful, how to fit 
generalized linear models using the glmfit function, and how to make 
predictions using the glmval function.

Note  To run this demo from the command line, type playshow glmdemo.

See Also glmfit, glmval
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12glmfitPurpose Generalized linear model fitting

Syntax b = glmfit(DATA,Y,'distr')
b = glmfit(DATA,Y,'distr','link','estdisp',offset,pwts,'const')
[b,dev,stats] = glmfit(...)

Description b = glmfit(DATA,Y,'distr') fits the generalized linear model for response Y, 
predictor variable matrix DATA, and distribution 'distr'. The following 
distributions are available: 'binomial', 'gamma', 'inverse gaussian', 
'normal' (the default), and 'poisson'. In most cases Y is a vector of response 
measurements, but for the binomial distribution Y is a two-column array 
having the measured number of counts in the first column and the number of 
trials (the binomial N parameter) in the second column. DATA is a matrix having 
the same number of rows as Y and containing the values of the predictor 
variables for each observation. The output b is a vector of coefficient estimates. 
This syntax uses the canonical link (see below) to relate the distribution 
parameter to the predictors.

b = glmfit(x,y,'distr','link','estdisp',offset,pwts,'const')
provides additional control over the fit. The 'link' argument specifies the 
relationship between the distribution parameter (µ) and the fitted linear 
combination of predictor variables (xb). In most cases 'link' is one of the 
following:

'link' Meaning Default (Canonical) Link

'identity' µ = xb 'normal'

'log' log(µ) = xb 'poisson'

'logit' log(µ / (1-µ)) = xb 'binomial'

'probit' norminv(µ) = xb

'comploglog' log(-log(1-µ)) = xb

'logloglink' log(-log(µ)) = xb

'reciprocal' 1/µ = xb 'gamma'

p (a number) µp = xb 'inverse gaussian' (with p=-2)
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Alternatively, you can write functions to define your own custom link. You 
specify the link argument as a three-element cell array containing functions 
that define the link function, its derivative, and its inverse. For example, 
suppose you want to define a reciprocal square root link using inline functions. 
You could define the variable mylinks to use as your 'link' argument by 
writing:

FL = inline('x.^-.5')
FD = inline('-.5*x.^-1.5')
FI = inline('x.^-2')
mylinks = {FL FI FD}

Alternatively, you could define functions named FL, FD, and FI in their own 
M-files, and then specify mylinks in the form

mylinks = {@FL @FD @FI}

The 'estdisp' argument can be 'on' to estimate a dispersion parameter for 
the binomial or Poisson distribution, or 'off' (the default) to use the 
theoretical value of 1.0 for those distributions. The glmfit function always 
estimates dispersion parameters for other distributions.

The offset and pwts parameters can be vectors of the same length as Y, or can 
be omitted (or specified as an empty vector). The offset vector is a special 
predictor variable whose coefficient is known to be 1.0. As an example, suppose 
that you are modeling the number of defects on various surfaces, and you want 
to construct a model in which the expected number of defects is proportional to 
the surface area. You might use the number of defects as your response, along 
with the Poisson distribution, the log link function, and the log surface area as 
an offset.

The pwts argument is a vector of prior weights. As an example, if the response 
value Y(i) is the average of f(i) measurements, you could use f as a vector of 
prior weights.

The 'const' argument can be 'on' (the default) to estimate a constant term, 
or 'off' to omit the constant term. If you want the constant term, use this 
argument rather than specifying a column of ones in the DATA matrix.

[b,dev,stats] = glmfit(...) returns the additional outputs dev and stats. 
dev is the deviance at the solution vector. The deviance is a generalization of 
the residual sum of squares. It is possible to perform an analysis of deviance to 
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compare several models, each a subset of the other, and to test whether the 
model with more terms is significantly better than the model with fewer terms.

stats is a structure with the following fields:

• stats.dfe = degrees of freedom for error

• stats.s = theoretical or estimated dispersion parameter

• stats.sfit = estimated dispersion parameter

• stats.estdisp = 1 if dispersion is estimated, 0 if fixed

• stats.beta = vector of coefficient estimates (same as b)

• stats.se = vector of standard errors of the coefficient estimates b

• stats.coeffcorr = correlation matrix for b

• stats.t = t statistics for b

• stats.p = p-values for b

• stats.resid = vector of residuals

• stats.residp = vector of Pearson residuals

• stats.residd = vector of deviance residuals

• stats.resida = vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution, 
then stats.s is set equal to stats.sfit. Also, the elements of stats.se differ 
by the factor stats.s from their theoretical values.

Example You have data on cars weighing between 2100 and 4300 pounds. For each car 
weight you have the total number of cars of that weight, and the number that 
can be considered to get “poor mileage” according to some test. For example, 8 
out of 21 cars weighing 3100 pounds get poor mileage according to a 
measurement of the miles they can travel on a gallon of gasoline.

w = (2100:200:4300)';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';

You can compare several fits to these data. First, try fitting logit and probit 
models:

[bl,dl,sl] = glmfit(w,[poor total],'binomial');
[bp,dp,sp] = glmfit(w,[poor total],'binomial','probit');
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dl
dl =
  6.4842

dp
dp =
  7.5693

The deviance for the logit model is smaller than for the probit model. Although 
this is not a formal test, it suggests that the logit model is preferable.

You can do a formal test comparing two logit models. You already fit one model 
using w as a linear predictor, so fit another logit model using both linear and 
squared terms in w. If there is no true effect for the squared term, the difference 
in their deviances should be small compared with a chi-square distribution 
having one degree of freedom.

[b2,d2,s2] = glmfit([w w.^2],[poor total],'binomial');

dl-d2

ans =
  0.7027

chi2cdf(dl-d2,1)

ans =
  0.5981

A difference of 0.7072 is not at all unusual for a chi-square distribution with 
one degree of freedom, so the quadratic model does not give a significantly 
better fit than the simpler linear model.

The following are the coefficient estimates, their standard errors, t-statistics, 
and p-values for the linear model:

[bl sl.se sl.t sl.p]

ans =

 -13.3801  1.3940  -9.5986  0.0000
  0.0042  0.0004  9.4474  0.0000
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This shows that you cannot simplify the model any further. Both the intercept 
and slope coefficients are significantly different from 0, as indicated by 
p-values that are 0.0000 to four decimal places.

References [1] Dobson, A. J., An Introduction to Generalized Linear Models, CRC Press, 
1990.

[2] MuCullagh, P., and J. A. Nelder, Generalized Linear Models. 2nd edition, 
Chapman & Hall, 1990.

See Also glmval, glmdemo, nlinfit, regress, regstats
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12glmvalPurpose Compute predictions for generalized linear model

Syntax yfit = glmval(b,X,'link')
[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev)
[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev,N,offset,'const')

Description yfit = glmval(b,X,'link') computes the predicted distribution parameters 
for observations with predictor values X using the coefficient vector b and link 
function 'link'. Typically, b is a vector of coefficient estimates computed by 
the glmfit function. The value of 'link' must be the same as that used in 
glmfit. The result yfit is the value of the inverse of the link function at the 
linear combination X*b.

[yfit,dlo,dhi] = glmval(b,X,'link',stats,clev) returns confidence 
bounds for the predicted values when you supply the stats structure returned 
from glmfit, and optionally specify a confidence level as the clev argument. 
(The default confidence level is 0.95 for 95% confidence.) The interval 
[yfit-dlo, yfit+dhi] is a confidence bound for the true parameter value at 
the specified X values.

[yhat,dlo,dhi] = glmval(beta,X,'link',stats,clev,N,offset,'const')
specifies three additional arguments that may be needed if you used certain 
arguments to glmfit. If you fit a binomial distribution using glmfit, specify N 
as the value of the binomial N parameter for the predictions. If you included an 
offset variable, specify offset as the new value of this variable. Use the same 
'const' value ('on' or 'off') that you used with glmfit.

Example Let's model the number of cars with poor gasoline mileage using the binomial 
distribution. First, use the binomial distribution with the default logit link to 
model the probability of having poor mileage as a function of the weight and 
squared weight of the cars. Then you compute a vector wnew of new car weights 
at which you want to make predictions. Next you compute the expected number 
of cars, out of a total of 30 cars of each weight, that would have poor mileage. 
Finally you graph the predicted values and 95% confidence bounds as a 
function of weight.

w = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';
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[b2,d2,s2] = glmfit([w w.^2],[poor total],'binomial')
wnew = (3000:100:4000)';
[yfit,dlo,dhi] = glmval(b2,[wnew wnew.^2],'logit',s2,0.95,30)
errorbar(wnew,yfit,dlo,dhi);

See Also glmfit, glmdemo
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12glyphplotPurpose Plot stars or Chernoff faces for multivariate data

Syntax glyphplot(X)
glyphplot(X, 'Glyph','face')
glyphplot(X, 'Glyph','face', 'Features', F)
glyphplot(X, ..., 'Grid', [ROWS,COLS])
glyphplot(X, ..., 'Grid', [ROWS,COLS], 'Page', page)
glyphplot, ..., 'Centers', C,' Radius', r)
glyphplot(X, ..., 'ObsLabels', labels)
glyphplot(X, ..., 'Standardize', method)
glyphplot(X, ..., 'PropertyName', PropertyValue, ...)
h = glyphplot(X, ...)

Description glyphplot(X) creates a star plot from the multivariate data in the n-by-p 
matrix X. Rows of X correspond to observations, columns to variables. A star 
plot represents each observation as a “star” whose i-th spoke is proportional in 
length to the i-th coordinate of that observation. glyphplot standardizes X by 
shifting and scaling each column separately onto the interval [0,1] before 
making the plot, and centers the glyphs on a rectangular grid that is as close 
to square as possible. glyphplot treats NaNs in X as missing values, and does 
not plot the corresponding rows of X. glyphplot(X, 'Glyph', 'star') is a 
synonym for glyphplot(X).

glyphplot(X, 'Glyph','face') creates a face plot from X. A face plot 
represents each observation as a “face,” whose i-th facial feature is drawn with 
a characteristic proportional to the i-th coordinate of that observation. The 
features are described in “Face Features” on page 12-219.

glyphplot(X, 'Glyph','face', 'Features', F) creates a face plot where the 
i-th element of the index vector F defines which facial feature will represent the 
i-th column of X. F must contain integers from 0 to 17, where zeros indicate that 
the corresponding column of X should not be plotted. See “Face Features” on 
page 12-219 for more information.

glyphplot(X, ..., 'Grid', [rows, cols]) organizes the glyphs into a 
rows-by-cols grid.

glyphplot(X, ..., 'Grid', [rows, cols], 'Page', page) organizes the 
glyph into one or more pages of a rows-by-cols grid, and displays the page'th 
page. If page is a vector, glyphplot displays multiple pages in succession. If 



glyphplot

12-219

page is 'all', glyphplot displays all pages. If page is 'scroll', glyphplot 
displays a single plot with a scrollbar.

glyphplot(X, ..., 'Centers', C) creates a plot with each glyph centered at 
the locations in the N-by-2 matrix C.

glyphplot, ..., 'Centers', C,' Radius', r) creates a plot with glyphs 
positioned using C, and scale the glyphs so the largest has radius r. 

glyphplot(X, ..., 'ObsLabels', labels) labels each glyph with the text in 
the character array or cell array of strings labels. By default, the glyphs are 
labelled 1:N. Pass in '' for no labels.

glyphplot(X, ..., 'Standardize', method) standardizes X before making 
the plot. Choices for method are

• 'column' — Maps each column of X separately onto the interval [0,1]. This is 
the default.

• 'matrix' — Maps the entire matrix X onto the interval [0,1].

• 'PCA' — Transforms X to its principal component scores, in order of 
decreasing eigenvalue, and maps each one onto the interval [0,1].

• 'off' — No standardization. Negative values in X may make a star plot 
uninterpretable.

glyphplot(X, ..., 'PropertyName', PropertyValue, ...) sets properties 
to the specified property values for all line graphics objects created by 
glyphplot.

h = glyphplot(X, ...) returns a matrix of handles to the graphics objects 
created by glyphplot. For a star plot, h(:,1) and h(:,2) contain handles to 
the line objects for each star's perimeter and spokes, respectively. For a face 
plot, h(:,1) and h(:,2) contain object handles to the lines making up each face 
and to the pupils, respectively. h(:,3) contains handles to the text objects for 
the labels, if present.

Face Features
The following table describes the correspondence between the columns of the 
vector F, the value of the 'Features' input parameter, and the facial features 
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of the glyph plot. If X has fewer than 17 columns, unused features are displayed 
at their default value. 

Examples load carsmall
X = [Acceleration Displacement Horsepower MPG Weight];
glyphplot(X, 'Standardize','column', 'ObsLabels',Model, ...
 'grid',[2 2], 'page','scroll');

Column Facial Feature

1 Size of face

2 Forehead/jaw relative arc length

3 Shape of forehead

4 Shape of jaw

5 Width between eyes

6 Vertical position of eyes

7 Height of eyes

8 Width of eyes (this also affects eyebrow width)

9 Angle of eyes (this also affects eyebrow angle)

10 Vertical position of eyebrows

11 Width of eyebrows (relative to eyes)

12 Angle of eyebrows (relative to eyes)

13 Direction of pupils

14 Length of nose

15 Vertical position of mouth

16 Shape of mouth

17 Mouth arc length
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glyphplot(X, 'Glyph','face', 'ObsLabels',Model, 'grid',[2 3], ...
 'page',9);

See Also andrewsplot, parallelcoords
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12gnamePurpose Label plotted points with their case names or case number

Syntax gname(cases)
gname
h = gname(cases,line_handle)

Description gname(cases) displays a figure window and waits for you to press a mouse 
button or a keyboard key. The input argument cases is a character array or a 
cell array of strings, in which each row of the character array or each element 
of the cell array contains the case name of a point. Moving the mouse over the 
graph displays a pair of cross-hairs. If you position the cross-hairs near a point 
with the mouse and click once, the graph displays the name of the city 
corresponding to that point. Alternatively, you can click and drag the mouse to 
create a rectangle around several points. When you release the mouse button, 
the graph displays the labels for all points in the rectangle. Right-click a point 
to remove its label. When you are done labelling points, press the Enter or 
Escape key to stop labeling.

gname with no arguments labels each case with its case number. 

h = gname(cases,line_handle) returns a vector of handles to the text objects 
on the plot. Use the scalar line_handle to identify the correct line if there is 
more than one line object on the plot.

You can use gname to label plots created by the plot, scatter, gscatter, 
plotmatrix, and gplotmatrix functions.

Example This example uses the city ratings data sets to find out which cities are the best 
and worst for education and the arts. 

load cities
education = ratings(:,6);
arts = ratings(:,7);
plot(education,arts,'+')
gname(names)
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Click the point at the top of the graph to display its label, “New York.”

See Also gplotmatrix, gscatter, gtext, plot, plotmatrix, scatter
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12gplotmatrixPurpose Plot matrix of scatter plots by group

Syntax gplotmatrix(x,y,g)
gplotmatrix(x,y,g,'clr','sym',siz)
gplotmatrix(x,y,g,'clr','sym',siz,'doleg')
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt')
gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt','xnam','ynam')
[h,ax,bigax] = gplotmatrix(...)

Description gplotmatrix(x,y,g) creates a matrix of scatter plots. Each individual set of 
axes in the resulting figure contains a scatter plot of a column of x against a 
column of y. All plots are grouped by the grouping variable g.

x and y are matrices with the same number of rows. If x has p columns and y 
has q columns, the figure contains a p-by-q matrix of scatter plots. If you omit 
y or specify it as the empty matrix, [], gplotmatrix creates a square matrix of 
scatter plots of columns of x against each other.

g is a grouping variable that can be a vector, string array, or cell array of 
strings. g must have the same number of rows as x and y. Points with the same 
value of g are placed in the same group, and appear on the graph with the same 
marker and color. Alternatively, g can be a cell array containing several 
grouping variables (such as {G1 G2 G3}); in that case, observations are in the 
same group if they have common values of all grouping variables.

gplotmatrix(x,y,g,'clr','sym',siz) specifies the color, marker type, and 
size for each group. 'clr' is a string array of colors recognized by the plot 
function. The default is 'clr' = 'bgrcmyk'. 'sym' is a string array of symbols 
recognized by the plot command, with the default value '.'. siz is a vector of 
sizes, with the default determined by the 'defaultlinemarkersize' property. 
If you do not specify enough values for all groups, gplotmatrix cycles through 
the specified values as needed. 

gplotmatrix(x,y,g,'clr','sym',siz,'doleg') controls whether a legend is 
displayed on the graph ('doleg' = 'on', the default) or not ('doleg' = 'off').

gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt') controls what 
appears along the diagonal of a plot matrix of y versus x. Allowable values are 
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'none', to leave the diagonals blank, 'hist' (the default), to plot histograms, 
or 'variable', to write the variable names.

gplotmatrix(x,y,g,'clr','sym',siz,'doleg','dispopt','xnam','ynam')
specifies the names of the columns in the x and y arrays. These names are used 
to label the x- and y-axes. 'xnam' and 'ynam' must be character arrays or cell 
arrays of strings, with one name for each column of x and y, respectively.

[h,ax,bigax] = gplotmatrix(...) returns three arrays of handles. h is an 
array of handles to the lines on the graphs. The array’s third dimension 
corresponds to groups in G. ax is a matrix of handles to the axes of the 
individual plots. If 'dispopt' is 'hist', ax contains one extra row of handles 
to invisible axes in which the histograms are plotted. bigax is a handle to big 
(invisible) axes framing the entire plot matrix. bigax is fixed to point to the 
current axes, so a subsequent title, xlabel, or ylabel command will produce 
labels that are centered with respect to the entire plot matrix.

Example Load the cities data. The ratings array has ratings of the cities in nine 
categories (category names are in the array categories). group is a code whose 
value is 2 for the largest cities. You can make scatter plots of the first three 
categories against the other four, grouped by the city size code.

load discrim
gplotmatrix(ratings(:,1:3),ratings(:,4:7),group) 

The output figure (not shown) has an array of graphs with each city group 
represented by a different color. The graphs are a little easier to read if you 
specify colors and plotting symbols, label the axes with the rating categories, 
and move the legend off the graphs.

gplotmatrix(ratings(:,1:3),ratings(:,4:7),group,...
'br','.o',[],'on','',categories(1:3,:),...
categories(4:7,:))
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See Also grpstats, gscatter, plotmatrix
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12grpstatsPurpose Summary statistics by group

Syntax means = grpstats(X,group)
[means,sem,counts,name] = grpstats(X,group)
grpstats(x,group,alpha)

Description means = grpstats(X,group) returns the means of each column of X by group, 
where X is a matrix of observations. group is an array that defines the grouping 
such that two elements of X are in the same group if their corresponding group 
values are the same. The grouping variable group can be a vector, string array, 
or cell array of strings. It can also be a cell array containing several grouping 
variables (such as {G1 G2 G3}); in that case observations are in the same group 
if they have common values of all grouping variables.

[means,sem,counts,name] = grpstats(x,group,alpha) supplies the 
standard error of the mean in sem, the number of elements in each group in 
counts, and the name of each group in name. name is useful to identify and label 
the groups when the input group values are not simple group numbers.

grpstats(x,group,alpha) plots 100(1 - alpha)% confidence intervals 
around each mean.

Example Assign 100 observations to one of four groups. For each observation, you 
measure five quantities with true means from 1 to 5. grpstats enables you to 
compute the means for each group.

group = unidrnd(4,100,1);
true_mean = 1:5;
true_mean = true_mean(ones(100,1),:);
x = normrnd(true_mean,1);
means = grpstats(x,group)

means =

  0.7947  2.0908  2.8969  3.6749  4.6555
  0.9377  1.7600  3.0285  3.9484  4.8169
  1.0549  2.0255  2.8793  4.0799  5.3740
  0.7107  1.9264  2.8232  3.8815  4.9689

See Also tabulate, crosstab
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12gscatterPurpose Scatter plot by group

Syntax gscatter(x,y,g)
gscatter(x,y,g,'clr','sym',siz)
gscatter(x,y,g,'clr','sym',siz,'doleg')
gscatter(x,y,g,'clr','sym',siz,'doleg','xnam','ynam')
h = gscatter(...)

Description gscatter(x,y,g) creates a scatter plot of x and y, grouped by g, where x and y 
are vectors with the same size and g can be a vector, string array, or cell array 
of strings. Points with the same value of g are placed in the same group, and 
appear on the graph with the same marker and color. Alternatively, g can be a 
cell array containing several grouping variables (such as {G1 G2 G3}); in that 
case, observations are in the same group if they have common values of all 
grouping variables.

gscatter(x,y,g,'clr','sym',siz) specifies the color, marker type, and size 
for each group. 'clr' is a string array of colors recognized by the plot function. 
The default is 'clr' = 'bgrcmyk'. 'sym' is a string array of symbols recognized 
by the plot command, with the default value '.'. siz is a vector of sizes, with 
the default determined by the 'defaultlinemarkersize' property. If you do 
not specify enough values for all groups, gscatter cycles through the specified 
values as needed. 

gscatter(x,y,g,'clr','sym',siz,'doleg') controls whether a legend is 
displayed on the graph ('doleg' = 'on', the default) or not ('doleg' = 'off').

gscatter(x,y,g,'clr','sym',siz,'doleg','xnam','ynam') specifies the 
name to use for the x-axis and y-axis labels. If the x and y inputs are simple 
variable names and xnam and ynam are omitted, gscatter labels the axes with 
the variable names.

h = gscatter(...) returns an array of handles to the lines on the graph.

Example Load the cities data and look at the relationship between the ratings for 
climate (first column) and housing (second column) grouped by city size. We’ll 
also specify the colors and plotting symbols.

load discrim



gscatter

12-229

gscatter(ratings(:,1),ratings(:,2),group,'br','xo')

See Also gplotmatrix, grpstats, scatter
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12harmmeanPurpose Harmonic mean of a sample of data

Syntax m = harmmean(X)
harmmean(X,dim)

Description m = harmmean(X) calculates the harmonic mean of a sample. For vectors, 
harmmean(x) is the harmonic mean of the elements in x. For matrices, 
harmmean(X) is a row vector containing the harmonic means of each column. 
For N-dimensional arrays, harmmean operates along the first nonsingleton 
dimension of X.

harmmean(X,dim) takes the harmonic mean along dimension dim of X.

The harmonic mean is

Examples The sample average is greater than or equal to the harmonic mean.

x = exprnd(1,10,6);
harmonic = harmmean(x)

harmonic =

  0.3382  0.3200  0.3710  0.0540  0.4936  0.0907

average = mean(x)

average =

  1.3509  1.1583  0.9741  0.5319  1.0088  0.8122

See Also mean, median, geomean, trimmean
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12histPurpose Plot histograms

Syntax hist(y)
hist(y,nb)
hist(y,x)
[n,x] = hist(y,...)

Description hist(y) draws a 10-bin histogram for the data in vector y. The bins are equally 
spaced between the minimum and maximum values in y.

hist(y,nb) draws a histogram with nb bins.

hist(y,x) draws a histogram using the bins in the vector x.

[n,x] = hist(y,...) do not draw graphs, but return vectors n and x 
containing the frequency counts and the bin locations such that bar(x,n) plots 
the histogram. This is useful in situations where more control is needed over 
the appearance of a graph, for example, to combine a histogram into a more 
elaborate plot statement.

The hist function is a part of the standard MATLAB language.

Examples Generate bell-curve histograms from Gaussian data.

x = -2.9:0.1:2.9;
y = normrnd(0,1,1000,1);
hist(y,x)

See Also hist3, histc
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12hist3Purpose Three-dimensional histogram of bivariate data

Syntax hist3(X)
hist3(X, nbins)
hist3(X, ctrs)
hist3(X, 'Edges', edges)
N = hist3(X,...)
[N, C] = hist3(X,...)
hist3(..., 'param1',val1, 'param2',val2, ...)

Description hist3(X) bins the elements of the m-by-2 matrix X into a 10-by-10 grid of 
equally-spaced containers, and plots a histogram. Each column of X 
corresponds to one dimension in the bin grid. 

hist3(X, nbins) plots a histogram using an nbins(1)-by-nbins(2) grid of 
bins. hist3(X, 'Nbins', nbins) is equivalent to hist3(X, nbins).

hist3(X, ctrs), where ctrs is a two-element cell array of numeric vectors 
with monotonically non-decreasing values, uses a two-dimensional grid of bins 
centered on ctrs{1} in the first dimension and on ctrs{2} in the second. hist3 
assigns rows of X falling outside the range of that grid to the bins along the 
outer edges of the grid, and ignores rows of X containing NaNs. 
hist3(X, 'Ctrs', ctrs) is equivalent to hist3(X, ctrs).

hist3(X, 'Edges', edges), where edges is a two-element cell array of 
numeric vectors with monotonically non-decreasing values, uses a 
two-dimensional grid of bins with edges at edges{1} in the first dimension and 
at edges{2} in the second. The (i, j)-th bin includes the value X(k, :) if

edges{1}(i) <= X(k,1) < edges{1}(i+1)
edges{2}(j) <= X(k,2) < edges{2}(j+1)

Rows of X that fall on the upper edges of the grid, edges{1}(end) or 
edges{2}(end), are counted in the (I,j)-th or (i, J)-th bins, where I and J 
are the lengths of edges{1} and edges{2}. hist3 does not count rows of X 
falling outside the range of the grid. Use -Inf and Inf in edges to include all 
non-NaN values. 

N = hist3(X,...) returns a matrix containing the number of elements of X 
that fall in each bin of the grid, and does not plot the histogram.
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[N, C] = hist3(X,...) returns the positions of the bin centers in a1-by-2 cell 
array of numeric vectors, and does not plot the histogram. hist3(ax, X,...) 
plots onto an axes with handle ax instead of the current axes. See the reference 
page for axes for more information about handles to plots.

hist3(..., 'param1',val1, 'param2',val2, ...) allows you to specify 
graphics parameter name/value pairs to fine-tune the plot.

Example Example 1
Make a 3-D figure using a histogram with a density plot underneath:

figure; 
load seamount 
dat = [-y,x]; % Make grid, correcting for negative y-values 
hold on 
hist3(dat) % Draw histogram in 2D 

n = hist3(dat); % Extract histogram data; default to 10x10 bins 
n1 = n'; 
n1( size(n,1) + 1 ,size(n,2) + 1 ) = 0; 

% Generate grid for 2-D projected view of intensities 
xb = linspace( min(dat(:,1)) , max(dat(:,1)) , size(n,1) + 1); 
yb = linspace( min(dat(:,2)) , max(dat(:,2)) , size(n,1) + 1); 

% Make a pseudocolor plot on this grid 
h = pcolor(xb,yb,n1); 

% Set the z-level and colormap of the displayed grid 
set(h, 'zdata', ones(size(n1)) * -max(max(n))) 
colormap(hot) % heat map 
title... 
('Seamount: Data Point Density Histogram and Intensity Map'); 
grid on 
view(3); % Display the default 3-D perspective view
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Example 2
Create the car data and make a histogram on a 7x7 grid of bins.

load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');
 
    % Make a histogram with semi-transparent bars
    hist3(X,[7 7],'FaceAlpha',.65);
    xlabel('MPG'); ylabel('Weight');
    set(gcf,'renderer','opengl');
 
    % Specify bin centers, different in each direction. Get back
    % counts, but don't make the plot.
    cnt = hist3(X, {0:10:50 2000:500:5000});

See Also accumarray, bar, bar3, hist, histc
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12histfitPurpose Histogram with superimposed normal density

Syntax histfit(data)
histfit(data,nbins)
h = histfit(data,nbins)

Description histfit(data,nbins) plots a histogram of the values in the vector data using 
nbins bars in the histogram. With nbins is omitted, its value is set to the 
square root of the number of elements in data. 

h = histfit(data,nbins) returns a vector of handles to the plotted lines, 
where h(1) is the handle to the histogram, h(2) is the handle to the density 
curve.

Example r = normrnd(10,1,100,1);
histfit(r)

See Also hist, hist3, normfit
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12hmmdecodePurpose Calculate the posterior state probabilities of a sequence

Syntax PSTATES = hmmdecode(seq, TRANS, EMIS)
[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS)
[PSTATES, logpseq, FORWARD, BACKWARD, S] = hmmdecode(seq,TRANS,EMIS)
hmmdecode(...,'Symbols', SYMBOLS) 

Description PSTATES = hmmdecode(seq, TRANS, EMIS) calculates the posterior state 
probabilities, PSTATES, of the sequence seq, from a hidden Markov model. The 
posterior state probabilities are the conditional probabilities of being at state k 
at step i, given the observed sequence of symbols, sym. You specify the model 
by a transition probability matrix, TRANS, and an emissions probability matrix, 
EMIS. TRANS(i,j) is the probability of transition from state i to state j. 
EMIS(k, sym) is the probability that symbol sym is emitted from state k. 

PSTATES is an array with the same length as seq and one row for each state in 
the model. The (i, j) element of PSTATES gives the probability that the model is 
in state i at the jth step, given the sequence seq.

Note  The function hmmdecode begins with the model in state 1 at step 0, prior 
to the first emission. hmmdecode computes the probabilities in PSTATES based 
on the fact that the model begins in state 1. See “How the Toolbox Generates 
Random Sequences” on page 11-7 for more information

[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS) returns logpseq, the 
logarithm of the probability of sequence seq, given transition matrix TRANS and 
emission matrix EMIS. 

[PSTATES, logpseq, FORWARD, BACKWARD, S] = hmmdecode(seq,TRANS,EMIS) 
returns the forward and backward probabilities of the sequence scaled by S. 
See “Reference” on page 12-237 for a reference that explains the forward and 
backward probabilities.

hmmdecode(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. 
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The 
default symbols are integers 1 through N, where N is the number of possible 
emissions. 
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See “Calculating Posterior State Probabilities” on page 11-12 for an example of 
using hmmdecode.

Examples trans = [0.95,0.05;
     0.10,0.90];

emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
  1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
 
[seq, states] = hmmgenerate(100,trans,emis);
pStates = hmmdecode(seq,tr,e);

[seq, states] = hmmgenerate(100, trans, emis, 'Symbols',...
{'one','two','three','four','five','six'})

pStates = hmmdecode(seq, tr, e, 'Symbols',...
{'one','two','three','four','five','six'});

Reference Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis, 
Cambridge University Press, 1998. 

   See Also hmmgenerate, hmmestimate, hmmviterbi, hmmtrain
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12hmmestimatePurpose Estimate the parameters for a hidden Markov model given state information

Syntax [TRANS, EMIS] = hmmestimate(seq, states)
hmmestimate(..., 'Symbols', SYMBOLS)
hmmestimate(..., 'Statenames', STATENAMES)
hmmestimate(..., 'Pseudoemissions', PSEUDOE)
hmmestimate(..., 'Pseudotransitions', PSEUDOTR)

Description [TRANS, EMIS] = hmmestimate(seq, states) calculates the maximum 
likelihood estimate of the transition, TRANS, and emission, EMIS, probabilities 
of a hidden Markov model for sequence, seq, with known states, states. 

hmmestimate(..., 'Symbols', SYMBOLS) specifies the symbols that are 
emitted. SYMBOLS can be a numeric array or a cell array of the names of the 
symbols. The default symbols are integers 1 through N, where N is the number 
of possible emissions.

hmmestimate(..., 'Statenames', STATENAMES) specifies the names of the 
states. STATENAMES can be a numeric array or a cell array of the names of the 
states. The default state names are 1 through M, where M is the number of 
states.

hmmestimate(...,'Pseudoemissions', PSEUDOE) specifies pseudocount 
emission values in the matrix PSEUDO. Use this argument to avoid zero 
probability estimates for emissions with very low probability that might not be 
represented in the sample sequence. PSEUDOE should be a matrix of size 
M-by-N, where M is the number of states in the hidden Markov model and N is 
the number of possible emissions. If the  emission does not occur in seq, 
you can set PSEUDOE(i,k) to be a positive number representing an estimate of 
the expected number of such emissions in the sequence seq. 

hmmestimate(..., 'Pseudotransitions', PSEUDOTR) specifies pseudocount 
transition values. You can use this argument to avoid zero probability 
estimates for transitions with very low probability that might not be 
represented in the sample sequence. PSEUDOTR should be a matrix of size 
M-by-M, where M is the number of states in the hidden Markov model. If 
the  transition does not occur in states, you can set PSEUDOTR(i,j) to be 
a positive number representing an estimate of the expected number of such 
transitions in the sequence states.

i k→

i j→
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See “Using hmmestimate” on page 11-9 for an example of using hmmestimate.

Pseudotransitions and Pseudoemissions
If the probability of a specific transition or emission is very low, the transition 
might never occur in the sequence states, or the emission might never occur 
in the sequence seq. In either case, the algorithm returns a probability of 0 for 
the given transition or emission in TRANS or EMIS. You can compensate for the 
absence of transition with the 'Pseudotransitions' and 'Pseudoemissions' 
arguments. The simplest way to do this is to set the corresponding entry of 
PSEUDO or PSEUDOTR to 1. For example, if the transition  does not occur in 
states, set PSEUOTR(i,j) = 1. This forces TRANS(i,j) to be positive. If you 
have an estimate for the expected number of transitions  in a sequence of 
the same length as states, and the actual number of transitions  that 
occur in seq is substantially less than what you expect, you can set 
PSEUOTR(i,j) to the expected number. This increases the value of TRANS(i,j). 
For transitions that do occur in states with the frequency you expect, set the 
corresponding entry of PSEUDOTR to 0, which does not increase the 
corresponding entry of TRANS. 

If you do not know the sequence of states, use hmmtrain to estimate the model 
parameters.

 Examples: trans = [0.95,0.05; 0.10,0.90];
e = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];

[seq, states] = hmmgenerate(1000,trans,emis);

[estimateTR, estimateE] = hmmestimate(seq,states);

See Also hmmgenerate, hmmdecode, hmmviterbi, hmmtrain

i j→

i j→
i j→
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12hmmgeneratePurpose Generate random sequences from a Markov model

Syntax [seq, states] = hmmgenerate(len, TRANS, EMIS)
hmmgenerate(...,'Symbols', SYMBOLS)
hmmgenerate(...,'Statenames', STATENAMES)

Description [seq, states] = hmmgenerate(len,TRANS,EMIS) takes a known Markov 
model, specified by transition probability matrix TRANS and emission 
probability matrix EMIS, and uses it to generate 

• A random sequence seq of emission symbols 

• A random sequence states of states

The length of both seq and states is len. TRANS(i,j) is the probability of 
transition from state i to state j. EMIS(k,l) is the probability that symbol l is 
emitted from state k.

Note  The function hmmgenerate begins with the model in state 1 at step 0, 
prior to the first emission. The model then makes a transition to state i1, with 
probability , and generates an emission  with probability . 
hmmgenerate returns i1 as the first entry of states, and  as the first entry 
of seq. See “How the Toolbox Generates Random Sequences” on page 11-7 for 
more information

hmmgenerate(...,'Symbols', SYMBOLS) specifies the symbols that are 
emitted. SYMBOLS can be a numeric array or a cell array of the names of the 
symbols. The default symbols are integers 1 through N, where N is the number 
of possible emissions. 

hmmgenerate(...,'Statenames', STATENAMES) specifies the names of the 
states. STATENAMES can be a numeric array or a cell array of the names of the 
states. The default state names are 1 through M, where M is the number of 
states.

Since the model always begins at state 1, whose transition probabilities are in 
the first row of TRANS, in the following example, the first entry of the output 
states is be 1 with probability 0.95 and 2 with probability 0.05.

T1i1
ak1

Ei1k11
ak1
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See “Setting Up the Model and Generating Data” on page 11-8 for an example 
of using hmmgenerate.

Examples  trans = [0.95,0.05;
    0.10,0.90];

 emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
   1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];
[seq, states] = hmmgenerate(100,trans,emis)

[seq, states] = hmmgenerate(100,trans,emis,'Symbols',...
{'one','two','three','four','five','six'},...
'Statenames',{'fair';'loaded'})

See Also hmmviterbi, hmmdecode, hmmestimate, hmmtrain
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12hmmtrainPurpose Maximum likelihood estimate of model parameters for a hidden Markov model

Syntax [ESTTR, ESTEMIT] = hmmtrain(seq, TRGUESS, EMITGUESS)
hmmtrain(...,'Algorithm', algorithm)
hmmtrain(...,'Symbols', SYMBOLS)
hmmtrain(...,'Tolerance', tol)
hmmtrain(...,'Maxiterations', maxiter)
hmmtrain(...,'Verbose', true)
hmmtrain(...,'Pseudoemissions', PSEUDOE)
hmmtrain(...,'Pesudotransitions', PSEUDOTR)

Description [ESTTR, ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates the 
transition and emission probabilities for a hidden Markov model using the 
Baum-Welch algorithm. seq can be a row vector containing a single sequence, 
a matrix with one row per sequence, or a cell array with each cell containing a 
sequence. TRGUESS and EMITGUESS are initial estimates of the transition and 
emission probability matrices. TRGUESS(i,j) is the estimated probability of 
transition from state i to state j. EMITGUESS(i,k) is the estimated probability 
that symbol k is emitted from state i. 

hmmtrain(...,'Algorithm', algorithm) specifies the training algorithm. 
algorithm can be either 'BaumWelch' or 'Viterbi'. The default algorithm is 
'BaumWelch'.

hmmtrain(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. 
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The 
default symbols are integers 1 through N, where N is the number of possible 
emissions.

hmmtrain(...,'Tolerance', tol) specifies the tolerance used for testing 
convergence of the iterative estimation process. The default tolerance is 1e-4.

hmmtrain(...,'Maxiterations', maxiter) specifies the maximum number of 
iterations for the estimation process. The default maximum is 100.

hmmtrain(...,'Verbose', true) returns the status of the algorithm at each 
iteration.

hmmtrain(...,'Pseudoemissions', PSEUDOE) specifies pseudocount emission 
values for the Viterbi training algorithm. Use this argument to avoid zero 
probability estimates for emissions with very low probability that might not be 
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represented in the sample sequence. PSEUDOE should be a matrix of size 
M-by-N, where M is the number of states in the hidden Markov model and N is 
the number of possible emissions. If the  emission does not occur in seq, 
you can set PSEUDOE(i,k) to be a positive number representing an estimate of 
the expected number of such emissions in the sequence seq.

hmmtrain(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount 
transition values for the Viterbi training algorithm. Use this argument to avoid 
zero probability estimates for transitions with very low probability that might 
not be represented in the sample sequence. PSEUDOTR should be a matrix of size 
M-by-M, where M is the number of states in the hidden Markov model. If 
the  transition does not occur in states, you can set PSEUDOTR(i,j) to be 
a positive number representing an estimate of the expected number of such 
transitions in the sequence states.

See “Pseudotransitions and Pseudoemissions” on page 12-239 for more 
information.

If you know the states corresponding to the sequences, use hmmestimate to 
estimate the model parameters.

Tolerance
The input argument 'tolerance' controls how many steps the hmmtrain 
algorithm executes before the function returns an answer. The algorithm 
terminates when all of the following three quantities are less than the value 
that you specify for tolerance:

• The log likelihood that the input sequence seq is generated by the currently 
estimated values of the transition and emission matrices 

• The change in the norm of the transition matrix, normalized by the size of 
the matrix

• The change in the norm of the emission matrix, normalized by the size of the 
matrix

The default value of 'tolerance' is .0001. Increasing the tolerance decreases 
the number of steps the hmmtrain algorithm executes before it terminates.

Maxiterations
The maximum number of iterations, 'maxiterations', controls the maximum 
number of steps the algorithm executes before it terminates. If the algorithm 

i k→

i j→
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executes maxiter iterations before reaching the specified tolerance, the 
algorithm terminates and the function returns a warning. If this occurs, you 
can increase the value of 'maxiterations' to make the algorithm reach the 
desired tolerance before terminating.

See “Using hmmtrain” on page 11-10 for an example of using hmmtrain.

Examples: tr = [0.95,0.05;
 0.10,0.90];

 e = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
   1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];

seq1 = hmmgenerate(100,tr,e);
seq2 = hmmgenerate(200,tr,e);
seqs = {seq1,seq2};
[estTR, estE] = hmmtrain(seqs,tr,e);

See Also hmmgenerate, hmmdecode, hmmestimate, hmmviterbi 
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12hmmviterbiPurpose Calculate the most probable state path for a hidden Markov model sequence

Syntax STATES = hmmvitervi(seq, TRANS, EMIS)
hmmviterbi(..., 'Symbols', SYMBOLS)
hmmviterbi(..., 'Statenames',STATENAMES)

Description STATES = hmmvitervi(seq, TRANS, EMIS) given a sequence, seq, calculates 
the most likely path through the hidden Markov model specified by transition 
probability matrix, TRANS, and emission probability matrix EMIS. TRANS(i,j) 
is the probability of transition from state i to state j. EMIS(i,k) is the 
probability that symbol k is emitted from state i.

Note  The function hmmviterbi begins with the model in state 1 at step 0, 
prior to the first emission. hmmviterbi computes the most likely path based on 
the fact that the model begins in state 1. See “How the Toolbox Generates 
Random Sequences” on page 11-7 for more information.

hmmviterbi(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. 
SYMBOLS can be a numeric array or a cell array of the names of the symbols. The 
default symbols are integers 1 through N, where N is the number of possible 
emissions.

hmmviterbi(...,'Statenames', STATENAMES) specifies the names of the 
states. STATENAMES can be a numeric array or a cell array of the names of the 
states. The default state names are 1 through M, where M is the number of 
states. 

See “Computing the Most Likely Sequence of States” on page 11-9 for an 
example of using hmmviterbi.

Examples trans = [0.95,0.05;
      0.10,0.90];

emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
      1/10, 1/10, 1/10, 1/10, 1/10, 1/2;];

[seq, states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);
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[seq, states] = 
hmmgenerate(100,trans,emis,'Statenames',{'fair';'loaded'});
estimatesStates = 
hmmviterbi(seq,trans,eemis,'Statenames',{'fair';'loaded'});

See Also hmmgenerate, hmmdecode, hmmestimate, hmmtrain



hougen

12-247

12hougenPurpose Hougen-Watson model for reaction kinetics

Syntax yhat = hougen(beta,x)

Description yhat = hougen(beta,x) returns the predicted values of the reaction rate, 
yhat, as a function of the vector of parameters, beta, and the matrix of data, X. 
beta must have 5 elements and X must have three columns.

hougen is a utility function for rsmdemo.

The model form is:

Reference [1] Bates, D., and D. Watts, Nonlinear Regression Analysis and Its 
Applications. Wiley, 1988, pp. 271–272.

See Also rsmdemo

ŷ
β1x2 x3 β5⁄–

1 β2x1 β3x2 β4x3+ + +
-----------------------------------------------------------=
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12hygecdfPurpose Hypergeometric cumulative distribution function (cdf)

Syntax P = hygecdf(X,M,K,N)

Description hygecdf(X,M,K,N) computes the hypergeometric cdf at each of the values in X 
using the corresponding parameters in M, K, and N. Vector or matrix inputs for 
X, M, K, and N must all have the same size. A scalar input is expanded to a 
constant matrix with the same dimensions as the other inputs.

The hypergeometric cdf is

The result, p, is the probability of drawing up to x of a possible K items in N 
drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them are 
defective. What is the probability of drawing zero to two defective floppies if 
you select 10 at random?

p = hygecdf(2,100,20,10)

p =
  0.6812

See Also cdf, hygeinv, hygepdf, hygernd, hygestat
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12hygeinvPurpose Inverse of the hypergeometric cumulative distribution function (cdf)

Syntax X = hygeinv(P,M,K,N)

Description hygeinv(P,M,K,N) returns the smallest integer X such that the 
hypergeometric cdf evaluated at X equals or exceeds P. You can think of P as the 
probability of observing X defective items in N drawings without replacement 
from a group of M items where K are defective.

Examples Suppose you are the Quality Assurance manager for a floppy disk 
manufacturer. The production line turns out floppy disks in batches of 1,000. 
You want to sample 50 disks from each batch to see if they have defects. You 
want to accept 99% of the batches if there are no more than 10 defective disks 
in the batch. What is the maximum number of defective disks should you allow 
in your sample of 50?

x = hygeinv(0.99,1000,10,50)

x =
   3

What is the median number of defective floppy disks in samples of 50 disks 
from batches with 10 defective disks?

x = hygeinv(0.50,1000,10,50)

x =
   0

See Also hygecdf, hygepdf, hygernd, hygestat, icdf
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12hygepdfPurpose Hypergeometric probability density function (pdf)

Syntax Y = hygepdf(X,M,K,N)

Description Y = hygecdf(X,M,K,N) computes the hypergeometric pdf at each of the values 
in X using the corresponding parameters in M, K, and N. X, M, K, and N can be 
vectors, matrices, or multidimensional arrays that all have the same size. A 
scalar input is expanded to a constant array with the same dimensions as the 
other inputs.

The parameters in M, K, and N must all be positive integers, with N ≤ M. The 
values in X must be less than or equal to all the parameter values.

The hypergeometric pdf is

The result, y, is the probability of drawing exactly x of a possible K items in n 
drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them are 
defective. What is the probability of drawing 0 through 5 defective floppy disks 
if you select 10 at random?

p = hygepdf(0:5,100,20,10)

p =
  0.0951  0.2679  0.3182  0.2092  0.0841  0.0215

See Also hygecdf, hygeinv, hygernd, hygestat, pdf
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12hygerndPurpose Random numbers from the hypergeometric distribution

Syntax R = hygernd(M,K,N)
R = hygernd(M,K,N,v)
R = hygernd(M,K,N,m,n)

Description R = hygernd(M,K,N) generates hypergeometric random numbers with 
parameters M, K, and N. M, K, and N can be vectors, matrices, or multidimensional 
arrays that all have the same size, which is also the size of R. A scalar input for 
M, K, or N is expanded to a constant array with the same dimensions as the other 
inputs.

R = hygernd(M,K,N,v) generates hypergeometric random numbers with 
parameters M, K, and N, where v is a row vector. If v is a 1-by-2 vector, R is a 
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional 
array.

R = hygernd(M,K,N,m,n) generates hypergeometric random numbers with 
parameters M, K, and N, where scalars m and n are the row and column 
dimensions of R.

Reproducing the Output of hygernd
hygernd uses the MATLAB function rand to generate random numbers. When 
you call hygernd, you change the current state of rand, and thereby alter the 
output of subsequent calls to hygernd or any other functions that depend on 
rand. If you want to reproduce the output of hygernd, reset the state of rand to 
the same fixed value each time you call hygernd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The result in the following example depends on the current state of 
rand. If you run the code in this example, your results may differ from the 
answer shown here.

Example numbers = hygernd(1000,40,50)
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numbers =

   1

See Also hygecdf, hygeinv, hygepdf, hygestat
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12hygestatPurpose Mean and variance for the hypergeometric distribution

Syntax [MN,V] = hygestat(M,K,N)

Description [MN,V] = hygestat(M,K,N) returns the mean and variance for the 
hypergeometric distribution with parameters specified by M, K, and N. Vector or 
matrix inputs for M, K, and N must have the same size, which is also the size of 
MN and V. A scalar input for M, K, or N is expanded to a constant matrix with the 
same dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters M, K, and N is 
NK/M, and the variance is

Examples The hypergeometric distribution approaches the binomial distribution, where 
p = K / M as M goes to infinity. 

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)

m =
  0.9000  0.9000  0.9000  0.9000

v =
  0.0900  0.7445  0.8035  0.8094

[m,v] = binostat(9,0.1)

m =
  0.9000

v =
  0.8100

See Also hygecdf, hygeinv, hygepdf, hygernd
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12icdfPurpose Inverse of a specified cumulative distribution function (icdf)

Syntax X = icdf('name',P,A1,A2,A3)

Description X = icdf('name',P,A1,A2,A3) returns a matrix of critical values, X, where 
'name' is a string containing the name of the distribution. P is a matrix of 
probabilities, and A1, A2, and A3 are matrices of distribution parameters. 
Depending on the distribution some of the parameters may not be necessary.

P, A1, A2, and A3 can be vectors, matrices, or multidimensional arrays that all 
have the same size. A scalar input is expanded to a constant array with the 
same dimensions as the other inputs.

icdf is a utility routine allowing you to access all the inverse cdfs in the 
Statistics Toolbox using the name of the distribution as a parameter. See 
“Overview of the Distributions” on page 2-45 for the list of available 
distributions.

Examples x = icdf('Normal',0.1:0.2:0.9,0,1)

x =
  -1.2816  -0.5244     0  0.5244  1.2816

x = icdf('Poisson',0.1:0.2:0.9,1:5)

x =

   0   1   3   5   8

See Also betainv, binoinv, cdf, chi2inv, expinv, finv, gaminv, geoinv, hygeinv, 
logninv, nbininv, ncfinv, nctinv, ncx2inv, norminv, pdf, poissinv, random, 
raylinv, tinv, unidinv, unifinv, wblinv
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12inconsistentPurpose Calculate the inconsistency coefficient of a cluster tree

Syntax Y = inconsistent(Z) 
Y = inconsistent(Z,d)

Description Y = inconsistent(Z) computes the inconsistency coefficient for each link of 
the hierarchical cluster tree Z, where Z is an (m-1)-by-3 matrix generated by the 
linkage function. The inconsistency coefficient characterizes each link in a 
cluster tree by comparing its length with the average length of other links at 
the same level of the hierarchy. The higher the value of this coefficient, the less 
similar the objects connected by the link. 

Y = inconsistent(Z,d) computes the inconsistency coefficient for each link 
in the hierarchical cluster tree Z to depth d, where d is an integer denoting the 
number of levels of the cluster tree that are included in the calculation. By 
default, d=2.

The output, Y, is an (m-1)-by-4 matrix formatted as follows. 

For each link, k, the inconsistency coefficient is calculated as:

For leaf nodes, nodes that have no further nodes under them, the inconsistency 
coefficient is set to 0.

Example rand('state',12);
X = rand(10,2);
Y = pdist(X);

Column Description

1 Mean of the lengths of all the links included in the calculation.

2 Standard deviation of all the links included in the calculation.

3 Number of links included in the calculation.

4 Inconsistency coefficient.

Y k 4,( ) z k 3,( ) Y k 1,( )–( ) Y k 2,( )⁄=
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Z = linkage(Y,'centroid');
W = inconsistent(Z,3)

W =

  0.1313     0  1.0000     0
  0.1386     0  1.0000     0
  0.1727  0.0482  2.0000  0.7071
  0.2391     0  1.0000     0
  0.2242  0.0955  3.0000  1.0788
  0.2357  0.1027  3.0000  0.9831
  0.3222  0.1131  3.0000  0.9772
  0.3376  0.1485  6.0000  1.4883
  0.4920  0.1341  4.0000  1.1031

See Also cluster, cophenet, clusterdata, dendrogram, linkage, pdist, squareform
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12iqrPurpose Interquartile range (IQR) of a sample

Syntax y = iqr(X)
iqr(X,dim)

Description y = iqr(X) returns the interquartile range of the values in X. For vector input, 
y is the difference between the 75th and the 25th percentiles of the sample in 
X. For matrix input, y is a row vector containing the interquartile range of each 
column of X. For N-dimensional arrays, iqr operates along the first 
non-singleton dimension of X.

iqr(X,dim) calculates the interquartile range along the dimension dim of X.

Remarks The IQR is a robust estimate of the spread of the data, since changes in the 
upper and lower 25% of the data do not affect it. If there are outliers in the data, 
then the IQR is more representative than the standard deviation as an 
estimate of the spread of the body of the data. The IQR is less efficient than the 
standard deviation as an estimate of the spread when the data is all from the 
normal distribution.

Multiply the IQR by 0.7413 to estimate σ (the second parameter of the normal 
distribution.)

Examples This Monte Carlo simulation shows the relative efficiency of the IQR to the 
sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413 ∗ iqr(x);
efficiency = (norm(s - 1)./norm(s_IQR - 1)).^2

efficiency =

  0.3297

See Also std, mad, range
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12iwishrndPurpose Generate inverse Wishart random matrix

Syntax W=iwishrnd(SIGMA,df)
W=iwishrnd(SIGMA,df,DI)
[W,DI]=iwishrnd(SIGMA,df)

Description W=iwishrnd(SIGMA,df) generates a random matrix W whose inverse has the 
Wishart distribution with covariance matrix inv(SIGMA) and with df degrees 
of freedom. SIGMA can be a vector, a matrix, or a multidimensional array.

W=iwishrnd(SIGMA,df,DI) expects DI to be the Cholesky factor of the inverse 
of SIGMA. DI is an array of the same size as SIGMA. If you call iwishrnd multiple 
times using the same value of SIGMA, it is more efficient to supply DI instead of 
computing it each time.

[W,DI]=iwishrnd(SIGMA,df) returns DI so you can provide it as input in 
future calls to iwishrnd. 

Reproducing the Output of iwishrnd
iwishrnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call iwishrnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to iwishrnd or any 
other functions that depend on rand or randn. If you want to reproduce the 
output of iwishrnd, reset the states of rand and randn to the same fixed values 
each time you call iwishrnd. For an example of how to do this, and a list of the 
Statistics Toolbox functions that depend on rand or randn, see “Reproducing 
the Output of Random Number Functions” on page 2-46.

See Also wishrnd
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12jbtestPurpose Jarque-Bera test for goodness-of-fit to a normal distribution

Syntax H = jbtest(X)
H = jbtest(X,alpha)
[H,P,JBSTAT,CV] = jbtest(X,alpha)

Description H = jbtest(X) performs the Jarque-Bera test on the input data vector X and 
returns H, the result of the hypothesis test. The result is H=1 if you can reject 
the hypothesis that X has a normal distribution, or H=0 if you cannot reject that 
hypothesis. you reject the hypothesis if the test is significant at the 5% level.

The Jarque-Bera test evaluates the hypothesis that X has a normal distribution 
with unspecified mean and variance, against the alternative that X does not 
have a normal distribution. The test is based on the sample skewness and 
kurtosis of X. For a true normal distribution, the sample skewness should be 
near 0 and the sample kurtosis should be near 3. The Jarque-Bera test 
determines whether the sample skewness and kurtosis are unusually different 
than their expected values, as measured by a chi-square statistic. 

The Jarque-Bera test is an asymptotic test, and should not be used with small 
samples. You may want to use lillietest in place of jbtest for small samples.

H = jbtest(X,alpha) performs the Jarque-Bera test at the 100*alpha% level 
rather than the 5% level, where alpha must be between 0 and 1.

[H,P,JBSTAT,CV] = jbtest(X,alpha) returns three additional outputs. P is 
the p-value of the test, JBSTAT is the value of the test statistic, and CV is the 
critical value for determining whether to reject the null hypothesis. 

Example you can use jbtest to determine if car weights follow a normal distribution.

load carsmall
[h,p,j] = jbtest(Weight)

h =
   1

p =
   0.026718



jbtest

12-260

j =
    7.2448

With a p-value of 2.67%, you reject the hypothesis that the distribution is 
normal. With a log transformation, the distribution becomes closer to normal 
but is still significantly different at the 5% level.

[h,p,j] = jbtest(log(Weight))

h =
   1

p =
   0.043474

j =
    6.2712

See lillietest for a different test of the same hypothesis.

Reference [1] Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lutkepohl, and T.-C. Lee. 
Introduction to the Theory and Practice of Econometrics, Wiley, 1988.

See Also hist, kstest2, lillietest
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12kmeansPurpose K-means clustering

Syntax IDX = kmeans(X,k)
[IDX,C] = kmeans(X,k)
[IDX,C,sumd] = kmeans(X,k)
[IDX,C,sumd,D] = kmeans(X,k)
[...] = kmeans(...,'param1',val1,'param2',val2,...)

Description IDX = kmeans(X, k) partitions the points in the n-by-p data matrix X into k 
clusters. This iterative partitioning minimizes the sum, over all clusters, of the 
within-cluster sums of point-to-cluster-centroid distances. Rows of X 
correspond to points, columns correspond to variables. kmeans returns an 
n-by-1 vector IDX containing the cluster indices of each point. By default, 
kmeans uses squared Euclidean distances.

[IDX,C] = kmeans(X,k) returns the k cluster centroid locations in the k-by-p 
matrix C.

[IDX,C,sumd] = kmeans(X,k) returns the within-cluster sums of 
point-to-centroid distances in the 1-by-k vector sumd.

[IDX,C,sumd,D] = kmeans(X,k) returns distances from each point to every 
centroid in the n-by-k matrix D.

[...] = kmeans(...,'param1',val1,'param2',val2,...) enables you to 
specify optional parameter name-value pairs to control the iterative algorithm 
used by kmeans. Valid parameters are the following.

Parameter Value

'distance' Distance measure, in p-dimensional space, that kmeans 
minimizes with respect to. kmeans computes centroid 
clusters differently for the different supported distance 
measures:

'sqEuclidean' Squared Euclidean distance (default). 
Each centroid is the mean of the points in 
that cluster.
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'cityblock' Sum of absolute differences, i.e., L1. Each 
centroid is the component-wise median of 
the points in that cluster.

'cosine' One minus the cosine of the included 
angle between points (treated as vectors). 
Each centroid is the mean of the points in 
that cluster, after normalizing those 
points to unit Euclidean length.

'correlation' One minus the sample correlation 
between points (treated as sequences of 
values). Each centroid is the 
component-wise mean of the points in 
that cluster, after centering and 
normalizing those points to zero mean 
and unit standard deviation.

'Hamming' Percentage of bits that differ (only 
suitable for binary data). Each centroid is 
the component-wise median of points in 
that cluster.

'start' Method used to choose the initial cluster centroid positions, 
sometimes known as “seeds.” Valid starting values are:

'sample' Select k observations from X at random 
(default).

'uniform' Select k points uniformly at random from 
the range of X. Not valid with Hamming 
distance.

'cluster' Perform a preliminary clustering phase 
on a random 10% subsample of X. This 
preliminary phase is itself initialized 
using 'sample'.

Parameter Value
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Matrix k-by-p matrix of centroid starting 
locations. In this case, you can pass in [] 
for k, and kmeans infers k from the first 
dimension of the matrix. You can also 
supply a 3-dimensional array, implying a 
value for the 'replicates' parameter 
from the array's third dimension.

'replicates' Number of times to repeat the clustering, each with a new 
set of initial cluster centroid positions. kmeans returns the 
solution with the lowest value for sumd. You can supply 
'replicates' implicitly by supplying a 3-dimensional 
array as the value for the 'start' parameter.

'maxiter' Maximum number of iterations. Default is 100.

'emptyaction' Action to take if a cluster loses all its member observations. 
Can be one of:

'error' Treat an empty cluster as an error. 
(default)

'drop' Remove any clusters that become empty. 
kmeans sets the corresponding return 
values in C and D to NaN.

'singleton' Create a new cluster consisting of the one 
point furthest from its centroid.

'display' Controls display of output. 

'off' Display no output.

'iter' Display information about each iteration 
during minimization, including the 
iteration number, the optimization phase 
(see “Algorithm”), the number of points 
moved, and the total sum of distances. 

Parameter Value
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Algorithm kmeans uses a two-phase iterative algorithm to minimize the sum of 
point-to-centroid distances, summed over all k clusters:

• The first phase uses what the literature often describes as “batch” updates, 
where each iteration consists of reassigning points to their nearest cluster 
centroid, all at once, followed by recalculation of cluster centroids. You can 
think of this phase as providing a fast but potentially only approximate 
solution as a starting point for the second phase. 

• The second phase uses what the literature often describes as “online” 
updates, where points are individually reassigned if doing so will reduce the 
sum of distances, and cluster centroids are recomputed after each 
reassignment. Each iteration during this second phase consists of one pass 
though all the points. 

kmeans can converge to a local optimum, in this case, a partition of points in 
which moving any single point to a different cluster increases the total sum 
of distances. This problem can only be solved by a clever (or lucky, or 
exhaustive) choice of starting points.

See Also clusterdata, linkage, silhouette

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

[2] Spath, H., Cluster Dissection and Analysis: Theory, FORTRAN Programs, 
Examples, translated by J. Goldschmidt, Halsted Press, 1985, 226 pp.

'final' Display a summary of each replication.

'notify' Display only warning and error 
messages. (default)

Parameter Value
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12kruskalwallisPurpose Kruskal-Wallis nonparametric one-way Analysis of Variance (ANOVA)

Syntax p = kruskalwallis(X)
p = kruskalwallis(X,group)
p = kruskalwallis(X,group,'displayopt')
[p,table] = kruskalwallis(...)
[p,table,stats] = kruskalwallis(...)

Description p = kruskalwallis(X) performs a Kruskal-Wallis test to compare samples 
from two or more groups. Each column of the m-by-n matrix X represents an 
independent sample containing m mutually independent observations. The 
function compares the medians of the samples in X, and returns the p-value for 
the null hypothesis that all samples are drawn from the same population (or 
equivalently, from different populations with the same distribution). Note that 
the Kruskal-Wallis test is a nonparametric version of the classical one-way 
ANOVA, and an extension of the Wilcoxon rank sum test to more than two 
groups.

If the p-value is near zero, this casts doubt on the null hypothesis and suggests 
that at least one sample median is significantly different from the others. The 
choice of a critical p-value to determine whether the result is judged 
“statistically significant” is left to the researcher. It is common to declare a 
result significant if the p-value is less than 0.05 or 0.01.

The kruskalwallis function displays two figures. The first figure is a standard 
ANOVA table, calculated using the ranks of the data rather than their numeric 
values. Ranks are found by ordering the data from smallest to largest across all 
groups, and taking the numeric index of this ordering. The rank for a tied 
observation is equal to the average rank of all observations tied with it. For 
example, the following table shows the ranks for a small sample.

The entries in the ANOVA table are the usual sums of squares, degrees of 
freedom, and other quantities calculated on the ranks. The usual F statistic is 

X value 1.4 2.7 1.6 1.6 3.3 0.9 1.1

Rank 3 6 4.5 4.5 7 1 2
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replaced by a chi-square statistic. The p-value measures the significance of the 
chi-square statistic.

The second figure displays box plots of each column of X (not the ranks of X). 

p = kruskalwallis(X,group) uses the values in group (a character array or 
cell array) as labels for the box plot of the samples in X, when X is a matrix. 
Each row of group contains the label for the data in the corresponding column 
of X, so group must have length equal to the number of columns in X.

When X is a vector, kruskalwallis performs a Kruskal-Wallis test on the 
samples contained in X, as indexed by input group (a vector, character array, 
or cell array). Each element in group identifies the group (i.e., sample) to which 
the corresponding element in vector X belongs, so group must have the same 
length as X. The labels contained in group are also used to annotate the box 
plot. 

It is not necessary to label samples sequentially (1, 2, 3, ...). For example, if X 
contains measurements taken at three different temperatures, -27°, 65°, and 
110°, you could use these numbers as the sample labels in group. If a row of 
group contains an empty cell or empty string, that row and the corresponding 
observation in X are disregarded. NaNs in either input are similarly ignored. 

p = kruskalwallis(X,group,'displayopt') enables the table and box plot 
displays when 'displayopt' is 'on' (default) and suppresses the displays 
when 'displayopt' is 'off'.

[p,table] = kruskalwallis(...) returns the ANOVA table (including 
column and row labels) in cell array table. (You can copy a text version of the 
ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = kruskalwallis(...) returns a stats structure that you 
can use to perform a follow-up multiple comparison test. The kruskalwallis 
test evaluates the hypothesis that all samples come from populations that have 
the same median, against the alternative that the medians are not all the 
same. Sometimes it is preferable to perform a test to determine which pairs are 
significantly different, and which are not. You can use the multcompare 
function to perform such tests by supplying the stats structure as input.
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Assumptions
The Kruskal-Wallis test makes the following assumptions about the data in X:

• All samples come from populations having the same continuous distribution, 
apart from possibly different locations due to group effects.

• All observations are mutually independent.

The classical one-way ANOVA test replaces the first assumption with the 
stronger assumption that the populations have normal distributions.

Example This example compares the material strength study used with the anova1 
function, to see if the nonparametric Kruskal-Wallis procedure leads to the 
same conclusion. The example studies the strength of beams made from three 
alloys: 

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

This example uses both classical and Kruskal-Wallis anova, omitting displays:

anova1(strength,alloy,'off')

ans =
 1.5264e-004

kruskalwallis(strength,alloy,'off')

ans =
  0.0018

Both tests find that the three alloys are significantly different, though the 
result is less significant according to the Kruskal-Wallis test. It is typical that 
when a data set has a reasonable fit to the normal distribution, the classical 
ANOVA test is more sensitive to differences between groups.

To understand when a nonparametric test may be more appropriate, let’s see 
how the tests behave when the distribution is not normal. You can simulate 
this by replacing one of the values by an extreme value (an outlier).
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strength(20)=120;
anova1(strength,alloy,'off')

ans =
  0.2501

kruskalwallis(strength,alloy,'off')

ans =
  0.0060

Now the classical ANOVA test does not find a significant difference, but the 
nonparametric procedure does. This illustrates one of the properties of 
nonparametric procedures – they are often not severely affected by changes in 
a small portion of the data.

Reference [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker, 
1985.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 
1973.

See Also anova1, boxplot, friedman, multcompare, ranksum
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12ksdensityPurpose Compute density estimate using a kernel smoothing method

Syntax [f,xi] = ksdensity(x)
f = ksdensity(x,xi)
[f,xi,u] = ksdensity(...)
[...] = ksdensity(...,'param1',val1,'param2',val2,...)

Description [f,xi] = ksdensity(x) computes a probability density estimate of the 
sample in the vector x. f is the vector of density values evaluated at the points 
in xi. The estimate is based on a normal kernel function, using a window 
parameter ('width') that is a function of the number of points in x. The density 
is evaluated at 100 equally-spaced points covering the range of the data in x. 

f = ksdensity(x,xi) specifies the vector xi of values where the density 
estimate is to be evaluated. 

[f,xi,u] = ksdensity(...) also returns the width of the kernel smoothing 
window.

[...] = ksdensity(...,'param1',val1,'param2',val2,...) specifies 
parameter name/value pairs to control the density estimation. Valid 
parameters and their possible values are: '

'censoring' A logical vector of the same length as x, indicating which          
entries are censoring times. Default is no censoring.

'kernel' The type of kernel smoother to use. Choose the value as 
'normal' (default), 'box', 'triangle', or 'epanechnikov'.

Alternatively, you can specify some other function, as a 
function handle or as a string, e.g., @normpdf or 'normpdf'. 
The function must take a single argument that is an array of 
distances between data values and places where the density 
is evaluated. It must return an array of the same size 
containing corresponding values of the kernel function. 

'npoints' The number of equally-spaced points in xi. Default is 100.
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Examples This example generates a mixture of two normal distributions, and plots the 
estimated density. 

x = [randn(30,1); 5+randn(30,1)];
[f,xi] = ksdensity(x); 
plot(xi,f); 

'support' • 'unbounded' allows the density to extend over the whole 
real line (default).

• 'positive' restricts the density to positive values.

• A two-element vector gives finite lower and upper bounds 
for the support of the density.

'weights' Vector of the same length as x, assigning weight to each x 
value. The default is equal weights).

'width' The bandwidth of the kernel smoothing window. The default 
is optimal for estimating normal densities, but you may 
want to choose a smaller value to reveal features such as 
multiple modes. 
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References [1] Bowman, A. W., and A. Azzalini, Applied Smoothing Techniques for Data 
Analysis, Oxford University Press, 1997.

See Also hist, @ (function handle)
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12kstestPurpose Kolmogorov-Smirnov test of the distribution of one sample

Syntax H = kstest(X)
H = kstest(X,cdf)
H = kstest(X,cdf,alpha)
H = kstest(X,cdf,alpha,tail)
[H,P] = kstest(...)
[H,P,KSSTAT,] = kstest(...)
[H,P,KSSTAT,CV] = kstest(...)

Description H = kstest(X) performs a Kolmogorov-Smirnov test to compare the values in 
the data vector X with a standard normal distribution (that is, a normal 
distribution having mean 0 and variance 1). The null hypothesis for the 
Kolmogorov-Smirnov test is that X has a standard normal distribution. The 
alternative hypothesis that X does not have that distribution. The result H is 1 
if you can reject the hypothesis that X has a standard normal distribution, or 0 
if you cannot reject that hypothesis. You reject the hypothesis if the test is 
significant at the 5% level.

For each potential value x, the Kolmogorov-Smirnov test compares the 
proportion of values less than x with the expected number predicted by the 
standard normal distribution. The kstest function uses the maximum 
difference over all x values is its test statistic. Mathematically, this can be 
written as

where  is the proportion of X values less than or equal to x and  is the 
standard normal cumulative distribution function evaluated at x.

H = kstest(X,cdf) compares the distribution of X to the hypothesized 
continuous distribution defined by the two-column matrix cdf. Column one 
contains a set of possible x values, and column two contains the corresponding 
hypothesized cumulative distribution function values . If possible, you 
should define cdf so that column one contains the values in X. If there are 
values in X not found in column one of cdf, kstest will approximate  by 
interpolation. All values in X must lie in the interval between the smallest and 
largest values in the first column of cdf. If the second argument is empty 

max F x( ) G x( )–( )

F x( ) G x( )

G x( )

G X( )
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(cdf = []), kstest uses the standard normal distribution as if there were no 
second argument.

The Kolmogorov-Smirnov test requires that cdf be predetermined. It is not 
accurate if cdf is estimated from the data. To test X against a normal 
distribution without specifying the parameters, use lillietest instead.

H = kstest(X,cdf,alpha) specifies the significance level alpha for the test. 
The default is 0.05.

H = kstest(X,cdf,alpha,tail) specifies the type of test in the string tail. 
tail can have one of the following values:

• 'unequal'

• 'larger'

• 'smaller'

The tests specified by these values are described in “Tests Specified by tail” on 
page 12-273.

[H,P,KSSTAT,CV] = kstest(X,cdf,alpha,tail) also returns the observed 
p-value P, the observed Kolmogorov-Smirnov statistic KSSTAT, and the cutoff 
value CV for determining if KSSTAT is significant. If the return value of CV is NaN, 
then kstest determined the significance calculating a p-value according to an 
asymptotic formula rather than by comparing KSSTAT to a critical value.

Tests Specified by tail
Let S(x) be the empirical c.d.f. estimated from the sample vector X, let F(x) be 
the corresponding true (but unknown) population c.d.f., and let CDF be the 
known input c.d.f. specified under the null hypothesis. The one-sample 
Kolmogorov-Smirnov test tests the null hypothesis that F(x) = CDF for all x 
against the alternative specified by one of the following possible values of tail:

tail Alternative Hypothesis Test Statistic

'unequal' F(x) does not equal CDF (two-sided test) max|S(x) - CDF|

'larger' F(x) > CDF (one-sided test) max[S(x) - CDF]

'smaller' F(x) < CDF (one-sided test) max[S(x) - CDF]
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Examples Example 1. Let’s generate some evenly spaced numbers and perform a 
Kolmogorov-Smirnov test to see how well they fit to a standard normal 
distribution:

x = -2:1:4
x =
  -2  -1   0   1   2   3   4

[h,p,k,c] = kstest(x,[],0.05,0)

h =
   0
p =
   0.13632
k =
   0.41277
c =
   0.48342

You cannot reject the null hypothesis that the values come from a standard 
normal distribution. Although intuitively it seems that these evenly-spaced 
integers could not follow a normal distribution, this example illustrates the 
difficulty in testing normality in small samples.

To understand the test, it is helpful to generate an empirical cumulative 
distribution plot and overlay the theoretical normal distribution.

xx = -3:.1:5;
cdfplot(x)
hold on
plot(xx,normcdf(xx),'r--')
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The Kolmogorov-Smirnov test statistic is the maximum difference between 
these curves. It appears that this maximum of 0.41277 occurs as the data 
approaches x = 1.0 from below. You can see that the empirical curve has the 
value 3/7 here, and you can easily verify that the difference between the curves 
is 0.41277.

normcdf(1) - 3/7
ans =
   0.41277

You can also perform a one-sided test. Setting tail = -1indicates that the 
alternative is , so the test statistic counts only points where this 
inequality is true.

[h,p,k] = kstest(x, [], .05, -1)

h =
   0

p =
   0.068181

k =
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   0.41277

The test statistic is the same as before because in fact  at x = 1.0. 
However, the p-value is smaller for the one-sided test. If you carry out the other 
one-sided test, you see that the test statistic changes, and is the difference 
between the two curves near x = -1.0.

[h,p,k] = kstest(x,[],0.05,1)

h =
   0

p =
   0.77533

k =
   0.12706

2/7 - normcdf(-1)

ans =
   0.12706

Example 2. Now let’s generate random numbers from a Weibull distribution, 
and test against that Weibull distribution and an exponential distribution.

x = wblrnd(1, 2, 100, 1);
kstest(x, [x wblcdf(x, 1, 2)])

ans =
   0

kstest(x, [x expcdf(x, 1)])

ans =
   1

See Also kstest2, lillietest

F G<
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12kstest2Purpose Kolmogorov-Smirnov test to compare the distribution of two samples

Syntax H = kstest2(X1,X2)
H = kstest2(X1,X2,alpha,tail)
[H,P,KSSTAT] = kstest2(X1,X2,cdf,alpha,tail)

Description H = kstest2(X1,X2) performs a two-sample Kolmogorov-Smirnov test to 
compare the distributions of values in the two data vectors X1 and X2 of length 
n1 and n2, respectively, representing random samples from some underlying 
distribution(s). The null hypothesis for this test is that X1 and X2 are drawn 
from the same continuous distribution. The alternative hypothesis is that they 
are drawn from different continuous distributions. The result H is 1 if you can 
reject the hypothesis that the distributions are the same, or 0 if you cannot 
reject that hypothesis. You reject the hypothesis if the test is significant at the 
5% level.

For each potential value x, the Kolmogorov-Smirnov test compares the 
proportion of X1 values less than x with proportion of X2 values less than x. The 
kstest2 function uses the maximum difference over all x values is its test 
statistic. Mathematically, this can be written as

where  is the proportion of X1 values less than or equal to x and  is 
the proportion of X2 values less than or equal to x. Missing observations, 
indicated by NaNs are ignored.

H = kstest2(X1,X2,alpha) performs the test at the (100*alpha)% significance 
level.

The decision to reject the null hypothesis occurs when the significance level, 
alpha, equals or exceeds the P-value.

H = kstest2(X1,X2,alpha,tail) accepts a string tail that specifies the type 
of test. tail can have one of the following values:

• 'unequal'
• 'larger'
• 'smaller'

max F1 x( ) F2 x( )–( )

F1 x( ) F2 x( )



kstest2

12-278

The tests specified by these values are described in “Tests Specified by tail” on 
page 12-278

[H,P] = kstest2(...) also returns the asymptotic p-value P. The asymptotic 
p-value becomes very accurate for large sample sizes, and is believed to be 
reasonably accurate for sample sizes n1 and n2 such that (n1*n2)/(n1 + n2) 
>= 4.

[H,P,ksstat] = KSTEST2(...) also returns the Kolmogorov-Smirnov test 
statistic KSSTAT defined above for the test type indicated by tail.

Tests Specified by tail
Let S1(x) and S2(x) be the empirical distribution functions from the sample 
vectors X1 and X2, respectively, and F1(x) and F2(x) be the corresponding true 
(but unknown) population CDFs. The two-sample Kolmogorov-Smirnov test 
tests the null hypothesis that F1(x) = F2(x), for all x, against the alternative 
hypothesis specified by tail, as described in the following table. 

Examples The following commands compare the distributions of a small evenly-spaced 
sample and a larger normal sample:

x = -1:1:5
y = randn(20,1);
[h,p,k] = kstest2(x,y)

h =
   1
p =
  0.0403
k =
  0.5714

tail Alternative Hypothesis Test Statistic

'unequal' F1(x) does not equal F2(x) (two-sided 
test)

max|S1(x) - S2(x)|

'larger' F1(x) > F2(x) (one-sided test) max[S1(x) - S2(x)]

'smaller' F(x) < F2(x) (one-sided test) max[S2(x) - S1(x)]
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The difference between their distributions is significant at the 5% level 
(p = 4%). To visualize the difference, you can overlay plots of the two empirical 
cumulative distribution functions. The Kolmogorov-Smirnov statistic is the 
maximum difference between these functions. After changing the color and line 
style of one of the two curves, you can see that the maximum difference appears 
to be near x = 1.9. You can also verify that the difference equals the k value 
that kstest2 reports:

cdfplot(x)
hold on
cdfplot(y)
h = findobj(gca,'type','line');
set(h(1),'linestyle',':','color','r')

1 - 3/7

ans =
   0.5714

See Also kstest, lillietest
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12kurtosisPurpose Sample kurtosis

Syntax k = kurtosis(X)
k = kurtosis(X,flag)
k = kurtosis(X,flag,dim)

Description k = kurtosis(X) returns the sample kurtosis of X. For vectors, kurtosis(x) is 
the kurtosis of the elements in the vector x. For matrices kurtosis(X) returns 
the sample kurtosis for each column of X. For N-dimensional arrays, kurtosis 
operates along the first non-singleton dimension of X.

k = kurtosis(X,flag) specifies whether to correct for bias (flag = 0) or not 
(flag = 1, the default). When X represents a sample from a population, the 
kurtosis of X is biased, that is, it will tend to differ from the population kurtosis 
by a systematic amount that depends on the size of the sample. You can set 
flag = 0 to correct for this systematic bias.

kurtosis(X,flag,dim) takes the kurtosis along dimension dim of X.

kurtosis treats NaNs as missing values and removes them.

Remarks Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the 
normal distribution is 3. Distributions that are more outlier-prone than the 
normal distribution have kurtosis greater than 3; distributions that are less 
outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as

where  is the mean of x,  is the standard deviation of x, and E(t) represents 
the expected value of the quantity t.

Note  Some definitions of kurtosis subtract 3 from the computed value, so 
that the normal distribution has kurtosis of 0. The kurtosis function does not 
use this convention.

k E x µ–( )4

σ4
------------------------=

µ σ
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Example X = randn([5 4])

X =
  1.1650  1.6961  -1.4462  -0.3600
  0.6268  0.0591  -0.7012  -0.1356
  0.0751  1.7971  1.2460  -1.3493
  0.3516  0.2641  -0.6390  -1.2704
  -0.6965  0.8717  0.5774  0.9846

k = kurtosis(X)

k =
  2.1658  1.2967  1.6378  1.9589

See Also mean, moment, skewness, std, var
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12leveragePurpose Leverage values for a regression

Syntax h = leverage(data)
h = leverage(data,'model')

Description h = leverage(data) finds the leverage of each row (point) in the matrix data 
for a linear additive regression model. 

h = leverage(data,'model') finds the leverage on a regression, using a 
specified model type, where 'model' can be one of these strings:

• 'linear' – includes constant and linear terms

• 'interaction' – includes constant, linear, and cross product terms

• 'quadratic' – includes interactions and squared terms

• 'purequadratic' – includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a regression 
due to its location in the space of the inputs.

Example One rule of thumb is to compare the leverage to 2p/n where n is the number of 
observations and p is the number of parameters in the model. For the Hald 
data set this value is 0.7692.

load hald
h = max(leverage(ingredients,'linear'))

h =
  0.7004

Since 0.7004 < 0.7692, there are no high leverage points using this rule.

Algorithm [Q,R] = qr(x2fx(data,'model'));

leverage = (sum(Q'.*Q'))'

Reference [1] Goodall, C. R., “Computation Using the QR Decomposition,” Handbook in 
Statistics, Volume 9. Statistical Computing, ed. C. R. Rao. 
Elsevier/North-Holland, 1993.

See Also regstats
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12lhsdesignPurpose Generate a latin hypercube sample

Syntax X = lhsdesign(n,p)
X = lhsdesign(...,'smooth','off')
X = lhsdesign(...,'criterion','c')
X = lhsdesign(...,'iterations',k)

Description X = lhsdesign(n,p) generates a latin hypercube sample X containing n values 
on each of p variables. For each column, the n values are randomly distributed 
with one from each interval (0,1/n), (1/n,2/n), ..., (1-1/n,1), and they are 
randomly permuted.

X = lhsdesign(...,'smooth','off') produces points at the midpoints of the 
above intervals: 0.5/n, 1.5/n, ..., 1-0.5/n. The default is 'on'.

X = lhsdesign(...,'criterion','c') iteratively generates latin hypercube 
samples to find the best one according to the criterion 'c', which can be: 

X = lhsdesign(...,'iterations',k) iterates up to k times in an attempt to 
improve the design according to the specified criterion. Default is K = 5. 

Latin hypercube designs are useful when you need a sample that is random but 
that is guaranteed to be relatively uniformly distributed over each dimension. 

See Also lhsnorm, unifrnd

'none' No iteration 

'maximin' Maximize minimum distance between points

'correlation' Reduce correlation 
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12lhsnormPurpose Generate a latin hypercube sample with a normal distribution

Syntax X = lhsnorm(mu,SIGMA,n)
X = lhsnorm(mu,SIGMA,n,'onoff')

Description X = lhsnorm(mu,SIGMA,n) generates a latin hypercube sample X of size n from 
the multivariate normal distribution with mean vector mu and covariance 
matrix SIGMA. X is similar to a random sample from the multivariate normal 
distribution, but the marginal distribution of each column is adjusted so that 
its sample marginal distribution is close to its theoretical normal distribution.

X = lhsnorm(mu,SIGMA,n,'onoff') controls the amount of smoothing in the 
sample. If 'onoff' is 'off', each column has points equally spaced on the 
probability scale. In other words, each column is a permutation of the values 
G(0.5/n), G(1.5/n), ..., G(1-0.5/n) where G is the inverse normal 
cumulative distribution for that column's marginal distribution. If 'onoff' is 
'on' (the default), each column has points uniformly distributed on the 
probability scale. For example, in place of 0.5/n you use a value having a 
uniform distribution on the interval (0/n,1/n).

See Also lhsdesign, mvnrnd
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12lillietestPurpose Lilliefors test for goodness of fit to a normal distribution

Syntax H = lillietest(X)
H = lillietest(X,alpha)
[H,P,LSTAT,CV] = lillietest(X,alpha)

Description H = lillietest(X) performs the Lilliefors test on the input data vector X and 
returns H, the result of the hypothesis test. The result H is 1 if you can reject the 
hypothesis that X has a normal distribution, or 0 if you cannot reject that 
hypothesis. you reject the hypothesis if the test is significant at the 5% level.

The Lilliefors test evaluates the hypothesis that X has a normal distribution 
with unspecified mean and variance, against the alternative that X does not 
have a normal distribution. This test compares the empirical distribution of X 
with a normal distribution having the same mean and variance as X. It is 
similar to the Kolmogorov-Smirnov test, but it adjusts for the fact that the 
parameters of the normal distribution are estimated from X rather than 
specified in advance. 

H = lillietest(X,alpha) performs the Lilliefors test at the 100*alpha% 
level rather than the 5% level. alpha must be between 0.01 and 0.2.

[H,P,LSTAT,CV] = lillietest(X,alpha) returns three additional outputs. P 
is the p-value of the test, obtained by linear interpolation in a set of table 
created by Lilliefors. LSTAT is the value of the test statistic. CV is the critical 
value for determining whether to reject the null hypothesis. If the value of 
LSTAT is outside the range of the Lilliefors table, P is returned as NaN but H 
indicates whether to reject the hypothesis.

Example Do car weights follow a normal distribution? Not exactly, because weights are 
always positive, and a normal distribution allows both positive and negative 
values. However, perhaps the normal distribution is a reasonable 
approximation.

load carsmall
[h p l c] = lillietest(Weight);
[h p l c]

ans =
  1.0000  0.0232  0.1032  0.0886
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The Lilliefors test statistic of 0.10317 is larger than the cutoff value of 0.0886 
for a 5% level test, so you reject the hypothesis of normality. In fact, the p-value 
of this test is approximately 0.02.

To visualize the distribution, you can make a histogram. This graph shows that 
the distribution is skewed to the right – from the peak near 2250, the 
frequencies drop off abruptly to the left but more gradually to the right.

hist(Weight)

Sometimes it is possible to transform a variable to make its distribution more 
nearly normal. A log transformation, in particular, tends to compensate for 
skewness to the right.

[h p l c] = lillietest(log(Weight))

ans =
      0   0.13481   0.077924    0.0886

Now the p-value is approximately 0.13, so you do not reject the hypothesis.

Reference [1] Conover, W. J., Practical Nonparametric Statistics. Wiley, 1980.

See Also hist, jbtest, kstest2
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12linkagePurpose Create hierarchical cluster tree

Syntax Z = linkage(Y) 
Z = linkage(Y,'method') 

Description Z = linkage(Y) creates a hierarchical cluster tree, using the Single Linkage 
algorithm. The input Y is a distance vector of length -by-1, 
where m is the number of objects in the original data set. You can generate 
such a vector with the pdist function. Y can also be a more general 
dissimilarity matrix conforming to the output format of pdist. 

Z = linkage(Y,'method') computes a hierarchical cluster tree using the 
algorithm specified by 'method', where 'method' can be any of the following 
character strings, whose definitions are explained in “Mathematical 
Definitions” on page 12-288.

 

Note  When 'method' is 'centroid', 'median', or 'ward', the output of 
linkage is meaningful only if the input Y contains Euclidean distances. 

The output, Z, is an (m-1)-by-3 matrix containing cluster tree information. The 
leaf nodes in the cluster hierarchy are the objects in the original data set, 
numbered from 1 to m. They are the singleton clusters from which all higher 

'single' Shortest distance (default)

'complete' Furthest distance

'average' Unweighted average distance (UPGMA) (also 
known as group average)

'weighted' Weighted average distance (WPGMA) 

'centroid' Centroid distance (UPGMC)

'median' Weighted center of mass distance (WPGMC)

'ward' Inner squared distance (minimum variance 
algorithm)

m 1–( ) m 2⁄⋅( )
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clusters are built. Each newly formed cluster, corresponding to row i in Z, is 
assigned the index m+i, where m is the total number of initial leaves.

Columns 1 and 2, Z(i,1:2), contain the indices of the objects that were linked 
in pairs to form a new cluster. This new cluster is assigned the index value m+i. 
There are m-1 higher clusters that correspond to the interior nodes of the 
hierarchical cluster tree. 

Column 3, Z(i,3), contains the corresponding linkage distances between the 
objects paired in the clusters at each row i. 

For example, consider a case with 30 initial nodes. If the tenth cluster formed 
by the linkage function combines object 5 and object 7 and their distance is 
1.5, then row 10 of Z will contain the values (5, 7, 1.5). This newly formed 
cluster will have the index 10+30=40. If cluster 40 shows up in a later row, that 
means this newly formed cluster is being combined again into some bigger 
cluster.

Mathematical Definitions
The 'method' argument is a character string that specifies the algorithm used 
to generate the hierarchical cluster tree information. These linkage algorithms 
are based on different ways of measuring the distance between two clusters of 
objects. If nr is the number of objects in cluster r and ns is the number of objects 
in cluster s, and xri is the ith object in cluster r, the definitions of these various 
measurements are as follows: 

• Single linkage, also called nearest neighbor, uses the smallest distance 
between objects in the two clusters.

 

• Complete linkage, also called furthest neighbor, uses the largest distance 
between objects in the two clusters.

• Average linkage uses the average distance between all pairs of objects in 
cluster r and cluster s.

d r s,( ) min dist xri xsj,( )( ) i i … nr, ,( )∈ j 1 … ns, ,( )∈, ,=

d r s,( ) max dist xri xsj,( )( ) i 1 … nr, ,( )∈ j 1 … ns, ,( )∈, ,=

d r s,( ) 1
nrns
------------ dist xri xsj,( )

j 1=

ns

∑
i 1=

nr

∑=
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• Centroid linkage uses the Euclidean distance between the centroids of the 
two clusters,

 

where

 is defined similarly. The input Y should contain Euclidean distances.

• Median linkage uses the Euclidean distance between weighted centroids of 
the two clusters,

 

where  and  are weighted centroids for the clusters r and s. If cluster r 
was created by combining clusters p and q,  is defined recursively as

 is defined similarly. The input Y should contain Euclidean distances.

• Ward’s linkage uses the incremental sum of squares; that is, the increase in 
the total within-cluster sum of squares as a result of joining clusters r and s. 
The within-cluster sum of squares is defined as the sum of the squares of the 
distances between all objects in the cluster and the centroid of the cluster. 
The equivalent distance is given by

where  is Euclidean distance, and  and  are the centroids of clusters 
r and s, as defined in the Centroid linkage, respectively. The input Y should 
contain Euclidean distances.

The centroid and median methods can produce a cluster tree that is not 
monotonic. This occurs when the distance from the union of two clusters, r 
and s, to a third cluster is less than the distance from either r or s to that 

d r s,( ) xr xs– 2=

xr
1
nr
------ xri

i 1=

nr

∑=

xs

d r s,( ) x̃r x̃s– 2=

x̃r x̃s
x̃r

x̃r
1
2
--- x̃p x̃q+( )=

x̃s

d2 r s,( ) nrns

xr xs– 2
2

nr ns+( )
---------------------------=

2 xr xs
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third cluster. In this case, sections of the dendrogram change direction. This 
is an indication that you should use another method.

Example X = [3 1.7; 1 1; 2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];
Y = pdist(X);
Z = linkage(Y)

Z =
2.0000  5.0000  0.2000
3.0000  4.0000  0.5000
8.0000  6.0000  0.5099
1.0000  7.0000  0.7000
11.0000  9.0000  1.2806
12.0000 10.0000  1.3454

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, kmeans, pdist, 
silhouette, squareform
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12logncdfPurpose Lognormal cumulative distribution function

Syntax P = logncdf(X,MU,SIGMA)
[P, PLO, PUP] = logncdf(X, MU, SIGMA, PCOV, alpha)

Description P = logncdf(X,MU,SIGMA) computes the lognormal cdf at each of the values in 
X using the corresponding means in MU and standard deviations in SIGMA. X, MU, 
and SIGMA can be vectors, matrices, or multidimensional arrays that all have 
the same size. A scalar input for X, MU, or SIGMA is expanded to a constant array 
with the same dimensions as the other inputs.

[P, PLO, PUP] = logncdf(X, MU, SIGMA, PCOV, alpha) produces confidence 
bounds for P when the input parameters MU and SIGMA are estimates. PCOV is 
the covariance matrix of the estimated parameters. alpha specifies 
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. PLO and 
PUP are arrays of the same size as P containing the lower and upper confidence 
bounds. 

The function logncdf computes confidence bounds for P using a normal 
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The computed 
bounds give approximately the desired confidence level when you estimate MU, 
SIGMA, and PCOV from large samples, but in smaller samples other methods of 
computing the confidence bounds might be more accurate.

The lognormal cdf is

Example x = (0:0.2:10);
y = logncdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p');

X µ̂–

σ̂
-------------

p F x µ σ,( ) 1
σ 2π
--------------- e

ln t( ) µ–( )– 2

2σ2
--------------------------------

t
----------------------------- td0

x

∫= =
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Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, p. 102-105.

See Also cdf, logninv, lognpdf, lognrnd, lognstat
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12lognfitPurpose Parameter estimates and confidence intervals for lognormal data

Syntax parmhat = lognfit(data)
[parmhat,parmci] = lognfit(data)
[parmhat,parmci] = lognfit(data, alpha)
[...] = lognfit(data, alpha, censoring)
[...] = lognfit(data, alpha, censoring, freq)
[...] = lognfit(data, alpha, censoring, freq, options)

Description parmhat = lognfit(data) returns the estimate of the parameters µ and σ of 
the lognormal distribution, given the data in the vector data.

[parmhat, parmci] = lognfit(data) returns 95% confidence intervals for the 
parameter estimates on the µ and σ parameters in the 2-by-2 matrix parmci. 
The first column of the matrix contains the lower and upper confidence bounds 
for parameter µ, and the second column contains the confidence bounds for 
parameter σ. 

[parmhat, parmci] = lognfit(data, alpha) returns 100(1 -  alpha) % 
confidence intervals for the parameter estimates, where alpha is a value in the 
range (0 1) specifying the width of the confidence intervals. By default, alpha 
is 0.05, which corresponds to 95% confidence intervals. 

[...] = lognfit(data, alpha, censoring) accepts a Boolean vector 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly. 

[...] = lognfit(data, alpha, censoring, freq) accepts a frequency 
vector, freq, of the same size as data. Typically, freq contains integer 
frequencies for the corresponding elements in data, but can contain any 
nonnegative values. Pass in [] for alpha, censoring, or freq to use their 
default values.

[...] = lognfit(data, alpha, censoring, freq, options) accepts a 
structure, options, that specifies control parameters for the iterative 
algorithm the function uses to compute maximum likelihood estimates when 
there is censoring. You can create options using the function statset. Enter 
statset('lognfit') to see the names and default values of the parameters 
that lognfit accepts in the options structure. See the reference page for 
statset for more information about these options.
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Example This example generates 100 independent samples of lognormal data with µ = 0 
and σ = 3. parmhat is an estimate of µ and parmci is a 99% confidence interval 
around parmhat. Notice that parmci contains the true value of µ.

data = lognrnd(0, 3, 100, 1);
[parmhat,parmci] = lognfit(data, 0.01)

parmhat =

  -0.2480  2.8902

parmci =

  -1.0071  2.4393

  0.5111  3.5262

See Also logncdf, logninv, lognlike, lognpdf, lognrnd, lognstat, mle, statset
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12logninvPurpose Inverse of the lognormal cumulative distribution function (cdf)

Syntax X = logninv(P, MU,SIGMA)
[X, XLO, XUP] = logninv(P, MU, SIGMA, PCOV, alpha)

Description X = logninv(P,MU,SIGMA) computes the inverse lognormal cdf with 
parameters MU and SIGMA, at the corresponding probabilities in P. P, MU, and 
SIGMA can be vectors, matrices, or multidimensional arrays that all have the 
same size, which is also the size of X. A scalar input for P, MU, or SIGMA is 
expanded to a constant array with the same dimensions as the other inputs.

[X, XLO, XUP] = logninv(P, MU, SIGMA, PCOV, alpha) produces confidence 
bounds for X when the input parameters MU and SIGMA are estimates. PCOV is 
the covariance matrix of the estimated parameters. alpha specifies 
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. XLO and 
XUP are arrays of the same size as X containing the lower and upper confidence 
bounds. 

The function logninv computes confidence bounds for P using a normal 
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and 
standard deviation 1. The computed bounds give approximately the desired 
confidence level when you estimate MU, SIGMA, and PCOV from large samples, but 
in smaller samples other methods of computing the confidence bounds might 
be more accurate.

The lognormal inverse function is defined in terms of the lognormal cdf as

where

Example p = (0.005:0.01:0.995);
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crit = logninv(p,1,0.5);
plot(p,crit)
xlabel('Probability');ylabel('Critical Value'); grid

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
edition, John Wiley and Sons, 1993, pp. 102-105.

See Also icdf, logncdf, lognpdf, lognrnd, lognstat
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12lognlikePurpose Negative log-likelihood for the lognormal distribution

Syntax nlogL = lognlike(params, data)
[nlogL, AVAR] = lognlike(params, data)
[...] = lognlike(params, data, censoring)
[...] = lognlike(params, data, censoring, freq)

Description nlogL = lognlike(params, data) returns the negative of the log-likelihood 
for the lognormal distribution, evaluated at the parameters params(1) = mu 
and params(2) = sigma, given data. The values of mu and sigma are scalars, 
and the output nlogL is a scalar.

[nlogL, avar] = lognlike(params, data) returns the inverse of Fisher's 
information matrix, AVAR. If the input parameter value in params is the 
maximum likelihood estimate, avar is its asymptotic variance. AVAR is based on 
the observed Fisher's information, not the expected information.

[...] = lognlike(params, data, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly.

[...] = lognlike(params, data, censoring, freq) accepts a frequency 
vector, freq, of the same size as data. The vector freq typically contains 
integer frequencies for the corresponding elements in data, but can contain any 
nonnegative values. Pass in [] for censoring to use its default value.

See Also logncdf, lognfit, logninv, lognpdf, lognrnd
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12lognpdfPurpose Lognormal probability density function (pdf)

Syntax Y = lognpdf(X,MU,SIGMA)

Description Y = logncdf(X,MU,SIGMA) computes the lognormal cdf at each of the values 
in X using the corresponding means in MU and standard deviations in SIGMA. X, 
MU, and SIGMA can be vectors, matrices, or multidimensional arrays that all 
have the same size, which is also the size of Y. A scalar input for X, MU, or SIGMA 
is expanded to a constant array with the same dimensions as the other inputs.

The lognormal pdf is

Example x = (0:0.02:10);
y = lognpdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p')

Reference [1] Mood, A. M., F. A. Graybill, and D. C. Boes, Introduction to the Theory of 
Statistics, 3rd edition, McGraw-Hill, 1974, pp. 540-541.

See Also logncdf, logninv, lognrnd, lognstat, pdf
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12lognrndPurpose Random matrices from the lognormal distribution

Syntax R = lognrnd(MU,SIGMA)
R = lognrnd(MU,SIGMA,v)
R = lognrnd(MU,SIGMA,m,n)

Description R = lognrnd(MU,SIGMA) generates lognormal random numbers with 
parameters MU and SIGMA. MU and SIGMA can be vectors, matrices, or 
multidimensional arrays that have the same size, which is also the size of R. A 
scalar input for MU or SIGMA is expanded to a constant array with the same 
dimensions as the other input.

R = lognrnd(MU,SIGMA,v) generates lognormal random numbers with 
parameters MU and SIGMA, where v is a row vector. If v is a 1-by-2 vector, R is a 
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional 
array.

R = lognrnd(MU,SIGMA,m,n) generates lognormal random numbers with 
parameters MU and SIGMA, where scalars m and n are the row and column 
dimensions of R.

Reproducing the Output of lognrnd
lognrnd uses the MATLAB function randn to generate random numbers. When 
you call lognrnd, you change the current state of randn, and thereby alter the 
output of subsequent calls to lognrnd or any other functions that depend on 
randn. If you want to reproduce the output of lognrnd, reset the state of randn 
to the same fixed value each time you call lognrnd. For an example of how to 
do this, and a list of the Statistics Toolbox functions that depend on randn, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The result in the following example depends on the current state of 
randn. If you run the code in this example, your results might differ from the 
answer shown here.

Example r = lognrnd(0,1,4,3)



lognrnd

12-300

r =
  3.2058  0.4983  1.3022
  1.8717  5.4529  2.3909
  1.0780  1.0608  0.2355
  1.4213  6.0320  0.4960

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
edition, John Wiley and Sons, 1993, pp. 102-105.

See Also random, logncdf, logninv, lognpdf, lognstat
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12lognstatPurpose Mean and variance for the lognormal distribution

Syntax [M,V] = lognstat(MU,SIGMA)

Description [M,V] = lognstat(MU,SIGMA) returns the mean and variance of the 
lognormal distribution with parameters MU and SIGMA. MU and SIGMA can be 
vectors, matrices, or multidimensional arrays that all have the same size, 
which is also the size of M and V. A scalar input for MU or SIGMA is expanded to 
a constant array with the same dimensions as the other input.

The mean of the lognormal distribution with parameters µ and σ is

and the variance is

Example [m,v]= lognstat(0,1)

m =
  1.6487

v =
  4.6708

Reference [1] Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of 
Statistics, 3rd edition, McGraw-Hill 1974, pp. 540–541.

See Also logncdf, logninv, lognrnd, lognrnd
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12lslinePurpose Least squares fit line(s)

Syntax lsline
h = lsline

Description lsline superimposes the least squares line on each line object in the current 
axes (except LineStyles '-','--','.-').

h = lsline returns the handles to the line objects.

Example y = [2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
plot(y,'+');
lsline;

See Also polyfit, polyval

0 2 4 6 8 10
0

5

10

15

20



mad

12-303

12madPurpose Mean or median absolute deviation (MAD) of a sample of data

Syntax y = mad(X)
y = mad(X,dim)
y = mad(X,flag,dim)

Description y = mad(X) returns the mean absolute deviation of the values in X. For vector 
input, y is mean(abs(X - mean(X)). For a matrix input, y is a row vector 
containing the mean absolute deviation of each column of X. For N-dimensional 
arrays, mad operates along the first nonsingleton dimension of X.

Y = mad(X,1) computes Y based on medians, that is, 
median(abs(X-median(X)).

Y = mad(X,0) is the same as mad(X), and uses means.

mad(X,flag,dim) takes the MAD along dimension dim of X.

mad treats NaNs as missing values and removes them.

Remarks The MAD is less efficient than the standard deviation as an estimate of the 
spread when all the data is from the normal distribution.

For normal data, multiply the MAD by 1.3 as a robust estimate of σ (the scale 
parameter of the normal distribution).

Note  The default version of MAD, based on means, is also commonly referred 
to as the average absolute deviation (AAD).

Examples This example shows a Monte Carlo simulation of the relative efficiency of the 
MAD to the sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_MAD = 1.3 ∗ mad(x);
efficiency = (norm(s - 1)./norm(s_MAD - 1)).^2

efficiency =
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  0.5972

Reference [1] Sachs, L., Applied Statistics: A Handbook of Techniques, Springer-Verlag, 
1984, p. 253.

See Also std, range, iqr
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12mahalPurpose Mahalanobis distance

Syntax d = mahal(Y,X)

Description mahal(Y,X) computes the Mahalanobis distance (in squared units) of each 
point (row) of the matrix Y from the sample in the matrix X.

The number of columns of Y must equal the number of columns in X, but the 
number of rows may differ. The number of rows in X must exceed the number 
of columns.

The Mahalanobis distance is a multivariate measure of the separation of a data 
set from a point in space. It is the criterion minimized in linear discriminant 
analysis.

Example The Mahalanobis distance of a matrix r when applied to itself is a way to find 
outliers. 

r = mvnrnd([0 0],[1 0.9;0.9 1],100);
r = [r;10 10];
d = mahal(r,r);
last6 = d(96:101)

last6 =

  1.1036
  2.2353
  2.0219
  0.3876
  1.5571
  52.7381

The last element is clearly an outlier.

See Also classify
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12manova1Purpose One-way Multivariate Analysis of Variance (MANOVA)

Syntax d = manova1(X,group)
d = manova1(X,group,alpha)
[d,p] = manova1(...)
[d,p,stats] = manova1(...)

Description d = manova1(X,group) performs a one-way Multivariate Analysis of Variance 
(MANOVA) for comparing the multivariate means of the columns of X, grouped 
by group. X is an m-by-n matrix of data values, and each row is a vector of 
measurements on n variables for a single observation. group is a grouping 
variable defined as a vector, string array, or cell array of strings. Two 
observations are in the same group if they have the same value in the group 
array. The observations in each group represent a sample from a population.

The function returns d, an estimate of the dimension of the space containing 
the group means. manova1 tests the null hypothesis that the means of each 
group are the same n-dimensional multivariate vector, and that any difference 
observed in the sample X is due to random chance. If d = 0, there is no evidence 
to reject that hypothesis. If d = 1, then you can reject the null hypothesis at the 
5% level, but you cannot reject the hypothesis that the multivariate means lie 
on the same line. Similarly, if d = 2 the multivariate means may lie on the same 
plane in n-dimensional space, but not on the same line.

d = manova1(X,group,alpha) gives control of the significance level, alpha. 
The return value d will be the smallest dimension having p > alpha, where p is 
a p-value for testing whether the means lie in a space of that dimension.

[d,p] = manova1(...) also returns a p, a vector of p-values for testing 
whether the means lie in a space of dimension 0, 1, and so on. The largest 
possible dimension is either the dimension of the space, or one less than the 
number of groups. There is one element of p for each dimension up to, but not 
including, the largest.

If the ith p-value is near zero, this casts doubt on the hypothesis that the group 
means lie on a space of i-1 dimensions. The choice of a critical p-value to 
determine whether the result is judged “statistically significant” is left to the 
researcher and is specified by the value of the input argument alpha. It is 
common to declare a result significant if the p-value is less than 0.05 or 0.01.
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[d,p,stats] = manova1(...) also returns stats, a structure containing 
additional MANOVA results. The structure contains the following fields.

The canonical variables C are linear combinations of the original variables, 
chosen to maximize the separation between groups. Specifically, C(:,1) is the 
linear combination of the X columns that has the maximum separation between 
groups. This means that among all possible linear combinations, it is the one 
with the most significant F statistic in a one-way analysis of variance. 

Field Contents

W Within-groups sum of squares and cross-products matrix

B Between-groups sum of squares and cross-products matrix

T Total sum of squares and cross-products matrix

dfW Degrees of freedom for W

dfB Degrees of freedom for B

dfT Degrees of freedom for T

lambda Vector of values of Wilk’s lambda test statistic for testing 
whether the means have dimension 0, 1, etc.

chisq Transformation of lambda to an approximate chi-square 
distribution

chisqdf Degrees of freedom for chisq

eigenval Eigenvalues of 

eigenvec Eigenvectors of ; these are the coefficients for the 
canonical variables C, and they are scaled so the within-group 
variance of the canonical variables is 1

canon Canonical variables C, equal to XC*eigenvec, where XC is X with 
columns centered by subtracting their means

mdist A vector of Mahalanobis distances from each point to the mean 
of its group

gmdist A matrix of Mahalanobis distances between each pair of group 
means

W 1– B

W 1– B
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C(:,2) has the maximum separation subject to it being orthogonal to C(:,1), 
and so on.

You may find it useful to use the outputs from manova1 along with other 
functions to supplement your analysis. For example, you may want to start 
with a grouped scatter plot matrix of the original variables using gplotmatrix. 
You can use gscatter to visualize the group separation using the first two 
canonical variables. You can use manovacluster to graph a dendrogram 
showing the clusters among the group means.

Assumptions
The MANOVA test makes the following assumptions about the data in X:

• The populations for each group are normally distributed.

• The variance-covariance matrix is the same for each population.

• All observations are mutually independent.

Example you can use manova1 to determine whether there are differences in the 
averages of four car characteristics, among groups defined by the country 
where the cars were made.

load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],Origin)

d =
   3

p =
     0
  0.0000
  0.0075
  0.1934

There are four dimensions in the input matrix, so the group means must lie in 
a four-dimensional space. manova1 shows that you cannot reject the hypothesis 
that the means lie in a three-dimensional subspace.

References [1] Krzanowski, W. J., Principles of Multivariate Analysis. Oxford University 
Press, 1988.



manova1

12-309

See Also anova1, canoncorr, gscatter, gplotmatrix, manovacluster



manovacluster

12-310

12manovaclusterPurpose Plot dendrogram showing group mean clusters after MANOVA

Syntax manovacluster(stats)
manovacluster(stats,'method')
H = manovacluster(stats)

Description manovacluster(stats) generates a dendrogram plot of the group means after 
a multivariate analysis of variance (MANOVA). stats is the output stats 
structure from manova1. The clusters are computed by applying the single 
linkage method to the matrix of Mahalanobis distances between group means.

See dendrogram for more information on the graphical output from this 
function. The dendrogram is most useful when the number of groups is large.

manovacluster(stats,'method') uses the specified method in place of single 
linkage. 'method' can be any of the following character strings that identify 
ways to create the cluster hierarchy. See linkage for further explanation.

 

H = manovacluster(stats,'method') returns a vector of handles to the lines 
in the figure.

Example Let’s analyze the larger car data set to determine which countries produce cars 
with the most similar characteristics.

load carbig
X = [MPG Acceleration Weight Displacement];
[d,p,stats] = manova1(X,Origin);
manovacluster(stats)

'single' Shortest distance (default)

'complete' Largest distance

'average' Average distance

'centroid' Centroid distance

'ward' Incremental sum of squares
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See Also cluster, dendrogram, linkage, manova1
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12mdscalePurpose Nonmetric and metric multidimensional scaling

Syntax Y = mdscale(D, p)
[Y, stress] = mdscale(D, p)
[...] = mdscale(..., 'param1', val1, 'param2', val2, ...)

Description Y = mdscale(D, p) performs non-metric multidimensional scaling on the 
n-by-n dissimilarity matrix D, and returns Y, a configuration of n points (rows) 
in p dimensions (columns). The Euclidean distances between points in Y 
approximate a monotonic transformation of the corresponding dissimilarities 
in D. By default, mdscale uses Kruskal's normalized stress1 criterion.

You can specify D as either a full n-by-n matrix, or in upper triangle form such 
as is output by pdist. A full dissimilarity matrix must be real and symmetric, 
and have zeros along the diagonal and non-negative elements everywhere else. 
A dissimilarity matrix in upper triangle form must have real, non-negative 
entries. mdscale treats NaNs in D as missing values, and ignores those elements. 
Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the diagonal 
and all other elements less than one. mdscale transforms a similarity matrix 
to a dissimilarity matrix in such a way that distances between the points 
returned in Y approximate sqrt(1-D). To use a different transformation, 
transform the similarities prior to calling mdscale.

[Y, stress] = mdscale(D, p) returns the minimized stress, i.e., the stress 
evaluated at Y.

[Y, stress, disparities] = mdscale(D, p) returns the disparities, that is, 
the monotonic transformation of the dissimilarities D.

[...] = mdscale(..., 'param1', val1, 'param2', val2, ...) enables you 
to specify optional parameter name/value pairs that control further details of 
mdscale. The parameters are

• 'Criterion'— The goodness-of-fit criterion to minimize. This also 
determines the type of scaling, either non-metric or metric, that mdscale 
performs. Choices for non-metric scaling are:

- 'stress' — Stress normalized by the sum of squares of the interpoint 
distances, also known as stress1. This is the default.
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- 'sstress' — Squared stress, normalized with the sum of 4th powers of the 
interpoint distances.

Choices for metric scaling are:

- 'metricstress' — Stress, normalized with the sum of squares of the 
dissimilarities.

- 'metricsstress' — Squared stress, normalized with the sum of               
4th powers of the dissimilarities.

- 'sammon'— Sammon's nonlinear mapping criterion. Off-diagonal 
dissimilarities must be strictly positive with this criterion.

- 'strain' — A criterion equivalent to that used in classical 
multidimensional scaling.

• 'Weights' — A matrix or vector the same size as D, containing nonnegative 
dissimilarity weights. You can use these to weight the contribution of the 
corresponding elements of D in computing and minimizing stress. Elements 
of D corresponding to zero weights are effectively ignored.

• 'Start' — Method used to choose the initial configuration of points for Y. The 
choices are

- 'cmdscale' — Use the classical multidimensional scaling solution. This is 
the default. 'cmdscale' is not valid when there are zero weights.

- 'random' — Choose locations randomly from an appropriately           scaled 
p-dimensional normal distribution with uncorrelated coordinates.

- An n-by-p matrix of initial locations, where n is the size of the matrix D and 
p is the number of columns of the output matrix Y. In this case, you can 
pass in [] for p and mdscale infers p from the second dimension of the 
matrix. You can also supply a three-dimensional array, implying a value 
for 'Replicates' from the array's third dimension.

• 'Replicates' — Number of times to repeat the scaling, each with a new

    initial configuration. The default is 1. 

• 'Options' — Options for the iterative algorithm used to minimize the fitting 
criterion. Pass in an options structure created by statset. For example,
opts = statset('param1', val1, 'param2', val2, ...);
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[...] = mdscale(..., 'Options', opts)

The choices of statset parameters are

- 'Display'— Level of display output. The choices are 'off' (the            
default), 'iter', and 'final'.

- 'MaxIter' — Maximum number of iterations allowed. The default is 200.

- 'TolFun' — Termination tolerance for the stress criterion and its 
gradient. The default is 1e-4.

- 'TolX'— Termination tolerance for the configuration location step size. 
The default is 1e-4.

Example % Generate some 4D data, and create a dissimilarity matrix.
load cereal.mat
X = [Calories Protein Fat Sodium Fiber Carbo Sugars Shelf ...
Potass Vitamins];
X = X(strmatch('K',Mfg),:); % take a subset from a single 
% manufacturer
dissimilarities = pdist(X);
 
% Use non-metric scaling to recreate the data in 2D, and make a
% Shepard plot of the results.
[Y,stress,disparities] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord),disparities(ord),'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'}, 'Location','NorthWest');
 
% Do metric scaling on the same dissimilarities.
[Y,stress] = ...
mdscale(dissimilarities,2,'criterion','metricsstress');
distances = pdist(Y);
plot(dissimilarities,distances,'bo', ...
[0 max(dissimilarities)],[0 max(dissimilarities)],'k:');
xlabel('Dissimilarities'); ylabel('Distances')

See Also cmdscale, pdist, statset
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12meanPurpose Average or mean value of vectors and matrices

Syntax m = mean(X)
m = mean(X,dim)

Description m = mean(X) calculates the sample average

For vectors, mean(x) is the mean value of the elements in vector x. For 
matrices, mean(X) is a row vector containing the mean value of each column.

m = mean(X,dim) returns the mean values for elements along the dimension of 
X specified by scalar dim. For matrices, mean(X,2) is a column vector containing 
the mean value of each row. The default of dim is 1.

The mean function is part of the standard MATLAB language.

Example These commands generate five samples of 100 normal random numbers with 
mean, zero, and standard deviation, one. The sample averages in xbar are 
much less variable (0.00 ± 0.10).

x = normrnd(0,1,100,5);
xbar = mean(x)

xbar =

  0.0727  0.0264  0.0351  0.0424  0.0752

See Also median, std, cov, corrcoef, var
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12medianPurpose Median value of vectors and matrices

Syntax m = median(X)

Description m = median(X) calculates the median value, which is the 50th percentile of a 
sample. The median is a robust estimate of the center of a sample of data, since 
outliers have little effect on it.

For vectors, median(x) is the median value of the elements in vector x. For 
matrices, median(X) is a row vector containing the median value of each 
column. Since median is implemented using sort, it can be costly for large 
matrices.

The median function is part of the standard MATLAB language.

Examples xodd = 1:5;
modd = median(xodd)
modd =
   3

xeven = 1:4;
meven = median(xeven)
meven =
  2.5000

This example shows robustness of the median to outliers.

xoutlier = [(1:4) 10000];
moutlier = median(xoutlier)
moutlier = 
   3

See Also mean, std, cov, corrcoef
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12mlePurpose Maximum likelihood estimation

Syntax phat = mle(data)
[phat, pci] = mle(data)
[...] = mle(data,'distribution', dist)
[...] = mle(data, ..., 'name1', value1, 'name2', value2,...)
[...] = mle(data, 'pdf', pdf, 'cdf', cdf, 'start', start,...)
[...] = mle(data, 'logpdf' logpdf, 'logsf', logsf, ...

'start', start,...)
[...] = mle(data, 'nloglf', nloglf, 'start', start,...)

Description phat = mle(data) returns maximum likelihood estimates (MLEs) for the 
parameters of a normal distribution, computed using the sample data in the 
vector data.

[phat, pci] = mle(data) returns MLEs and 95% confidence intervals for the 
parameters.

[...] = mle(data,'distribution', dist) computes parameter estimates for 
the distribution specified by dist. dist is a character string containing the 
name of one of the distributions supported by mle.

[...] = mle(data, ..., 'name1', value1, 'name2', value2,...) specifies 
optional argument name/value pairs chosen from the following list, in which 
argument names are case insensitive and partial matches are allowed.

Name Value

'censoring' A boolean vector of the same size as data, containing ones 
when the corresponding elements of data are 
right-censored observations and zeros when the 
corresponding elements are exact observations. The 
default is that all observations are observed exactly. 
Censoring is not supported for all distributions.

'frequency'  A vector of the same size as data, containing non-negative 
integer frequencies for the corresponding elements in 
data. The default is one observation per element of data.
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The following table lists the distributions that you can use for the input 
argument 'distribution'. Arguments are not case sensitive and partial 
matches are accepted. 

'alpha' A value between 0 and 1 specifying a confidence level of 
100(1-alpha)% for pci. The default is 0.05 for 95% 
confidence.

'ntrials' A scalar, or a vector of the same size as data, containing 
the total number of trials for the corresponding element of 
data. Applies only to the binomial distribution.

'options' A structure created by a call to statset, containing 
numerical options for the fitting algorithm. Not applicable 
to all distributions.

Distribution Value of 'dist'

Beta 'Beta'

Bernoulli 'Bernoulli'

Binomial 'binomial'

Discrete uniform 'Discrete uniform'

Exponential 'Exponential'

Extreme value 'Extreme Value'

Gamma 'Gamma'

Geometric 'Geometric'

Log normal 'lognormal'

Negative binomial 'negative binomial'

Normal 'Normal'

Poisson 'Poisson'

Name Value
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mle can also fit a custom distribution that you define using distribution 
functions, in one of three ways.

[...] = mle(data, 'pdf', pdf, 'cdf', cdf, 'start', start,...) returns 
MLEs for the parameters of the distribution defined by the probability density 
and cumulative distribution functions pdf and cdf. pdf and cdf are function 
handles created using the @ sign. They accept as inputs a vector data and one 
or more individual distribution parameters, and return vectors of probability 
density values and cumulative probability values, respectively. If the 
'censoring' name/value pair is not present, you can omit the 'cdf' 
name/value pair. mle computes the estimates by numerically maximizing the 
distribution's log-likelihood, and start is a vector containing initial values for 
the parameters.

[...] = mle(data, 'logpdf' logpdf, 'logsf', logsf, 'start', 
start,...) returns MLEs for the parameters of the distribution defined by the 
log probability density and log survival functions logpdf and logsf. logpdf 
and logsf are function handles created using the @ sign. They accept as inputs 
a vector data and one or more individual distribution parameters, and return 
vectors of logged probability density values and logged survival function 
values, respectively. This form is sometimes more robust to the choice of 
starting point than using pdf and cdf functions. If the 'censoring' 
name/value pair is not present, you can omit the 'logsf' name/value pair. 
start is a vector containing initial values for the distribution's parameters.

[...] = mle(data, 'nloglf', nloglf, 'start', start,...) returns MLEs 
for the parameters of the distribution whose negative log-likelihood is given by 
nloglf. nloglf is a function handle, specified using the @ sign, that accepts the 
four input arguments:

• params - a vector of distribution parameter values

• data - a vector of data

Rayleigh 'Rayleigh'

Uniform 'Uniform'

Weibull 'Weibull'

Distribution Value of 'dist'
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• cens - a boolean vector of censoring values

• freq - a vector of integer data frequencies

nloglf must accept all four arguments even if you do not supply the 
'censoring' or 'frequency' name/value pairs (see above). However, nloglf 
can safely ignore its cens and freq arguments in that case. nloglf returns a 
scalar negative log-likelihood value and, optionally, a negative log-likelihood 
gradient vector (see the 'GradObj' statset parameter below). start is a vector 
containing initial values for the distribution's parameters.

pdf, cdf, logpdf, logsf, or nloglf can also be cell arrays whose first element 
is a function handle as defined above, and whose remaining elements are 
additional arguments to the function. mle places these arguments at the end of 
the argument list in the function call.

The following optional argument name/value pairs are valid only when 'pdf' 
and 'cdf', 'logpdf' and 'logcdf', or 'nloglf' are given: 

• 'lowerbound' — A vector the same size as start containing lower bounds for 
the distribution parameters. The default is -Inf.

• 'upperbound' — A vector the same size as start containing upper bounds 
for the distribution parameters. The default is Inf.

• 'optimfun' — A string, either 'fminsearch' or 'fmincon', naming the 
optimization function to be used in maximizing the likelihood. The default is 
'fminsearch'. You can only specify 'fmincon' if the Optimization Toolbox 
is available.

When fitting a custom distribution, use the 'options' parameter to control 
details of the maximum likelihood optimization. See statset('mlecustom') 
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for parameter names and default values. mle interprets the following statset 
parameters for custom distribution fitting as follows:

Example rv = binornd(20,0.75)
rv =
  16
[p,pci] = mle('binomial',rv,0.05,20)
p =
  0.8000
pci =
  0.5634

Parameter Value

'GradObj' 'on' or 'off', indicating whether or not fmincon can 
expect the function provided with the 'nloglf' 
name/value pair to return the gradient vector of the 
negative log-likelihood as a second output. The default is 
'off'. Ignored when using fminsearch.

'DerivStep' The relative difference used in finite difference derivative 
approximations when using fmincon, and 'GradObj' is 
'off'. 'DerivStep' can be a scalar, or the same size as 
'start'. The default is eps^(1/3). Ignored when using 
fminsearch.

'FunValCheck' 'on' or 'off', indicating whether or not mle should check 
the values returned by the custom distribution functions 
for validity. The default is 'on'. A poor choice of starting 
point can sometimes cause these functions to return NaNs, 
infinite values, or out of range values if they are written 
without suitable error-checking.

'TolBnd' An offset for upper and lower bounds when using 
fmincon. mle treats upper and lower bounds as strict 
inequalities (i.e., open bounds). With fmincon, this is 
approximated by creating closed bounds inset from the 
specified upper and lower bounds by TolBnd. The default 
is 1e-6.
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  0.9427

See Also betafit, binofit, evfit, expfit, gamfit, lognfit, nbinfit, normfit, mlecov, 
poissfit, raylfit, statset, unifit, wblfit
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12mlecovPurpose Asymptotic covariance matrix of maximum likelihood estimators

Syntax ACOV = mlecov(params, data, ...)
ACOV = mlecov(params, DATA, 'pdf',PDF, 'cdf', CDF)
ACOV = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf)
ACOV = mlecov(params, data, 'nloglf', nloglf)
[...] = mlecov(params, data, ..., 'parm1', val1, 'parm2', val2, ...)

Description ACOV = mlecov(params, data, ...) returns an approximation to the 
asymptotic covariance matrix of the maximum likelihood estimators of the 
parameters for a specified distribution. The following paragraphs describe how 
to specify the distribution. mlecov computes a finite difference approximation 
to the hessian of the log-likelihood at the maximum likelihood estimates 
params, given the observed data, and returns the negative inverse of that 
hessian. ACOV is a p-by-p matrix, where p is the number of elements in params.

You must specify a distribution after the input argument data, as follows. 

ACOV = mlecov(params, data, 'pdf', pdf, 'cdf', cdf) enables you to 
define a distribution by its probability density and cumulative distribution 
functions, pdf and cdf, respectively. pdf and cdf are function handles that you 
create using the @ sign. They accept a vector of data and one or more individual 
distribution parameters as inputs and return vectors of probability density 
function values and cumulative distribution values, respectively. If the 
'censoring' name/value pair (see below) is not present, you can omit the 
'cdf' name/value pair.

ACOV = mlecov(params, data, 'logpdf', logpdf, 'logsf', logsf) enables 
you to define a distribution by its log probability density and log survival 
functions, logpdf and logsf, respectively. logpdf and logsf are function 
handles that you create using the @ sign. They accept as inputs a vector of data 
and one or more individual distribution parameters, and return vectors of 
logged probability density values and logged survival function values, 
respectively. If the 'censoring' name/value pair (see below) is not present, you 
can omit the 'logsf' name/value pair.

ACOV = mlecov(params, data, 'nloglf', nloglf) enables you to define a 
distribution by its log-likelihood function. nloglf is a function handle, specified 
using the @ sign, that accepts the following four input arguments:
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• params — Vector of distribution parameter values

• data — Vector of data

• cens — Boolean vector of censoring values

• freq — Vector of integer data frequencies

nloglf must accept all four arguments even if you do not supply the 
'censoring' or 'frequency' name/value pairs (see below). However, nloglf 
can safely ignore its cens and freq arguments in that case. nloglf returns a 
scalar negative log-likelihood value and, optionally, the negative log-likelihood 
gradient vector (see the 'gradient' name/value pair below).

pdf, cdf, logpdf, logsf, and nloglf can also be cell arrays whose first element 
is a function handle, as defined above, and whose remaining elements are 
additional arguments to the function. mle places these arguments at the end of 
the argument list, in the function call. [...] = mlecov(params, data, ..., 
'parm1', val1, 'parm2', val2, ...) specifies optional argument 
name/value pairs chosen from the following: 

Name Value

'censoring' Boolean vector of the same size as data, containing 1’s when 
the corresponding elements of data are right-censored 
observations and 0’s when the corresponding elements are 
exact observations. The default is that all observations are 
observed exactly. Censoring is not supported for all 
distributions.
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Example % Fit a beta distribution to some simulated data, and compute the
% approximate covariance matrix of the parameter estimates.
x = betarnd(1.23, 3.45, 25, 1);
phat = mle(x, 'dist','beta')
acov = mlecov(phat, x, 'logpdf',@betalogpdf)
 
function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)*log(x) + (b-1)*log(1-x) - betaln(a,b);

See Also mle

'frequency' A vector of the same size as data containing nonnegative 
frequencies for the corresponding elements in data. The 
default is one observation per element of data.

'options' A structure opts containing numerical options for the finite 
difference Hessian calculation. You create opts by calling 
statset. The applicable statset parameters are:

• 'GradObj'— 'on' or 'off', indicating whether or not the 
function provided with the 'nloglf' name/value pair can 
return the gradient vector of the negative log-likelihood as 
its second output. The default is 'off'. 

• 'DerivStep' — Relative step size used in finite difference 
for Hessian calculations. Can be a scalar, or the same size 
as params. The default is eps^(1/4). A smaller value might 
be appropriate if 'GradObj' is 'on'.

Name Value
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12momentPurpose Central moment of all orders

Syntax m = moment(X,order)
m = moment(X,order,dim)

Description m = moment(X,order) returns the central sample moment of X specified by the 
positive integer order. For vectors, moment(x,order) returns the central 
moment of the specified order for the elements of x. For matrices, 
moment(X,order) returns central moment of the specified order for each 
column. For N-dimensional arrays, moment operates along the first 
nonsingleton dimension of X.

moment(X,order,dim) takes the moment along dimension dim of X.

Remarks Note that the central first moment is zero, and the second central moment is 
the variance computed using a divisor of n rather than n-1, where n is the 
length of the vector x or the number of rows in the matrix X.

The central moment of order k of a distribution is defined as

where E(x) is the expected value of x.

Example X = randn([6 5])

X =
  1.1650  0.0591  1.2460  -1.2704  -0.0562
  0.6268  1.7971  -0.6390  0.9846  0.5135
  0.0751  0.2641  0.5774  -0.0449  0.3967
  0.3516  0.8717  -0.3600  -0.7989  0.7562
  -0.6965  -1.4462  -0.1356  -0.7652  0.4005
  1.6961  -0.7012  -1.3493  0.8617  -1.3414

m = moment(X,3)

m =
  -0.0282  0.0571  0.1253  0.1460  -0.4486

See Also kurtosis, mean, skewness, std, var

mn E x µ–( )k
=



multcompare

12-327

12multcomparePurpose Multiple comparison test of means or other estimates

Syntax c = multcompare(stats)
c = multcompare(stats, param1, val1, param2, val2,...)
[c,m] = multcompare(...)
[c,m,h] = multcompare(...)
[c,m,h,gnames] = multcompare(...)

Description c = multcompare(stats) performs a multiple comparison test using the 
information in the stats structure, and returns a matrix c of pairwise 
comparison results. It also displays an interactive graph of the estimates with 
comparison intervals around them. See “Examples” on page 12-332.

In a one-way analysis of variance, you compare the means of several groups to 
test the hypothesis that they are all the same, against the general alternative 
that they are not all the same. Sometimes this alternative may be too general. 
You may need information about which pairs of means are significantly 
different, and which are not. A test that can provide such information is called 
a “multiple comparison procedure.”

When you perform a simple t-test of one group mean against another, you 
specify a significance level that determines the cutoff value of the t statistic. 
For example, you can specify the value alpha = 0.05 to insure that when there 
is no real difference, you will incorrectly find a significant difference no more 
than 5% of the time. When there are many group means, there are also many 
pairs to compare. If you applied an ordinary t-test in this situation, the alpha 
value would apply to each comparison, so the chance of incorrectly finding a 
significant difference would increase with the number of comparisons. Multiple 
comparison procedures are designed to provide an upper bound on the 
probability that any comparison will be incorrectly found significant.

The output c contains the results of the test in the form of a five-column matrix. 
Each row of the matrix represents one test, and there is one row for each pair 
of groups. The entries in the row indicate the means being compared, the 
estimated difference in means, and a confidence interval for the difference. 

For example, suppose one row contains the following entries.

2.0000  5.0000  1.9442  8.2206  14.4971
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These numbers indicate that the mean of group 2 minus the mean of group 5 is 
estimated to be 8.2206, and a 95% confidence interval for the true mean is 
[1.9442, 14.4971].

In this example the confidence interval does not contain 0.0, so the difference 
is significant at the 0.05 level. If the confidence interval did contain 0.0, the 
difference would not be significant at the 0.05 level.

The multcompare function also displays a graph with each group mean 
represented by a symbol and an interval around the symbol. Two means are 
significantly different if their intervals are disjoint, and are not significantly 
different if their intervals overlap. You can use the mouse to select any group, 
and the graph will highlight any other groups that are significantly different 
from it.

c = multcompare(stats, param1, val1, param2, val2,...) specifies one or 
more of the parameter name/value pairs described in the following table.

Parameter Name Parameter Values

'alpha' Scalar between 0 and 1 that determines the 
confidence levels of the intervals in the matrix c and 
in the figure (default is 0.05). The confidence level is 
100(1-alpha)%.

'displayopt' Either 'on' (the default) to display a graph of the 
estimates with comparison intervals around them, or 
'off' to omit the graph. See “Examples” on 
page 12-332.

'ctype' Specifies the type of critical value to use for the 
multiple comparison. “Values of ctype” on 
page 12-330 describes the allowed values for 
'ctype'.
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[c,m] = multcompare(...) returns an additional matrix m. The first column 
of m contains the estimated values of the means (or whatever statistics are 
being compared) for each group, and the second column contains their standard 
errors.

[c,m,h] = multcompare(...) returns a handle h to the comparison graph. 
Note that the title of this graph contains instructions for interacting with the 
graph, and the x-axis label contains information about which means are 
significantly different from the selected mean. If you plan to use this graph for 
presentation, you may want to omit the title and the x-axis label. You can 
remove them using interactive features of the graph window, or you can use the 
following commands.

title('')
xlabel('')

[c,m,h,gnames] = multcompare(...) returns gnames, a cell array with one 
row for each group, containing the names of the groups.

'dimension' A vector specifying the dimension or dimensions over 
which the population marginal means are to be 
calculated. Use only if you create stats with the 
function anovan. The default is 1 to compute over the 
first dimension. See “dimension Parameter” on 
page 12-331 for more information.

'estimate' Specifies the estimate to be compared. The allowable 
values of estimate depend on the function that was 
the source of the stats structure, as described in 
“Values of estimate” on page 12-331

Parameter Name Parameter Values
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Values of ctype
The following table describes the allowed values for the parameter 'ctype'.

Values 'ctype' Meaning

'hsd' or 
'tukey-kramer'

Use Tukey's honestly significant difference criterion. 
This is the default, and it is based on the Studentized 
range distribution. It is optimal for balanced one-way 
ANOVA and similar procedures with equal sample 
sizes. It has been proven to be conservative for one-way 
ANOVA with different sample sizes. According to the 
unproven Tukey-Kramer conjecture, it is also accurate 
for problems where the quantities being compared are 
correlated, as in analysis of covariance with 
unbalanced covariate values.

'lsd' Use Tukey's least significant difference procedure. This 
procedure is a simple t-test. It is reasonable if the 
preliminary test (say, the one-way ANOVA F statistic) 
shows a significant difference. If it is used 
unconditionally, it provides no protection against 
multiple comparisons.

'bonferroni' Use critical values from the t distribution, after a 
Bonferroni adjustment to compensate for multiple 
comparisons. This procedure is conservative, but 
usually less so than the Scheffé procedure.

'dunn-sidak' Use critical values from the t distribution, after an 
adjustment for multiple comparisons that was 
proposed by Dunn and proved accurate by Šidák. This 
procedure is similar to, but less conservative than, the 
Bonferroni procedure.

 'scheffe' Use critical values from Scheffé’s S procedure, derived 
from the F distribution. This procedure provides a 
simultaneous confidence level for comparisons of all 
linear combinations of the means, and it is conservative 
for comparisons of simple differences of pairs.
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Values of estimate
The allowable values of the parameter 'estimate' depend on the function that 
was the source of the stats structure, according to the following table.

dimension Parameter
The dimension parameter is a vector specifying the dimension or dimensions 
over which the population marginal means are to be calculated.For example, if 
dim = 1, the estimates that are compared are the means for each value of the 
first grouping variable, adjusted by removing effects of the other grouping 
variables as if the design were balanced. If dim = [1 3], population marginal 
means are computed for each combination of the first and third grouping 
variables, removing effects of the second grouping variable. If you fit a singular 
model, some cell means may not be estimable and any population marginal 
means that depend on those cell means will have the value NaN.

Population marginal means are described by Milliken and Johnson (1992) and 
by Searle, Speed, and Milliken (1980). The idea behind population marginal 
means is to remove any effect of an unbalanced design by fixing the values of 
the factors specified by dim, and averaging out the effects of other factors as if 

Source Allowable Values of 'estimate'

'anova1' Ignored. Always compare the group means.

'anova2' Either 'column' (the default) or 'row' to compare 
column or row means.

'anovan' Ignored. Always compare the population marginal 
means as specified by the dim argument.

'aoctool' Either 'slope', 'intercept', or 'pmm' to compare 
slopes, intercepts, or population marginal means. If 
the analysis of covariance model did not include 
separate slopes, then 'slope' is not allowed. If it did 
not include separate intercepts, then no comparisons 
are possible.

'friedman' Ignored. Always compare average column ranks.

'kruskalwallis' Ignored. Always compare average group ranks.
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each factor combination occurred the same number of times. The definition of 
population marginal means does not depend on the number of observations at 
each factor combination. For designed experiments where the number of 
observations at each factor combination has no meaning, population marginal 
means can be easier to interpret than simple means ignoring other factors. For 
surveys and other studies where the number of observations at each 
combination does have meaning, population marginal means may be harder to 
interpret. 

Examples Example 1
The following example performs a 1-way analysis of variance (ANOVA) and 
displays group means with their names.

load carsmall
    [p,t,st] = anova1(MPG,Origin,'off');
    [c,m,h,nms] = multcompare(st,'display','off');
    [nms num2cell(m)]  
 

ans = 

  'USA'    [21.1328]  [0.8814]
  'Japan'   [31.8000]  [1.8206]
  'Germany'  [28.4444]  [2.3504]
  'France'   [23.6667]  [4.0711]
  'Sweden'   [22.5000]  [4.9860]
  'Italy'   [   28]  [7.0513]

multcompare also displays the following graph of the estimates with 
comparison intervals around them.
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You can click the graphs of each country to compare its mean to those of other 
countries.

Example 2
The following continues the example described in the anova1 reference page, 
which is related to testing the material strength in structural beams. From the 
anova1 output you found significant evidence that the three types of beams are 
not equivalent in strength. Now you can determine where those differences lie. 
First you create the data arrays and you perform one-way ANOVA.

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
      79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
     'al1','al1','al1','al1','al1','al1',...
     'al2','al2','al2','al2','al2','al2'};
[p,a,s] = anova1(strength,alloy);

Among the outputs is a structure that you can use as input to multcompare.

[c,m,h,nms] = multcompare(s);

10 15 20 25 30 35 40 45

Italy

Sweden

France

Germany

Japan

USA

Click on the group you want to test

The means of groups USA and Japan are significantly different
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[nms num2cell(c)]

ans = 

  'st'   [1]  [2]  [ 3.6064]  [ 7]  [10.3936]
  'al1'  [1]  [3]  [ 1.6064]  [ 5]  [ 8.3936]
  'al2'  [2]  [3]  [-5.6280]  [-2]  [ 1.6280]

The third row of the output matrix shows that the differences in strength 
between the two alloys is not significant. A 95% confidence interval for the 
difference is [-5.6, 1.6], so you cannot reject the hypothesis that the true 
difference is zero.

The first two rows show that both comparisons involving the first group (steel) 
have confidence intervals that do not include zero. In other words, those 
differences are significant. The graph shows the same information.

See Also anova1, anova2, anovan, aoctool, friedman, kruskalwallis

74 76 78 80 82 84 86

al2

al1

st

Click on the group you want to test

2 groups have means significantly different from st
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12mvnpdfPurpose Multivariate normal probability density function (pdf)

Syntax y = mvnpdf(X)
y = mvnpdf(X,mu)
y = mvnpdf(X,mu,SIGMA)

Description y = mvnpdf(X) returns the n-by-1 vector y, containing the probability density 
of the multivariate normal distribution with zero mean and identity covariance 
matrix, evaluated at each row of the n-by-d matrix X. Rows of X correspond to 
observations and columns correspond to variables or coordinates. 

y = mvnpdf(X,mu) returns the density of the multivariate normal distribution 
with mean mu and identity covariance matrix, evaluated at each row of X. mu is 
a 1-by-d vector, or an n-by-d matrix. If mu is a matrix, the density is evaluated 
for each row of X with the corresponding row of mu. mu can also be a scalar value, 
which mvnpdf replicates to match the size of X. 

y = mvnpdf(X,mu,SIGMA) returns the density of the multivariate normal 
distribution with mean mu and covariance SIGMA, evaluated at each row of X. 
SIGMA is a d-by-d matrix, or an d-by-d-by-n array, in which case the density is 
evaluated for each row of X with the corresponding page of SIGMA, i.e., mvnpdf 
computes y(i) using X(i,:) and SIGMA(:,:,i). Specify [] for mu to use its 
default value when you want to specify only SIGMA. 

If X is a 1-by-d vector, mvnpdf replicates it to match the leading dimension of mu 
or the trailing dimension of SIGMA. 

Example mu = [1 -1]; 
Sigma = [.9 .4; .4 .3]; 
X = mvnrnd(mu,Sigma,10); 
p = mvnpdf(X,mu,Sigma); 

See Also mvnrnd, normpdf
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12mvnrndPurpose Random matrices from the multivariate normal distribution

Syntax R = mvnrnd(mu,SIGMA)
R = mvnrnd(mu,SIGMA,cases)

Description R = mvnrnd(mu,SIGMA) returns an n-by-d matrix R of random vectors chosen 
from the multivariate normal distribution with mean mu, and covariance SIGMA. 
mu is an n-by-d matrix, and mvnrnd generates each row of R using the 
corresponding row of mu. SIGMA is a d-by-d symmetric positive semi-definite 
matrix, or a d-by-d-by-n array. If SIGMA is an array, mvnrnd generates each row 
of R using the corresponding page of SIGMA, i.e., mvnrnd computes R(i,:) using 
mu(i,:) and SIGMA(:,:,i). If mu is a 1-by-d vector, mvnrnd replicates it to 
match the trailing dimension of SIGMA.

r = mvnrnd(mu,SIGMA,cases) returns a cases-by-d matrix R of random 
vectors chosen from the multivariate normal distribution with a common 
1-by-d mean vector mu, and a common d-by-d covariance matrix SIGMA.

Reproducing the Output of mvnrnd
mvnrnd uses the MATLAB function randn to generate random numbers. When 
you call mvnrnd, you change the current state of randn, and thereby alter the 
output of subsequent calls to mvnrnd or any other functions that depend on 
randn. If you want to reproduce the output of mvnrnd, reset the state of randn 
to the same fixed value each time you call mvnrnd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on randn, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The result in the following example depends on the current state of 
randn. If you run the code in this example, your results may differ from the 
plot shown here.

Example mu = [2 3];
sigma = [1 1.5; 1.5 3];
r = mvnrnd(mu,sigma,100);
plot(r(:,1),r(:,2),'+')
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See Also lhsnorm, mvnpdf, normrnd
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12mvtrndPurpose Random matrices from the multivariate t distribution

Syntax r = mvtrnd(C,df,cases)

Description r = mvtrnd(C,df,cases) returns a matrix of random numbers chosen from 
the multivariate t distribution, where C is a correlation matrix. df is the 
degrees of freedom and is either a scalar or is a vector with cases elements. If 
p is the number of columns in C, then the output r has cases rows and p 
columns.

Let t represent a row of r. Then the distribution of t is that of a vector having 
a multivariate normal distribution with mean 0, variance 1, and covariance 
matrix C, divided by an independent chi-square random value having df 
degrees of freedom. The rows of r are independent.

C must be a square, symmetric and positive definite matrix. If its diagonal 
elements are not all 1 (that is, if C is a covariance matrix rather than a 
correlation matrix), mvtrnd computes the equivalent correlation matrix before 
generating the random numbers.

Reproducing the Output of mvtrnd
mvtrnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call mvtrnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to mvtrnd or any other 
functions that depend on rand or randn. If you want to reproduce the output of 
mvtrnd, reset the states of rand and randn to the same fixed values each time 
you call mvtrnd. For an example of how to do this, and a list of the Statistics 
Toolbox functions that depend on rand or randn, see “Reproducing the Output 
of Random Number Functions” on page 2-46.

Note   The results in the following example depend on the current states of 
rand and randn. If you run the code in this example, your results may differ 
from the plot shown here.

Example sigma = [1 0.8;0.8 1];
r = mvtrnd(sigma,3,100);
plot(r(:,1),r(:,2),'+')
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See Also mvnrnd, trnd
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12nancovPurpose Covariance matrix, ignoring NaNs

Syntax C = nancov(X)
C = nancov(X,Y)
C = nancov(X,Y)
C = nancov(...,1)
C = nancov(...,'pairwise')

Description C = nancov(X), where X is a vector, returns the sample variance of the values 
in X, treating NaNs as missing values. If X is a matrix, in which each row is an 
observation and each column a variable, nancov(X) is the covariance matrix 
computing using rows of X that do not contain any NaN values. 

nancov(X,Y), where X and Y are vectors of equal length, is equivalent to 
nancov([X(:) Y(:)]), where X(:) and Y(:) are column vectors corresponding 
to X and Y, respectively.

nancov(X) or nancov(X,Y) normalizes the result by N - 1 where N is the 
number of observations after removing missing values. This makes nancov(X) 
the best unbiased estimate of the covariance matrix if the observations are 
from a normal distribution.

nancov(X,1) or nancov(X,Y,1) normalizes the result by N. That is, it returns 
the second moment matrix of the observations about their mean. 
nancov(X,Y,0) is the same as nancov(X,Y), and nancov(X,0) is the same as 
nancov(X).

C = NANCOV(...,'pairwise') computes C(i,j) using rows with no NaN values 
in columns i or j. The result may not be a positive definite matrix. 
C = NANCOV(...,'complete') is the default, and it omits rows with any NaN 
values, even if they are not in column i or j.

The mean is removed from each column before calculating the result.

Example The following example generates random data having nonzero covariance 
between column 4 and the other columns.

X = randn(30,4);    % uncorrelated data
X(:,4) = sum(x,2);   % introduce correlation
X(2,3) = NaN;     % introduce one missing value
C = nancov(x)     % compute sample covariance
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12nanmaxPurpose Maximum ignoring NaNs

Syntax M = nanmax(A)
M = nanmax(A,B)
M = nanmax(A,[],dim)
[M,ndx] = nanmax(...)

Description M = nanmax(A) returns the maximum with NaNs treated as missing. For 
vectors, nanmax(A) is the largest non-NaN element in A. For matrices, 
nanmax(A) is a row vector containing the maximum non-NaN element from each 
column. For N-dimensional arrays, nanmax operates along the first 
nonsingleton dimension of X.

M = nanmax(A,B) returns an array of the same size as A and B, each of whose 
entries is the maximum of the corresponding entries of A or B. A scalar input is 
expanded to an array of the same size as the other input.

M = nanmax(A,[],dim) operates along the dimension dim of X.

[M,ndx] = nanmax(...) also returns the indices of the maximum values in the 
vector ndx.

Example A = magic(3);
A([1 6 8]) = [NaN NaN NaN]

A =

  NaN   1   6
   3   5  NaN
   4  NaN   2

[nmax,maxidx] = nanmax(A)

nmax =

   4   5   6

maxidx =

   3   2   1

See Also nanmin, nanmean, nanmedian, nanstd, nansum
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12nanmeanPurpose Mean ignoring NaNs

Syntax y = nanmean(X)
y = nanmean(X,dim)

Description y = nanmean(X) is the mean computed by treating NaNs as missing values. 

For vectors, nanmean(x) is the mean of the non-NaN elements of x. For matrices, 
nanmean(X) is a row vector containing the mean of the non-NaN elements in 
each column. For N-dimensional arrays, nanmean operates along the first 
nonsingleton dimension of X.

nanmean(X,dim) takes the mean along dimension dim of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

  NaN   1   6
   3   5  NaN
   4  NaN   2

nmean = nanmean(m)

nmean =

  3.5000  3.0000  4.0000

See Also nanmin, nanmax, nanmedian, nanstd, nansum
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12nanmedianPurpose Median ignoring NaNs

Syntax y = nanmedian(X)
y = nanmedian(X,dim)

Description y = nanmedian(X) is the median computed by treating NaNs as missing values.

For vectors, nanmedian(x) is the median of the non-NaN elements of x. For 
matrices, nanmedian(X) is a row vector containing the median of the non-NaN 
elements in each column of X. For N-dimensional arrays, nanmedian operates 
along the first nonsingleton dimension of X.

y = nanmedian(X,dim) takes the median along the dimension dim of X.

Example m = magic(4);
m([1 6 9 11]) = [NaN NaN NaN NaN]

m =

  NaN   2  NaN  13
   5  NaN  10   8
   9   7  NaN  12
   4  14  15   1

nmedian = nanmedian(m)

nmedian =

  5.0000  7.0000  12.5000  10.0000

See Also nanmin, nanmax, nanmean, nanstd, nansum
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12nanminPurpose Minimum ignoring NaNs

Syntax M = nanmin(A)
M = nanmin(A,B)
M = nanmin(A,[],dim)
[M,ndx] = nanmin(...)

Description M = nanmin(A) is the minimum computed by treating NaNs as missing values. 
For vectors, M is the smallest non-NaN element in A. For matrices, M is a row 
vector containing the minimum non-NaN element from each column. For 
N-dimensional arrays, nanmin operates along the first nonsingleton dimension 
of X.

M = nanmin(A,B) returns an array of the same size as A and B, each of whose 
entries is the minimum of the corresponding entries of A or B. A scalar input is 
expanded to an array of the same size as the other input.

M = nanmin(A,[],dim) operates along the dimension dim of X.

[M,ndx] = nanmin(...) also returns the indices of the minimum values in 
vector ndx.

Example A = magic(3);
A([1 6 8]) = [NaN NaN NaN]

A =

  NaN   1   6
   3   5  NaN
   4  NaN   2

[nmin,minidx] = nanmin(A)

nmin =

   3   1   2

minidx =

   2   1   3

See Also nanmax, nanmean, nanmedian, nanstd, nansum
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12nanstdPurpose Standard deviation ignoring NaNs

Syntax Y = nanstd(X)
Y = nanstd(X,1)
Y = nanstd(X,0)
Y = nanstd(X,flag,dim)

Description Y = nanstd(X) is the standard deviation computed by treating NaNs as 
missing values. For vectors, nanstd(X) is the standard deviation of the non-NaN 
elements of X. For matrices, nanstd(X) is a row vector containing the standard 
deviations of the non-NaN elements in each column of X. For N-dimensional 
arrays, nanstd operates along the first nonsingleton dimension of X.

nanstd normalizes Y by N-1, where N is the sample size. The result Y is the 
square root of an unbiased estimator of the variance of the population from 
which X is drawn, as long as X consists of independent, identically distributed 
samples, and data are missing at random.

Y = nanstd(X,1) normalizes Y by N. The result Y is the square root of the 
second moment of the sample about its mean. nanstd(X,0) is the same as 
nanstd(X).

Y = nanstd(X,flag,dim) takes the standard deviation along the dimension 
dim of X. Set flag to 0 to normalize the result by N-1; set flag to 1 to normalize 
the result by N.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

  NaN   1   6
   3   5  NaN
   4  NaN   2

nstd = nanstd(m)

nstd =

  0.7071  2.8284  2.8284
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See Also nanmax, nanmin, nanmean, nanmedian, nansum
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12nansumPurpose Sum ignoring NaNs

Syntax y = nansum(X)
Y = nansum(X,dim)

Description y = nansum(X) is the sum computed by treating NaNs as missing values.

For vectors, nansum(x) is the sum of the non-NaN elements of x. For matrices, 
nansum(X) is a row vector containing the sum of the non-NaN elements in each 
column of X. For N-dimensional arrays, nansum operates along the first 
nonsingleton dimension of X.

Y = nansum(X,dim) takes the sum along dimension dim of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

  NaN   1   6
   3   5  NaN
   4  NaN   2

nsum = nansum(m)

nsum =

   7   6   8

See Also nanmax, nanmin, nanmean, nanmedian, nanstd
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12nanvarPurpose Variance ignoring NaNs.

Syntax Y = nanvar(X)
Y = nanvar(X,1)
Y = nanvar(X,0)
Y = nanvar(X,w)
Y = nanvar(X,w,dim)

Description Y = nanvar(X) returns the sample variance of the values in X, treating NaNs as 
missing values. For a vector input, Y is the variance of the non-NaN elements of 
X. For a matrix input, Y is a row vector containing the variance of the non-NaN 
elements in each column of X. For N-dimensional arrays, nanvar operates along 
the first nonsingleton dimension of X.

nanvar normalizes Y by N-1, where N is the sample size. The result Y is an 
unbiased estimator of the variance of the population from which X is drawn, as 
long as X consists of independent, identically distributed samples, and data are 
missing at random.

Y = nanvar(X,1) normalizes Y by N. The result Y is the second moment of the 
sample about its mean. nanvar(X,0) is the same as nanvar(X).

Y = nanvar(X,w) computes the variance using the weight vector w. The length 
of w must equal the length of the dimension over which nanvar operates, and 
its elements must be nonnegative. nanvar normalizes w so that its sum is one.

Y = nanvar(X,w,dim) takes the variance along the dimension dim of X. Set w 
to [] to use the default normalization by N-1.

See Also var, nanstd, nanmean, nanmedian, nanmin, nanmax, nansum
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12nbincdfPurpose Negative binomial cumulative distribution function (cdf)

Syntax Y = nbincdf(X,R,P)

Description Y = nbincdf(X,R,P) computes the negative binomial cdf at each of the values 
in X using the corresponding parameters in R and P. X, R, and P can be vectors, 
matrices, or multidimensional arrays that all have the same size, which is also 
the size of Y. A scalar input for X, R, or P is expanded to a constant array with 
the same dimensions as the other inputs.

The negative binomial cdf is

The simplest motivation for the negative binomial is the case of successive 
random trials, each having a constant probability P of success. The number of 
extra trials you must perform in order to observe a given number R of successes 
has a negative binomial distribution. However, consistent with a more general 
interpretation of the negative binomial, nbincdf allows R to be any positive 
value, including nonintegers. When R is noninteger, the binomial coefficient in 
the definition of the cdf is replaced by the equivalent expression 

Example x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)

y F x r p,( ) r i 1–+
i⎝ ⎠

⎛ ⎞

i 0=

x

∑ prqiI 0 1 …, ,( ) i( )= =

Γ r i+( )
Γ r( )Γ i 1+( )
--------------------------------
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See Also cdf, nbinfit, nbininv, nbinpdf, nbinrnd, nbinstat
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12nbinfitPurpose Parameter estimates and confidence intervals for negative binomial data

Syntax parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)

Description parmhat = nbinfit(data) returns the maximum likelihood estimates (MLEs) 
of the parameters of the negative binomial distribution given the data in the 
vector data.

[parmhat,parmci] = nbinfit(data,alpha) returns MLEs and 100(1-alpha) 
percent confidence intervals. By default, alpha = 0.05, which corresponds to 
95% confidence intervals.

[...] = nbinfit(data,alpha,options) accepts a structure, options, that 
specifies control parameters for the iterative algorithm the function uses to 
compute maximum likelihood estimates. You can create options using the 
function statset. Enter statset('nbinfit') to see the names and default 
values of the parameters that nbinfit accepts in the options structure. See 
the reference page for statset for more information about these options.

Note  The variance of a negative binomial distribution is greater than its 
mean. If the sample variance of the data in data is less than its sample mean, 
nbinfit cannot compute MLEs. You should use the poissfit function 
instead.

See Also nbincdf, nbininv, nbinpdf, nbinrnd, nbinstat, mle, statset
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12nbininvPurpose Inverse of the negative binomial cumulative distribution function (cdf)

Syntax X = nbininv(Y,R,P)

Description X = nbininv(Y,R,P) returns the inverse of the negative binomial cdf with 
parameters R and P at the corresponding probabilities in P. Since the binomial 
distribution is discrete, nbininv returns the least integer X such that the 
negative binomial cdf evaluated at X equals or exceeds Y. Y, R, and P can be 
vectors, matrices, or multidimensional arrays that all have the same size, 
which is also the size of X. A scalar input for Y, R, or P is expanded to a constant 
array with the same dimensions as the other inputs.

The simplest motivation for the negative binomial is the case of successive 
random trials, each having a constant probability P of success. The number of 
extra trials you must perform in order to observe a given number R of successes 
has a negative binomial distribution. However, consistent with a more general 
interpretation of the negative binomial, nbininv allows R to be any positive 
value, including nonintegers. 

Example How many times would you need to flip a fair coin to have a 99% probability of 
having observed 10 heads?

flips = nbininv(0.99,10,0.5) + 10

flips =

  33

Note that you have to flip at least 10 times to get 10 heads. That is why the 
second term on the right side of the equals sign is a 10.

See Also icdf, nbincdf, nbinfit, nbinpdf, nbinrnd, nbinstat
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12nbinpdfPurpose Negative binomial probability density function

Syntax Y = nbinpdf(X,R,P)

Description Y = nbinpdf(X,R,P) returns the negative binomial pdf at each of the values 
in X using the corresponding parameters in R and P. X, R, and P can be vectors, 
matrices, or multidimensional arrays that all have the same size, which is also 
the size of Y. A scalar input for X, R, or P is expanded to a constant array with 
the same dimensions as the other inputs. Note that the density function is zero 
unless the values in X are integers.

The negative binomial pdf is

The simplest motivation for the negative binomial is the case of successive 
random trials, each having a constant probability P of success. The number of 
extra trials you must perform in order to observe a given number R of successes 
has a negative binomial distribution. However, consistent with a more general 
interpretation of the negative binomial, nbinpdf allows R to be any positive 
value, including nonintegers. When R is noninteger, the binomial coefficient in 
the definition of the pdf is replaced by the equivalent expression 

Example x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'Xlim',[-0.5,10.5])
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12nbinrndPurpose Random matrices from a negative binomial distribution

Syntax RND = nbinrnd(R,P)
RND = nbinrnd(R,P,m)
RND = nbinrnd(R,P,m,n)

Description RND = nbinrnd(R,P) is a matrix of random numbers chosen from a negative 
binomial distribution with parameters R and P. R and P can be vectors, 
matrices, or multidimensional arrays that have the same size, which is also the 
size of RND. A scalar input for R or P is expanded to a constant array with the 
same dimensions as the other input.

RND = nbinrnd(R,P,m) generates random numbers with parameters R and P, 
where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and 
v(2) columns. If v is 1-by-n, R is an n-dimensional array.

RND = nbinrnd(R,P,m,n) generates random numbers with parameters R 
and P, where scalars m and n are the row and column dimensions of RND.

The simplest motivation for the negative binomial is the case of successive 
random trials, each having a constant probability P of success. The number of 
extra trials you must perform in order to observe a given number R of successes 
has a negative binomial distribution. However, consistent with a more general 
interpretation of the negative binomial, nbinrnd allows R to be any positive 
value, including nonintegers. 

Reproducing the Output of nbinrnd
nbinrnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call nbinrnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to nbinrnd or any other 
functions that depend on rand or randn. If you want to reproduce the output of 
nbinrnd, reset the states of rand and randn to the same fixed values each time 
you call nbinrnd. For an example of how to do this, and a list of the Statistics 
Toolbox functions that depend on rand or randn, see “Reproducing the Output 
of Random Number Functions” on page 2-46.
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Note   The result in the following example depends on the current states of 
rand and randn. If you run the code in this example, your results may differ 
from the answer shown here.

Example Suppose you want to simulate a process that has a defect probability of 0.01. 
How many units might Quality Assurance inspect before finding three 
defective items?

r = nbinrnd(3,0.01,1,6) + 3

r =

  496  142  420  396  851  178

See Also nbincdf, nbinfit, nbininv, nbinpdf, nbinstat
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12nbinstatPurpose Mean and variance of the negative binomial distribution

Syntax [M,V] = nbinstat(R,P)

Description [M,V] = nbinstat(R,P) returns the mean and variance of the negative 
binomial distribution with parameters R and P. R and P can be vectors, 
matrices, or multidimensional arrays that all have the same size, which is also 
the size of M and V. A scalar input for R or P is expanded to a constant array with 
the same dimensions as the other input.

The mean of the negative binomial distribution with parameters r and p is rq/p, 
where q = 1-p. The variance is rq/p2.

The simplest motivation for the negative binomial is the case of successive 
random trials, each having a constant probability P of success. The number of 
extra trials you must perform in order to observe a given number R of successes 
has a negative binomial distribution. However, consistent with a more general 
interpretation of the negative binomial, nbinstat allows R to be any positive 
value, including nonintegers.

Example p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)

M =

  9.0000  18.0000  27.0000  36.0000  45.0000
  2.3333  4.6667  7.0000  9.3333  11.6667
  1.0000  2.0000  3.0000  4.0000  5.0000
  0.4286  0.8571  1.2857  1.7143  2.1429
  0.1111  0.2222  0.3333  0.4444  0.5556

V =

  90.0000 180.0000 270.0000 360.0000 450.0000
  7.7778  15.5556  23.3333  31.1111  38.8889
  2.0000  4.0000  6.0000  8.0000  10.0000
  0.6122  1.2245  1.8367  2.4490  3.0612
  0.1235  0.2469  0.3704  0.4938  0.6173



nbinstat

12-360

See Also nbincdf, nbinfit, nbininv, nbinpdf, nbinrnd
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12ncfcdfPurpose Noncentral F cumulative distribution function (cdf)

Syntax P = ncfcdf(X,NU1,NU2,DELTA)

Description P = ncfcdf(X,NU1,NU2,DELTA) computes the noncentral F cdf at each of the 
values in X using the corresponding numerator degrees of freedom in NU1, 
denominator degrees of freedom in NU2, and positive noncentrality parameters 
in DELTA. NU1, NU2, and DELTA can be vectors, matrices, or multidimensional 
arrays that have the same size, which is also the size of P. A scalar input for X, 
NU1, NU2, or DELTA is expanded to a constant array with the same dimensions 
as the other inputs.

The noncentral F cdf is

where I(x|a,b) is the incomplete beta function with parameters a and b.

Example Compare the noncentral F cdf with δ = 10 to the F cdf with the same number of 
numerator and denominator degrees of freedom (5 and 20 respectively).

x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'--',x,p1,'-')
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References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also cdf, ncfpdf, ncfinv, ncfrnd, ncfstat
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12ncfinvPurpose Inverse of the noncentral F cumulative distribution function (cdf)

Syntax X = ncfinv(P,NU1,NU2,DELTA)

Description X = ncfinv(P,NU1,NU2,DELTA) returns the inverse of the noncentral F cdf 
with numerator degrees of freedom NU1, denominator degrees of freedom NU2, 
and positive noncentrality parameter DELTA for the corresponding probabilities 
in P. P, NU1, NU2, and DELTA can be vectors, matrices, or multidimensional 
arrays that all have the same size, which is also the size of X. A scalar input for 
P, NU1, NU2, or DELTA is expanded to a constant array with the same dimensions 
as the other inputs.

Example One hypothesis test for comparing two sample variances is to take their ratio 
and compare it to an F distribution. If the numerator and denominator degrees 
of freedom are 5 and 20 respectively, then you reject the hypothesis that the 
first variance is equal to the second variance if their ratio is less than that 
computed below.

critical = finv(0.95,5,20)

critical =

  2.7109

Suppose the truth is that the first variance is twice as big as the second 
variance. How likely is it that you would detect this difference?

prob = 1 - ncfcdf(critical,5,20,2)

prob =

  0.1297

If the true ratio of variances is 2, what is the typical (median) value you would 
expect for the F statistic? 

ncfinv(0.5,5,20,2)

ans = 
    1.2786 
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References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
edition, John Wiley and Sons, 1993, pp. 102–105.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also icdf, ncfcdf, ncfpdf, ncfrnd, ncfstat
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12ncfpdfPurpose Noncentral F probability density function

Syntax Y = ncfpdf(X,NU1,NU2,DELTA)

Description Y = ncfpdf(X,NU1,NU2,DELTA) computes the noncentral F pdf at each of the 
values in X using the corresponding numerator degrees of freedom in NU1, 
denominator degrees of freedom in NU2, and positive noncentrality parameters 
in DELTA. X, NU1, N2, and B can be vectors, matrices, or multidimensional arrays 
that all have the same size, which is also the size of Y. A scalar input for P, NU1, 
NU2, or DELTA is expanded to a constant array with the same dimensions as the 
other inputs.

The F distribution is a special case of the noncentral F where δ = 0. As δ 
increases, the distribution flattens like the plot in the example.

Example Compare the noncentral F pdf with δ = 10 to the F pdf with the same number 
of numerator and denominator degrees of freedom (5 and 20 respectively).

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'--',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also ncfcdf, ncfinv, ncfrnd, ncfstat, pdf
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12ncfrndPurpose Random matrices from the noncentral F distribution

Syntax R = ncfrnd(NU1,NU2,DELTA)
R = ncfrnd(NU1,NU2,DELTA,v)
R = ncfrnd(NU1,NU2,DELTA,m,n)

Description R = ncfrnd(NU1,NU2,DELTA) returns a matrix of random numbers chosen from 
the noncentral F distribution with parameters NU1, NU2 and DELTA. NU1, NU2, 
and DELTA can be vectors, matrices, or multidimensional arrays that have the 
same size, which is also the size of R. A scalar input for NU1, NU2, or DELTA is 
expanded to a constant matrix with the same dimensions as the other inputs.

R = ncfrnd(NU1,NU2,DELTA,v) returns a matrix of random numbers with 
parameters NU1, NU2, and DELTA, where v is a row vector. If v is a 1-by-2 vector, 
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an 
n-dimensional array.

R = ncfrnd(NU1,NU2,DELTA,m,n) generates random numbers with 
parameters NU1, NU2, and DELTA, where scalars m and n are the row and column 
dimensions of R.

Reproducing the Output of ncfrnd
ncfrnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call ncfrnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to ncfrnd or any other 
functions that depend on rand or randn. If you want to reproduce the output of 
ncfrnd, reset the states of rand and randn to the same fixed values each time 
you call ncfrnd. For an example of how to do this, and a list of the Statistics 
Toolbox functions that depend on rand or randn, see “Reproducing the Output 
of Random Number Functions” on page 2-46.

Note   The results in the following example depend on the current states of 
rand and randn. If you run the code in this example, your results may differ 
from the answers shown here.

Example Compute six random numbers from a noncentral F distribution with 10 
numerator degrees of freedom, 100 denominator degrees of freedom and a 
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noncentrality parameter, δ, of 4.0. Compare this to the F distribution with the 
same degrees of freedom.

r = ncfrnd(10,100,4,1,6)

r =
  2.5995  0.8824  0.8220  1.4485  1.4415  1.4864

r1 = frnd(10,100,1,6)

r1 =
  0.9826  0.5911  1.0967  0.9681  2.0096  0.6598

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also ncfcdf, ncfinv, ncfpdf, ncfstat
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12ncfstatPurpose Mean and variance of the noncentral F distribution

Syntax [M,V] = ncfstat(NU1,NU2,DELTA)

Description [M,V] = ncfstat(NU1,NU2,DELTA) returns the mean and variance of the 
noncentral F pdf with NU1 and NU2 degrees of freedom and noncentrality 
parameter DELTA. NU1, NU2, and DELTA can be vectors, matrices, or 
multidimensional arrays that all have the same size, which is also the size of M 
and V. A scalar input for NU1, NU2, or DELTA is expanded to a constant array with 
the same dimensions as the other input.

The mean of the noncentral F distribution with parameters ν1, ν2, and δ is 

 

where ν2 > 2.

The variance is

where ν2 > 4.

Example [m,v]= ncfstat(10,100,4)

m =
  1.4286

v =
  0.4252

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 73–74.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 189–200.

See Also ncfcdf, ncfinv, ncfpdf, ncfrnd
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12nctcdfPurpose Noncentral T cumulative distribution function

Syntax P = nctcdf(X,NU,DELTA)

Description P = nctcdf(X,NU,DELTA) computes the noncentral T cdf at each of the values 
in X using the corresponding degrees of freedom in NU and noncentrality 
parameters in DELTA. X, NU, and DELTA can be vectors, matrices, or 
multidimensional arrays that have the same size, which is also the size of P. A 
scalar input for X, NU, or DELTA is expanded to a constant array with the same 
dimensions as the other inputs.

Example Compare the noncentral T cdf with DELTA = 1 to the T cdf with the same 
number of degrees of freedom (10).

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'--',x,p1,'-')

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also cdf, nctcdf, nctinv, nctpdf, nctrnd, nctstat
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12nctinvPurpose Inverse of the noncentral T cumulative distribution

Syntax X = nctinv(P,NU,DELTA)

Description X = nctinv(P,NU,DELTA) returns the inverse of the noncentral T cdf with NU 
degrees of freedom and noncentrality parameter DELTA for the corresponding 
probabilities in P. P, NU, and DELTA can be vectors, matrices, or 
multidimensional arrays that all have the same size., which is also the size of X. 
A scalar input for P, NU, or DELTA is expanded to a constant array with the same 
dimensions as the other inputs.

Example x = nctinv([0.1 0.2],10,1)

x =
  -0.2914  0.1618

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also icdf, nctcdf, nctpdf, nctrnd, nctstat
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12nctpdfPurpose Noncentral T probability density function (pdf)

Syntax Y = nctpdf(X,V,DELTA)

Description Y = nctpdf(X,V,DELTA) computes the noncentral T pdf at each of the values 
in X using the corresponding degrees of freedom in V and noncentrality 
parameters in DELTA. Vector or matrix inputs for X, V, and DELTA must have the 
same size, which is also the size of Y. A scalar input for X, V, or DELTA is 
expanded to a constant matrix with the same dimensions as the other inputs. 

Example Compare the noncentral T pdf with DELTA = 1 to the T pdf with the same 
number of degrees of freedom (10).

x = (-5:0.1:5)';
p1 = nctpdf(x,10,1);
p = tpdf(x,10);
plot(x,p,'--',x,p1,'-')

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also nctcdf, nctinv, nctrnd, nctstat, pdf
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12nctrndPurpose Random matrices from noncentral T distribution

Syntax R = nctrnd(V,DELTA)
R = nctrnd(V,DELTA,v)
R = nctrnd(V,DELTA,m,n)

Description R = nctrnd(V,DELTA) returns a matrix of random numbers chosen from the 
noncentral T distribution with parameters V and DELTA. V and DELTA can be 
vectors, matrices, or multidimensional arrays. A scalar input for V or DELTA is 
expanded to a constant array with the same dimensions as the other input.

R = nctrnd(V,DELTA,v) returns a matrix of random numbers with 
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector, R is a 
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional 
array.

R = nctrnd(V,DELTA,m,n) generates random numbers with parameters V and 
DELTA, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of nctrnd
nctrnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call nctrnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to nctrnd or any other 
functions that depend on rand or randn. If you want to reproduce the output of 
nctrnd, reset the states of rand and randn to the same fixed values each time 
you call nctrnd. For an example of how to do this, and a list of the Statistics 
Toolbox functions that depend on rand or randn, see “Reproducing the Output 
of Random Number Functions” on page 2-46.

Note   The result in the following example depends on the current states of 
rand and randn. If you run the code in these examples, your results may differ 
from the answer shown here.

Example nctrnd(10,1,5,1)

ans =
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  1.6576
  1.0617
  1.4491
  0.2930
  3.6297

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also nctcdf, nctinv, nctpdf, nctstat
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12nctstatPurpose Mean and variance for the noncentral t distribution

Syntax [M,V] = nctstat(NU,DELTA)

Description [M,V] = nctstat(NU,DELTA) returns the mean and variance of the 
noncentral t pdf with NU degrees of freedom and noncentrality parameter 
DELTA. NU and DELTA can be vectors, matrices, or multidimensional arrays that 
all have the same size, which is also the size of M and V. A scalar input for NU or 
DELTA is expanded to a constant array with the same dimensions as the other 
input.

The mean of the noncentral t distribution with parameters ν and δ is 

 

where ν > 1. 

The variance is

where ν > 2.

Example [m,v] = nctstat(10,1)

m =
  1.0837

v =
  1.3255

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 201–219.

See Also nctcdf, nctinv, nctpdf, nctrnd
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12ncx2cdfPurpose Noncentral chi-square cumulative distribution function (cdf)

Syntax P = ncx2cdf(X,V,DELTA)

Description P = ncx2cdf(X,V,DELTA) computes the noncentral chi-square cdf at each of 
the values in X using the corresponding degrees of freedom in V and positive 
noncentrality parameters in DELTA. X, V, and DELTA can be vectors, matrices, or 
multidimensional arrays that all have the same size, which is also the size of P. 
A scalar input for X, V, or DELTA is expanded to a constant array with the same 
dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, 
Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is

Example x = (0:0.1:10)';
p1 = ncx2cdf(x,4,2);
p = chi2cdf(x,4);
plot(x,p,'--',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

F x ν δ,( )

1
2
---δ⎝ ⎠
⎛ ⎞ j

j!
--------------e

δ
2
---–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Pr χ
ν 2j+

2 x≤[ ]

j 0=

∞

∑=

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1



ncx2cdf

12-376

See Also cdf, ncx2inv, ncx2pdf, ncx2rnd, ncx2stat
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12ncx2invPurpose Inverse of the noncentral chi-square cdf

Syntax X = ncx2inv(P,V,DELTA)

Description X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral chi-square cdf 
with parameters V and DELTA at the corresponding probabilities in P. P, V, and 
DELTA can be vectors, matrices, or multidimensional arrays that all have the 
same size., which is also the size of X. A scalar input for P, V, or DELTA is 
expanded to a constant array with the same dimensions as the other inputs.

Algorithm ncx2inv uses Newton's method to converge to the solution.

Example ncx2inv([0.01 0.05 0.1],4,2)

ans =

  0.4858  1.1498  1.7066

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd Edition, 
John Wiley and Sons, 1993, pp. 50–52.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also icdf, ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat
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12ncx2pdfPurpose Noncentral chi-square probability density function (pdf)

Syntax Y = ncx2pdf(X,V,DELTA)

Description Y = ncx2pdf(X,V,DELTA) computes the noncentral chi-square pdf at each of 
the values in X using the corresponding degrees of freedom in V and positive 
noncentrality parameters in DELTA. Vector or matrix inputs for X, V, and DELTA 
must have the same size, which is also the size of Y. A scalar input for X, V, or 
DELTA is expanded to a constant array with the same dimensions as the other 
inputs.

Some texts refer to this distribution as the generalized Rayleigh, 
Rayleigh-Rice, or Rice distribution.

Example As the noncentrality parameter δ increases, the distribution flattens as shown 
in the plot.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'--',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2rnd, ncx2stat, pdf
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12ncx2rndPurpose Random matrices from the noncentral chi-square distribution

Syntax R = ncx2rnd(V,DELTA)
R = ncx2rnd(V,DELTA,v)
R = ncx2rnd(V,DELTA,m,n)

Description R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen from the 
non-central chi-square distribution with parameters V and DELTA. V and DELTA 
can be vectors, matrices, or multidimensional arrarys that have the same size, 
which is also the size of R. A scalar input for V or DELTA is expanded to a 
constant array with the same dimensions as the other input. 

R = ncx2rnd(V,DELTA,v) returns a matrix of random numbers with 
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector, R is a 
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional 
array.

R = ncx2rnd(V,DELTA,m,n) generates random numbers with parameters V and 
DELTA, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of ncx2rnd
ncx2rnd uses the MATLAB function randn to generate random numbers. When 
you call ncx2rnd, you change the current state of randn, and thereby alter the 
output of subsequent calls to ncx2rnd or any other functions that depend on 
randn. If you want to reproduce the output of ncx2rnd, reset the state of randn 
to the same fixed value each time you call ncx2rnd. For an example of how to 
do this, and a list of the Statistics Toolbox functions that depend on randn, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The result in the following example depends on the current state of 
randn. If you run the code in this example, your results may differ from the 
answer shown here.

Example ncx2rnd(4,2,6,3)

ans =
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  6.8552  5.9650  11.2961
  5.2631  4.2640  5.9495
  9.1939  6.7162  3.8315
  10.3100  4.4828  7.1653
  2.1142  1.9826  4.6400
  3.8852  5.3999  0.9282

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2stat
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12ncx2statPurpose Mean and variance for the noncentral chi-square distribution

Syntax [M,V] = ncx2stat(NU,DELTA)

Description [M,V] = ncx2stat(NU,DELTA) returns the mean and variance of the noncentral 
chi-square pdf with NU degrees of freedom and noncentrality parameter DELTA. 
NU and DELTA can be vectors, matrices, or multidimensional arrays that all have 
the same size., which is also the size of M and V. A scalar input for NU or DELTA 
is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral chi-square distribution with parameters ν and δ is 
, and the variance is .

Example [m,v] = ncx2stat(4,2)

m =
   6

v =
  16

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
Edition, John Wiley and Sons, 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate 
Distributions-2, John Wiley and Sons, 1970, pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd
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12nlinfitPurpose Nonlinear least-squares regression

Syntax beta = nlinfit(X,y,fun,beta0)
[beta,r,J] = nlinfit(X,y,fun,beta0)
[...] = nlinfit(X, y, fun, beta0, options)

Description beta = nlinfit(X,y,fun,beta0) estimates the coefficients of a nonlinear 
regression function using least squares. y is a vector of response (dependent 
variable) values. Typically, X is a design matrix of predictor (independent 
variable) values, with one row for each value in y. However, X can be any array 
that fun can accept. fun is a function, specified using the @ sign, of the form

yhat = myfun(beta,X)

where beta is a coefficient vector. fun returns a vector yhat of fitted y values. 
beta0 is a vector containing initial values for the coefficients.

[beta,r,J] = nlinfit(X,y,fun,beta0) returns the fitted coefficients, beta, 
the residuals, r, and the Jacobian, J. You can use these outputs with nlpredci 
to produce error estimates on predictions, and with nlparci to produce error 
estimates on the estimated coefficients. 

Note  nlintool provides a GUI for performing nonlinear fits and computing 
confidence intervals.

[...] = nlinfit(X, y, fun, beta0, options) accepts the input argument 
options, a structure that sets parameters for the algorithm used in nlinfit. 
You can create options using statset. The fields of options are

• MaxIter — Maximum number of iterations allowed. The default is 100.

• TolFun — Termination tolerance on the residual sum of squares. The 
defaults is 1e-8.

• TolX — Termination tolerance on the estimated coefficients beta. The 
default is 1e-8.

• Display — Level of display output during estimation. The choices are

- 'off' (the default), 
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- 'iter'
- 'final'

• 'DerivStep' — Relative difference used in finite difference gradient            
calculation. May be a scalar, or the same size as the parameter vector beta0. 
The default is eps^(1/3).

•  'FunValCheck' — Check for invalid values, such as NaN or Inf, from            the 
objective function. Values are 'off' or 'on' (the default).

nlinfit treats NaNs in y or fun(beta, X) as missing data and ignores the 
corresponding rows.

Example Find the coefficients that best fit the data in reaction.mat. The chemistry 
behind this data set deals with reaction kinetics as a function of the partial 
pressure of three chemical reactants: hydrogen, n-pentane, and isopentane.

The hougen function uses the Hougen-Watson model for reaction kinetics to 
return the predicted values of the reaction rate. 

load reaction
betafit = nlinfit(reactants,rate,@hougen,beta)

betafit =

  1.2526
  0.0628
  0.0400
  0.1124
  1.1914

Reference [1] Seber, G. A. F, and C. J. Wild, Nonlinear Regression, Wiley, 1989.

See Also hougen, nlintool, nlparci, nlpredci
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12nlintoolPurpose Fit a nonlinear equation to data and display an interactive graph

Syntax nlintool(x,y,fun,beta0)
nlintool(x,y,fun,beta0,alpha)
nlintool(x,y,fun,beta0,alpha,'xname','yname')

Description nlintool displays a “vector” of plots, one for each column of the matrix of 
inputs, x. The response variable, y, is a column vector that matches the number 
of rows in x.

nlintool(x,y,fun,beta0) is a prediction plot that provides a nonlinear curve 
fit to (x,y) data. It plots a 95% global confidence interval for predictions as two 
red curves. beta0 is a vector containing initial guesses for the parameters.

fun is a MATLAB function that returns a vector of fitted y values. It is of the 
form

yhat = myfun(beta,x)

nlintool(x,y,fun,beta0,alpha) plots a 100(1 - alpha)% confidence 
interval for predictions.

The default value for alpha is 0.05, which produces 95% confidence intervals.

nlintool(x,y,fun,beta0,alpha,'xname','yname') labels the plot using the 
string matrix 'xname' for the x variables and the string 'yname' for the y 
variable.

nlintool treats NaNs in y or fun(beta, X) as missing data and ignores the 
corresponding rows.

Example See “An Interactive GUI for Nonlinear Fitting and Prediction” on page 5-6 for 
an example and for details about using the graphical interface.

See Also nlinfit, rstool
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12nlparciPurpose Confidence intervals on estimates of parameters in nonlinear models

Syntax ci = nlparci(beta,resid,J)
ci = nlparci(beta,resid,J,alpha)

Description nlparci(beta,resid,J) returns the 95% confidence interval ci on the 
nonlinear least squares parameter estimates beta. Before calling nlparci, use 
nlinfit to fit a nonlinear regression model and get the coefficient estimates 
beta, residuals resid, and Jacobian J. 

ci = nlparci(beta,resid,J,alpha) returns 100(1-alpha) percent 
confidence intervals.

nlparci treats NaNs in resid or J as missing values, and ignores the 
corresponding observations.

The confidence interval calculation is valid for systems where the length of 
resid exceeds the length of beta and J has full column rank. When J is 
ill-conditioned, confidence intervals may be inaccurate.

Example Continuing the example from nlinfit:

load reaction
[beta,resid,J] = nlinfit(reactants,rate,'hougen',beta);
ci = nlparci(beta,resid,J)

ci =

  -1.0798  3.3445
  -0.0524  0.1689
  -0.0437  0.1145
  -0.0891  0.2941
  -1.1719  3.7321

See Also nlinfit, nlintool, nlpredci
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12nlpredciPurpose Confidence intervals on predictions of nonlinear models

Syntax ypred = nlpredci(fun,inputs,beta,r,J)
[ypred,delta] = nlpredci(FUN,inputs,beta,r,J)
ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt')

Description ypred = nlpredci(FUN,inputs,beta,r,J) returns the predicted responses, 
ypred, given the fitted parameters beta, residuals r, and the Jacobian 
matrix J. inputs is a matrix of values of the independent variables in the 
nonlinear function.

[ypred,delta] = nlpredci(FUN,inputs,beta,r,J) also returns the 
half-width, delta, of confidence intervals for the nonlinear least squares 
predictions. The confidence interval calculation is valid for systems where the 
length of r exceeds the length of beta and J is of full column rank. The interval 
[ypred-delta,ypred+delta] is a 95% non-simultaneous confidence interval 
for the true value of the function at the specified input values.

ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt')
controls the type of confidence intervals. The confidence level is 
100(1 - alpha)%. 'simopt' can be 'on' for simultaneous intervals or 'off' 
(the default) for non-simultaneous intervals. 'predopt' can be 'curve' (the 
default) for confidence intervals for the function value at the inputs, or 
'observation' for confidence intervals for a new response value.

nlpredci uses the outputs of nlinfit for its inputs.

Example Continuing the example from nlinfit, you can determine the predicted 
function value at [100 300 80] and the half-width of a confidence interval for 
it.

load reaction
[beta,resids,J] = nlinfit(reactants,rate,@hougen,beta);
[ypred,delta] = nlpredci(@hougen,[100 300 80],beta,resids,J)

ypred =
  13

delta =
    1.4277
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See Also nlinfit, nlintool, nlparci
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12normcdfPurpose Normal cumulative distribution function (cdf)

Syntax P = normcdf(X,MU,SIGMA)
[P, PLO, PUP] = normcdf(X, MU, SIGMA, PCOV, alpha)

Description normcdf(X,MU,SIGMA) computes the normal cdf at each of the values in X using 
the corresponding parameters in MU and SIGMA. X, MU, and SIGMA can be vectors, 
matrices, or multidimensional arrays that all have the same size. A scalar 
input is expanded to a constant array with the same dimensions as the other 
inputs. The parameters in SIGMA must be positive.

[P, PLO, PUP] = normcdf(X, MU, SIGMA, PCOV, alpha) produces confidence 
bounds for P when the input parameters MU and SIGMA are estimates. PCOV is 
the covariance matrix of the estimated parameters. alpha specifies 
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. PLO and 
PUP are arrays of the same size as P containing the lower and upper confidence 
bounds. 

The function normdf computes confidence bounds for P using a normal 
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The computed 
bounds give approximately the desired confidence level when you estimate MU, 
SIGMA, and PCOV from large samples, but in smaller samples other methods of 
computing the confidence bounds might be more accurate.

The normal cdf is

The result, p, is the probability that a single observation from a normal 
distribution with parameters µ and σ will fall in the interval (-∞ x].

The standard normal distribution has µ = 0 and σ = 1.

X µ̂–

σ̂
-------------

p F x µ σ,( ) 1
σ 2π
--------------- e

t µ–( )– 2

2σ2
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Examples What is the probability that an observation from a standard normal 
distribution will fall on the interval [-1 1]?

p = normcdf([-1 1]);
p(2) - p(1)

ans =

  0.6827

More generally, about 68% of the observations from a normal distribution fall 
within one standard deviation, σ, of the mean, µ.

See Also cdf, normfit, norminv, normpdf, normplot, normrnd, normspec, normstat
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12normfitPurpose Parameter estimates and confidence intervals for normal data

Syntax [muhat, sigmahat] = normfit(DATA)
[muhat,sigmahat,muci,sigmaci] = normfit(DATA)
[muhat,sigmahat,muci,sigmaci] = normfit(DATA,alpha)
[...] = normfit(DATA, alpha, censoring)
[...] = normfit(DATA, alpha, censoring, freq)
[...] = normfit(DATA, alpha, censoring, freq, options)

Description [muhat, sigmahat] = normfit(DATA) returns estimates of the mean, µ, and 
standard deviation, σ, of the normal distribution given the data in DATA. 

[muhat,sigmahat,muci,sigmaci] = normfit(DATA) returns 95% confidence 
intervals for the parameter estimates on the µ and σ parameters in the arrays 
muci and sigmaci. The first row of muci contains the lower bounds of the 
confidence intervals for µ, and the second row contains the upper bounds. The 
first row of sigmaci contains the lower bounds of the confidence intervals for σ, 
and the second row contains the upper bounds . 

[muhat,sigmahat,muci,sigmaci] = normfit(DATA, alpha) returns 
100(1 - alpha) % confidence intervals for the parameter estimates, where 
alpha is a value in the range [0 1] specifying the width of the confidence 
intervals. By default, alpha is 0.05, which corresponds to 95% confidence 
intervals. 

[...] = normfit(data, alpha, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly. data must be 
a vector in order to pass in the argument censoring.

[...] = normfit(data, alpha, censoring, freq) accepts a frequency 
vector, freq, of the same size as data. Typically, freq contains integer 
frequencies for the corresponding elements in data, but can contain any 
nonnegative values. Pass in [] for alpha, censoring, or freq to use their 
default values.

[...] = evfit(DATA, alpha, censoring, freq, options) accepts a 
structure, options, that specifies control parameters for the iterative 
algorithm the function uses to compute maximum likelihood estimates when 
there is censoring. You can create options using the function statset. Enter 
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statset('normfit') to see the names and default values of the parameters 
that normfit accepts in the options structure. See the reference page for 
statset for more information about these options. 

Example In this example the data is a two-column random normal matrix. Both columns 
have µ = 10 and σ = 2. Note that the confidence intervals below contain the 
“true values.” 

data = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(data)

mu =
  10.1455  10.0527

sigma =
  1.9072  2.1256

muci =
  9.7652  9.6288
  10.5258  10.4766

sigmaci =
  1.6745  1.8663
  2.2155  2.4693

See Also normcdf, norminv, normlike, normpdf, normplot, normrnd, normspec, 
normstat, mle, statset
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12norminvPurpose Inverse of the normal cumulative distribution function (cdf)

Syntax X = norminv(P,MU,SIGMA)
[X, XLO, XUP] = norminv(P, MU, SIGMA, PCOV, alpha)

Description X = norminv(P,MU,SIGMA) computes the inverse of the normal cdf with 
parameters MU and SIGMA at the corresponding probabilities in P. P, MU, and 
SIGMA can be vectors, matrices, or multidimensional arrays that all have the 
same size. A scalar input is expanded to a constant array with the same 
dimensions as the other inputs. The parameters in SIGMA must be positive, and 
the values in P must lie in the interval [0 1].

[X, XLO, XUP] = norminv(P, MU, SIGMA, PCOV, alpha) produces confidence 
bounds for X when the input parameters MU and SIGMA are estimates. PCOV is 
the covariance matrix of the estimated parameters. alpha specifies 
100(1 - alpha)% confidence bounds. The default value of alpha is 0.05. XLO and 
XUP are arrays of the same size as X containing the lower and upper confidence 
bounds. 

The function norminv computes confidence bounds for P using a normal 
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and 
standard deviation 1. The computed bounds give approximately the desired 
confidence level when you estimate MU, SIGMA, and PCOV from large samples, but 
in smaller samples other methods of computing the confidence bounds may be 
more accurate.

The normal inverse function is defined in terms of the normal cdf as

where

µ̂ σ̂q+

x F 1– p µ σ,( ) x:F x µ σ,( ) p={ }= =

p F x µ σ,( ) 1
σ 2π
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The result, x, is the solution of the integral equation above where you supply 
the desired probability, p.

Examples Find an interval that contains 95% of the values from a standard normal 
distribution.

x = norminv([0.025 0.975],0,1)

x =
  -1.9600  1.9600

Note that the interval x is not the only such interval, but it is the shortest.

xl = norminv([0.01 0.96],0,1)

xl =
  -2.3263  1.7507

The interval xl also contains 95% of the probability, but it is longer than x.

See Also icdf, normfit, normfit, normpdf, normplot, normrnd, normspec, normstat
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12normlikePurpose Negative normal log-likelihood function

Syntax nlogL = normlike(params,data)
[nlogL,AVAR] = normlike(params,data)
[...] = normlike(param, data, censoring)
[...] = normlike(param, data, censoring, freq)

Description nlogL = normlike(params,data) returns the negative of the normal 
log-likelihood function for the parameters params(1) = MU and 
params(2) = SIGMA, given the vector data.

[nlogL,AVAR] = normlike(params,data) also returns the inverse of Fisher's 
information matrix, AVAR. If the input parameter values in params are the 
maximum likelihood estimates, the diagonal elements of AVAR are their 
asymptotic variances. AVAR is based on the observed Fisher's information, not 
the expected information.

[...] = normlike(param, data, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly.

[...] = normlike(param, data, censoring, freq) accepts a frequency 
vector, freq, of the same size as data. The vector freq typically contains 
integer frequencies for the corresponding elements in data, but can contain any 
nonnegative values. Pass in [] for censoring to use its default value.

normlike is a utility function for maximum likelihood estimation.

See Also betalike, gamlike, mle, normfit, wbllike
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12normpdfPurpose Normal probability density function (pdf)

Syntax Y = normpdf(X,MU,SIGMA)

Description normpdf(X,MU,SIGMA) computes the normal pdf at each of the values in X using 
the corresponding parameters in MU and SIGMA. X, MU, and SIGMA can be vectors, 
matrices, or multidimensional arrays that all have the same size. A scalar 
input is expanded to a constant array with the same dimensions as the other 
inputs. The parameters in SIGMA must be positive.

The normal pdf is

The likelihood function is the pdf viewed as a function of the parameters. 
Maximum likelihood estimators (MLEs) are the values of the parameters that 
maximize the likelihood function for a fixed value of x.

The standard normal distribution has µ = 0 and σ = 1.

If x is standard normal, then xσ + µ is also normal with mean µ and standard 
deviation σ. Conversely, if y is normal with mean µ and standard deviation σ, 
then x = (y-µ) / σ is standard normal.

Examples mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)

MLE =

  1.5000

See Also mvnpdf, normfit, norminv, normplot, normrnd, normspec, normstat, pdf
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12normplotPurpose Normal probability plot for graphical normality testing

Syntax normplot(X)
h = normplot(X)

Description normplot(X) displays a normal probability plot of the data in X. For matrix X, 
normplot displays a line for each column of X.

The plot has the sample data displayed with the plot symbol '+'. 
Superimposed on the plot is a line joining the first and third quartiles of each 
column of X (a robust linear fit of the sample order statistics.) This line is 
extrapolated out to the ends of the sample to help evaluate the linearity of the 
data. 

If the data does come from a normal distribution, the plot will appear linear. 
Other probability density functions will introduce curvature in the plot.

h = normplot(X) returns a handle to the plotted lines.

Examples Generate a normal sample and a normal probability plot of the data.

x = normrnd(0,1,50,1);
h = normplot(x);
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The plot is linear, indicating that you can model the sample by a normal 
distribution.

See Also cdfplot, hist, normfit, normfit, norminv, normpdf, normrnd, normspec, 
normstat
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12normrndPurpose Generate random numbers from the normal distribution

Syntax R = normrnd(MU,SIGMA)
R = normrnd(MU,SIGMA,v)
R = normrnd(MU,SIGMA,m,n)

Description R = normrnd(MU,SIGMA) generates normal random numbers with mean MU 
and standard deviation SIGMA. MU and SIGMA can be vectors, matrices, or 
multidimensional arrays that have the same size, which is also the size of R. A 
scalar input for MU or SIGMA is expanded to a constant array with the same 
dimensions as the other input.

R = normrnd(MU,SIGMA,v) generates normal random numbers with 
parameters MU and SIGMA, where v is a row vector. If v is a 1-by-2 vector, R is a 
matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional 
array. 

R = normrnd(MU,SIGMA,m,n) generates normal random numbers with 
parameters MU and SIGMA, where scalars m and n are the row and column 
dimensions of R.

Reproducing the Output of normrnd
normrnd uses the MATLAB function randn to generate random numbers. When 
you call normrnd, you change the current state of randn, and thereby alter the 
output of subsequent calls to normrnd or any other functions that depend on 
randn. If you want to reproduce the output of normrnd, reset the state of randn 
to the same fixed value each time you call normrnd. For an example of how to 
do this, and a list of the Statistics Toolbox functions that depend on randn, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The results in the following examples depend on the current state of 
randn. If you run the code in these examples, your results might differ from 
the answers shown here.

Examples n1 = normrnd(1:6,1./(1:6))
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n1 =
  2.1650  2.3134  3.0250  4.0879  4.8607  6.2827

n2 = normrnd(0,1,[1 5])

n2 =
  0.0591  1.7971  0.2641  0.8717  -1.4462

n3 = normrnd([1 2 3;4 5 6],0.1,2,3)

n3 =
  0.9299  1.9361  2.9640
  4.1246  5.0577  5.9864

See Also normfit, normfit, norminv, normpdf, normplot, normspec, normstat
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12normspecPurpose Plot normal density between specification limits

Syntax p = normspec(specs, mu, sigma)
[p,h] = normspec(specs, mu, sigma)

Description p = normspec(specs,mu,sigma) plots the normal density between a lower 
and upper limit defined by the two elements of the vector specs, where mu and 
sigma are the parameters of the plotted normal distribution.

[p,h] = normspec(specs,mu,sigma) returns the probability p of a sample 
falling between the lower and upper limits. h is a handle to the line objects.

If specs(1) is -Inf, there is no lower limit, and similarly if specs(2) = Inf, 
there is no upper limit.

Example Suppose a cereal manufacturer produces 10 ounce boxes of corn flakes. 
Variability in the process of filling each box with flakes causes a 1.25 ounce 
standard deviation in the true weight of the cereal in each box. The average box 
of cereal has 11.5 ounces of flakes. What percentage of boxes will have less than 
10 ounces?

normspec([10 Inf],11.5,1.25)

See Also capaplot, disttool, histfit, normfit, normfit, norminv, normpdf, normplot, 
normrnd, normstat
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12normstatPurpose Mean and variance for the normal distribution

Syntax [M,V] = normstat(MU,SIGMA)

Description [M,V] = normstat(MU,SIGMA) returns the mean and variance for the normal 
distribution with parameters MU and SIGMA. MU and SIGMA can be vectors, 
matrices, or multidimensional arrays that all have the same size, which is also 
the size of M and V. A scalar input for MU or SIGMA is expanded to a constant 
array with the same dimensions as the other input.

The mean of the normal distribution with parameters µ and σ is µ, and the 
variance is σ2.

Examples n = 1:5;
[m,v] = normstat(n'∗n,n'*n)

m =
   1   2   3   4   5
   2   4   6   8  10
   3   6   9  12  15
   4   8  12  16  20
   5  10  15  20  25

v =
   1   4   9  16  25
   4  16  36  64  100
   9  36  81  144  225
  16  64  144  256  400
  25  100  225  400  625

See Also normfit, normfit, norminv, normpdf, normplot, normrnd, normspec
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12parallelcoordsPurpose Parallel coordinates plot for multivariate data

Syntax parallelcoords(X)
parallelcoords(X, ..., 'Standardize', 'on')
parallelcoords(X, ..., 'Standardize', 'PCA')
parallelcoords(X, ..., 'Standardize', 'PCAStd')
parallelcoords(X, ..., 'Quantile', alpha)
parallelcoords(X, ..., 'Group', group)
parallelcoords(X, ..., 'Labels', labs)
parallelcoords(X, ..., 'PropertyName', PropertyValue, ...)
h = parallelcoords(X, ...)

Description parallelcoords(X) creates a parallel coordinates plot of the multivariate data 
in the n-by-p matrix X. Rows of X correspond to observations, columns to 
variables. A parallel coordinates plot is a tool for visualizing high dimensional 
data, where each observation is represented by the sequence of its coordinate 
values plotted against their coordinate indices. parallelcoords treats NaNs in 
X as missing values and does not plot those coordinate values.

parallelcoords(X, ..., 'Standardize', 'on') scales each column of X to 
have mean 0 and standard deviation 1 before making the plot.

parallelcoords(X, ..., 'Standardize', 'PCA') creates a parallel 
coordinates plot from the principal component scores of X, in order of 
decreasing eigenvalues. parallelcoords removes rows of X containing missing 
values (NaNs) for principal components analysis (PCA) standardization.

parallelcoords(X, ..., 'Standardize','PCAStd') creates a parallel 
coordinates plot using the standardized principal component scores. 

parallelcoords(X, ..., 'Quantile', alpha) plots only the median and the 
alpha and (1-alpha) quantiles of f(t) at each value of t. This is useful if X 
contains many observations.

parallelcoords(X, ..., 'Group', group) plots the data in different groups 
with different colors. Groups are defined by group, a numeric array containing 
a group index for each observation. group can also be a character matrix or cell 
array of strings, containing a group name for each observation.

parallelcoords(X, ..., 'Labels', labs) labels the coordinate tick marks 
along the horizontal axis using labs, a character array or cell array of strings.
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parallelcoords(X, ..., 'PropertyName', PropertyValue, ...) sets 
properties to the specified property values for all line graphics objects created 
by parallelcoords.

h = parallelcoords(X, ...) returns a column vector of handles to the line 
objects created by parallelcoords, one handle per row of X. If you use the 
'Quantile' input parameter, h contains one handle for each of the three lines 
objects created. If you use both the 'Quantile' and the 'Group' input 
parameters, h contains three handles for each group.

Examples % make a grouped plot of the raw data
load fisheriris
labs = {'Sepal Length','Sepal Width','Petal Length',...
'Petal Width'};
parallelcoords(meas, 'group',species, 'labels',labs);
% plot only the median and quartiles of each group
parallelcoords(meas, 'group',species, 'labels', labs,...
'quantile',.25);

See Also andrewsplot, glyphplot
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12paretoPurpose Pareto charts for Statistical Process Control

Syntax pareto(y)
pareto(y,names)
h = pareto(...)

Description pareto(y,names) displays a Pareto chart where the values in the vector y are 
drawn as bars in descending order. Each bar is labeled with the associated 
value in the string matrix names. pareto(y) labels each bar with the index of 
the corresponding element in y.

The line above the bars shows the cumulative percentage.

pareto(y,names) labels each bar with the row of the string matrix names that 
corresponds to the plotted element of y.

h = pareto(...) returns a combination of patch and line handles.

Example Create a Pareto chart from data measuring the number of manufactured parts 
rejected for various types of defects.

defects = {'pits';'cracks';'holes';'dents'};
quantity = [5 3 19 25];
pareto(quantity,defects)

See Also bar, capaplot, ewmaplot, hist, histfit, schart, xbarplot

dents holes pits  cracks
0

20

40

60



pcacov

12-405

12pcacovPurpose Principal components analysis (PCA) using the covariance matrix

Syntax COEFF = pcacov(V)
[COEFF, latent] = pcacov(V)
[COEFF, latent, explained] = pcacov(V)

Description COEFF = pcacov(V) performs principal components analysis on the p-by-p 
covariance matrix V and returns the principal component coefficients, also 
known as loadings. COEFF is a p-by-p matrix, with each column containing 
coefficients for one principal component. The columns are in order of 
decreasing component variance.

pcacov does not standardize V to have unit variances. To perform principal 
components analysis on standardized variables, use the correlation matrix 
R = V./(SD*SD')), where SD = sqrt(diag(V)), in place of V. To perform 
principal components analysis directly on the data matrix, use princomp or 
pcacov.

[COEFF, latent] = pcacov(V) returns latent, a vector containing the 
principal component variances, that is, the eigenvalues of V.

[COEFF, latent, explained] = pcacov(V) returns explained, a vector 
containing the percentage of the total variance explained by each principal 
component.

Example load hald
covx = cov(ingredients);
[COEFF, latent, explained] = pcacov(covx)

COEFF =

  0.0678  -0.6460  0.5673  -0.5062
  0.6785  -0.0200  -0.5440  -0.4933
  -0.0290  0.7553  0.4036  -0.5156
  -0.7309  -0.1085  -0.4684  -0.4844

variances =

 517.7969
  67.4964
  12.4054
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  0.2372

explained =

  86.5974
  11.2882
  2.0747
  0.0397

References [1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and 
Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University 
Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also barttest, biplot, factoran, pcares, princomp
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12pcaresPurpose Residuals from a principal components analysis

Syntax residuals = pcares(X,ndim)
[residuals, reconstructed] = pcares(X, ndim)

Description pcares(X,ndim) returns the residuals obtained by retaining ndim principal 
components of the n-by-p matrix X. Rows of X correspond to observations, 
columns to variables. ndim is a scalar and must be less than or equal to p. 
residuals is a matrix of the same size as X. Use the data matrix, not the 
covariance matrix, with this function.

pcares does not normalize the columns of X. To perform the principal 
components analysis based on standardized variables, that is, based on 
correlations, use pcares(zscore(X), ndim). You can perform principal 
components analysis directly on a covariance or correlation matrix, but without 
constructing residuals, by using pcacov.

[residuals, reconstructed] = pcares(X, ndim) returns the reconstructed 
observations; that is, the approximation to X obtained by retaining its first ndim 
principal components.

Example This example shows the drop in the residuals from the first row of the Hald 
data as the number of component dimensions increases from one to three.

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);

r11 = r1(1,:)
r11 =

  2.0350  2.8304  -6.8378  3.0879

r21 = r2(1,:)
r21 =

  -2.4037  2.6930  -1.6482  2.3425

r31 = r3(1,:)
r31 =
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  0.2008  0.1957  0.2045  0.1921

References [1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and 
Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University 
Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also factoran, pcacov, princomp
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12pdfPurpose Probability density function (pdf) for a specified distribution

Syntax Y = pdf('name',X,A1,A2,A3)

Description pdf('name',X,A1,A2,A3) returns a matrix of densities, where 'name' is a 
string containing the name of the distribution. X is a matrix of values, and A1, 
A2, and A3 are matrices of distribution parameters. Depending on the 
distribution, some of the parameters may not be necessary. 

Vector or matrix inputs for X, A1, A2, and A3 must all have the same size. A 
scalar input is expanded to a constant matrix with the same dimensions as the 
other inputs.

pdf is a utility routine allowing access to all the pdfs in the Statistics Toolbox 
using the name of the distribution as a parameter. See “Overview of the 
Distributions” on page 2-45 for the list of available distributions.

Examples p = pdf('Normal',-2:2,0,1)

p =
  0.0540  0.2420  0.3989  0.2420  0.0540

p = pdf('Poisson',0:4,1:5)

p =
  0.3679  0.2707  0.2240  0.1954  0.1755

See Also betapdf, binopdf, cdf, chi2pdf, exppdf, fpdf, gampdf, geopdf, hygepdf, 
lognpdf, nbinpdf, ncfpdf, nctpdf, ncx2pdf, normpdf, poisspdf, raylpdf, 
tpdf, unidpdf, unifpdf, wblpdf
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12pdistPurpose Pairwise distance between observations

Syntax Y = pdist(X)
Y = pdist(X,distance)
Y = pdist(X,distfun)
Y = pdist(X,'minkowski',p)

Description Y = pdist(X) computes the Euclidean distance between pairs of objects in 
n-by-p data matrix X. Rows of X correspond to observations; columns 
correspond to variables. Y is a row vector of length , 
corresponding to the  pairs of observations in X. The distances are 
arranged in the order (1,2), (1,3), ..., (1,n), (2,3), ..., (2,n), ..., ..., (n-1,n). Y is 
commonly used as a dissimilarity matrix in clustering or multidimensional 
scaling.

To save space and computation time, Y is formatted as a vector. However, you 
can convert this vector into a square matrix using the squareform function so 
that element i,j in the matrix, where , corresponds to the distance between 
objects i and j in the original data set.

Y = pdist(X,distance) computes the distance between objects in the data 
matrix, X, using the method specified by distance, where distance can be any 
of the following character strings that identify ways to compute the distance.

 'euclidean' Euclidean distance (default)

'seuclidean' Standardized Euclidean distance. Each coordinate in the 
sum of squares is inverse weighted by the sample 
variance of that coordinate.

'mahalanobis' Mahalanobis distance

'cityblock' City Block metric

'minkowski' Minkowski metric

'cosine' One minus the cosine of the included angle between 
points (treated as vectors)

'correlation' One minus the sample correlation between points 
(treated as sequences of values).

n 1–( ) n 2⁄⋅
n 1–( ) n 2⁄⋅

i j<
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Y = pdist(X,@distfun) accepts a function handle to a distance function of the 
form

d = distfun(u,V)

which takes as arguments a 1-by-p vector u, corresponding to a single row of X, 
and an m-by-p matrix V, corresponding to multiple rows of X. distfun must 
accept a matrix V with an arbitrary number of rows. distfun must return an 
m-by-1 vector of distances d, whose kth element is the distance between u and 
V(k,:).

Parameterizing Functions Called by Functions, in the online MATLAB 
documentation, explains how to provide the additional parameters to the 
distance function, if necessary.

Y = pdist(X,'minkowski',p) computes the distance between objects in the 
data matrix, X, using the Minkowski metric. p is the exponent used in the 
Minkowski computation which, by default, is 2. 

Mathematical Definitions of Methods
Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x1, 
x2, ..., xm, the various distances between the vector xr and xs are defined as 
follows:

• Euclidean distance

• Standardized Euclidean distance

'spearman' One minus the sample Spearman's rank correlation 
between observations, treated as sequences of values

'hamming' Hamming distance, the percentage of coordinates that 
differ

'jaccard' One minus the Jaccard coefficient, the percentage of 
nonzero coordinates that differ

'chebychev' Chebychev distance (maximum coordinate difference)

drs
2 xr xs–( ) xr xs–( )'=
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where D is the diagonal matrix with diagonal elements given by , which 
denotes the variance of the variable Xj over the m objects.

• Mahalanobis distance

where V is the sample covariance matrix. 

• City Block metric

• Minkowski metric

Notice that for the special case of p = 1, the Minkowski metric gives the City 
Block metric, and for the special case of p = 2, the Minkowski metric gives 
the Euclidean distance.

• Cosine distance

• Correlation distance

where

drs
2 xr xs–( )D 1– xr xs–( )'=

vj
2

drs
2 xr xs–( )V 1– xr xs–( )′=

drs xrj xsj–
j 1=

n

∑=

drs xrj xsj–
p

j 1=

n

∑
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

1
p
---

=

drs 1 x– rx′s x′rxr( )
1
2
---

x′sxs( )
1
2
---

⁄
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

drs 1
xr xr–( ) xs xs–( )′

xr xr–( ) xr xr–( )′[ ]
1
2
---

xs xs–( ) xs xs–( )′[ ]
1
2
---

----------------------------------------------------------------------------------------------------------–=
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 and 

• Hamming distance

• Jaccard distance

Examples X = [1 2; 1 3; 2 2; 3 1]

X =
   1   2
   1   3
   2   2
   3   1

Y = pdist(X,'mahal')
Y =
  2.3452  2.0000  2.3452  1.2247  2.4495  1.2247

Y = pdist(X)
Y =
  1.0000  1.0000  2.2361  1.4142  2.8284  1.4142

squareform(Y)

ans =
     0  1.0000  1.0000  2.2361
  1.0000     0  1.4142  2.8284
  1.0000  1.4142     0  1.4142
  2.2361  2.8284  1.4142     0

See Also cluster, clusterdata, cmdscale, cophenet, dendrogram, inconsistent, 
linkage, silhouette, squareform

xr
1
n
--- xrj

j
∑= xs

1
n
--- xsj

j
∑=

drs # xrj xsj≠( ) n⁄( )=

drs
# xrj xsj≠( ) xrj 0≠( ) xsj 0≠( )∨( )∧[ ]

# xrj 0≠( ) xsj 0≠( )∨[ ]
-----------------------------------------------------------------------------------------------=
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12permsPurpose All permutations

Syntax P = perms(v)

Description P = perms(v) where v is a row vector of length n, creates a matrix whose rows 
consist of all possible permutations of the n elements of v. The matrix P 
contains n! rows and n columns.

perms is only practical when n is less than 8 or 9.

Example perms([2 4 6])

ans =

   6   4   2
   6   2   4
   4   6   2
   4   2   6
   2   4   6
   2   6   4
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12poisscdfPurpose Poisson cumulative distribution function (cdf)

Syntax P = poisscdf(X,LAMBDA)

Description poisscdf(X,LAMBDA) computes the Poisson cdf at each of the values in X using 
the corresponding parameters in LAMBDA. X and LAMBDA can be vectors, 
matrices, or multidimensional arrays that have the same size. A scalar input 
is expanded to a constant array with the same dimensions as the other input. 
The parameters in LAMBDA must be positive.

The Poisson cdf is

Examples For example, consider a Quality Assurance department that performs random 
tests of individual hard disks. Their policy is to shut down the manufacturing 
process if an inspector finds more than four bad sectors on a disk. What is the 
probability of shutting down the process if the mean number of bad sectors (λ) 
is two?

probability = 1 - poisscdf(4,2)

probability =

  0.0527

About 5% of the time, a normally functioning manufacturing process will 
produce more than four flaws on a hard disk. 

Suppose the average number of flaws (λ) increases to four. What is the 
probability of finding fewer than five flaws on a hard drive? 

probability = poisscdf(4,4)

probability =

  0.6288

This means that this faulty manufacturing process continues to operate after 
this first inspection almost 63% of the time.

p F x λ( ) e λ– λi

i!
-----

i 0=

floor x( )

∑= =
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See Also cdf, poissfit, poissinv, poisspdf, poissrnd, poisstat
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12poissfitPurpose Parameter estimates and confidence intervals for Poisson data

Syntax lambdahat = poissfit(DATA)
[lambdahat,lambdaci] = poissfit(DATA)
[lambdahat,lambdaci] = poissfit(DATA,alpha)

Description poissfit(DATA) returns the maximum likelihood estimate (MLE) of the 
parameter of the Poisson distribution, λ, given the data DATA.

[lambdahat,lambdaci] = poissfit(DATA) also gives 95% confidence 
intervals in lamdaci.

[lambdahat,lambdaci] = poissfit(DATA,alpha) gives 100(1 - alpha)% 
confidence intervals. For example alpha = 0.001 yields 99.9% confidence 
intervals.

The sample average is the MLE of λ. 

Example r = poissrnd(5,10,2);
[l,lci] = poissfit(r)

l =
7.4000 6.3000

lci =
5.8000 4.8000
9.1000 7.9000

See Also betafit, binofit, expfit, gamfit, poisscdf, poissinv, poisspdf, poissrnd, 
poisstat, unifit, wblfit

λ̂ 1
n
--- xi

i 1=

n

∑=
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12poissinvPurpose Inverse of the Poisson cumulative distribution function (cdf)

Syntax X = poissinv(P,LAMBDA)

Description poissinv(P,LAMBDA) returns the smallest value X such that the Poisson cdf 
evaluated at X equals or exceeds P. P and LAMBDA can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other input.

Examples If the average number of defects (λ) is two, what is the 95th percentile of the 
number of defects?

poissinv(0.95,2)

ans =

   5

What is the median number of defects?

median_defects = poissinv(0.50,2)

median_defects =

   2

See Also icdf, poisscdf, poissfit, poisspdf, poissrnd, poisstat
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12poisspdfPurpose Poisson probability density function (pdf)

Syntax Y = poisspdf(X,LAMBDA)

Description poisspdf(X,LAMBDA) computes the Poisson pdf at each of the values in X using 
the corresponding parameters in LAMBDA. X and LAMBDA can be vectors, 
matrices, or multidimensional arrays that all have the same size. A scalar 
input is expanded to a constant array with the same dimensions as the other 
input. The parameters in LAMBDA must all be positive.

The Poisson pdf is

where x can be any nonnegative integer. The density function is zero unless x 
is an integer.

Examples A computer hard disk manufacturer has observed that flaws occur randomly in 
the manufacturing process at the average rate of two flaws in a 4 Gb hard disk 
and has found this rate to be acceptable. What is the probability that a disk will 
be manufactured with no defects?

In this problem, λ = 2 and x = 0.

p = poisspdf(0,2)

p =
  0.1353

See Also pdf, poisscdf, poissfit, poissinv, poissrnd, poisstat

y f x λ( ) λx

x!
-----e λ– I 0 1 …, ,( ) x( )= =
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12poissrndPurpose Random numbers from the Poisson distribution

Syntax R = poissrnd(LAMBDA)
R = poissrnd(LAMBDA,v)
R = poissrnd(LAMBDA,m,n)

Description R = poissrnd(LAMBDA) generates Poisson random numbers with mean 
LAMBDA. LAMBDA can be a vector, a matrix, or a multidimensional array. The size 
of R is the size of LAMBDA.

R = poissrnd(LAMBDA,m) generates Poisson random numbers with mean 
LAMBDA, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) 
rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array. 

R = poissrnd(LAMBDA,m,n) generates Poisson random numbers with mean 
LAMBDA, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of poissrnd
poissrnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call poissrnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to poissrnd or any 
other functions that depend on rand or randn. If you want to reproduce the 
output of poissrnd, reset the states of rand and randn to the same fixed values 
each time you call poissrnd. For an example of how to do this, and a list of the 
Statistics Toolbox functions that depend on rand or randn, see “Reproducing 
the Output of Random Number Functions” on page 2-46.

Note   The results in the following examples depend on the current states of 
rand and randn. If you run the code in these examples, your results may differ 
from the answers shown here.

Examples Generate a random sample of 10 pseudo-observations from a Poisson 
distribution with λ = 2.

lambda = 2;

random_sample1 = poissrnd(lambda,1,10)
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random_sample1 =

   1   0   1   2   1   3   4   2   0   0

random_sample2 = poissrnd(lambda,[1 10])
random_sample2 =

   1   1   1   5   0   3   2   2   3   4

random_sample3 = poissrnd(lambda(ones(1,10)))
random_sample3 =

   3   2   1   1   0   0   4   0   2   0

See Also poisscdf, poissfit, poissinv, poisspdf, poisstat
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12poisstatPurpose Mean and variance for the Poisson distribution

Syntax M = poisstat(LAMBDA)
[M,V] = poisstat(LAMBDA)

Description M = poisstat(LAMBDA) returns the mean of the Poisson distribution with 
parameter LAMBDA. The size of M is the size of LAMBDA.

[M,V] = poisstat(LAMBDA) also returns the variance V of the Poisson 
distribution.

For the Poisson distribution with parameter λ, both the mean and variance are 
equal to λ.

Examples Find the mean and variance for the Poisson distribution with λ = 2.

[m,v] = poisstat([1 2; 3 4])

m =
   1   2
   3   4

v =
   1   2
   3   4

See Also poisscdf, poissfit, poissinv, poisspdf, poissrnd
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12polyconfPurpose Polynomial evaluation and confidence interval estimation

Syntax [Y,DELTA] = polyconf(p,X,S)
[Y,DELTA] = polyconf(p,X,S,alpha)

Description [Y,DELTA] = polyconf(p,X,S) uses the optional output S generated by 
polyfit to give 95% prediction intervals Y ± DELTA for future observations at X. 
This assumes the errors in the data input to polyfit are independent normal 
with constant variance.

[Y,DELTA] = polyconf(p,X,S,alpha) gives 100(1 - alpha)% prediction 
intervals. For example, alpha = 0.1 yields 90% intervals.

If p is a vector whose elements are the coefficients of a polynomial in 
descending powers, such as those output from polyfit, then polyconf(p,X) is 
the value of the polynomial evaluated at X. If X is a matrix or vector, the 
polynomial is evaluated at each of the elements.

Examples This example gives predictions and 90% prediction intervals for computing 
time for LU factorizations of square matrices with 100 to 200 columns. 

n = [100 100:20:200];
for i = n
A = rand(i,i);
tic
B = lu(A);

t(ceil((i-80)/20)) = toc;
end

[p,S] = polyfit(n(2:7),t,3);
[time,delta_t] = polyconf(p,n(2:7),S,0.1)

time =

  0.0829  0.1476  0.2277  0.3375  0.4912  0.7032

delta_t =

  0.0064  0.0057  0.0055  0.0055  0.0057  0.0064
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12polyfitPurpose Polynomial curve fitting

Syntax p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n 
that fits the data, p(x(i)) to y(i), in a least squares sense. The result p is a 
row vector of length n+1 containing the polynomial coefficients in descending 
powers:

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p and a 
structure S for use with polyval to obtain error estimates or predictions. S 
contains fields for the triangular factor (R) from a QR decomposition of the 
Vandermonde matrix of x, the degrees of freedom (df), and the norm of the 
residuals (normr). If the data is random, an estimate of the covariance matrix 
of p is (Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

where µ1 = mean(x) and µ2 = std(x). mu is the two-element vector [µ1 , µ2]. This 
centering and scaling transformation improves the numerical properties of 
both the polynomial and the fitting algorithm.

The polyfit function is part of the standard MATLAB language.

Example Fitting a random data set to a first-order polynomial:

[p,S] = polyfit(1:10,[1:10] + normrnd(0,1,1,10),1)
p =
  1.1433  -0.7868
S = 
    R: [2x2 double]
    df: 8
  normr: 2.3773

p x( ) p1xn p2xn 1– … pnx pn 1++ + + +=

x̂
x µ1–

µ2
---------------=
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See Also polyval, polytool, polyconf
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12polytoolPurpose Interactive plot for prediction of fitted polynomials

Syntax polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha,xname,yname)
h = polytool(...)

Description polytool(x,y) fits a line to the vectors x and y and displays an interactive plot 
of the result in a graphical interface. You can use the interface to explore the 
effects of changing the parameters of the fit and to export fit results to the 
workspace. See “Polynomial Curve Fitting Demo” on page 4-36 for details.

polytool(x,y,n) initially fits a polynomial of degree n. The default is 1, which 
produces a linear fit.

polytool(x,y,n,alpha) initially plots 100(1 - alpha)% confidence intervals 
on the predicted values. The default is 0.05 which results in 95% confidence 
intervals. 

polytool(x,y,n,alpha,xname,yname) labels the x and y values on the 
graphical interface using the strings xname and yname. Specify n and alpha as 
[] to use their default values.

h = polytool(...) outputs a vector of handles, h, to the line objects in the 
plot. The handles are returned in the order: data, fit, lower bounds, upper 
bounds.

Algorithm polytool fits by least-squares using the regression model

yi β0 β1xi β2xi
2 … βnxi

n εi+ + ++ +=

εi N 0 σ2,( )∼ i∀

Cov εi εj,( ) 0= i j,∀
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12polyvalPurpose Polynomial evaluation

Syntax Y = polyval(p,X)
[Y,DELTA] = polyval(p,X,S)

Description Y = polyval(p,X) returns the predicted value of a polynomial given its 
coefficients, p, at the values in X.

[Y,DELTA] = polyval(p,X,S) uses the optional output S generated by 
polyfit to generate error estimates, Y ± DELTA. If the errors in the data input 
to polyfit are independent normal with constant variance, Y ± DELTA contains 
at least 50% of future observations at X.

If p is a vector whose elements are the coefficients of a polynomial in 
descending powers, then polyval(p,X) is the value of the polynomial 
evaluated at X. If X is a matrix or vector, the polynomial is evaluated at each of 
the elements.

The polyval function is part of the standard MATLAB language.

Examples Simulate the function y = x, adding normal random errors with a standard 
deviation of 0.1. Then use polyfit to estimate the polynomial coefficients. Note 
that predicted Y values are within DELTA of the integer X in every case.

[p,S] = polyfit(1:10,(1:10) + normrnd(0,0.1,1,10),1);
X = magic(3);
[Y,D] = polyval(p,X,S)

Y =
  8.0696  1.0486  6.0636
  3.0546  5.0606  7.0666
  4.0576  9.0726  2.0516

D =
  0.0889  0.0951  0.0861
  0.0889  0.0861  0.0870
  0.0870  0.0916  0.0916

See Also polyfit, polytool, polyconf
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12prctilePurpose Percentiles of a sample

Syntax Y = prctile(X,p)
Y = prctile(X,p,dim)

Description Y = prctile(X,p) returns percentiles of the values in X. p is a scalar or a 
vector of percent values. When X is a vector, Y is the same size as p and Y(i) 
contains the p(i)-th percentile. When X is a matrix, the i-th row of Y contains 
the p(i)-th percentiles of each column of X. For N-dimensional arrays, prctile 
operates along the first nonsingleton dimension of X.

Y = prctile(X,p,dim) calculates percentiles along dimension dim. The dim'th 
dimension of Y has length length(p).

Percentiles are specified using percentages, from 0 to 100. For an n-element 
vector X, prctile computes percentiles as follows:

1 The sorted values in X are taken to be the 100(0.5/n), 100(1.5/n), ..., 
100([n-0.5]/n) percentiles.

2 Linear interpolation is used to compute percentiles for percent values 
between 100(0.5/n) and 100([n-0.5]/n).

3 The minimum or maximum values in X are assigned to percentiles for 
percent values outside that range.

prctile treats NaNs as missing values and removes them.

Examples x = (1:5)'*(1:5)

x =
   1   2   3   4   5
   2   4   6   8  10
   3   6   9  12  15
   4   8  12  16  20
   5  10  15  20  25

y = prctile(x,[25 50 75])

y =
  1.7500  3.5000  5.2500  7.0000  8.7500
  3.0000  6.0000  9.0000  12.0000  15.0000
  4.2500  8.5000  12.7500  17.0000  21.2500
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12princompPurpose Principal components analysis (PCA)

Syntax COEFF = princomp(X)
[COEFF,SCORE,latent,tsquare] = princomp(X)
[...] = princomp(X, 'econ')

Description COEFF = princomp(X) performs principal components analysis on the n-by-p 
data matrix X, and returns the principal component coefficients, also known as 
loadings. Rows of X correspond to observations, columns to variables. COEFF is 
a p-by-p matrix, each column containing coefficients for one principal 
component. The columns are in order of decreasing component variance.

princomp centers X by subtracting off column means, but does not rescale the 
columns of X. To perform principal components analysis with standardized 
variables, that is, based on correlations, use princomp(zscore(X)). To perform 
principal components analysis directly on a covariance or correlation matrix, 
use pcacov.

[COEFF, SCORE] = princomp(X) returns SCORE, the principal component 
scores; that is, the representation of X in the principal component space. Rows 
of SCORE correspond to observations, columns to components.

[COEFF, SCORE,latent] = princomp(X) returns latent, a vector containing 
the eigenvalues of the covariance matrix of X.

[COEFF, SCORE,latent,tsquare] = princomp(X)  returns tsquare, which 
contains Hotelling’s T2 statistic for each data point.

The scores are the data formed by transforming the original data into the space 
of the principal components. The values of the vector latent are the variance 
of the columns of SCORE. Hotelling’s T2 is a measure of the multivariate 
distance of each observation from the center of the data set.

When n <= p, SCORE(:,n:p) and latent(n:p) are necessarily zero, and the 
columns of COEFF(:,n:p) define directions that are orthogonal to X.

[...] = princomp(X, 'econ') returns only the elements of latent that are 
not necessarily zero, and the corresponding columns of COEFF and SCORE, that 
is, when n <= p, only the first n-1. This can be significantly faster when p is 
much larger than n.
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Example Compute principal components for the ingredients data in the Hald data set, 
and the variance accounted for by each component.

load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent

pc =
  0.0678  -0.6460  0.5673  -0.5062
  0.6785  -0.0200  -0.5440  -0.4933
  -0.0290  0.7553  0.4036  -0.5156
  -0.7309  -0.1085  -0.4684  -0.4844

latent =

 517.7969
  67.4964
  12.4054
  0.2372

Reference [1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and 
Sons, 1991, p. 592.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd edition, Springer, 2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford University 
Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also barttest, biplot, canoncorr, factoran, pcacov, pcares
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12probplotPurpose Probability plot

Syntax probplot(Y)
probplot('distname', Y)
probplot(Y, cens, req)
probplot(ax, Y)
probplot(...,'noref')
probplot(ax, fun, params)
h = probplot(...)

Description probplot(Y) produces a normal probability plot comparing the distribution of 
the data Y to the normal distribution. Y can be a single vector, or a matrix with 
a separate sample in each column. The plot includes a reference line useful for 
judging whether the data follow a normal distribution.

probplot('distname', Y) creates a probability plot for the specified 
distribution.

probplot(Y, cens, freq) or probplot('distname', Y, cens, freq) 
requires a vector Y. cens is a vector of the same size as Y and contains 1 for 
observations that are right-censored and 0 for observations that are observed 
exactly. freq is a vector of the same size as Y, containing integer frequencies 
for the corresponding elements in Y.

probplot(ax, Y) takes a handle ax to an existing probability plot, and adds 
additional lines for the samples in Y. ax is a handle for a set of axes. 

probplot(...,'noref') omits the reference line.

probplot(ax, fun, params) takes a function fun and a set of parameters, 
params, and adds fitted lines to the axes specified by ax. fun is a function to 
compute a cdf function, and is specified with @, for example, @weibcdf. params 
is the set of parameters required to evaluate fun, and is specified as a cell array 
or vector. The function must accept a vector of X values as its first argument, 
then the optional parameters, and must return a vector of cdf values evaluated 
at X.

h = probplot(...) returns handles to the plotted lines.

See Also normplot, ecdf
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12procrustesPurpose Procrustes analysis

Syntax d = procrustes(X,Y)
[d,Z] = procrustes(X,Y)
[d,Z,transform] = procrustes(X,Y)

Description d = procrustes(X,Y) determines a linear transformation (translation, 
reflection, orthogonal rotation, and scaling) of the points in matrix Y to best 
conform them to the points in matrix X. The goodness-of-fit criterion is the sum 
of squared errors. procrustes returns the minimized value of this dissimilarity 
measure in d. d is standardized by a measure of the scale of X, given by

sum(sum((X-repmat(mean(X,1),size(X,1),1)).^2,1))

i.e., the sum of squared elements of a centered version of X. However, if X 
comprises repetitions of the same point, the sum of squared errors is not 
standardized.

X and Y must have the same number of points (rows), and procrustes matches 
the ith point in Y to the ith point in X. Points in Y can have smaller dimension 
(number of columns) than those in X. In this case, procrustes adds columns of 
zeros to Y as necessary.

[d,Z] = procrustes(X,Y) also returns the transformed Y values.

[d,Z,transform] = procrustes(X,Y) also returns the transformation that 
maps Y to Z. transform is a structure with fields:

That is, Z = transform.b * Y * transform.T + transform.c.

Examples This example creates some random points in two dimensions, then rotates, 
scales, translates, and adds some noise to those points. It then uses procrustes 
to conform Y to X, and plots the original X and Y, and the transformed Y.

  X = normrnd(0,1,[10 2]);

c Translation component

T Orthogonal rotation and reflection component

b Scale component
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  S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
  Y = normrnd(0.5*X*S + 2,0.05,size(X));
  [d,Z,tr] = procrustes(X,Y);
  plot(X(:,1),X(:,2),'rx',...
    Y(:,1),Y(:,2),'b.',...
    Z(:,1),Z(:,2),'bx');

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984

[2] Bulfinch, T., The Age of Fable; or, Stories of Gods and Heroes, Sanborn, 
Carter, and Bazin, Boston, 1855.

See Also cmdscale, factoran



qqplot

12-434

12qqplotPurpose Quantile-quantile plot of two samples

Syntax qqplot(X)
qqplot(X,Y)
qqplot(X,Y,pvec)
h = qqplot(...)

Description qqplot(X) displays a quantile-quantile plot of the sample quantiles of X versus 
theoretical quantiles from a normal distribution. If the distribution of X is 
normal, the plot will be close to linear.

qqplot(X,Y) displays a quantile-quantile plot of two samples. If the samples 
do come from the same distribution, the plot will be linear.

For matrix X and Y, qqplot displays a separate line for each pair of columns. 
The plotted quantiles are the quantiles of the smaller data set.

The plot has the sample data displayed with the plot symbol '+'. 
Superimposed on the plot is a line joining the first and third quartiles of each 
distribution (this is a robust linear fit of the order statistics of the two samples). 
This line is extrapolated out to the ends of the sample to help evaluate the 
linearity of the data.

Use qqplot(X,Y,pvec) to specify the quantiles in the vector pvec.

h = qqplot(X,Y,pvec) returns handles to the lines in h.

Examples Generate two normal samples with different means and standard deviations. 
Then make a quantile-quantile plot of the two samples.

x = normrnd(0,1,100,1);
y = normrnd(0.5,2,50,1);
qqplot(x,y);
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See Also normplot
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12quantilePurpose Quantiles of a sample

Syntax Y = quantile(X, p)
Y = quantile(X, p, dim)

Description Y = quantile(X, p) returns quantiles of the values in X. p is a scalar or a 
vector of cumulative probability values. When X is a vector, Y is the same size 
as p, and Y(i) contains the p(i)th quantile. When X is a matrix, the ith row of 
Y contains the p(i)th quantiles of each column of X. For N-dimensional arrays, 
quantile operates along the first nonsingleton dimension of X.

Y = quantile(X, p, dim) calculates quantiles along dimension dim. The dimth 
dimension of Y has length length(P).

Quantiles are specified using cumulative probabilities from 0 to 1. For an 
n-element vector X, quantile computes quantiles as follows:

1 The sorted values in X are taken as the (0.5/n), (1.5/n), ..., ([n-0.5]/n) 
quantiles.

2 Linear interpolation is used to compute quantiles for probabilities between 
(0.5/n) and ([n-0.5]/n).

3 The minimum or maximum values in X are assigned to quantiles for 
probabilities outside that range. 

quantile treats NaNs as missing values and removes them.

Examples y = quantile(x,.50); % the median of x
y = quantile(x,[.025 .25 .50 .75 .975]); % a useful summary of x

See Also prctile, iqr, median
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12randgPurpose Gamma distributed random numbers and arrays (unit scale)

Syntax Y = randg
Y = randg(A)
Y = randg(A,M)
Y = randg(A,M,N,...)
Y = randg(A,[M,N,...])

Description Y = randg returns a scalar random value chosen from a gamma distribution 
with unit scale and shape.

Y = randg(A) returns a matrix of random values chosen from gamma 
distributions with unit scale. Y is the same size as A, and randg generates each 
element of Y using a shape parameter equal to the corresponding element of A.

Y = randg(A,M) returns an M-by-M matrix of random values chosen from   
gamma distributions with shape parameters A. A is either an M-by-M matrix or 
a scalar. If A is a scalar, randg uses that single shape parameter value to 
generate all elements of Y.

Y = randg(A,M,N,...) or Y = randg(A,[M,N,...]) returns an M-by-N-by-... 
array of random values chosen from gamma distributions with shape 
parameters A. A is either an M-by-N-by-... array or a scalar.

randg produces pseudorandom numbers using the MATLAB functions rand 
and randn. The sequence of numbers generated is determined by the states of 
both generators. To create reproducible output from randg, set the states of 
both rand and randn to a fixed pair of values before calling randg. For example, 

rand('state',j);
randn('state',s);
r = randg(1,[10,1]);

always generates the same 10 values. You can also use the MATLAB 
generators by calling rand and randn with the argument 'seed'. Calling randg 
changes the current states of rand and randn and therefore alters the outputs 
of subsequent calls to those functions.

To generate gamma random numbers and specify both the scale and shape 
parameters, you should call gamrand rather than calling randg directly. 
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References [1] Marsaglia, G., and Tsang, W. W., “A Simple Method for Generating Gamma 
Variables,” ACM Transactions on Mathematical Software, Vol. 26, 2000, pp. 
363-372.

See Also gamrnd
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12randomPurpose Random numbers from a specified distribution

Syntax y = random('name',A1,A2,A3,m,n)

Description y = random('name',A1,A2,A3,m,n) returns a matrix of random numbers, 
where 'name' is a string containing the name of the distribution, and A1, A2, 
and A3 are matrices of distribution parameters. Depending on the distribution 
some of the parameters may not be necessary.

Vector or matrix inputs must all have the same size. A scalar input is expanded 
to a constant matrix with the same dimensions as the other inputs.

The last two parameters, d and e, are the size of the matrix y. If the 
distribution parameters are matrices, then these parameters are optional, but 
they must match the size of the other matrix arguments (see second example).

random is a utility routine allowing you to access all the random number 
generators in the Statistics Toolbox using the name of the distribution as a 
parameter. See “Overview of the Distributions” on page 2-45 for the list of 
available distributions.

Examples rn = random('Normal',0,1,2,4)

rn =
  1.1650  0.0751  -0.6965  0.0591
  0.6268  0.3516  1.6961  1.7971

rp = random('Poisson',1:6,1,6)

rp =
   0   0   1   2   5   7

See Also betarnd, binornd, cdf, chi2rnd, exprnd, frnd, gamrnd, geornd, hygernd, icdf, 
lognrnd, nbinrnd, ncfrnd, nctrnd, ncx2rnd, normrnd, pdf, poissrnd, raylrnd, 
trnd, unidrnd, unifrnd, wblrnd
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12randsamplePurpose Random sample, with or without replacement

Syntax y = randsample(n,k)
y = randsample(population,k)
y = ransample(...,replace)
y = randsample(...,true,w)

Description y = randsample(n,k) returns a 1-by-k vector y of values sampled uniformly at 
random, without replacement, from the integers 1 to n.

y = randsample(population,k) returns k values sampled uniformly at 
random, without replacement, from the values in the vector population.

y = ransample(...,replace) returns a sample taken with replacement if 
replace is true, or without replacement if replace is false. The default is 
false.

y = randsample(...,true,w) returns a weighted sample taken with 
replacement, using a vector of positive weights w, whose length is n. The 
probability that the integer i is selected for an entry of y is w(i)/sum(w). 
Usually, w is a vector of probabilities. randsample does not support weighted 
sampling without replacement.

Example The following command generates a random sequence of the characters A, C, G, 
and T, with replacement, according to the specified probabilities.

R = randsample('ACGT',48,true,[0.15 0.35 0.35 0.15])

See Also rand, randperm
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12randtoolPurpose Interactive random number generation using histograms for display

Syntax randtool

Description randtool sets up a graphic user interface for exploring the effects of changing 
parameters and sample size on the histogram of random samples from the 
supported probability distributions. See “Random Sample Generation Demo” 
on page 2-4 for detailed information about the demo.

See Also disttool
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12rangePurpose Sample range

Syntax y = range(X)
y = range(X,dim)

Description range(X) returns the difference between the maximum and the minimum of a 
sample. For vectors, range(x) is the range of the elements. For matrices, 
range(X) is a row vector containing the range of each column of X. For 
N-dimensional arrays, range operates along the first nonsingleton dimension 
of X.

y = range(X,dim) operates along the dimension dim of X.

range treats NaNs as missing values and ignores them.

The range is an easily-calculated estimate of the spread of a sample. Outliers 
have an undue influence on this statistic, which makes it an unreliable 
estimator.

Example The range of a large sample of standard normal random numbers is 
approximately six. This is the motivation for the process capability indices Cp 
and Cpk in statistical quality control applications.

rv = normrnd(0,1,1000,5);
near6 = range(rv)

near6 =

  6.1451  6.4986  6.2909  5.8894  7.0002

See Also std, iqr, mad
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12ranksumPurpose Wilcoxon rank sum test for equal medians

Syntax h = ranksum(x,y)
[p,h] = ranksum(x,y)
[p,h] = ranksum(x,y,'alpha',alpha)
[p,h,stats] = ranksum(...)

Description h = ranksum(x,y) performs a two-sided rank sum test of the hypothesis that 
two independent samples, in the vectors x and y, come from distributions with 
equal medians, and returns the p-value from the test. p is the probability of 
observing the given result, or one more extreme, by chance if the null 
hypothesis is true, i.e., the medians are equal. Small values of p cast doubt on 
the validity of the null hypothesis. The two sets of data are assumed to come 
from continuous distributions that are identical except possibly for a location 
shift, but are otherwise arbitrary. x and y can be different lengths.

The Wilcoxon rank sum test is equivalent to the Mann-Whitney U test.

[p,h] = ranksum(x,y) returns the result of the hypothesis test, performed at 
the 0.05 significance level, in h. If h = 0, then the null hypothesis, i.e., medians 
are equal, cannot be rejected at the 5% level. If h = 1, then the null hypothesis 
can be rejected at the 5% level.

[p,h] = ranksum(x,y,'alpha',alpha) returns the result of the hypothesis 
test performed at the significance level alpha.

[p,h] = ranksum(...,'method', method) computes the p-value using an 
exact algorithm, if you set method to 'exact' or a normal approximation, if you 
set method to 'approximate'.

If you omit this argument, ranksum uses the exact method for small samples 
and the approximate method for larger samples.

[p,h,stats] = ranksum(...) returns stats, a structure with one or two 
fields. The field 'ranksum' contains the value of the rank sum statistic. If the 
sample size is large, then p is calculated using a normal approximation and the 
field 'zval' contains the value of the normal (Z) statistic.
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Example This example tests the hypothesis of equal medians for two independent 
unequal-sized samples. The theoretical distributions are identical except for a 
shift of 0.25.

x = unifrnd(0,1,10,1);
y = unifrnd(.25,1.25,15,1);
[p,h] = ranksum(x,y,0.05)

p =
  0.0375

h =
   1

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker, 
1985.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 
1973.

See Also kruskalwallis, signrank, signtest, ttest2
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12raylcdfPurpose Rayleigh cumulative distribution function (cdf)

Syntax P = raylcdf(X,B)

Description P = raylcdf(X,B) computes the Rayleigh cdf at each of the values in X using 
the corresponding parameters in B. X and B can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input for X or B 
is expanded to a constant array with the same dimensions as the other input.

The Rayleigh cdf is

Example x = 0:0.1:3;
p = raylcdf(x,1);
plot(x,p)

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 2nd 
edition, Wiley, 1993, pp. 134–136.

See Also cdf, raylinv, raylpdf, raylrnd, raylstat
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12raylfitPurpose Parameter estimates and confidence intervals for Rayleigh data

Syntax raylfit(data, alpha)
[phat, pci] = raylfit(data, alpha)

Description raylfit(data, alpha) returns the maximum likelihood estimates of the 
parameter of the Rayleigh distribution given the data in the vector data. 

[phat, pci] = raylfit(data, alpha) returns the maximum likelihood 
estimate and 100(1 - alpha)% confidence interval given the data. The default 
value of the optional parameter alpha is 0.05, corresponding to 95% confidence 
intervals.

See Also raylcdf, raylinv, raylpdf, raylrnd, raylstat, mle 
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12raylinvPurpose Inverse of the Rayleigh cumulative distribution function

Syntax X = raylinv(P,B)

Description X = raylinv(P,B) returns the inverse of the Rayleigh cumulative distribution 
function with parameter B at the corresponding probabilities in P. P and B can 
be vectors, matrices, or multidimensional arrays that all have the same size. A 
scalar input for P or B is expanded to a constant array with the same 
dimensions as the other input.

Example x = raylinv(0.9,1)

x =
  2.1460

See Also icdf, raylcdf, raylpdf, raylrnd, raylstat
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12raylpdfPurpose Rayleigh probability density function

Syntax Y = raylpdf(X,B)

Description Y = raylpdf(X,B) computes the Rayleigh pdf at each of the values in X using 
the corresponding parameters in B. X and B can be vectors, matrices, or 
multidimensional arrays that all have the same size, which is also the size of Y. 
A scalar input for X or B is expanded to a constant array with the same 
dimensions as the other input.

The Rayleigh pdf is

Example x = 0:0.1:3;
p = raylpdf(x,1);
plot(x,p)

See Also pdf, raylcdf, raylinv, raylrnd, raylstat
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12raylrndPurpose Random matrices from the Rayleigh distribution

Syntax R = raylrnd(B)
R = raylrnd(B,v)
R = raylrnd(B,m,n)

Description R = raylrnd(B) returns a matrix of random numbers chosen from the 
Rayleigh distribution with parameter B. B can be a vector, a matrix, or a 
multidimensional array. The size of R is the size of B.

R = raylrnd(B,v) returns a matrix of random numbers chosen from the 
Rayleigh distribution with parameter B, where v is a row vector. If v is a 1-by-2 
vector, R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an 
n-dimensional array. 

R = raylrnd(B,m,n) returns a matrix of random numbers chosen from the 
Rayleigh distribution with parameter B, where scalars m and n are the row and 
column dimensions of R.

Reproducing the Output of raylrnd
raylrnd uses the MATLAB function randn to generate random numbers. When 
you call raylrnd, you change the current state of randn, and thereby alter the 
output of subsequent calls to raylrnd or any other functions that depend on 
randn. If you want to reproduce the output of raylrnd, reset the state of randn 
to the same fixed value each time you call raylrnd. For an example of how to 
do this, and a list of the Statistics Toolbox functions that depend on randn, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The result in the following example depends on the current state of 
randn. If you run the code in this example, your results may differ from the 
answer shown here.

Example r = raylrnd(1:5)

r =
  1.7986  0.8795  3.3473  8.9159  3.5182
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See Also random, raylcdf, raylinv, raylpdf, raylstat
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12raylstatPurpose Mean and variance for the Rayleigh distribution

Syntax M = raylstat(B)
[M,V] = raylstat(B)

Description [M,V] = raylstat(B) returns the mean and variance of the Rayleigh 
distribution with parameter B.

The mean of the Rayleigh distribution with parameter b is  and the 
variance is 

Example [mn,v] = raylstat(1)

mn =
  1.2533

v =
  0.4292

See Also raylcdf, raylinv, raylpdf, raylrnd
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12rcoplotPurpose Residual case order plot

Syntax rcoplot(r,rint)

Description rcoplot(r,rint) displays an errorbar plot of the confidence intervals on the 
residuals from a regression. The residuals appear in the plot in case order. 
Inputs r and rint are outputs from the regress function.

Example X = [ones(10,1) (1:10)'];
y = X ∗ [10;1] + normrnd(0,0.1,10,1);
[b,bint,r,rint] = regress(y,X,0.05);
rcoplot(r,rint);

The figure shows a plot of the residuals with error bars showing 95% confidence 
intervals on the residuals. All the error bars pass through the zero line, 
indicating that there are no outliers in the data.

See Also regress
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12refcurvePurpose Add a polynomial curve to the current plot

Syntax h = refcurve(p)

Description refcurve adds a graph of the polynomial p to the current axes. The function for 
a polynomial of degree n is:

y = p1xn + p2x(n-1) + ... + pnx + pn+1

Note that p1 goes with the highest order term.

h = refcurve(p) returns the handle to the curve.

Example Plot data for the height of a rocket against time, and add a reference curve 
showing the theoretical height (assuming no air friction). The initial velocity of 
the rocket is 100 m/sec.

h = [85 162 230 289 339 381 413 437 452 458 456 440 400 356];
plot(h,'+')
refcurve([-4.9 100 0])

See Also polyfit, polyval, refline
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12reflinePurpose Add a reference line to the current axes

Syntax refline(slope,intercept)
refline(slope)
h = refline(slope,intercept)
refline

Description refline(slope,intercept) adds a reference line with the given slope and 
intercept to the current axes.

refline(slope), where slope is a two-element vector, adds the line

   y = slope(2) + slope(1)*x 

to the figure.

h = refline(slope,intercept) returns the handle to the line.

refline with no input arguments superimposes the least squares line on each 
line object in the current figure (except LineStyles '-','--','.-'). This 
behavior is equivalent to lsline.

Example y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
plot(y,'+')
refline(0,3)

See Also lsline, polyfit, polyval, refcurve
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12regressPurpose Multiple linear regression

Syntax b = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X,alpha)

Description b = regress(y,X) returns the least squares fit of y on X by solving the linear 
model

for β, where:

• y is an n-by-1 vector of observations

• X is an n-by-p matrix of regressors

• β is a p-by-1 vector of parameters

• ε is an n-by-1 vector of random disturbances

[b,bint,r,rint,stats] = regress(y,X) returns an estimate of β in b, a 95% 
confidence interval for β in the p-by-2 vector bint. The residuals are returned 
in r and a 95% confidence interval for each residual is returned in the n-by-2 
vector rint. The vector stats contains the R2 statistic along with the F and p 
values for the regression.

[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1 - alpha)% 
confidence intervals for bint and rint. For example, alpha = 0.2 gives 80% 
confidence intervals.

X should include a column of ones so that the model contains a constant term. 
The F statistic and p value are computed under the assumption that the model 
contains a constant term, and they are not correct for models without a 
constant. The R-square value is one minus the ratio of the error sum of squares 
to the total sum of squares. This value can be negative for models without a 
constant, which indicates that the model is not appropriate for the data.

If the columns of X are linearly dependent, regress sets the maximum possible 
number of elements of B to zero to obtain a basic solution, and returns zeros in 
elements of bint corresponding to the zero elements of B.

y Xβ ε+=

ε N 0 σ2I,( )∼
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regress treats NaNs in X or y as missing values, and removes them.

Examples Suppose the true model is

where I is the identity matrix.

X = [ones(10,1) (1:10)']

X =
   1   1
   1   2
   1   3
   1   4
   1   5
   1   6
   1   7
   1   8
   1   9
   1  10

y = X ∗ [10;1] + normrnd(0,0.1,10,1)

y =
  11.1165
  12.0627
  13.0075
  14.0352
  14.9303
  16.1696
  17.0059
  18.1797
  19.0264
  20.0872

[b,bint] = regress(y,X,0.05)

b =
  10.0456
  1.0030

y 10 x ε+ +=

ε N 0 0.01I,( )∼
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bint =
  9.9165  10.1747
  0.9822  1.0238

Compare b to [10 1]'. Note that bint includes the true model values.

Reference [1] Chatterjee, S., and A. S. Hadi. “Influential Observations, High Leverage 
Points, and Outliers in Linear Regression,” Statistical Science, 1986, pp. 379–
416.



regstats

12-458

12regstatsPurpose Regression diagnostics for linear models

Syntax regstats(responses,DATA)
regstats(responses,DATA,model)
stats = regstats(...)
stats = regstats(responses,data,model,whichstats)

Description regstats(responses, data) fits a multiple linear regression of the 
measurements in the vector, responses, on the values in the matrix, DATA. By 
default, regstats uses a linear additive model with a constant term. With this 
syntax, the function creates a graphical user interface (GUI) that displays a list 
of diagnostic statistics, as shown in the following figure.
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When you select the check boxes, corresponding to the statistics you want to 
compute, and click OK, regstats returns the selected statistics as variables in 
the MATLAB workspace. The names of the variables are displayed on the 
right-hand side of the GUI. For example, if you select Coefficients in the GUI, 
as shown in the following figure, regstats returns the regression coefficients 
in the variable beta. 

regstats(responses,data,model) enables you to specify the order of the 
regression model. model can be one of the following strings 

Alternatively, model can be a matrix of model terms as accepted by the x2fx 
function. See x2fx for a description of this matrix and for a description of the 
order in which terms appear. You can use this matrix to specify other models 
including ones without a constant term.

stats = regstats(...) creates an output structure stats, whose fields 
contain all the diagnostic statistics for the regression. This syntax does not 
open the GUI. The following table lists the fields of stats:

'linear' Includes constant and linear terms (default).

'interaction' Includes constant, linear, and cross product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear, and squared terms.

'Q' Q from the QR decomposition of the design matrix, which 
contains the values of the model terms for each observation

'R' R from the QR decomposition of the design matrix 

'beta' Regression coefficients 

'covb' Covariance of regression coefficients 

'yhat' Fitted values of the response data 

'r' Residuals 

'mse' Mean squared error 

Regression coefficients returned in the variable beta
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Note that the fields names of stats correspond to the names of the variables 
returned to the MATLAB workspace when you use the GUI. For example, 
stats.beta corresponds to the variable beta that is returned when you select 
Coefficients in the GUI and click OK.

stats = regstats(responses,DATA,model,whichstats) returns only the 
statistics that you specify in whichstats. whichstats can be a single name 
such as 'leverage' or a cell array of names such as {'leverage' 'standres' 
'studres'}. Set whichstats to 'all' to return all of the statistics.

The F statistic and its p-value are computed under the assumption that the 
model contains a constant term. They are not correct for models without a 
constant. The R-square value is one minus the ratio of the error sum of squares 
to the total sum of squares. This value can be negative for models without a 
constant, which indicates that the model is not appropriate for the data.

'rsquare' R-square statistic

'adjrsquare' Adjusted R-square statistic

'leverage' Leverage 

'hatmat' Hat (projection) matrix 

's2_i' Delete-1 variance 

'beta_i' Delete-1 coefficients 

'standres' Standardized residuals 

'studres' Studentized residuals 

'dfbetas' Scaled change in regression coefficients 

'dffit' Change in fitted values 

'dffits' Scaled change in fitted values 

'covratio' Change in covariance 

'cookd' Cook's distance 

'tstat' t statistics for coefficients

'fstat' F statistic
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Example The following commands load the array hald and open the regstats GUI using 
the data in hald. 

load hald
regstats(heat,ingredients,'linear');

Select Fitted Values and Residuals in the GUI.

Click OK to export the fitted values and residuals to the MATLAB workspace 
as variables named yhat and r, respectively. The following commands create a 
scatter plot of yhat and r.

scatter(yhat,r)
xlabel('Fitted Values'); ylabel('Residuals');
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Alternatively, you can create the same plot, without using the regstats GUI, 
by entering the following commands.

whichstats = {'yhat','r'};
stats = regstats(heat,ingredients,'linear', whichstats)

stats = 

  source: ''
   yhat: [13x1 double]
     r: [13x1 double]

scatter(stats.yhat,stats.r)
xlabel('Fitted Values'); ylabel('Residuals');

The output stats contains the fields yhat and r, corresponding to setting

whichstats = {'yhat','r'};

stats.yhat and stats.r are the same as the workspace variables yhat and r, 
respectively, created by the GUI.

Algorithm The usual regression model is y = Xβ + ε, where:

• y is an n-by-1 vector of responses

• X is an n-by-p design matrix

• β is an p-by-1 vector of parameters

• ε is an n-by-1 vector of random disturbances

The standard textbook equation for the least squares estimator of β is

However, this definition has poor numeric properties. Particularly dubious is 
the computation of , which is both expensive and imprecise.

Let X = Q*R where Q and R come from a QR Decomposition of X. Q is orthogonal 
and R is triangular. Numerically stable MATLAB code for β is

beta = R\(Q'*y);

β̂ X'X( ) 1– X'y=

X'X( ) 1–
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Regression 
Diagnostics 

This section describes the diagnostic statistics provided by regstats for 
evaluating multiple linear regression. Many regression diagnostics can be 
easily calculated using the QR decomposition of X.

The following sections describe the diagnostics supplied by regstats: 

• “QR Decomposition (Q)” 

• “QR Decomposition (R)”

• “Regression Coefficients” 

• “Fitted Values of the Response”

• “Residuals”

• “Mean Squared Error”

• “R-Square Statistic”

• “Adjusted R-Square Statistic”

• “Covariance Matrix of Estimated Coefficients” 

• “Hat (Projection) Matrix” 

• “Leverage”

• “Delete-1 Variance”

• “Delete-1 Coefficients”

• “Standardized Residuals” 

• “Studentized Residuals”

• “Scaled Change in Regression Coefficients”

• “Change in Fitted Values”

• “Scaled Change in Fitted Values”

• “Change in Covariance”

• “Cook's Distance” 

• “Student's t statistics”

• “F statistic” 

QR Decomposition (Q) 
Q is the first matrix from the QR Decomposition of X. 

[Q,R] = qr(X,0)



regstats

12-464

This is the so-called economy-sized QR decomposition. Q is n-by-p, and its 
columns are orthogonal. That is, Q'*Q = I (the identity matrix). 

QR Decomposition (R) 
R is the second matrix from the QR Decomposition of X. 

[Q,R] = qr(X,0)

This is the economy-sized QR decomposition. R is p-by-p and triangular. This 
makes solving linear systems simple. 

Regression Coefficients 
The least squares estimator for the regression coefficients is 

beta = R\(Q'*y)

If you only want the coefficients and do not need to use Q and R later, then

beta = X\y

is the simplest code. 

Fitted Values of the Response 
Substituting the least squares estimator for beta into the model equation 
(leaving out the error term e) gives the fitted values. 

yhat = X*beta = X*(R\(Q'*y))

yhat is an n-by-1 vector of fitted (or predicted) values of y. 

Residuals 
The residuals are simply the observed values minus the fitted (or predicted) 
values. 

r = y - yhat

r is an n-by-1 vector, the same size as y. 

Mean Squared Error 
The mean squared error is an estimator of the variance of the random 
disturbances e. This variance is assumed to be constant for all observations. 
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mse = r'*r./(n-p)

where

• r is the vector of residuals.

• n is the number of observations.

• p is the number of unknown coefficients.

R-Square Statistic
The R-square statistic is

rsquare = 1 - sse/sst

where

• sse = norm(r).^2, where r is the vector of residuals.
• sst = norm(y - mean(y)).^2

Adjusted R-Square Statistic
The adjusted R-square statistic is

adjrsquare = 1 - (1-rsquare)*(n/(n-p))

where

• rsquare is the R-square statistic.

• n is the number of observations.

• p is the number of unknown coefficients.

Covariance Matrix of Estimated Coefficients 
The covariance matrix for the estimated coefficients is a p-by-p matrix. Its 
diagonal elements are the variances of the individual coefficients in beta. 

Rinv = R \ eye(p);  % inverse of R
XtXinv = Rinv*Rinv'; % equivalent to inv(X'*X)
covb = XtXinv*mse;

covb is proportional to inv(X'*X), but the above calculation involving R is 
faster and more stable. 
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Hat (Projection) Matrix 
The hat matrix is an n-by-n matrix that projects the vector of observations, y, 
onto the vector of fitted values yhat. 

hatmat = Q*Q'
yhat = hatmat*y

Leverage 
Leverage is a measure of the effect of a particular observation on the fitted 
regression, due to the position of that observation in the space of the predictor 
variables, X. In general, the more extreme a point is in the predictor space, the 
more leverage it has. 

leverage = diag(hatmat) = diag(Q*Q')

leverage is an n-by-1 vector containing the leverages of each observation. It is 
the diagonal of the hat matrix. 

Delete-1 Variance 
The delete-1 variance is an n-by-1 vector. Each element contains the mean 
squared error of the regression obtained by deleting the corresponding 
observation. 

s2_i = ((n-p)*mse - r.*r./(1-h))./(n-p-1)

where 

• n is the number of observations.

• p is the number of unknown coefficients.

• mse is the mean squared error.

• r is the vector of residuals.

• h is the leverage vector.

Delete-1 Coefficients 
The delete-1 coefficients is a p-by-n matrix. Each column contains the 
coefficients of the regression obtained by deleting the corresponding 
observation. 

b_i(:,j) = beta - Rinv*(Q(j,:) .* r(j)./(1-h(j)))'
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where 

• Rinv is the inverse of the R matrix.

• r is the vector of residuals.

• h is the leverage vector.

Standardized Residuals 
The standardized residuals are the raw residuals, normalized by an estimate 
of their standard deviation. 

standres = r ./ sqrt(mse*(1-h))

where 

• r is the vector of residuals.

• mse is the mean squared error.

• h is the leverage vector.

Studentized Residuals 
The studentized residuals are the raw residuals, normalized by an independent 
estimate of their standard deviation. 

studres = r ./ sqrt(s2_i*(1-h))

where 

• r is the vector of residuals.

• s2_i is the delete-1 variance.

• h is the leverage vector.

Scaled Change in Regression Coefficients 
The scaled change in regression coefficients is a p-by-n matrix. Each column 
contains the scaled change in the estimated coefficients, beta, caused by 
deleting the corresponding observation. 

d = sqrt(diag(Rinv*Rinv'));
dfbetas(:,j) = (beta - b_i(:,j)) ./ (sqrt(s2_i(j).*d(j))

where 
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• Rinv is the inverse of the R matrix.

• b_i is the matrix of delete-1 coefficients.

• s2_i is the vector of delete-1 variances.

Change in Fitted Values 
The change in fitted values is an n-by-1 vector. Each element contains the 
change in a fitted value caused by deleting the corresponding observation. 

dffit = r .* (h./(1-h))

where 

• r is the vector of residuals.

• h is the leverage vector.

Scaled Change in Fitted Values 
The scaled change in fitted values is an n-by-1 vector. Each element contains 
the change in a fitted value caused by deleting the corresponding observation, 
scaled by the standard error. 

dffits = studres .* sqrt(h./(1-h))

where 

• studres is the vector of studentized residuals.

• h is the leverage vector.

Change in Covariance 
The change in covariance is an n-by-1 vector. Each element is the ratio of the 
generalized variance of the estimated coefficients when the corresponding 
element is deleted, to the generalized variance of the coefficients using all the 
data. 

covr = 1 ./ ((((n-p-1+studres.*studres)./(n-p)).^p).*(1-h))

where 

• n is the number of observations.

• p is the number of unknown coefficients.

• studres is the vector of studentized residuals.
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• h is the leverage vector.

Cook's Distance 
Cook's distance is an n-by-1 vector. Each element is the normalized change in 
the vector of fitted values, yhat, due to the deletion of the corresponding 
observation. 

cookd = r .* r .* (h./(1-h).^2)./(p*mse)

where 

• r is the vector of residuals.

• h is the leverage vector.

• mse is the mean squared error.

• p is the number of unknown coefficients.

Student's t statistics 
The Student's t statistics output is a structure containing t statistics and 
related information. The structure contains the following fields: 

• beta — Regression coefficient estimates 

• se — Standard errors for the regression coefficient estimates 

• t — t statistics for the regression coefficient estimates, each one for a test 
that the corresponding coefficient is zero 

• dfe — Degrees of freedom for error 

• pval — p-values for each t statistic, which is calculated by the following code: 

beta = R\(Q'*y)
se  = sqrt(diag(covb))
t  = beta ./ se
dfe = n-p
pval = 2*(tcdf(-abs(t), dfe))

F statistic 
The F statistic output is a structure containing an F statistic and related 
information. The structure contains the following fields: 

• sse — Error sum of squares 
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• ssr — Regression sum of squares 

• dfe — Error degrees of freedom 

• dfr — Regression degrees of freedom 

• f — F statistic value, for a test that all regression coefficients other than the 
constant term are zero 

• pval — p-value for the F statistic, which is calculated by the following code:

sse = norm(r).^2
ssr = norm(yfit - mean(yfit)).^2
dfe = n-p
dfr = p-1
f  = (ssr/dfr) / (sse/dfe)
pval = 1 - fcdf(f, dfr, dfe)

Reference [1] Belsley, D. A., E. Kuh, and R. E. Welsch, Regression Diagnostics, Wiley, 
1980.

[2] Chatterjee, S., and A. S. Hadi, “Influential Observations, High Leverage 
Points, and Outliers in Linear Regression,” Statistical Science, 1986, pp. 379–
416.

[3] Cook, R. D., and S. Weisberg, Residuals and Influence in Regression, Wiley, 
1982.

[4] Goodall, C. R., “Computation using the QR decomposition,” Statistical 
Computing, ed. C. R. Rao, Handbook in Statistics, Volume 9. 
Elsevier/North-Holland, 1993.

See Also leverage, stepwise, regress
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12ridgePurpose Parameter estimate for ridge regression

Syntax b1 = ridge(y,X,k)
b0 = ridge(y,X,k,0)

Description b1 = ridge(y,X,k)  returns the vector b1 of regression coefficients for the 
linear model y = Xβ + ε, obtained by performing ridge regression of the 
response vector y on the predictors X using ridge parameter k. The matrix X 
should not contain a column of ones. The results are computed after centering 
and scaling the X columns so they have mean 0 and standard deviation 1. If y 
is an n-by-1 vector of observations, X is an n-by-p matrix, and k is a scalar, the 
result b1 is a column vector with p elements. If k has m elements, b1 is p-by-m.

The ridge estimator of β is , where  is a centered and 
scaled version of X. b0 = ridge(y,X,k,0) performs the regression without 
centering and scaling. The result b0 has p+1 coefficients, with the first being 
the constant term. ridge(y,X,k,1) is the same as ridge(y,X,k).

The relationship between b1 and b0 is given by

b0 = [mean(y)-mean(X)*t; t]

where

t = b1./std(X,0,1) 

When k = 0, the result b (either b0 or b1) is the least squares estimator. For 
increasing k, the bias of b increases, but the variance of b falls. For poorly 
conditioned X, the drop in the variance more than compensates for the bias.

Example This example creates a ridge trace (a plot of the coefficients as a function of the 
ridge parameter) for the Hald data.

load hald
k = 0:.01:1;
b = ridge(heat, ingredients, k);
plot(k, b');
xlabel('Ridge parameter'); ylabel('Standardized coef.');
title('Ridge trace for Hald Data')
legend('x1','x2','x3','x4');

b1 X1
TX1 kI+( ) 1– X1y= X1
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See Also regress, stepwise
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12robustdemoPurpose Demo of robust regression

Syntax robustdemo
robustdemo(X,Y)

Description robustdemo demonstrates robust regression and ordinary least squares 
regression on a sample data set. The function creates a figure window 
containing a scatter plot of sample data vectors X and Y, along with two fitted 
lines calculated using least squares and the robust bisquare method. The 
bottom of the figure shows the equations of the lines and the estimated error 
standard deviations for each fit. If you use the left mouse button to select an 
point and move it to a new location, both fits will update. If you hold down the 
right mouse button over any point, the point will be labeled with the leverage 
of that point on the least squares fit, and the weight of that point in the robust 
fit.

robustdemo(X,Y) performs the same demonstration using the X and Y values 
that you specify.

Example See “Robust Regression” on page 4-55 and “Robust Fitting Demo” on page 4-57.

See Also robustfit, leverage 
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12robustfitPurpose Robust linear regression

Syntax b = robustfit(X,Y)
[b,stats] = robustfit(X,Y)
[b,stats] = robustfit(X,Y,'wfun',tune,'const')

Description b = robustfit(X,Y) uses robust linear regression to fit Y as a function of the 
columns of X, and returns the vector b of coefficient estimates. The robustfit 
function uses an iteratively reweighted least squares algorithm, with the 
weights at each iteration calculated by applying the bisquare function to the 
residuals from the previous iteration. This algorithm gives lower weight to 
points that do not fit well. The results are less sensitive to outliers in the data 
as compared with ordinary least squares regression. robustfit prepends a 
column of ones to X to account for a constant term.

[b,stats] = robustfit(X,Y) also returns a stats structure with the 
following fields: 

Field Description

stats.ols_s Sigma estimate (rmse) from least squares fit

stats.robust_s Robust estimate of sigma

stats.mad_s Estimate of sigma computed using the median 
absolute deviation of the residuals from their median; 
used for scaling residuals during the iterative fitting

stats.s Final estimate of sigma, the larger of robust_s and a 
weighted average of ols_s and robust_s

stats.se Standard error of coefficient estimates

stats.t Ratio of b to stats.se

stats.p p-values for stats.t

stats.coeffcorr Estimated correlation of coefficient estimates

stats.w Vector of weights for robust fit

stats.h Vector of leverage values for least squares fit
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The robustfit function estimates the variance-covariance matrix of the 
coefficient estimates as V = inv(X'*X)*stats.s^2. The standard errors and 
correlations are derived from V.

[b,stats] = robustfit(X,Y,'wfun',tune,'const') specifies a weight 
function, a tuning constant, and the presence or absence of a constant term. 
The weight function 'wfun' can be any of the names listed in the following 
table.

The value r in the weight function expression is equal to

resid/(tune*s*sqrt(1-h))

where resid is the vector of residuals from the previous iteration, tune is the 
tuning constant, h is the vector of leverage values from a least squares fit, and 
s is an estimate of the standard deviation of the error term.

s = MAD/0.6745

stats.dfe Degrees of freedom for error

stats.R R factor in QR decomposition of X matrix

Weight Function Meaning Tuning Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339

'bisquare' w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385

'fair' w = 1 ./ (1 + abs(r)) 1.400

'huber' w = 1 ./ max(1, abs(r)) 1.345

'logistic' w = tanh(r) ./ r 1.205

'talwar' w = 1 * (abs(r)<1) 2.795

'welsch' w = exp(-(r.^2)) 2.985

Field (Continued) Description (Continued)
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The quantity MAD is the median absolute deviation of the residuals from their 
median. The constant 0.6745 makes the estimate unbiased for the normal 
distribution. If there are p columns in the X matrix (including the constant 
term, if any), the smallest p-1 absolute deviations are excluded when 
computing their median. 

In addition to the function names listed above, 'wfun' can be 'ols' to perform 
unweighted ordinary least squares.

The argument tune overrides the default tuning constant from the table. A 
smaller tuning constant tends to downweight large residuals more severely, 
and a larger tuning constant downweights large residuals less severely. The 
default tuning constants, shown in the table, yield coefficient estimates that 
are approximately 95% as efficient as least squares estimates, when the 
response has a normal distribution with no outliers. The value of 'const' can 
be 'on' (the default) to add a constant term or 'off' to omit it. If you want a 
constant term, you should set 'const' to 'on' rather than adding a column of 
ones to your X matrix.

As an alternative to specifying one of the named weight functions shown above, 
you can write your own weight function that takes a vector of scaled residuals 
as input and produces a vector of weights as output. You can specify 'wfun' 
using @ (for example, @myfun) or as an inline function.

robustfit treats NaNs in X or Y as missing values, and removes them.

Example Let’s see how a single erroneous point affects least squares and robust fits. 
First you generate a simple data set following the equation y = 10-2*x plus 
some random noise. Then you change one y value to simulate an outlier that 
could be an erroneous measurement. 

x = (1:10)';
y = 10 - 2*x + randn(10,1);
y(10) = 0;

you use both ordinary least squares and robust fitting to estimate the 
equations of a straight line fit.

bls = regress(y,[ones(10,1) x])
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bls =

  8.6305
  -1.4721

brob = robustfit(x,y)

brob =

  10.5089
  -1.9844

A scatter plot with both fitted lines shows that the robust fit (solid line) fits 
most of the data points well but ignores the outlier. The least squares fit (dotted 
line) is pulled toward the outlier.

scatter(x,y)
hold on
plot(x,bls(1)+bls(2)*x,'g:')
plot(x,brob(1)+brob(2)*x,'r-')

References [1] DuMouchel, W.H., and F. L. O’Brien, “Integrating a Robust Option into a 
Multiple Regression Computing Environment,” Computer Science and 
Statistics: Proceedings of the 21st Symposium on the Interface, Alexandria, VA: 
American Statistical Association, 1989.
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[2] Holland, P. W., and R. E. Welsch, “Robust Regression Using Iteratively 
Reweighted Least-Squares,” Communications in Statistics: Theory and 
Methods, A6, 1977, pp. 813-827.

[3] Huber, P. J., Robust Statistics, Wiley, 1981.

[4] Street, J. O., R. J. Carroll, and D. Ruppert, “A Note on Computing Robust 
Regression Estimates via Iteratively Reweighted Least Squares,” The 
American Statistician, 42, 1988, pp. 152-154.

See Also regress, robustdemo
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12rotatefactorsPurpose Rotation of factor analysis or principal components analysis loadings

Syntax B = rotatefactors(A)
B = rotatefactors(A, 'Method', 'orthomax', 'Coeff', gamma)
B = rotatefactors(A, 'Method', 'procrustes', 'Target', target)
B = rotatefactors(A, 'Method', 'pattern', 'Target', target)
B = rotatefactors(A, 'Method', 'promax')
[B, T] = rotatefactors(A, ...)

Description B = rotatefactors(A) rotates the d-by-m loadings matrix A to maximize the 
varimax criterion, and returns the result in B. Rows of A and B correspond to 
variables and columns correspond to factors, for example, the (i, j)th element of 
A is the coefficient for the i-th variable on the j-th factor. The matrix A usually 
contains principal component coefficients created with princomp or pcacov, or 
factor loadings estimated with factoran.

B = rotatefactors(A, 'Method', 'orthomax', 'Coeff', gamma) rotates A 
to maximize the orthomax criterion with the coefficient gamma, i.e., B is the 
orthogonal rotation of A that maximizes

sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)

The default value of 1 for gamma corresponds to varimax rotation. Other 
possibilities include gamma = 0, m/2, and d(m - 1)/(d + m - 2), corresponding to 
quartimax, equamax, and parsimax. You can also supply the strings 
'varimax', 'quartimax', 'equamax', or 'parsimax' for the 'method' 
parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or 
'parsimax', then additional parameters are 

• 'Normalize' — Flag indicating whether the loadings matrix should           be 
row-normalized for rotation. If 'on' (the default), rows of A are normalized 
prior to rotation to have unit Euclidean norm, and unnormalized after 
rotation. If 'off', the raw loadings are rotated and returned.

•  'Reltol' — Relative convergence tolerance in the iterative algorithm used 
to find T. The default is sqrt(eps).

•  'Maxit' — Iteration limit in the iterative algorithm used to find T. The 
default is 250.
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B = rotatefactors(A, 'Method', 'procrustes', 'Target', target) 
performs an oblique procrustes rotation of A to the d-by-m target loadings 
matrix target.

B = rotatefactors(A, 'Method', 'pattern', 'Target', target) performs 
an oblique rotation of the loadings matrix A to the d-by-m target pattern matrix 
target, and returns the result in B. target defines the “restricted” elements of 
B, i.e., elements of B corresponding to zero elements of target are constrained 
to have small magnitude, while elements of B corresponding to nonzero 
elements of target are allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is 'Type', 
the type of rotation. If 'Type' is 'orthogonal', the rotation is         orthogonal, 
and the factors remain uncorrelated. If 'Type' is 'oblique' (the default), the 
rotation is oblique, and the rotated factors might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has m 
columns, then for orthogonal rotation, the jth column of target must contain 
at least m - j zeros. For oblique rotation, each column of target must contain 
at least m - 1 zeros.

B = rotatefactors(A, 'Method', 'promax') rotates A to maximize the 
promax criterion, equivalent to an oblique Procrustes rotation with a target 
created by an orthomax rotation. Use the four orthomax parameters to control 
the orthomax rotation used internally by promax.

An additional parameter for 'promax' is 'Power', the exponent for creating 
promax target matrix. 'Power' must be 1 or greater. The default is 4.

[B, T} = rotatefactors(A, ...) returns the rotation matrix T used to create 
B, that is, B = A*T. inv(T'*T) is the correlation matrix of the rotated factors. 
For orthogonal rotation, this is the identity matrix, while for oblique rotation, 
it has unit diagonal elements but nonzero off-diagonal elements.

Examples  X = randn(100,10);
 L = princomp(X);
 
% Default (normalized varimax) rotation of the first three 
% components from a PCA.
[L1,T] = rotatefactors(L(:,1:3));
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% Equamax rotation of the first three components from a PCA.
[L2, T] = rotatefactors(L(:,1:3),'method','equamax');
 
% Promax rotation of the first three factors from an FA.
L = factoran(X,3,'Rotate','none');
L3, T] = rotatefactors(L,'method','promax','power',2);
 
% Pattern rotation of the first three factors from an FA.
Tgt = [1 1 1 1 1 0 1 0 1; 0 0 0 1 1 1 0 0 0; 1 0 0 1 0 1 1 1 1]';
[L4,T] = rotatefactors(L,'method','pattern','target',Tgt);
inv(T'*T) % the correlation matrix of the rotated factors

References [1] Harman, H. H., Modern Factor Analysis, 3rd edition, University of Chicago 
Press, 1976.

[2] Lawley, D. N. and A. E. Maxwell, A. E., Factor Analysis as a Statistical 
Method, 2nd edition, American Elsevier Publishing, 1971.

See Also biplot, factoran, princomp, pcacov, procrustes
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12rowexchPurpose D-optimal design of experiments – row exchange algorithm

Syntax settings = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns,'model')
[settings,X] = rowexch(...,'param1',value1,'param2',value2,...)

Description settings = rowexch(nfactors,nruns) generates the factor settings matrix, 
settings, for a D-Optimal design using a linear additive model with a constant 
term. settings has nruns rows and nfactors columns. 

[settings,X] = rowexch(nfactors,nruns) also generates the associated 
matrix X of term settings, often called the design matrix.

[settings,X] = rowexch(nfactors,nruns,'model') produces a design for 
fitting a specified regression model. The input, 'model', can be one of these 
strings:

[settings,X] = rowexch(...,'param1',value1,'param2',value2,...)
provides more control over the design generation through a set of 
parameter/value pairs. Valid parameters are:

 

Example This example illustrates that the D-optimal design for three factors in eight 
runs, using an interactions model, is a two level full-factorial design.

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross product terms.

'quadratic' Includes interactions plus squared terms.

'purequadratic' Includes constant, linear and squared terms.

'display' Either 'on' or 'off' to control display of iteration counter. 
The default is 'on'.

'init' Initial design as an nruns-by-nfactors matrix. The default is a 
randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.
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s = rowexch(3,8,'interaction')

s =
  -1  -1   1
   1  -1  -1
   1  -1   1
  -1  -1  -1
  -1   1   1
   1   1   1
  -1   1  -1
   1   1  -1

Algorithm The rowexch function searches for a D-optimal design using a row-exchange 
algorithm. It first generates a candidate set of points that are eligible to be 
included in the design, and then iteratively exchanges design points for 
candidate points in an attempt to reduce the variance of the coefficients that 
would be estimated using this design. If you need to use a candidate set that 
differs from the default one, call the candgen and candexch functions in place 
of rowexch.

See Also bbdesign, candexch, candgen, ccdesign, cordexch, x2fx
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12rsmdemoPurpose Demo of design of experiments and surface fitting

Syntax rsmdemo

Description rsmdemo creates a GUI that simulates a chemical reaction. To start, you have 
a budget of 13 test reactions. Try to find out how changes in each reactant affect 
the reaction rate. Determine the reactant settings that maximize the reaction 
rate. Estimate the run-to-run variability of the reaction. Now run a designed 
experiment using the model pop-up. Compare your previous results with the 
output from response surface modeling or nonlinear modeling of the reaction. 
The GUI has the following elements:

• A Run button to perform one reactor run at the current settings

• An Export button to export the x and y data to the base workspace

• Three sliders with associated data entry boxes to control the partial 
pressures of the chemical reactants: Hydrogen, n-Pentane, and Isopentane

• A text box to report the reaction rate

• A text box to keep track of the number of test reactions you have left

Example See “Design of Experiments Demo” on page 10-10.

See Also rstool, nlintool, cordexch
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12rstoolPurpose Interactive fitting and visualization of a response surface

Syntax rstool(X,Y)
rstool(X,Y,model)
rstool(X,Y,model,alpha,'xname','yname')

Description rstool(X,Y)  opens an interactive GUI for fitting and visualizing a polynomial 
response surface for a response variable Y as a function of the multiple 
predictor variables in X. Columns of X correspond to variables, rows to 
observations. Y can be a vector, corresponding to a single response, or a matrix, 
with columns corresponding to multiple responses. Y must have as many 
elements (or rows if it is a matrix) as X has rows. rstool displays a family of 
plots, one for each combination of X and Y columns. The plots show 95% global 
confidence intervals for the predictions as two red curves.

rstool(x,y,model) enables you to control the initial regression model, where 
model can be one of the following strings:

• 'linear' includes constant and first-order terms only

• 'purequadratic' includes constant, linear and squared terms

• 'interaction' includes constant, linear, and cross-product terms

• 'quadratic' includes interactions and squared terms

Alternatively, model can be a matrix of model terms as accepted by the x2fx 
function. See x2fx for a description of this matrix and for a description of the 
order in which terms appear.

rstool(x,y,model,alpha) plots 100(1 - alpha)% global confidence interval 
for predictions as two red curves. For example, alpha = 0.01 gives 99% 
confidence intervals.

rstool(x,y,model,alpha,'xname','yname') labels the X and Y axes using 
the names contained in the character arrays 'xname' and 'yname'. 'xname' 
and 'yname' can also be cell arrays of strings.

Drag the dashed blue reference line and watch the predicted values update 
simultaneously. Alternatively, you can get a specific prediction by typing the 
value of x into an editable text field. Use the pop-up menu to interactively 
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change the model. Click the Export button to move specified variables to the 
base workspace.

Example See “Quadratic Response Surface Models” on page 4-42.

See Also nlintool, x2fx
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12schartPurpose Chart of standard deviation for Statistical Process Control

Syntax schart(DATA,conf)
schart(DATA,conf,specs)
schart(DATA,conf,specs)
[outliers,h] = schart(DATA,conf,specs)

Description schart(data) displays an S chart of the grouped responses in DATA. The rows 
of DATA contain replicate observations taken at a given time. The rows must be 
in time order. The graph contains the sample standard deviation s for each 
group, a center line at the average s value, and upper and lower control limits. 
The limits are placed at a three-sigma distance on either side of the center line, 
where sigma is an estimate of the standard deviation of s. If the process is in 
control, fewer than 3 out of 1000 observations would be expected to fall outside 
the control limits by random chance. So, if you observe points outside the 
limits, you can take this as evidence that the process is not in control.

schart(DATA,conf) allows control of the confidence level of the upper and 
lower plotted control limits. The default conf = 0.9973 produces three-sigma 
limits.

norminv(1 - (1-.9973)/2)
ans =
      3

To get k-sigma limits, use the expression 1-2*(1-normcdf(k)). For example, 
the correct conf value for 2-sigma limits is 0.9545, as shown below.

k = 2;
1-2*(1-normcdf(k))
ans =
    0.9545

schart(DATA,conf,specs) plots the specification limits in the two element 
vector specs.

[outliers,h] = schart(data,conf,specs) returns outliers, a vector of 
indices to the rows where the mean of DATA is out of control, and h, a vector of 
handles to the plotted lines.
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Example This example plots an S chart of measurements on newly machined parts, 
taken at one hour intervals for 36 hours. Each row of the runout matrix 
contains the measurements for 4 parts chosen at random. The values indicate, 
in thousandths of an inch, the amount the part radius differs from the target 
radius. 

load parts
schart(runout)

All points are within the control limits, so the variability within subgroups is 
consistent with what would be expected by random chance. There is no 
evidence that the process is out of control.

Reference [1] Montgomery, D., Introduction to Statistical Quality Control, John Wiley 
and Sons, 1991. p. 235.

See Also capaplot, ewmaplot, histfit, xbarplot
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12signrankPurpose Wilcoxon signed rank test for zero median

Syntax p = signrank(x)
p = signrank(x,m)
p = signrank(x,y)
[p,h] = signrank(...)
[p,h] = signrank(...,'alpha',alpha)
[p,h] = signrank(...,'method', method)
[p,h,stats] = signrank(...)

Description p = signrank(x) performs a two-sided signed rank test of the hypothesis that 
the data in the vector x come from a distribution whose median (and mean, if 
it exists) is zero, and returns the p-value from the test. p is the probability of 
observing the given result x, or one more extreme, by chance if the null 
hypothesis is true, i.e., the median is zero. Small values of p cast doubt on the 
validity of the null hypothesis. The data are assumed to come from a 
continuous distribution, symmetric about its median.

p = signrank(x,m) performs a two-sided test of the hypothesis that the data 
in the vector x come from a distribution whose median is m. m must be a scalar.

p = signrank(x,y) performs a paired, two-sided test of the hypothesis that 
the difference between the matched samples in the vectors x and y comes from 
a distribution whose median is zero. The differences x-y are assumed to come 
from a continuous distribution, symmetric about its median. x and y must be 
the same length.

Note  A hypothesis of zero median for x-y is not equivalent to a hypothesis of 
equal median for x and y. The signrank function tests the former, not the 
latter.

[p,h] = signrank(...) returns the result of the hypothesis test, performed 
at the 5% significance level, in h. If h = 0, then the null hypothesis, i.e., the 
median is zero, cannot be rejected at the 5% level. If h = 1, then the null 
hypothesis can be rejected at the 5% level.
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[p,h] = signrank(...,'alpha', alpha) returns the result of the hypothesis 
test performed at the significance level alpha.

[p,h] = signrank(...,'method', method) computes the p-value using an 
exact algorithm, if you set method to 'exact' or a normal approximation, if you 
set method to 'approximate'. If you omit this option, signrank uses an exact 
method for small samples and the approximation for large samples.

[p,h,stats] = signrank(...) returns stats, a structure with one or two 
fields. The field 'signedrank' contains the value of the signed rank statistic. 
If the sample size is large, then p is calculated using a normal approximation 
and the field 'zval' contains the value of the normal (Z) statistic.

Example This example tests the hypothesis of zero median for the difference between 
two paired samples. The difference between the before and after samples has 
a symmetric distribution with zero median.

before = lognrnd(2,.25,10,1);
after = before + trnd(2,10,1);
[p,h] = signrank(before,after,0.05)

p =
   0.5566

h =
   0

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker, 
1985.

[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 
1973.

See Also ranksum, ttest, ztest
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12signtestPurpose Sign test for zero median

Syntax p = signtest(x)
p = signtest(x,m)
p = signtest(x,y)
[p,h] = signtest(...)
[p,h] = signtest(...,'alpha', alpha)
[p,h] = signtest(...,'method', method)
[p,h,stats] = signtest(...)

Description p = signtest(x) performs a two-sided sign test of the hypothesis that the 
data in the vector x come from a distribution whose median is zero, and returns 
the p-value from the test. p is the probability of observing the given result x, or 
a more extreme result, by chance if the null hypothesis is true, i.e., the median 
is zero. Small values of p cast doubt on the validity of the null hypothesis. The 
data are assumed to come from an arbitrary continuous distribution.

p = signtest(x,m) performs a two-sided test of the hypothesis that the data 
in the vector x come from a distribution whose median is m. m must be a scalar.

p = signtest(x,y) performs a paired, two-sided test of the hypothesis that 
the difference between the matched samples in the vectors x and y comes from 
a distribution whose median is zero. The differences x-y are assumed to come 
from an arbitrary continuous distribution. x and y must be the same length.

Note  A hypothesis of zero median for x-y is not equivalent to a hypothesis of 
equal median for x and y. The signtest function tests the former, not the 
latter.

[p,h] = signtest(...) returns the result of the hypothesis test, performed 
at the 5% significance level, in h. If h = 0, then the null hypothesis, i.e., the 
median is zero, cannot be rejected at the 5% level. If h = 1, then the null 
hypothesis can be rejected at the 5% level.

[p,h] = signtest(...,'alpha', alpha) returns the result of the hypothesis 
test performed at the significance level alpha.
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[p,h] = signtest(...,'method', method) computes the p-value using an 
exact algorithm, if you set method to 'exact', or a normal approximation, if you 
set method to 'approximate'. If you omit this option, signtest uses the exact 
method for small samples and the approximation for large samples.

[p,h,stats] = signtest(...) returns stats, a structure with one or two 
fields. The field 'sign' contains the value of the sign statistic. If the sample 
size is large, then p is calculated using a normal approximation, and the field 
'zval' contains the value of the normal (Z) statistic.

Example This example tests the hypothesis of zero median for the difference between 
two paired samples. The difference between the before and after samples has 
a distribution with zero median.

before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);
[p,h] = signtest(before,after,0.05)

p =
   0.3438

h =
   0

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition, M. Dekker, 
1985.

[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, 
1973.

See Also ranksum, signrank, ttest, ztest
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12silhouettePurpose Silhouette plot for clustered data

Syntax silhouette(X,clust)
s = silhouette(X,clust)
[s,h] = silhouette(X,clust)
[...] = silhouette(X,clust,distance)
[...] = silhouette(X,clust,distfun,p1,p2,...)

Description silhouette(X,clust) plots cluster silhouettes for the n-by-p data matrix X, 
with clusters defined by clust. Rows of X correspond to points, columns 
correspond to coordinates. clust can be a numeric vector containing a cluster 
index for each point, or a character matrix or cell array of strings containing a 
cluster name for each point. silhouette treats NaNs or empty strings in clust 
as missing values, and ignores the corresponding rows of X. By default, 
silhouette uses the squared Euclidean distance between points in X.

s = silhouette(X,clust) returns the silhouette values in the n-by-1 vector s, 
but does not plot the cluster silhouettes.

[s,h] = silhouette(X,clust) plots the silhouettes, and returns the 
silhouette values in the n-by-1 vector s, and the figure handle in h.

[...] = silhouette(X,clust,distance) plots the silhouettes using the 
inter-point distance measure specified in distance. Choices for distance are:

'Euclidean' Euclidean distance

'sqEuclidean' Squared Euclidean distance (default)

'cityblock' Sum of absolute differences, i.e., L1

'cosine' One minus the cosine of the included angle between 
points (treated as vectors)

'correlation' One minus the sample correlation between points 
(treated as sequences of values)

'Hamming' Percentage of coordinates that differ
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[...] = silhouette(X,clust,distfun,p1,p2, ...) accepts a distance 
function of the form

d = distfun(X0,X,p1,p2,...)

where X0 is a 1-by-p point, X is an n-by-p matrix of points, and p1,p2,... are 
optional additional arguments. The function distfun returns an n-by-1 vector 
d of distances between X0 and each point (row) in X. The arguments p1, p2,... 
are passed directly to the function distfun. 

Remarks The silhouette value for each point is a measure of how similar that point is to 
points in its own cluster compared to points in other clusters, and ranges from 
-1 to +1. It is defined as

S(i) = (min(b(i,:),2) - a(i)) ./ max(a(i),min(b(i,:),2))

where a(i) is the average distance from the ith point to the other points in its 
cluster, and b(i,k) is the average distance from the ith point to points in 
another cluster k.

Examples X = [randn(10,2)+ones(10,2);
randn(10,2)-ones(10,2)];
cidx = kmeans(X,2,'distance','sqeuclid');
s = silhouette(X,cidx,'sqeuclid');

References [1] Kaufman L., and P. J. Rousseeuw, Finding Groups in Data: An    
Introduction to Cluster Analysis, Wiley, 1990.

See Also dendrogram, kmeans, linkage, pdist

'Jaccard' Percentage of non-zero coordinates that differ

Vector A numeric distance matrix in upper triangular vector 
form, such as is created by pdist. X is not used in this 
case, and can safely be set to [].
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12skewnessPurpose Sample skewness

Syntax y = skewness(X)
y = skewness(X,flag)

Description y = skewness(X) returns the sample skewness of X. For vectors, skewness(x) 
is the skewness of the elements of x. For matrices, skewness(X) is a row vector 
containing the sample skewness of each column. For N-dimensional arrays, 
skewness operates along the first nonsingleton dimension of X.

y = skewness(X,flag) specifies whether to correct for bias (flag = 0) or not 
(flag = 1, the default). When X represents a sample from a population, the 
skewness of X is biased; that is, it will tend to differ from the population 
skewness by a systematic amount that depends on the size of the sample. You 
can set flag = 0 to correct for this systematic bias.

skewness(X,flag,dim) takes the skewness along dimension dim of X.

skewness treats NaNs as missing values and removes them.

Remarks Skewness is a measure of the asymmetry of the data around the sample mean. 
If skewness is negative, the data are spread out more to the left of the mean 
than to the right. If skewness is positive, the data are spread out more to the 
right. The skewness of the normal distribution (or any perfectly symmetric 
distribution) is zero.

The skewness of a distribution is defined as

where µ is the mean of x, σ is the standard deviation of x, and E(t) represents 
the expected value of the quantity t.

Example X = randn([5 4])

X =
  1.1650  1.6961  -1.4462  -0.3600
  0.6268  0.0591  -0.7012  -0.1356
  0.0751  1.7971  1.2460  -1.3493

y E x µ–( )3

σ3
------------------------=
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  0.3516  0.2641  -0.6390  -1.2704
  -0.6965  0.8717  0.5774  0.9846

y = skewness(X)

y =
  -0.2933  0.0482  0.2735  0.4641

See Also kurtosis, mean, moment, std, var 
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12squareform

Purpose Reformat a distance matrix between upper triangular and square form

Syntax Z = squareform(y)
y = squareform(Z)
Z = squareform(y, 'tovector')
Y = squareform(Z, 'tomatrix')

Description Z = squareform(y), where y is a vector as created by the pdist function, 
converts y into a square, symmetric format Z, in which Z(i,j) denotes the 
distance between the ith and jth objects in the original data.

y = squareform(Z), where Z is a square, symmetric matrix with zeros along 
the diagonal, creates a vector y containing the Z elements below the diagonal. 
y has the same format as the output from the pdist function.

Z = squareform(y, 'tovector') forces squareform to treat y as a vector.

Y = squareform(Z, 'tomatrix') forces squareform to treat Z as a matrix.

The last two formats are useful if the input has a single element, so that it is 
ambiguous whether the input is a vector or square matrix.

Example y = 1:6

y =

   1   2   3   4   5   6 

X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0]

X =

   0   1   2   3
   1   0   4   5
   2   4   0   6
   3   5   6   0,

Then squareform(y) = X and squareform(X) = y.
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See Also pdist
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12statgetPurpose Get parameter values from a statistics options structure

Syntax val = statget(options,'param')
val = statget(options,'param',default)

Description val = statget(options,'param') returns the value of the specified 
parameter in the statistics options structure options. If the parameter is not 
defined in options, statget returns []. You need to type only enough leading 
characters to define the parameter name uniquely. Case is ignored for 
parameter names.

val = statget(options,'param',default) returns default if the specified 
parameter is not defined in the optimization options structure options.

Examples This statement returns the value of the Display statistics options parameter 
from the structure called my_options.

val = statget(my_options,'Display')

This statement returns the value of the Display statistics options parameter 
from the structure called my_options (as in the previous example) except that 
if the Display parameter is not defined, it returns the value 'final'.

optnew = statget(my_options,'Display','final');

See Also statset
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12statsetPurpose Create or edit a statistics options structure

Syntax options = statset('param1',value1,'param2',value2,...)
statset
options = statset
options = statset(statfun)
options = statset(oldopts,'param1',value1,...)
options = statset(oldopts,newopts)

Description options = statset('param1',value1,'param2',value2,...) creates an 
options structure called options, which you can pass as an input argument to 
other statistics functions, such as distribution fitting functions, that use 
iterative algorithms to maximize or minimize a statistical fitting criterion. You 
can use the options argument to override the default parameters for these 
algorithms. You specify the value of a parameter using a name/value pair, 
'param', value, where 'param' is the name of the parameter and value is its 
value. Parameters that you do not specify are set to []. If you pass options as 
an input to one of these functions, the function uses the parameter values you 
specify and uses its default value for any parameter that you do not specify. 
You only need to type only enough leading characters to define the parameter 
name uniquely. Case is ignored for parameter names.

statset with no input or output arguments displays a complete list of 
parameters with their valid values.

options = statset (with no input arguments) creates an options structure 
options where all fields are set to [].

options = statset(statfun) creates an options structure options with all 
parameter names and default values relevant to the statistics function 
statfun. You can specify statfun either as a string, such as 'evfit', or as a 
function handle, such as @evfit.

options = statset(oldopts,'param1',value1,...) creates a copy of 
oldopts, modifying the specified parameters with the specified values.

options = statset(oldopts,newopts) combines an existing options 
structure, oldopts, with a new options structure, newopts. Any parameters in 
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newopts with nonempty values overwrite the corresponding old parameters in 
oldopts.

Parameters The following table lists the valid parameters for the options structure, their 
meanings, and their allowed values. You can also view these parameters and 
allowed values by typing statset at the command line.

Parameter Meaning Allowed Value

DerivStep Relative difference used in 
finite difference derivative           
calculations. May be a 
scalar or the same size as 
the parameter vector.

Positive scalar or vector

Display Amount of information 
displayed by the algorithm

• 'off' — displays no 
information

• 'final'— displays the 
final output

• 'notify'— displays 
output only if the algorithm 
fails to converge

FunValCheck Check for invalid values, 
such as NaN or Inf, from           
the objective function

• 'off'

• 'on'

GradObject Objective function can 
return a gradient vector as 
a second output.

• 'off'
• 'on'

MaxFunEvals Maximum number of 
objective function 
evaluations allowed

Positive integer

MaxIter Maximum number of 
iterations allowed

Positive integer



statset

12-502

Examples Suppose you want to change the default parameters for the function evfit, 
which fits data to an extreme value distribution. To see the defaults for evfit, 
enter

statset('evfit')

ans = 

    Display: 'off'
  MaxFunEvals: []
    MaxIter: []
     TolBnd: []
     TolFun: []
      TolX: 1.0000e-006
    GradObj: []
   DerivStep: []
  FunValCheck: []

Note that the only parameters evfit uses are Display and TolX. To change the 
value of TolX to 1e-8, enter

my_opts = statset('TolX',1e-8)

my_opts = 

    Display: []
  MaxFunEvals: []
    MaxIter: []
     TolBnd: []
     TolFun: []
      TolX: 1.0000e-008
    GradObj: []

TolBnd Parameter bound tolerance Positive scalar

TolFun Termination tolerance for 
the objective function value

Positive scalar

TolX Termination tolerance for 
the parameters

Positive scalar

Parameter Meaning (Continued) Allowed Value (Continued)
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   DerivStep: []
  FunValCheck: []

When you pass my_opts into evfit with the command

evfit(data, [], [], [], my_opts)

evfit uses its default value 'notify' for Display and overrides the default 
value of TolX with 1e-8.

See the reference page for evfit for more information about its syntax.

See Also evfit, factoran, gamfit, lognfit, nbinfit, normfit, statget
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12stdPurpose Standard deviation of a sample

Syntax y = std(X)

Description y = std(X) computes the sample standard deviation of the data in X. For 
vectors, std(x) is the standard deviation of the elements in x. For matrices, 
std(X) is a row vector containing the standard deviation of each column of X. 
For N-dimensional arrays, std operates along the first nonsingleton dimension 
of X.

std normalizes by n-1 where n is the sample size. The result Y is the square root 
of an unbiased estimator of the variance of the population from which X is 
drawn, as long as X consists of independent, identically distributed samples.

The standard deviation is

where the sample average is .

The std function is part of the standard MATLAB language.

Y = std(X,1) normalizes Y by n. The result Y is the square root of the second 
moment of the sample about its mean. std(X,0) is the same as std(X).

Y = std(X,flag,dim) takes the standard deviation along the dimension dim of 
X. Set flag to 0 to normalize Y by n-1; set flag to 1 to normalize by n.

Examples In each column, the expected value of y is one.

x = normrnd(0,1,100,6);
y = std(x)

y =
  0.9536  1.0628  1.0860  0.9927  0.9605  1.0254

y = std(-1:2:1)

y =
  1.4142

y 1
n 1–
------------- xi x–( )2
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n

∑
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See Also cov, var
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12stepwisePurpose Interactive environment for stepwise regression

Syntax stepwise(X,y)
stepwise(X,y,inmodel,penter,premove)

Description stepwise(X,y) displays an interactive tool for creating a regression model to 
predict the vector y, using a subset of the predictors given by columns of the 
matrix X. Initially, no predictors are included in the model, but you can click 
predictors to switch them into and out of the model.

For each predictor in the model, the interactive tool plots the predictor’s least 
squares coefficient as a blue filled circle. For each predictor not in the model, 
the interactive tool plots a filled red circle to indicate the coefficient the 
predictor would have if you add it to the model. Horizontal bars in the plot 
indicate 90% confidence intervals (colored) and 95% confidence intervals 
(black).

stepwise(X,y,inmodel,penter,premove) specifies the initial state of the 
model and the confidence levels to use. inmodel is either a logical vector, whose 
length is the number of columns in X, or a vector of indices, whose values range 
from 1 to the number of columns in X, specifying the predictors that are 
included in the initial model. The default is to include no columns of X. penter 
specifies the maximum p-value that a predictor can have for the interactive tool 
to recommend adding it to the model. The default value of penter is 0.05. 
premove specifies the minimum p-value that a predictor can have for the 
interactive tool to recommend removing it from the model. The default value of 
premove is 0.10. 

The interactive tool treats a NaN in either X or y as a missing value. The tool 
does not use rows containing missing values in the fit.

Examples See “Quadratic Response Surface Models” on page 4-42 and “Stepwise 
Regression Demo” on page 4-45.

Reference [1] Draper, N., and H. Smith, Applied Regression Analysis, 2nd edition, John 
Wiley and Sons, 1981, pp. 307–312.

See Also regress, rstool, stepwisefit
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12stepwisefitPurpose Fit regression model using stepwise regression

Syntax b = stepwisefit(X,y)
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...)
[...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...)

Description b = stepwisefit(X,y) uses stepwise regression to model the response 
variable y as a function of the predictor variables represented by the columns 
of the matrix X. The result is a vector b of estimated coefficient values for all 
columns of X. The b value for a column not included in the final model is the 
coefficient that you would obtain by adding that column to the model.

[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...) 
returns the following additional results: 

• se is a vector of standard errors for b. 

• pval is a vector of p-values for testing whether b is 0. 

• inmodel is a logical vector, whose length equals the number of columns in X, 
specifying which predictors are in the final model. A 1 in position j indicates 
that the jth predictor is in the final model; a 0 indicates that the 
corresponding predictor in not in the final model.

• stats is a structure containing additional statistics. 

• nextstep is the recommended next step — either the index of the next 
predictor to move in or out, or 0 if no further steps are recommended. 

• history is a structure containing information about the history of steps 
taken.

[...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...) 
specifies one or more of the name/value pairs described in the following table.



stepwisefit

12-508

Example load hald
stepwisefit(ingredients, heat, 'penter', .08)
Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-006
Step 3, added column 2, p=0.0516873
Step 4, removed column 4, p=0.205395
Final columns included: 1 2 

Parameter Name Parameter Value

'inmodel' Logical vector specifying the predictors to include in 
the initial fit. The default is a vector of all zeros, 
specifying no predictors.

'penter' Maximum p-value for a predictor to be added. The 
default is 0.05.

'premove' Minimum p-value for a predictor to be removed. The 
default is 0.10.

'display' 'on' displays information about each step. 

'off' omits the information.

'maxiter' Maximum number of steps to take (default is no 
maximum)

'keep' Logical vector specifying the predictors to keep in 
their initial state. The default is a vector of all zeros, 
specifying no predictors.

'scale' 'on' scales each column of X by its standard 
deviation before fitting.

'off' does not scale (the default).
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ans = 

  'Coeff'   'Std.Err.'  'Status'  'P'     
  [ 1.4683]  [ 0.1213]  'In'    [2.6922e-007]
  [ 0.6623]  [ 0.0459]  'In'    [5.0290e-008]
  [ 0.2500]  [ 0.1847]  'Out'    [   0.2089]
  [-0.2365]  [ 0.1733]  'Out'    [   0.2054]

ans =

  1.4683
  0.6623
  0.2500
  -0.2365

See Also addedvarplot, regress, rstool, stepwise
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12surfhtPurpose Interactive contour plot

Syntax surfht(Z)
surfht(x,y,Z)

Description surfht(Z) is an interactive contour plot of the matrix Z treating the values in 
Z as height above the plane. The x-values are the column indices of Z while the 
y-values are the row indices of Z.

surfht(x,y,Z) where x and y are vectors specify the x and y-axes on the 
contour plot. The length of x must match the number of columns in Z, and the 
length of y must match the number of rows in Z.

There are vertical and horizontal reference lines on the plot whose intersection 
defines the current x-value and y-value. You can drag these dotted white 
reference lines and watch the interpolated z-value (at the top of the plot) 
update simultaneously. Alternatively, you can get a specific interpolated 
z-value by typing the x-value and y-value into editable text fields on the x-axis 
and y-axis respectively. 
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12tabulatePurpose Frequency table

Syntax TABLE = tabulate(x)
tabulate(x)

Description TABLE = tabulate(x) takes a vector x and returns a matrix, TABLE. The first 
column of TABLE contains the unique values of x. The second contains the 
number of instances of each value. The last column contains the percentage of 
each value.

TABLE = tabulate(ARRAY), where ARRAY is a character array or a cell array of 
strings, returns TABLE as a cell array. The first column contains the unique 
string values in ARRAY. The other two columns contain the same information as 
for a vector input.

tabulate with no output arguments displays a formatted table in the 
command window.

Example tabulate([1 2 4 4 3 4])

Value  Count  Percent
   1    1   16.67%
   2    1   16.67%
   3    1   16.67%
   4    3   50.00%

See Also pareto
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12tblreadPurpose Read tabular data from the file system

Syntax [data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread('filename')
[data,varnames,casenames] = tblread('filename','delimiter')

Description [data,varnames,casenames] = tblread displays the File Open dialog box for 
interactive selection of the tabular data file. The file format has variable names 
in the first row, case names in the first column and data starting in the (2,2) 
position.

[data,varnames,casenames] = tblread(filename) allows command line 
specification of the name of a file in the current directory, or the complete path 
name of any file. 

[data,varnames,casenames] = tblread(filename,'delimiter')  reads 
from the file using 'delimiter' as the delimiting character. The following 
table lists the accepted character values for 'delimiter' and their equivalent 
string values.

The default value of 'delimiter' is 'space'.

Character String

' ' 'space'

'\t' 'tab'

',' 'comma'

';' 'semi'

'|' 'bar'
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tblread returns the data read in three values.

Example [data,varnames,casenames] = tblread('sat.dat')

data =

  470  530
  520  480

varnames =

Male 
Female

casenames =

Verbal   
Quantitative

See Also caseread, tblwrite, tdfread

Return Value Description

data Numeric matrix with a value for each variable-case pair.

varnames String matrix containing the variable names in the first 
row.

casenames String matrix containing the names of each case in the 
first column. 
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12tblwritePurpose Writes tabular data to the file system

Syntax tblwrite(data,'varnames','casenames')
tblwrite(data,'varnames','casenames','filename')
tblwrite(data,'varnames','casenames','filename','delimiter')

Description tblwrite(data,'varnames','casenames') displays the File Open dialog box 
for interactive specification of the tabular data output file. The file format has 
variable names in the first row, case names in the first column and data 
starting in the (2,2) position.

'varnames' is a string matrix containing the variable names. 'casenames' is 
a string matrix containing the names of each case in the first column. data is 
a numeric matrix with a value for each variable-case pair.

tblwrite(data,'varnames','casenames','filename') specifies a file in the 
current directory, or the complete path name of any file in the string 
'filename'.

tblwrite(data,'varnames','casenames','filename','delimiter') writes 
to the file using 'delimiter' as the delimiting character. The following table 
lists the accepted character values for 'delimiter' and their equivalent string 
values.

The default value of 'delimiter' is 'space'.

Character String

' ' 'space'

'\t' 'tab'

',' 'comma'

';' 'semi'

'|' 'bar'
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Example Continuing the example from tblread:

tblwrite(data,varnames,casenames,'sattest.dat')
type sattest.dat

Male Female
Verbal 470 530
Quantitative 520 480

See Also casewrite, tblread
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12tcdfPurpose Student’s t cumulative distribution function (cdf)

Syntax P = tcdf(X,V)

Description P = tcdf(X,V) computes Student’s t cdf at each of the values in X using the 
corresponding degrees of freedom in V. X and V can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array with the same dimensions as the other inputs. 

The t cdf is

The result, p, is the probability that a single observation from the t distribution 
with ν degrees of freedom will fall in the interval (-∞ x].

Examples Suppose 10 samples of Guinness beer have a mean alcohol content of 5.5% by 
volume and the standard deviation of these samples is 0.5%. What is the 
probability that the true alcohol content of Guinness beer is less than 5%?

t = (5.0 - 5.5) / 0.5;
probability = tcdf(t,10 - 1)

probability =

  0.1717

See Also cdf, tinv, tpdf, trnd, tstat
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12tdfreadPurpose Read file containing tab-delimited numeric and text values

Syntax tdfread
tdfread('filename')
tdfread('filename','delimiter')

Description tdfread displays the File Open dialog box for interactive selection of the data 
file. The file should consist of columns of values, separated by tabs, and with 
column names in the first line of the file. Each column is read from the file and 
assigned to a variable with the specified name. If all values for a column are 
numeric, the variable is converted to numbers; otherwise the variable is a 
string matrix. After all values are imported, tdfread displays information 
about the imported values using the format of the whos command.

tdfread('filename') allows command line specification of the name of a file 
in the current directory, or the complete pathname of any file. 

tdfread('filename','delimiter') indicates that the character specified by 
'delimiter' separates columns in the file. Accepted values are:

• ' '  or 'space'

• '\t' or 'tab'

• ','  or 'comma'

• ';'  or 'semi'

• '|'  or 'bar'

The default delimiter is 'tab'. 

Example type sat2.dat

Test,Gender,Score
Verbal,Male,470
Verbal,Female,530
Quantitative,Male,520
Quantitative,Female,480
tdfread('sat2.dat',',')

 Name     Size     Bytes Class
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 Gender    4x6       48 char array
 Score    4x1       32 double array
 Test     4x12      96 char array

Grand total is 76 elements using 176 bytes

See Also tblread
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12tinvPurpose Inverse of the Student’s t cumulative distribution function (cdf)

Syntax X = tinv(P,V)

Description X = tinv(P,V) computes the inverse of Student’s t cdf with parameter V for 
the corresponding probabilities in P. P and V can be vectors, matrices, or 
multidimensional arrays that have the same size. A scalar input is expanded 
to a constant array with the same dimensions as the other inputs. The values 
in P must lie on the interval [0 1].

The t inverse function in terms of the t cdf is

where 

The result, x, is the solution of the cdf integral with parameter ν, where you 
supply the desired probability p.

Examples What is the 99th percentile of the t distribution for one to six degrees of 
freedom?

percentile = tinv(0.99,1:6)

percentile =

  31.8205  6.9646  4.5407  3.7469  3.3649  3.1427

See Also icdf, tcdf, tpdf, trnd, tstat
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12tpdfPurpose Student’s t probability density function (pdf)

Syntax Y = tpdf(X,V)

Description Y = tpdf(X,V) computes Student’s t pdf at each of the values in X using the 
corresponding degrees of freedom in V. X and V can be vectors, matrices, or 
multidimensional arrays that have the same size. A scalar input is expanded 
to a constant array with the same dimensions as the other inputs. 

Student’s t pdf is

Examples The mode of the t distribution is at x = 0. This example shows that the value of 
the function at the mode is an increasing function of the degrees of freedom.

tpdf(0,1:6)

ans =

  0.3183  0.3536  0.3676  0.3750  0.3796  0.3827

The t distribution converges to the standard normal distribution as the degrees 
of freedom approaches infinity. How good is the approximation for v = 30?

difference = tpdf(-2.5:2.5,30) - normpdf(-2.5:2.5)

difference =

  0.0035  -0.0006  -0.0042  -0.0042  -0.0006  0.0035

See Also pdf, tcdf, tinv, trnd, tstat
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12treedispPurpose Show classification or regression tree graphically

Syntax treedisp(T)
treedisp(T,'param1',val1,'param2',val2,...)

Description treedisp(T) takes as input a decision tree T as computed by the treefit 
function, and displays it in a figure window. Each branch in the tree is labeled 
with its decision rule, and each terminal node is labeled with the predicted 
value for that node. 

For each branch node, the left child node corresponds to the points that satisfy 
the condition, and the right child node corresponds to the points that do not 
satisfy the condition.

The Click to display pop-up menu at the top of the figure enables you to 
display more information about each node:

After you select the type of information you want, click on any node to display 
the information for that node.

The Pruning level spin button displays the number of levels that have been 
cut from the tree, and the number of levels in the unpruned tree. For example, 
1 of 6 indicates that the unpruned tree has six levels, and that one level has 
been cut from the tree. Use the spin button to change the pruning level.

treedisp(T,'param1',val1,'param2',val2,...) specifies optional 
parameter name-value pairs. Valid parameters are:

Identity The node number, whether the node is a branch or a 
leaf, and the rule that governs the node

Variable ranges The range of each of the predictor variables for that 
node

Node statistics Descriptive statistics for the observations falling into 
this node

'names' A cell array of names for the predictor variables, in the 
order in which they appear in the X matrix from which the 
tree was created (see treefit)

'prunelevel' Initial pruning level to display
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Examples Create and graph classification tree for Fisher's iris data. The names in this 
example are abbreviations for the column contents (sepal length, sepal width, 
petal length, and petal width).

  load fisheriris;
  t = treefit(meas,species);
  treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

See Also treefit, treeprune, treetest
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12treefitPurpose Fit a tree-based model for classification or regression

Syntax T = treefit(X,y)
T = treefit(X,y,'param1',val1,'param2',val2,...)

Description T = treefit(X,y) creates a decision tree T for predicting response y as a 
function of predictors X. X is an n-by-m matrix of predictor values. y is either a 
vector of n response values (for regression), or a character array or cell array of 
strings containing n class names (for classification). Either way, T is a binary 
tree where each non-terminal node is split based on the values of a column of X.

T = treefit(X,y,'param1',val1,'param2',val2,...) specifies optional 
parameter name-value pairs. Valid parameters are

For all trees:

For classification trees only:

'catidx' Vector of indices of the columns of X. treefit treats these 
columns as unordered categorical values.

'method' Either 'classification' (default if y is text) or 
'regression' (default if y is numeric)

'splitmin' A number n such that impure nodes must have n or more 
observations to be split (default 10)

'prune' 'on' (default) to compute the full tree and a sequence of 
pruned subtrees, or 'off' for the full tree without pruning

'cost' p-by-p matrix C, where p is the number of distinct 
response values or class names in the input y. C(i,j) is 
the cost of classifying a point into class i if its true class 
is j (default has C(i,j)=1 if i~=j, and C(i,j)=0 if i=j). 
C can also be a structure S with two fields: S.group 
containing the group names, and S.cost containing a 
matrix of cost values.
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Examples Create a classification tree for Fisher's iris data.

  load fisheriris;
  t = treefit(meas,species);
  treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

References [1] Breiman, L., Classification and Regression Trees, Chapman & Hall, Boca 
Raton, 1993.

See Also treedisp, treetest

'splitcriterion' Criterion for choosing a split: either 'gdi' (default) for 
Gini's diversity index, 'twoing' for the twoing rule, or 
'deviance' for maximum deviance reduction

'priorprob' Prior probabilities for each class, specified as a vector 
(one value for each distinct group name) or as a 
structure S with two fields: S.group containing the 
group names, and S.prob containing a vector of 
corresponding probabilities
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12treeprunePurpose Produce a sequence of subtrees by pruning

Syntax T2 = treeprune(T1,'level',level)
T2 = treeprune(T1,'nodes',nodes)
T2 = treeprune(T1)

Description T2 = treeprune(T1,'level',level) takes a decision tree T1 as created by the 
treefit function, and a pruning level, and returns the decision tree T2 pruned 
to that level. The value level = 0 means no pruning. Trees are pruned based 
on an optimal pruning scheme that first prunes branches giving less 
improvement in error cost.

T2 = treeprune(T1,'nodes',nodes) prunes the nodes listed in the nodes 
vector from the tree. Any T1 branch nodes listed in nodes become leaf nodes in 
T2, unless their parent nodes are also pruned. The treedisp function can 
display the node numbers for any node you select.

T2 = treeprune(T1) returns the decision tree T2 that is the same as T1, but 
with the optimal pruning information added. This is useful only if you created 
T1 by pruning another tree, or by using the treefit function with pruning set 
'off'. If you plan to prune a tree multiple times, it is more efficient to create 
the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes into leaf 
nodes, and removing the leaf nodes under the original branch.

Examples Display the full tree for Fisher's iris data, as well as the next largest tree from 
the optimal pruning sequence. 

  load fisheriris;
  t = treefit(meas,species,'splitmin',5);
  treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});
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  t1 = treeprune(t,'level',1);
  treedisp(t1,'names',{'SL' 'SW' 'PL' 'PW'});
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See Also treefit, treetest, treedisp
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12treetestPurpose Compute error rate for tree

Syntax cost = treetest(T,'resubstitution')
cost = treetest(T,'test',X,y)
cost = treetest(T,'crossvalidate',X,y)
[cost,secost,ntnodes,bestsize] = treetest(...)
[...] = treetest(...,'param1',val1,'param2',val2,...)

Description cost = treetest(T,'resubstitution') computes the cost of the tree T using 
a resubstitution method. T is a decision tree as created by the treefit function. 
The cost of the tree is the sum over all terminal nodes of the estimated 
probability of that node times the node's cost. If T is a classification tree, the 
cost of a node is the sum of the misclassification costs of the observations in 
that node. If T is a regression tree, the cost of a node is the average squared 
error over the observations in that node. cost is a vector of cost values for each 
subtree in the optimal pruning sequence for T. The resubstitution cost is based 
on the same sample that was used to create the original tree, so it 
underestimates the likely cost of applying the tree to new data.

cost = treetest(T,'test',X,y) uses the predictor matrix X and response y 
as a test sample, applies the decision tree T to that sample, and returns a vector 
cost of cost values computed for the test sample. X and y should not be the 
same as the learning sample, which is the sample that was used to fit the 
tree T.

cost = treetest(T,'crossvalidate',X,y) uses 10-fold cross-validation to 
compute the cost vector. X and y should be the learning sample, which is the 
sample that was used to fit the tree T. The function partitions the sample into 
10 subsamples, chosen randomly but with roughly equal size. For classification 
trees, the subsamples also have roughly the same class proportions. For each 
subsample, treetest fits a tree to the remaining data and uses it to predict the 
subsample. It pools the information from all subsamples to compute the cost for 
the whole sample.

[cost,secost,ntnodes,bestlevel] = treetest(...) also returns the vector 
secost containing the standard error of each cost value, the vector ntnodes 
containing number of terminal nodes for each subtree, and the scalar 
bestlevel containing the estimated best level of pruning. bestlevel = 0 



treetest

12-529

means no pruning, i.e., the full unpruned tree. The best level is the one that 
produces the smallest tree that is within one standard error of the 
minimum-cost subtree. 

[...] = treetest(...,'param1',val1,'param2',val2,...) specifies 
optional parameter name-value pairs chosen from the following:

Examples Find the best tree for Fisher's iris data using cross-validation. The solid line 
shows the estimated cost for each tree size, the dashed line marks 1 standard 
error above the minimum, and the square marks the smallest tree under the 
dashed line.

% Start with a large tree.
load fisheriris;
t = treefit(meas,species','splitmin',5);

% Find the minimum-cost tree.
[c,s,n,best] = treetest(t,'cross',meas,species);
tmin = treeprune(t,'level',best);

% Plot smallest tree within 1 std. error of minimum cost tree.
[mincost,minloc] = min(c);
plot(n,c,'b-o', n,c+s,'r:', n(best+1),c(best+1),'bs',...
   n,(mincost+s(minloc))*ones(size(n)),'k--');
xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

'nsamples' The number of cross-validations samples (default 10).

'treesize' Either 'se' (default) to choose the smallest tree whose cost is 
within one standard error of the minimum cost, or 'min' to 
choose the minimal cost tree.
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See Also treefit, treedisp
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12treevalPurpose Compute fitted value for decision tree applied to data

Syntax YFIT = treeval(T,X)
YFIT = treeval(T,X,subtrees)
[YFIT,NODE] = treeval(...)
[YFIT,NODE,CNAME] = treeval(...)

Description YFIT = treeval(T,X) takes a classification or regression tree T as produced by 
the treefit function, and a matrix X of predictor values, and produces a vector 
YFIT of predicted response values. For a regression tree, YFIT(j) is the fitted 
response value for a point having the predictor values X(j,:). For a 
classification tree, YFIT(j) is the class number into which the tree would 
assign the point with data X(j,:). To convert the number into a class name, 
use the third output argument, cname (below).

YFIT = treeval(T,X,subtrees) takes an additional vector subtrees of 
pruning levels, with 0 representing the full, unpruned tree. T must include a 
pruning sequence as created by the treefit or prunetree function. If subtree 
has k elements and X has n rows, then the output YFIT is an n-by-k matrix, with 
the jth column containing the fitted values produced by the subtrees(j) 
subtree. subtrees must be sorted in ascending order.

[YFIT,NODE] = treeval(...) also returns an array NODE of the same size as 
YFIT containing the node number assigned to each row of X. The treedisp 
function can display the node numbers for any node you select.

[YFIT,NODE,CNAME] = treeval(...) is valid only for classification trees. It 
returns a cell array CNAME containing the predicted class names.

Examples Find the predicted classifications for Fisher's iris data.

load fisheriris;
t = treefit(meas,species);  % Create decision tree
sfit = treeval(t,meas);   % Find assigned class numbers
sfit = t.classname(sfit);  % Get class names
mean(strcmp(sfit,species))  % Compute proportion correctly
               % classified
ans =
   0.9800
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See Also treefit, treeprune, treetest
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12trimmeanPurpose Mean of a sample of data excluding extreme values

Syntax m = trimmean(X,percent)
m = trimmean(X,percent,dim)

Description m = trimmean(X,percent) calculates the mean of a sample X excluding the 
highest and lowest (percent/2)% of the observations. For a vector input, m is 
the trimmed mean of X. For a matrix input, m is a row vector containing the 
trimmed mean of each column of X. For N-dimensional arrays, trimmean 
operates along the first nonsingleton dimension of X. percent is a scalar 
between 0 and 100.

trimmean(X,percent,dim) takes the trimmed mean along dimension dim of X.

Remarks The trimmed mean is a robust estimate of the location of a sample. If there are 
outliers in the data, the trimmed mean is a more representative estimate of the 
center of the body of the data than the mean. However, if the data is all from 
the same probability distribution, then the trimmed mean is less efficient than 
the sample mean as an estimator of the location of the data.

Examples This example shows a Monte Carlo simulation of the efficiency of the 10% 
trimmed mean relative to the sample mean for normal data.

x = normrnd(0,1,100,100);
m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2

efficiency =

  0.9702

See Also mean, median, geomean, harmmean
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12trndPurpose Random numbers from Student’s t distribution

Syntax R = trnd(V)
R = trnd(V,m)
R = trnd(V,m,n)

Description R = trnd(V) generates random numbers from Student’s t distribution with V 
degrees of freedom. V can be a vector, a matrix, or a multidimensional array. 
The size of R is the size of V.

R = trnd(V,m) generates random numbers from Student’s t distribution with 
V degrees of freedom, where v is a row vector. If v is a 1-by-2 vector, R is a matrix 
with v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array. 

R = trnd(V,m,n) generates random numbers from Student’s t distribution 
with V degrees of freedom, where scalars m and n are the row and column 
dimensions of R.

Reproducing the Output of trnd
trnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call trnd, you change the current states of rand and randn, 
and thereby alter the output of subsequent calls to trnd or any other functions 
that depend on rand or randn. If you want to reproduce the output of trnd, reset 
the states of rand and randn to the same fixed values each time you call trnd. 
For an example of how to do this, and a list of the Statistics Toolbox functions 
that depend on rand or randn, see “Reproducing the Output of Random 
Number Functions” on page 2-46.

Note   The results in the following examples depend on the current states of 
rand and randn. If you run the code in these examples, your results may differ 
from the answers shown here.

Examples noisy = trnd(ones(1,6))

noisy =

  19.7250  0.3488  0.2843  0.4034  0.4816  -2.4190
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numbers = trnd(1:6,[1 6])

numbers =

  -1.9500  -0.9611  -0.9038  0.0754  0.9820  1.0115

numbers = trnd(3,2,6)

numbers =

  -0.3177  -0.0812  -0.6627  0.1905  -1.5585  -0.0433
  0.2536  0.5502  0.8646  0.8060  -0.5216  0.0891

See Also tcdf, tinv, tpdf, tstat
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12tstatPurpose Mean and variance for the Student’s t distribution

Syntax [M,V] = tstat(NU)

Description [M,V] = tstat(NU) returns the mean and variance for Student’s t distribution 
with parameters specified by NU. M and V are the same size as NU.

The mean of the Student’s t distribution with parameter ν is zero for values of ν 
greater than 1. If ν is one, the mean does not exist. The variance for values of ν 
greater than 2 is .

Examples Find the mean and variance for 1 to 30 degrees of freedom.

[m,v] = tstat(reshape(1:30,6,5))

m =
  NaN   0   0   0   0
   0   0   0   0   0
   0   0   0   0   0
   0   0   0   0   0
   0   0   0   0   0
   0   0   0   0   0

v =
    NaN  1.4000  1.1818  1.1176  1.0870
    NaN  1.3333  1.1667  1.1111  1.0833
  3.0000  1.2857  1.1538  1.1053  1.0800
  2.0000  1.2500  1.1429  1.1000  1.0769
  1.6667  1.2222  1.1333  1.0952  1.0741
  1.5000  1.2000  1.1250  1.0909  1.0714

Note that the variance does not exist for one and two degrees of freedom.

See Also tcdf, tinv, tpdf, trnd

ν ν 2–( )⁄
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12ttestPurpose Hypothesis testing for a single sample mean

Syntax h = ttest(x)
h = ttest(x,m)
h = ttest(x,y)
h = ttest(x,m,alpha)
h = ttest(x,m,alpha,tail)
h = ttest(x,m,alpha,tail,dim)
[h,p,ci] = ttest(...)
[h,p,ci,stats] = ttest(...)

Description h = ttest(x) performs a t-test of the hypothesis that the data in the vector x 
comes from a distribution with mean zero, and returns the result of the test in 
h. h=0 indicates that the null hypothesis (mean is zero) cannot be rejected at 
the 5% significance level. h=1 indicates that the null hypothesis can be rejected 
at the 5% level. The data are assumed to come from a normal distribution with 
unknown variance.

x can also be a matrix or an N-D array. For matrices, ttest performs separate 
t-tests along each column of x and returns a vector of results. For N-D arrays, 
ttest works along the first nonsingleton dimension of x.

h = ttest(x,m) performs a t-test of the hypothesis that the data in the vector 
x comes from a distribution with mean m.

h = ttest(x,y) performs a paired t-test of the hypothesis that two matched 
(or paired) samples in the vectors x and y come from distributions with equal 
means. The difference x-y is assumed to come from a normal distribution with 
unknown variance. x and y must be vectors of the same length, or arrays of the 
same size.

h = ttest(...,alpha) performs the test at the significance level 
(100*alpha)%. For example, if alpha = 0.01, and the result h is 1, you can reject 
the null hypothesis at the significance level 0.01. If h is 0, you cannot reject the 
null hypothesis at the alpha level of significance.

h = ttest(...,alpha,tail) performs the test against the alternative 
hypothesis specified by tail. There are three options for tail:
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• 'both' — Mean is not 0 (or m) (two-tailed test). This is the default.

• 'right' — Mean is greater than 0 (or m) (right-tailed test).

• 'left' — Mean is less than 0 (or m) (left-tailed test).

[h,p,ci,stats] = ttest(...) returns a structure with the following fields:

• 'tstat' — Value of the test statistic

• 'df'— Degrees of freedom of the test

• 'sd' — Estimated population standard deviation. For a paired test, this is 
the standard deviation of x-y.

Output p is the p-value associated with the t-statistic

where  is the sample standard deviation and  is the number of observations 
in the sample. p is the probability that the value of the t-statistic is equal to or 
more extreme than the observed value by chance, under the null hypothesis 
that the mean of x is equal to m.

ci is a 1-alpha confidence interval for the true mean.

h = ttest(...,alpha,tail,dim) performs the test along dimension dim of 
the input x array. For a matrix x, dim=1 computes the t-test for each column 
(along the first dimension), and dim=2 computes the t-test for each row. By 
default, ttest works along the first nonsingleton dimension, so it treats a 
single-row input as a row vector.

Example This example generates 100 normal random numbers with theoretical mean 0 
and standard deviation 1. The observed mean and standard deviation are 
different from their theoretical values, of course, so you test the hypothesis that 
there is no true difference.

Here is a normal random number generator test:

x = normrnd(0,1,1,100);
[h,p,ci] = ttest(x,0)

h =
   0

T x m–

s n⁄
--------------=

s n
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p =
  0.4474

ci =
  -0.1165  0.2620

The result h = 0 means that you cannot reject the null hypothesis. The 
significance level is 0.4474, which means that by chance you would have 
observed values of T more extreme than the one in this example in 45 of 100 
similar experiments. A 95% confidence interval on the mean is 
[-0.1165 0.2620], which includes the theoretical (and hypothesized) mean of 
zero.
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12ttest2Purpose Hypothesis testing for the difference in means of two samples

Syntax [h,significance,ci] = ttest2(x,y)
[h,significance,ci] = ttest2(x,y,alpha)
[h,significance,ci,stats] = ttest2(x,y,alpha)
[...] = ttest2(x,y,alpha,tail)
[...] = ttest2(x,y,alpha,tail,'unequal')
[...] = ttest2(x,y,alpha,tail,'unequal',dim)

Description h = ttest2(x,y) performs a t-test to determine whether two samples from a 
normal distribution (x and y) could have the same mean when the standard 
deviations are unknown but assumed equal. The vectors x and y can have 
different lengths.

x and y can also be matrices or N-D arrays. For matrices, ttest2 performs 
separate t-tests along each column and returns a vector of results. x and y must 
have the same number of columns. For N-D arrays, ttest2 works along the 
first nonsingleton dimension. x and y must have the same size along all the 
remaining dimensions.

The result, h, is 1 if you can reject the null hypothesis that the means are equal 
at the 0.05 significance level and 0 otherwise. 

significance is the p-value associated with the t-statistic

where s is the pooled sample standard deviation and n and m are the numbers 
of observations in the x and y samples. significance is the probability that the 
observed value of T could be as large or larger by chance under the null 
hypothesis that the mean of x is equal to the mean of y. 

ci is a 95% confidence interval for the true difference in means.

[h,significance,ci] = ttest2(x,y,alpha) gives control of the significance 
level alpha. For example, if alpha = 0.01, and the result, h, is 1, you can reject 
the null hypothesis at the significance level 0.01. ci in this case is a 
100(1 - alpha)% confidence interval for the true difference in means.

T x y–

s 1
n
--- 1

m
-----+

-----------------------=
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[h,significance,ci,stats] = ttest2(x,y,alpha) returns a structure 
stats with the following three fields:

• tstat — Value of the test statistic 

• df — Degrees of freedom of the test

• 'sd' — Pooled estimate of the population standard deviation in the equal 
variance case, or a vector containing the unpooled estimates of the 
population standard deviations in the unequal variance case

[...] = ttest2(x,y,alpha,tail) allows specification of one- or two-tailed 
tests, where tail is a flag that specifies one of three alternative hypotheses:

• tail = 'both' specifies the alternative  (default).

• tail = 'right' specifies the alternative .

• tail = 'left' specifies the alternative .

[...] = ttest2(x,y,alpha,tail,'unequal') performs the test assuming 
that the two samples come from normal distributions with unknown and 
possibly unequal variances. This is known as the Behrens-Fisher problem. 
ttest2 uses Satterthwaite's approximation for the effective degrees of 
freedom.

[...] = ttest2(...,dim) performs the test along dimension dim of the input 
x and y arrays. For matrix inputs, dim=1 computes the t-test for each column 
(along the first dimension), and dim=2 computes the t-test for each row. By 
default, ttest2 works along the first nonsingleton dimension, so it treats 
single-row inputs as row vectors.

Examples This example generates 100 normal random numbers with theoretical mean 0 
and standard deviation 1. You then generate 100 more normal random 
numbers with theoretical mean 1/2 and standard deviation 1. The observed 
means and standard deviations are different from their theoretical values, of 
course. You test the hypothesis that there is no true difference between the two 
means. Notice that the true difference is only one-half of the standard deviation 
of the individual observations, so you are trying to detect a signal that is only 
one-half the size of the inherent noise in the process.

x = normrnd(0,1,100,1);
y = normrnd(0.5,1,100,1);

µx µy≠
µx µy>

µx µy<
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[h,significance,ci] = ttest2(x,y)

h =
1

significance =

  0.0017

ci =
  -0.7352  -0.1720

The result h = 1 means that you can reject the null hypothesis. The 
significance is 0.0017, which means that by chance you would have observed 
values of t more extreme than the one in this example in only 17 of 10,000 
similar experiments! A 95% confidence interval on the mean is 
[-0.7352 -0.1720], which includes the theoretical (and hypothesized) difference 
of -0.5.
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12unidcdfPurpose Discrete uniform cumulative distribution (cdf) function

Syntax P = unidcdf(X,N)

Description P = unidcdf(X,N) computes the discrete uniform cdf at each of the values in X 
using the corresponding parameters in N. X and N can be vectors, matrices, or 
multidimensional arrays that have the same size. A scalar input is expanded 
to a constant array with the same dimensions as the other inputs. The 
maximum observable values in N must be positive integers.

The discrete uniform cdf is

The result, p, is the probability that a single observation from the discrete 
uniform distribution with maximum N will be a positive integer less than or 
equal to x. The values x do not need to be integers.

Examples What is the probability of drawing a number 20 or less from a hat with the 
numbers from 1 to 50 inside?

probability = unidcdf(20,50)

probability =

  0.4000

See Also cdf, unidinv, unidpdf, unidrnd, unidstat

p F x N( ) floor x( )
N

----------------------I 1 … N, ,( ) x( )= =
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12unidinvPurpose Inverse of the discrete uniform cumulative distribution function

Syntax X = unidinv(P,N)

Description X = unidinv(P,N) returns the smallest positive integer X such that the 
discrete uniform cdf evaluated at X is equal to or exceeds P. You can think of P 
as the probability of drawing a number as large as X out of a hat with the 
numbers 1 through N inside.

P and N can be vectors, matrices, or multidimensional arrays that have the 
same size, which is also the size of X. A scalar input for N or P is expanded to a 
constant array with the same dimensions as the other input. The values in P 
must lie on the interval [0 1] and the values in N must be positive integers. 

Examples x = unidinv(0.7,20)

x =
14

y = unidinv(0.7 + eps,20)

y =
15

A small change in the first parameter produces a large jump in output. The cdf 
and its inverse are both step functions. The example shows what happens at a 
step.

See Also icdf, unidcdf, unidpdf, unidrnd, unidstat
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12unidpdfPurpose Discrete uniform probability density function (pdf)

Syntax Y = unidpdf(X,N)

Description unidpdf(X,N) computes the discrete uniform pdf at each of the values in X 
using the corresponding parameters in N. X and N can be vectors, matrices, or 
multidimensional arrays that have the same size. A scalar input is expanded 
to a constant array with the same dimensions as the other inputs. The 
parameters in N must be positive integers.

The discrete uniform pdf is

You can think of y as the probability of observing any one number between 1 
and n.

Examples For fixed n, the uniform discrete pdf is a constant.

y = unidpdf(1:6,10)

y =
  0.1000  0.1000  0.1000  0.1000  0.1000  0.1000

Now fix x, and vary n.

likelihood = unidpdf(5,4:9)

likelihood =

     0  0.2000  0.1667  0.1429  0.1250  0.1111

See Also pdf, unidcdf, unidinv, unidrnd, unidstat

y f x N( ) 1
N
----I 1 … N, ,( ) x( )= =
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12unidrndPurpose Random numbers from the discrete uniform distribution

Syntax R = unidrnd(N)
R = unidrnd(N,v)
R = unidrnd(N,m,n)

Description The discrete uniform distribution arises from experiments equivalent to 
drawing a number from one to N out of a hat. 

R = unidrnd(N) generates discrete uniform random numbers with 
maximum N. The parameters in N must be positive integers. N can be a vector, 
a matrix, or a multidimensional array. The size of R is the size of N.

R = unidrnd(N,v) generates discrete uniform random numbers with 
maximum N, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with 
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array. 

R = unidrnd(N,m,n) generates discrete uniform random numbers with 
maximum N, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of unidrnd
unidrnd uses the MATLAB function rand to generate random numbers. When 
you call unidrnd, you change the current state of rand, and thereby alter the 
output of subsequent calls to unidrnd or any other functions that depend on 
rand. If you want to reproduce the output of unidrnd, reset the state of rand to 
the same fixed value each time you call unidrnd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The result in the following example depends on the current state of 
rand. If you run the code in this example, your results may differ from the 
answer shown here.

Example In the Massachusetts lottery, a player chooses a four digit number. Generate 
random numbers for Monday through Saturday.

numbers = unidrnd(10000,1,6) - 1



unidrnd

12-547

numbers =

    2189     470    6788    6792    9346

See Also unidcdf, unidinv, unidpdf, unidstat
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12unidstatPurpose Mean and variance for the discrete uniform distribution

Syntax [M,V] = unidstat(N)

Description [M,V] = unidstat(N) returns the mean and variance for the discrete uniform 
distribution with parameter N. 

The mean of the discrete uniform distribution with parameter N is . 
The variance is .

Examples [m,v] = unidstat(1:6)

m =
  1.0000  1.5000  2.0000  2.5000  3.0000  3.5000

v =
     0  0.2500  0.6667  1.2500  2.0000  2.9167

See Also unidcdf, unidinv, unidpdf, unidrnd

N 1+( ) 2⁄
N2 1–( ) 12⁄
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12unifcdfPurpose Continuous uniform cumulative distribution function (cdf)

Syntax P = unifcdf(X,A,B)

Description P = unifcdf(X,A,B) computes the uniform cdf at each of the values in X using 
the corresponding parameters in A and B (the minimum and maximum values, 
respectively). X, A, and B can be vectors, matrices, or multidimensional arrays 
that all have the same size. A scalar input is expanded to a constant matrix 
with the same dimensions as the other inputs. 

The uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the probability that an observation from a standard uniform 
distribution will be less than 0.75?

probability = unifcdf(0.75)

probability =

  0.7500

What is the probability that an observation from a uniform distribution with 
a = -1 and b = 1 will be less than 0.75?

probability = unifcdf(0.75,-1,1)

probability =

  0.8750

See Also cdf, unifinv, unifit, unifpdf, unifrnd, unifstat

p F x a b,( ) x a–
b a–
------------I a b,[ ] x( )= =
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12unifinvPurpose Inverse continuous uniform cumulative distribution function (cdf)

Syntax X = unifinv(P,A,B)

Description X = unifinv(P,A,B) computes the inverse of the uniform cdf with parameters 
A and B (the minimum and maximum values, respectively) at the corresponding 
probabilities in P. P, A, and B can be vectors, matrices, or multidimensional 
arrays that all have the same size. A scalar input is expanded to a constant 
array with the same dimensions as the other inputs.

The inverse of the uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the median of the standard uniform distribution?

median_value = unifinv(0.5)

median_value =

  0.5000

What is the 99th percentile of the uniform distribution between -1 and 1?

percentile = unifinv(0.99,-1,1)

percentile =

  0.9800

See Also icdf, unifcdf, unifit, unifpdf, unifrnd, unifstat

x F 1– p a b,( ) a p a b–( )I 0 1,[ ] p( )+= =
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12unifitPurpose Parameter estimates for uniformly distributed data

Syntax [ahat,bhat] = unifit(DATA)
[ahat,bhat,ACI,BCI] = unifit(DATA)
[ahat,bhat,ACI,BCI] = unifit(DATA,alpha)

Description [ahat,bhat] = unifit(DATA) returns the maximum likelihood estimates 
(MLEs) of the parameters of the uniform distribution given the data in DATA.

[ahat,bhat,ACI,BCI] = unifit(DATA) also returns 95% confidence intervals, 
ACI and BCI, which are matrices with two rows. The first row contains the 
lower bound of the interval for each column of the matrix DATA. The second row 
contains the upper bound of the interval.

[ahat,bhat,ACI,BCI] = unifit(DATA,alpha) enables you to control of the 
confidence level alpha. For example, if alpha = 0.01 then ACI and BCI are 99% 
confidence intervals. 

Example r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)

ahat =

  10.0154  10.0060

bhat =

  11.9989  11.9743

aci =

  9.9551  9.9461
  10.0154  10.0060

bci =

  11.9989  11.9743
  12.0592  12.0341

See Also betafit, binofit, expfit, gamfit, normfit, poissfit, unifcdf, unifinv, 
unifpdf, unifrnd, unifstat, wblfit
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12unifpdfPurpose Continuous uniform probability density function (pdf)

Syntax Y = unifpdf(X,A,B)

Description Y = unifpdf(X,A,B) computes the continuous uniform pdf at each of the 
values in X using the corresponding parameters in A and B. X, A, and B can be 
vectors, matrices, or multidimensional arrays that all have the same size. A 
scalar input is expanded to a constant array with the same dimensions as the 
other inputs. The parameters in B must be greater than those in A.

The continuous uniform distribution pdf is

The standard uniform distribution has A = 0 and B = 1.

Examples For fixed a and b, the uniform pdf is constant.

x = 0.1:0.1:0.6;
y = unifpdf(x)

y =
   1   1   1   1   1   1

What if x is not between a and b?

y = unifpdf(-1,0,1)

y =
   0

See Also pdf, unifcdf, unifinv, unifrnd, unifstat

y f x a b,( ) 1
b a–
------------I a b,[ ] x( )= =
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12unifrndPurpose Random numbers from the continuous uniform distribution

Syntax R = unifrnd(A,B)
R = unifrnd(A,B,m)
R = unifrnd(A,B,m,n)

Description R = unifrnd(A,B) generates uniform random numbers with parameters A 
and B. Vector or matrix inputs for A and B must have the same size, which is 
also the size of R. A scalar input for A or B is expanded to a constant matrix with 
the same dimensions as the other input.

R = unifrnd(A,B,m) generates uniform random numbers with parameters A 
and B, where m is a 1-by-2 vector that contains the row and column dimensions 
of R.

R = unifrnd(A,B,m,n) generates uniform random numbers with parameters 
A and B, where scalars m and n are the row and column dimensions of R.

Reproducing the Output of unifrnd
unifrnd uses the MATLAB function rand to generate random numbers. When 
you call unifrnd, you change the current state of rand, and thereby alter the 
output of subsequent calls to unifrnd or any other functions that depend on 
rand. If you want to reproduce the output of unifrnd, reset the state of rand to 
the same fixed value each time you call unifrnd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The results in the following examples depend on the current state of 
rand. If you run the code in these examples, your results may differ from the 
answers shown here.

Examples random = unifrnd(0,1:6)

random =

  0.2190  0.0941  2.0366  2.7172  4.6735  2.3010
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random = unifrnd(0,1:6,[1 6])

random =

  0.5194  1.6619  0.1037  0.2138  2.6485  4.0269

random = unifrnd(0,1,2,3)

random =

  0.0077  0.0668  0.6868
  0.3834  0.4175  0.5890

See Also unifcdf, unifinv, unifpdf, unifstat
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12unifstatPurpose Mean and variance for the continuous uniform distribution

Syntax [M,V] = unifstat(A,B)

Description [M,V] = unifstat(A,B) returns the mean and variance for the continuous 
uniform distribution with parameters specified by A and B. Vector or matrix 
inputs for A and B must have the same size, which is also the size of M and V. A 
scalar input for A or B is expanded to a constant matrix with the same 
dimensions as the other input.

The mean of the continuous uniform distribution with parameters a and b is 
, and the variance is .

Examples a = 1:6;
b = 2.∗a;
[m,v] = unifstat(a,b)

m =
  1.5000  3.0000  4.5000  6.0000  7.5000  9.0000

v =
  0.0833  0.3333  0.7500  1.3333  2.0833  3.0000

See Also unifcdf, unifinv, unifpdf, unifrnd

a b+( ) 2⁄ b a–( )2 12⁄
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12varPurpose Variance of a sample

Syntax y = var(X)
y = var(X,1)
y = var(X,w)
var(X,w,dim)

Description y = var(X) computes the variance of the data in X. For vectors, var(x) is the 
variance of the elements in x. For matrices, var(X) is a row vector containing 
the variance of each column of X.

y = var(x) normalizes by n-1 where n is the sequence length. For normally 
distributed data, this makes var(x) the minimum variance unbiased estimator 
MVUE of σ 2(the second parameter).

y = var(x,1) normalizes by n and yields the second moment of the sample 
data about its mean (moment of inertia).

y = var(X,w) computes the variance using the vector of positive weights w. 
The number of elements in w must equal the number of rows in the matrix X. 
For vector x, w and x must match in length. 

var(X,w,dim) takes the variance along the dimension dim of X. Pass in 0 for w 
to use the default normalization by N-1, or 1 to use N.

var supports both common definitions of variance. Let SS be the sum of the 
squared deviations of the elements of a vector x from their mean. Then, 
var(x) = SS/(n-1) is the MVUE, and var(x,1) = SS/n is the maximum 
likelihood estimator (MLE) of σ 2.

Examples x = [-1 1];
w = [1 3];
v1 = var(x)

v1 =
   2

v2 = var(x,1)

v2 =
   1



var

12-557

v3 = var(x,w)

v3 =
  0.7500

See Also cov, std
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12wblcdfPurpose Weibull cumulative distribution function (cdf)

Syntax P = wblbcdf(X, A, B)
[P, PLO, PUP] = wblcdf(X, A, B, PCOV, alpha)

Description P = wblbcdf(X, A, B) computes the cdf of the Weibull distribution with scale 
parameter A and shape parameter B, at each of the values in X. X, A, and B can 
be vectors, matrices, or multidimensional arrays that all have the same size. A 
scalar input is expanded to a constant array of the same size as the other 
inputs. The default values for A and B are both 1. The parameters A and B must 
be positive.

[P, PLO, PUP] = wblcdf(X, A, B, PCOV, alpha) returns confidence bounds 
for P when the input parameters A and B are estimates. PCOV is the 2-by-2 
covariance matrix of the estimated parameters. alpha has a default value of 
0.05, and specifies 100(1 - alpha)% confidence bounds. PLO and PUP are arrays 
of the same size as P containing the lower and upper confidence bounds.

The function wblcdf computes confidence bounds for P using a normal 
approximation to the distribution of the estimate

and then transforms those bounds to the scale of the output P. The computed 
bounds give approximately the desired confidence level when you estimate MU, 
SIGMA, and PCOV from large samples, but in smaller samples other methods of 
computing the confidence bounds might be more accurate.

The Weibull cdf is

Examples What is the probability that a value from a Weibull distribution with 
parameters a = 0.15 and b = 0.8 is less than 0.5?

probability = wblcdf(0.5, 0.15, 0.8)

probability =
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  0.9272

How sensitive is this result to small changes in the parameters?

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = wblcdf(0.5, A, B)
probability =

  0.7484  0.7198  0.6991
  0.7758  0.7411  0.7156
  0.8022  0.7619  0.7319

See Also cdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd, wblstat
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12wblfitPurpose Parameter estimates and confidence intervals for Weibull data

Syntax parmhat = wblfit(data)
[parmhat, parmci] = wblfit(data)
[parmhat, parmci] = wblfit(data, alpha)
[...] = wblfit(data, alpha, censoring)
[...] = wblfit(data, alpha, censoring, freq)
[...] = wblfit(data, alpha, censoring, freq, options)

Description parmhat = wblfit(data) returns the maximum likelihood estimates, parmhat, 
of the parameters of the Weibull distribution given the values in the vector 
data, which must be positive. parmhat is a two-element row vector: parmhat(1) 
estimates the Weibull parameter a, and parmhat(2) estimates the Weibull 
parameter b, in the pdf

[parmhat, parmci] = wblfit(data) returns 95% confidence intervals for the 
estimates of a and b in the 2-by-2 matrix parmci. The first row contains the 
lower bounds of the confidence intervals for the parameters, and the second 
row contains the upper bounds of the confidence intervals. 

[parmhat, parmci] = wblfit(data, alpha) returns 100(1 - alpha)% 
confidence intervals for the parameter estimates.

[...] = wblfit(data, alpha, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly.

[...] = wblfit(data, alpha, censoring, freq) accepts a frequency vector, 
freq, of the same size as data. The vector freq typically contains integer 
frequencies for the corresponding elements in data, but can contain any 
non-negative values. Pass in [] for alpha, censoring, or freq to use their 
default values.

[...] = wblfit(..., options) accepts a structure, options, that specifies 
control parameters for the iterative algorithm the function uses to compute 
maximum likelihood estimates. You can create options using the function 
statset. Enter statset ('wblfit') to see the names and default values of the 

y f x a b,( ) ba b– xb 1– e
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parameters that lognfit accepts in the options structure. See the reference 
page for statset for more information about these options.

Example data = wblrnd(0.5,0.8,100,1);
[parmhat, parmci] = wblfit(data)

parmhat =
  0.5861  0.8567

parmci =
  0.4606  0.7360
  0.7459  0.9973

See Also wblcdf, wblinv, wbllike, wblpdf, wblrnd, wblstat, mle, statset
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12wblinvPurpose Inverse of the Weibull cumulative distribution function

Syntax X = wblbinv(P, A, B)

[X, XLO, XUP] = wblinv(P, A, B, PCOV, alpha)

Description X = wblinv(P, A, B) returns the inverse cumulative distribution function (cdf) 
for a Weibull distribution with scale parameter A and shape parameter B, 
evaluated at the values in P. P, A, and B can be vectors, matrices, or 
multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array of the same size as the other inputs. The default 
values for A and B are both 1.

[X, XLO, XUP] = wblinv(P, A, B, PCOV, alpha) returns confidence bounds 
for X when the input parameters A and B are estimates. PCOV is a 2-by-2 matrix 
containing the covariance matrix of the estimated parameters. alpha has a 
default value of 0.05, and specifies 100(1 -  alpha)% confidence bounds. XLO and 
XUP are arrays of the same size as X containing the lower and upper confidence 
bounds.

The function wblinv computes confidence bounds for X using a normal 
approximation to the distribution of the estimate

where q is the Pth quantile from a Weibull distribution with scale and shape 
parameters both equal to 1. The computed bounds give approximately the 
desired confidence level when you estimate MU, SIGMA, and PCOV from large 
samples, but in smaller samples other methods of computing the confidence 
bounds might be more accurate.

The inverse of the Weibull cdf is

Examples The lifetimes (in hours) of a batch of light bulbs has a Weibull distribution with 
parameters a = 200 and b = 6. What is the median lifetime of the bulbs?

life = wblinv(0.5, 200, 6)
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life =
 188.1486

What is the 90th percentile?

life = wblinv(0.9, 200, 6)

life =
  229.8261

See Also wblcdf, wblfit, wbllike, wblpdf, wblrnd, wblstat, icdf
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12wbllikePurpose Weibull negative log-likelihood function

Syntax nlogL = wbllike(params, data)
[nlogL, AVAR] = wbllike(params,data)
[...] = wbllike(params, data, censoring)

[...] = wbllike(params, data, censoring, freq)

Description nlogL = wbllike(params, data) returns the Weibull log-likelihood with 
parameters params(1) = a and params(2) = b given the data xi.

[logL, AVAR] = wbllike(params, data) also returns AVAR, which is the 
asymptotic variance-covariance matrix of the parameter estimates if the 
values in params are the maximum likelihood estimates. AVAR is the inverse of 
Fisher's information matrix. The diagonal elements of AVAR are the asymptotic 
variances of their respective parameters.

[...] = wbllike(params, data, censoring) accepts a Boolean vector, 
censoring, of the same size as data, which is 1 for observations that are 
right-censored and 0 for observations that are observed exactly.

[...] = wbllike(params, data, censoring, freq) accepts a frequency 
vector, freq, of the same size as data. freq typically contains integer 
frequencies for the corresponding elements in data, but can contain any 
nonnegative values. Pass in [] for censoring to use its default value.

The Weibull negative log-likelihood for uncensored data is

where f is the Weibull pdf. 

wbllike is a utility function for maximum likelihood estimation. 

Example This example continues the example from wblfit.

r = wblrnd(0.5,0.8,100,1);
[logL, AVAR] = wbllike(wblfit(r),r)

Llog–( ) f a b, xi( )
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logL =

  47.3349

AVAR =

  0.0048  0.0014
  0.0014  0.0040

Reference [1] Patel, J.K., C. H. Kapadia, and D. B. Owen, Handbook of Statistical 
Distributions, Marcel-Dekker, 1976.

See Also betalike, gamlike, mle, normlike, wblcdf, wblfit, wblinv, wblpdf, wblrnd, 
wblstat
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12wblpdfPurpose Weibull probability density function (pdf)

Syntax Y = wblpdf(X,A,B)

Description Y = wblpdf(X,A,B) computes the Weibull pdf at each of the values in X using 
the corresponding parameters in A and B. X, A, and B can be vectors, matrices, 
or multidimensional arrays that all have the same size. A scalar input is 
expanded to a constant array of the same size as the other inputs. The 
parameters in A and B must be positive.

The Weibull pdf is

Some references refer to the Weibull distribution with a single parameter. This 
corresponds to wblpdf with A = 1.

Examples The exponential distribution is a special case of the Weibull distribution.

lambda = 1:6;
y = wblpdf(0.1:0.1:0.6,lambda,1)

y =

  0.9048  0.4524  0.3016  0.2262  0.1810  0.1508

y1 = exppdf(0.1:0.1:0.6, lambda)

y1 =

  0.9048  0.4524  0.3016  0.2262  0.1810  0.1508

Reference [1] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag, 
1986.

See Also pdf, wblcdf, wblfit, wblinv, wbllike, wblplot, wblrnd, wblstat
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12wblplotPurpose Weibull probability plot

Syntax wblplot(X)
h = wblplot(X)

Description wblplot(X) displays a Weibull probability plot of the data in X. If X is a matrix, 
wblplot displays a plot for each column.

h = wblplot(X) returns handles to the plotted lines.

The purpose of a Weibull probability plot is to graphically assess whether the 
data in X could come from a Weibull distribution. If the data are Weibull the 
plot will be linear. Other distribution types might introduce curvature in the 
plot. 

Example r = wblrnd(1.2,1.5,50,1);
wblplot(r)

See Also normplot, wblcdf, wblfit, wblinv, wbllike, wblpdf, wblrnd, wblstat
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12wblrndPurpose Random numbers from the Weibull distribution

Syntax R = wblrnd(A,B)
R = wblrnd(A,B,v)
R = wblrnd(A,B,m,n)

Description R = wblrnd(A,B) generates Weibull random numbers with parameters A 
and B. The input arguments A and B can be either scalars or matrices. A and B, 
can be vectors, matrices, or multidimensional arrays that all have the same 
size. A scalar input is expanded to a constant array of the same size as the other 
input.

R = wblrnd(A,B,v) generates Weibull random numbers with parameters A 
and B, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) 
rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array. 

R = wblrnd(A,B,m,n) generates Weibull random numbers with parameters A 
and B, where scalars m and n are the row and column dimensions of R.

Devroye [1] refers to the Weibull distribution with a single parameter; this is 
wblrnd with A = 1.

Reproducing the Output of wblrnd
wblrnd uses the MATLAB function rand to generate random numbers. When 
you call wblrnd, you change the current state of rand, and thereby alter the 
output of subsequent calls to wblrnd or any other functions that depend on 
rand. If you want to reproduce the output of wblrnd, reset the state of rand to 
the same fixed value each time you call wblrnd. For an example of how to do 
this, and a list of the Statistics Toolbox functions that depend on rand, see 
“Reproducing the Output of Random Number Functions” on page 2-46.

Note  The results in the following examples depend on the current state of 
rand. If you run the code in these examples, your results might differ from the 
answers shown here.

Examples n1 = wblrnd(0.5:0.5:2,0.5:0.5:2)
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n1 =
  0.0178  0.0860  2.5216  0.9124

n2 = wblrnd(1/2,1/2,[1 6])

n2 =
  0.0046  1.7214  2.2108  0.0367  0.0531  0.0917

Reference [1] Devroye, L., Non-Uniform Random Variate Generation, Springer-Verlag, 
1986.

See Also wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblstat
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12wblstatPurpose Mean and variance for the Weibull distribution

Syntax [M,V] = wblstat(A,B)

Description [M,V] = wblstat(A,B) returns the mean and variance for the Weibull 
distribution with parameters specified by A and B. Vector or matrix inputs for 
A and B must have the same size, which is also the size of M and V. A scalar input 
for A or B is expanded to a constant matrix with the same dimensions as the 
other input.

The mean of the Weibull distribution with parameters a and b is 

and the variance is

Examples [m,v] = wblstat(1:4,1:4)

m =

  1.0000  1.7725  2.6789  3.6256

v =

  1.0000  0.8584  0.9480  1.0346

wblstat(0.5,0.7)

ans =

  0.6329

See Also wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd
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12wishrndPurpose Generate Wishart random matrix

Syntax W = wishrnd(SIGMA,df)
W = wishrnd(SIGMA,df,D)
[W,D] = wishrnd(SIGMA,df)

Description W = wishrnd(SIGMA,df) generates a random matrix W having the Wishart 
distribution with covariance matrix SIGMA and with df degrees of freedom.

W = wishrnd(SIGMA,df,D) expects D to be the Cholesky factor of SIGMA. If you 
call wishrnd multiple times using the same value of SIGMA, it's more efficient 
to supply D instead of computing it each time. 

[W,D] = wishrnd(SIGMA,df) returns D so you can provide it as input in future 
calls to wishrnd. 

Reproducing the Output of wishrnd
wishrnd uses the MATLAB functions rand and randn to generate random 
numbers. When you call wishrnd, you change the current states of rand and 
randn, and thereby alter the output of subsequent calls to wishrnd or any other 
functions that depend on rand or randn. If you want to reproduce the output of 
wishrnd, reset the states of rand and randn to the same fixed values each time 
you call wishrnd. For an example of how to do this, and a list of the Statistics 
Toolbox functions that depend on rand or randn, see “Reproducing the Output 
of Random Number Functions” on page 2-46.

See Also iwishrnd
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12x2fxPurpose Transform a matrix of variable values to a design matrix of term values

Syntax D = x2fx(X)
D = x2fx(X,'model')

Description D = x2fx(X) takes a matrix X of variable values system inputs and computes 
a matrix D of term values for a linear additive model with a constant term. 
Often the X matrix represents settings of factors in an experimental design, 
and these represent the inputs of a system being modeled. D is known as a 
design matrix.

D = x2fx(X,'model') allows control of the regression model. 'model' can be 
one of these strings:

Alternatively, model can be a matrix of terms. In this case, each row of model 
represents one term. The value in a column is the exponent to which the same 
column in X for that term is raised, D(i,j) = prod(x(i,:).^model(j,:)). 
This allows for models with polynomial terms of arbitrary degree. A row of all 
zeros represents the constant term, so you can omit the constant by not 
including such a row.

The order of columns for a quadratic model is

1 Constant term

2 Linear terms (the input X columns 1,2,...,k)

3 Interaction terms formed by taking pairwise products of X columns (1,2), 
(1,3), ..., (1,k), (2,3), ..., (k-1,k)

4 Squared terms in the order 1,2,...,k

Other string options for the 'model' parameter use a subset of these terms but 
keep them in this order.

x2fx is a utility function for rstool, regstats, and cordexch.

'linear' Constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms

'quadratic' Includes interactions and squared terms

'purequadratic' Includes constant, linear, and squared terms
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Examples Example 1.

x = [1 2 3;4 5 6]'; 
model = 'quadratic';
D = x2fx(x,model)

D =

   1   1   4   4   1  16
   1   2   5  10   4  25
   1   3   6  18   9  36

This example specifies a model by name. Let x1 be the first column of x and x2 
be the second. Then the first column of D is the constant term, the second 
column is x1, the third column is x2, the fourth column is x1x2, the fifth column 
is x1

2, and the last column is x2
2.

Example 2.

x = [1 10; 2 20; 3 10; 40 20; 5 15; 6 15];
model = [0 0; 1 0; 0 1; 1 1; 2 0];
D = x2fx(x, model)
D =
   1   1  10  10   1
   1   2  20  40   4
   1   3  10  30   9
   1  40  20  800 1600
   1   5  15  75  25
   1   6  15  90  36

This example specifies a model as a matrix. Let x1 be the first column of x and 
x2 be the second. Then the columns of D are defined by the rows of model in the 
following order: constant term, x1, x2, x1x2, and x1

2. The fourth row of model is 
[1 1], so it defines the term x1x2 as the product of x1 to the first power and x2 
to the first power. The fifth row of model is [2 0], so it defines x1

2 as the product 
of x1 to the second power and x2 to the zeroth power.

See Also rstool, candexch, candgen, cordexch, rowexch
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12xbarplotPurpose X-bar chart for Statistical Process Control

Syntax xbarplot(DATA)
xbarplot(DATA,conf)
xbarplot(DATA,conf,specs,'sigmaest')
[outlier,h] = xbarplot(...)

Description xbarplot(DATA) displays an x-bar chart of the grouped responses in DATA. The 
rows of DATA contain replicate observations taken at a given time, and must be 
in time order. The graph contains the sample mean  for each group, a center 
line at the average  value, and upper and lower control limits. The limits are 
placed at a three-sigma distance on either side of the center line, where sigma 
is an estimate of the standard deviation of . If the process is in control, fewer 
than 3 out of 1000 observations would be expected to fall outside the control 
limits by random chance. So if you observe points outside the limits, you can 
take this as evidence that the process is not in control.

xbarplot(DATA,conf) allows control of the confidence level of the upper and 
lower plotted confidence limits. The default conf = 0.9973 produces 
three-sigma limits.

norminv(1 - (1-.9973)/2)

ans =
      3

To get k-sigma limits, use the expression 1-2*(1-normcdf(k)). For example, 
the correct conf value for 2-sigma limits is 0.9545, as shown below.

k = 2;
1-2*(1-normcdf(k))

ans =
    0.9545

xbarplot(DATA,conf,specs) plots the specification limits in the two element 
vector specs.

xbarplot(DATA,conf,specs,'sigmaest') specifies how xbarplot should 
estimate the standard deviation. Acceptable values are:

x
x

x
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• 's' – use the average of the group standard deviations (default)

• 'v' – use the square root of a pooled variance estimate

• 'r' – use the average range with each group; requires 25 or fewer 
observations per group

[outlier,h] = xbarplot(DATA,conf,specs) returns outlier, a vector of 
indices to the rows where the mean of DATA is out of control, and h, a vector of 
handles to the plotted lines.

Example Plot an x-bar chart of measurements on newly machined parts, taken at one 
hour intervals for 36 hours. Each row of the runout matrix contains the 
measurements for four parts chosen at random. The values indicate, in 
thousandths of an inch, the amount the part radius differs from the target 
radius.

load parts
xbarplot(runout,0.999,[-0.5 0.5])

The points in groups 21 and 25 are out of control, so the mean in those groups 
was higher than would be expected by random chance alone. There is evidence 
that the process was not in control when those measurements were collected.

See Also capaplot, histfit, ewmaplot, schart
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12zscorePurpose Standardized Z score

Syntax Z = zscore(D)

Description Z = zscore(D) returns the deviation of each column of D from its mean, 
normalized by its standard deviation. This is known as the Z score of D. 

For column vector V, the Z score is Z = (V-mean(V))./std(V).
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12ztestPurpose Hypothesis testing for the mean of one sample with known variance

Syntax h = ztest(x,m,sigma)
h = ztest(x,m,sigma,alpha)
h = ztest(x,m,sigma,alpha,tail)
h = ztest(x,m,sigma,alpha,tail,dim)
[h,sig,ci,zval] = ztest(...)

Description h = ztest(x,m,sigma) performs a Z test at significance level 0.05 to 
determine whether a sample x from a normal distribution with standard 
deviation sigma could have mean m.

x can also be a matrix or an N-D array. For matrices, ztest performs separate 
Z tests along each column of x and returns a vector of results. For N-D arrays, 
ztest works along the first nonsingleton dimension of x.

h = ttest(x,m) performs a Z test of the hypothesis that the data in the vector 

h = ztest(x,m,sigma,alpha) gives control of the significance level alpha. For 
example, if alpha = 0.01 and the result is h = 1, you can reject the null 
hypothesis at the significance level 0.01. If h = 0, you cannot reject the null 
hypothesis at the alpha level of significance.

[h,sig,ci] = ztest(x,m,sigma,alpha,tail) allows specification of one- or 
two-tailed tests, where tail is a flag that specifies one of three alternative 
hypotheses:

• tail = 'both' specifies the alternative  (default).

• tail = 'right' specifies the alternative .

• tail = 'left' specifies the alternative .

zval is the value of the Z statistic

where  is the number of observations in the sample.

sig is the probability that the observed value of Z could be as large or larger by 
chance under the null hypothesis that the mean of x is equal to m. 

x m≠
x m>

x m<
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ci is a 1-alpha confidence interval for the true mean.

h = ztest(...,alpha,tail,dim) performs the test along dimension dim of 
the input x array. For a matrix x, dim=1 computes the Z test for each column 
(along the first dimension), and dim=2 computes the Z test for each row. By 
default, ztest works along the first nonsingleton dimension, so it treats a 
single-row input as a row vector.

Example This example generates 100 normal random numbers with theoretical mean 0 
and standard deviation 1. The observed mean and standard deviation are 
different from their theoretical values, of course. You test the hypothesis that 
there is no true difference.

x = normrnd(0,1,100,1);
m = mean(x)
m =
  0.0727

[h,sig,ci] = ztest(x,0,1)

h =
   0

sig =
  0.4669

ci =
  -0.1232  0.2687

The result, h = 0, means that you cannot reject the null hypothesis. The 
significance level is 0.4669, which means that by chance you would have 
observed values of Z more extreme than the one in this example in 47 of 100 
similar experiments. A 95% confidence interval on the mean is 
[-0.1232 0.2687], which includes the theoretical (and hypothesized) mean of 
zero.
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